
Aspects of the stringy instanton calculus (II)

Marco Billò

Dip. di Fisica Teorica, Università di Torino and I.N.FN., sez. di Torino

Mathematical Challenges in String Phenomenology
ESI, Vienna - October 7, 2008



Plan of the talk

1 Brane interactions with closed string fluxes

2 An N = 1 local example example

3 Flux effects and stringy instantons



Brane interactions with closed string fluxes



Flexibility of the string view-point

I Realizing instantonic sectors in a stringy way makes it
natural to investigate modifications or extensions of
non-perturbative contributions in field theory models
admitting a string description.

I Take into account the interactions with closed strings, i.e.
with bulk fields (loosely speaking, with the “gravitational”
sector)

I In brane-world models, many different (wrapped) Euclidean
branes appear as instantonic objects in the 4d
gauge/matter theory. Different non-perturbative
constributions may arise, some corresponding to ordinary
field-theory instantons, some not



Interactions with closed strings

I Include the effect of closed strings , similarly to what A.
Lerda described before for open strings

I Extra term in the moduli action from disk diagrams coupling
moduli to bulk fields

Smod (M)→ Smod (M, φcl )

M

φcl

I Integrating over the moduli yields non-perturbative
corrections to effective action for the bulk fields∫

dMe−Smod (M,φcl ) = Sn.p.
eff (φcl )

Among the first lines pursued to find D-instanton induced
interactions in the gravitational sector (ex R4 term in eff.
action of type IIB) Green and Gutperle 9701093, . . .



Closed string backgrounds

I We may also consider turning on a closed string
background

I Mixed open/closed diagrams are now interpreted as
describing a deformation of the of the gauge theory action
and of the moduli action in the background

I We can study the non-perturbative sectors of the deformed
theory integrating over the moduli with the deformed moduli
action

I Well known example: non-commutative field theories from
open strings in Bµν background

Chu and Ho, 9812219; Seiberg and Witten, 9908142; . . .

I D-instantons effects in such theories can be studied using
the method outlined above

Billo et al, 0511036; . . .



RR backgrounds

I Also RR backgrounds can be studied (despite the fact that
the σ-model description is lacking), by “perturbatively”
inserting RR vertices.

I In the field theory limit α′ → 0, only diagrams with few
insertions matter

I Insert the background RR value in the corresponding
amplitudes

I Examples of effects of a constant RR background where
the method applies:

I Non-anti-commutative (NAC) field theories
de Boer et al, 0302078; Ooguri and Vafa, 0302109; . . . ; Billo et al, 0402160; . . .

I Nekrasov’s ε-deformations of the instanton moduli space in
N = 2 gauge theories

Nekrasov, 0206161; . . . ; Billo et al, 0606013; . . .



Flux interactions on branes

I As a concrete example (useful for the following) let us
describe the coupling of open string fermions living on
some branes to closed string fluxes, from both the NSNS
and RR sector

I It can be described in a general, 10d set-up.
I Here we will be interested in the effect of fluxes on the

ordinary and exotic instantons in an N = 1
brane-engineered gauge theory



The disk diagrams

VΘ VΘ′ VΘ VΘ′

a) b)

~ϑ = 0

VF ,VH

Untwisted

~ϑ 6= 0

Twisted

VF ,VH

I Θ and Θ′ are massless fermions from the R sector of open
strings



The disk diagrams

VΘ VΘ′ VΘ VΘ′

a) b)

~ϑ = 0

VF ,VH

Untwisted

~ϑ 6= 0

Twisted

VF ,VH

I F (H) is a closed string vertex corresponding to a RR
(NS-NS) field strength



The disk diagrams

VΘ VΘ′ VΘ VΘ′

a) b)

~ϑ = 0

VF ,VH

Untwisted

~ϑ 6= 0

Twisted

VF ,VH

I We can treat open string with generic b.c., including both
the twisted and untwisted case



The disk diagrams

VΘ VΘ′ VΘ VΘ′

a) b)

~ϑ = 0

VF ,VH

Untwisted

~ϑ 6= 0

Twisted

VF ,VH

I We work in a flat geometry (non-compact, toroidal or
orbifolded directions)



Boundary conditions
I The disk amplitude depends on the↔ boundary

conditions, imposed by the brane, e.g.

∂xM
∣∣∣
σ=0,π

= (Rσ)M
N ∂xN

∣∣∣
σ=0,π

, Rσ =
(
1−Fσ

)−1 (1+Fσ
)

I For a string stretching between
different branes, we get twisted
fields:

X M(e2πiz) = RM
N X N(z) , R = R−1

π R0

Cz
Imz

∂X(z) = ∂x(z)

Rez

∂X(z) = R0∂̄x(z)

∂X(z) = R−1
π R0∂x(z)

I In a suitable complex basis Z I , I = 1, . . .5,

R = diag
(

e2πiϑ1
, e−2πiϑ1

, . . . , e2πiϑ5
, e−2πiϑ5

)
∂Z I(e2πiz) = e2πiϑI

∂Z I(z)



Specializing the result

The resulting general form of the amplitude Details Billo et al, 0807.1666

can be applied to many different situations and generate
various types of flux interactions.

I We will concentrate here on toroidal (orbifold)
compactifications of IIB to 4d and consider the interactions
induced by constant internal fluxes F3 and H on

I space-filling branes. In this case we consider untwisted
strings

I instantonic branes. We consider untwisted strings (neutral
moduli) but also also twisted (θ4,5 = 1/2) ND strings
forcharged moduli.



Untwisted case

I The general result reduces to (m,n . . . are internal indices)

A ≡ AF +AH ∼ iΘΓmnpΘ Tmnp

with

Tmnp = (FR0)mnp+
1
gs

[(∂BR0)mnp+(∂BR0)npm+(∂BR0)pmn]

I The factor of gs is due to the relative normalizazion of RR
and NS-NS vertices to account for their 10d kinetic terms
in the Einstein frame



Untwisted case

I The general result reduces to (m,n . . . are internal indices)

A ≡ AF +AH ∼ iΘΓmnpΘ Tmnp

with

Tmnp = (FR0)mnp+
1
gs

[(∂BR0)mnp+(∂BR0)npm+(∂BR0)pmn]

I For unmagnetized branes,the reflection matrix R0 is simply
+1 for NN and -1 for DD directions

I The spinorial reflection is simply R0 =
∏

m̂∈DD Γm̂



4d notation

I Decomposing the 10d spinors into 4+6-dimensional parts:
ΘA → (ΘαA,Θα̇A), the flux coupling in 4d notation reads

−i ΘαAΘ B
α

(
Σ

mnp)
AB T IASD

mnp − i Θα̇AΘα̇
B
(
Σmnp)AB T ISD

mnp

I ISD and IASD tensors are defined as follows:

T ISD
mnp =

1
2
(
T − i ∗6T

)
mnp , T IASD

mnp =
1
2
(
T + i ∗6T

)
mnp ,

I In a complex basis,

T ISD → T(0,3) ⊕ T(2,1)P ⊕ T(1,2)NP

T IASD → T(3,0) ⊕ T(1,2)P ⊕ T(2,1)NP

where (N)P stands for (non)-primitive
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Coupling on unmagnetized branes

I In this case the fermions ΘαA are fields (gauginos, ...)
I The coupling Tmnp depends on the type of brane: Back

0-3 4 5 6 7 8 9 Tmnp

D3 − × × × × × × (∗6F )mnp − 1
gs

Hmnp

D5 − − − × × × × 1
gs

Hm̂n̂p ; − 1
2 F qr

m̂ εqrnp ; − 1
gs

Hmnp

D7 − − − − − × × F q
m̂n̂ εqp + 1

gs
Hm̂n̂p

D9 − − − − − − − Fm̂n̂p̂

I We neglected the H-components that would be projected
out by the appropriate orientifold projections
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I Can be extended to magnetized branes, by taking general
reflection matrices R0, R0



Coupling on unmagnetized branes

I In this case the fermions ΘαA are fields (gauginos, ...)
I The coupling Tmnp depends on the type of brane: Back

0-3 4 5 6 7 8 9 Tmnp

D3 − × × × × × × (∗6F )mnp − 1
gs

Hmnp

D5 − − − × × × × 1
gs

Hm̂n̂p ; − 1
2 F qr

m̂ εqrnp ; − 1
gs

Hmnp

D7 − − − − − × × F q
m̂n̂ εqp + 1

gs
Hm̂n̂p

D9 − − − − − − − Fm̂n̂p̂

I F and H do not appear of the same footing.



Coupling on instantonic branes

I In this case the fermions ΘαA are neutral moduli
I The coupling Tmnp depends on the type of brane: Back

0-3 4 5 6 7 8 9 Tmnp

D(-1) × × × × × × × −iFmnp − 1
gs

Hmnp

E1 × − − × × × × 1
gs

Hm̂n̂p ; −iεm̂q̂F p̂
np ; − 1

gs
Hmnp

E3 × − − − − × × − i
2εm̂n̂r̂ ŝF r̂ ŝ

p + 1
gs

Hm̂n̂p

E5 × − − − − − − i(∗6F )m̂n̂p̂

I We will use this result to discuss the influence of fluxes on
the stringy instanton calculus



An N = 1 example



A simple laboratory: C3/(Z2 × Z2)

To analyize the flux effects on the non-perturbative effective
action of brane-world gauge theories, it is useful to focalize on
a simple (yet non-trivial) example

I We consider a local model of an N = 1 compactification
given by the orbifold C3/(Z2 × Z2), generated by

h1 : (Z 1,Z 2,Z 3)→ (Z 1,−Z 2,−Z 3)

h2 : (Z 1,Z 2,Z 3)→ (−Z 1,Z 2,−Z 3)

I The properties of the 4 irreducible representations, and the
transformations of the string fields under this group are
easily worked out Details



The quiver

We consider fractional D3 branes transverse to the orbifold

I 4 types of fD3’s: the CP indices of
open string endpoints attached to
fD3(A) transform in the orbifold irrep
RA

I Given a system of {NA} fD3’s, the
open string massless spectrum is
encoded in a quiver

N1

N2

N0

N3

I Nodes↔ U(NA) N = 1 vector multiplets
I Arrows: bifundamental chiral multiplets



Different instantonic sectors

I 4 types of fD(-1)’s associated to the nodes of the quiver
I W.r.t. the U(NA) gauge theory on a given node,

I the D(-1)’s occupying the same node A are found to
correspond to ordinary gauge instantons

I D(-1)’s on a node B 6= A have a different spectrum of
moduli, and correspond to “exotic” or “stringy” instantons

I Analogue in smooth compactifications (e.g. in the
blown-up orbifold): for the gauge theory on a stack of
branes wrapped on a cycle CA,

I ordinary instantons arise from Euclidean branes entirely
wrapped on CA

I “exotic” ones from E-branes wrapped on CB 6= CA



A realization of SQCD

A system of N0 (N1) fD3’s of type 0 (1) realizes SQCD

I U(N0)× U(N1) N = 1 gauge theory
I Two chiral multiplets:

Q ∈ N0 × N̄1 , Q̃ ∈ N̄0 × N1

Q

Q̃ N1

N0

I The “quark” multiplets can be grouped into

Φ =

(
0 Qu

f
Q̃f

u 0

)



A realization of SQCD

A system of N0 (N1) fD3’s of type 0 (1) realizes SQCD

I U(N0)× U(N1) N = 1 gauge theory
I Two chiral multiplets:

Q ∈ N0 × N̄1 , Q̃ ∈ N̄0 × N1

Q

Q̃ N1

N0

I The diagonal U(1) factor is decoupled, the other U(1)
factor is IR free→ we in fact have an SU(N0)× SU(N1)
theory

I We focus on one the gauge factors, so we see a SQCD
with

Nc = N0 , Nf = N1



A realization of SQCD

A system of N0 (N1) fD3’s of type 0 (1) realizes SQCD

I U(N0)× U(N1) N = 1 gauge theory
I Two chiral multiplets:

Q ∈ N0 × N̄1 , Q̃ ∈ N̄0 × N1

Q

Q̃ N1

N0

I The massless d.o.f. in the Higgs phase parametrize
solutions to the D-flatness eq.s Back

Qu
f Q†fv = Q̃†uf Q̃f

v



“Ordinary” D-instantons

I Including k0 fractional D(-1) of type 0
corresponds to work in the instanton
# k0 sector of the gauge theory

k0

N0 = Nc N1 = Nf

I In SQCD, the k0 = 1 sector is responsible of
I the ADS/VTY superpotential for Nf = Nc − 1

Affleck et al, 1984; Taylor et al, 1983

I Beasley-Witten F-terms for Nf ≥ Nc
Beasley and Witten, 0409149, 0512039

I In presence of fluxes, other effects (some of stringy nature)
arise



Exotic D-instantons

D(-1)’s of type 2 or 3 give “exotic”, a.k.a. “stringy”
non-perturbative effects

I “Exotic” non-perturbative
contributions have attracted much
interest recently in brane-world
constructions

I Could generate very interesting
terms (neutrino masses ...)

Blumenhagen et al 0609191; Ibanez and Uranga, 0609213; ... ;

N0 = Nc N1 = Nf

k2

I However, severe restrictions from integration over
fermionic 0-modes: difficult to get non-vanishing results

Argurio et al, 0704.0262; Bianchi et al, 0704.0784; ...

I To this aim, fluxes might come to the rescue!
Blumenhagen et al, 0708.0403; Petersson, 0711.1837;...



Ordinary instanton: spectrum

Let us focus on a single D(-1) of type 0 in
the SQCD set-up

N0 = Nc N1 = Nf

k0 = 1

I Neutral moduli: {xµ,Dc , θ
α, λα̇}

I x , θ: position of the instanton + superpartner
I Dc (c = 1,2,3): auxiliary fields (see later)

I Charged moduli: {wα̇u, µu}, {w̄u
α̇ , µ

u} from the two
orientations.

I wα̇ bosonic, µ fermionic: effect of ND b.c.’s.
I u= color index

I Flavored moduli: µ′f , µ̄
′f from the two orientations

I Fermionic only! D(-1) of type 0, D3 of type 1 can be seen
as branes wrapped on non-parallel (exceptional cycles):
“exotic” configuration

I f= flavor index
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Ordinary instanton: action

The disks with moduli insertions yield the action

Smod =
DcDc

2g2
0

+ iDc(w̄uτ cwu) + iλ · (µ̄uwu + w̄uµu)

The dimensions of the moduli are chosen as follows:

xµ Dc θα λα̇ wα̇ µ µ′

M−1 M2 M−1/2 M3/2 M−1 M−1/2 M−1/2

I In the field theory limit α′ → 0, Dc and λα̇ are Lagrange
multiplier for the bosonic and fermionic constraints of the
ADHM construction.

I Indeed, 1/g2
0 ∝ (2πα′)2/gs goes to 0 for gs fixed, i.e. fixed

gauge coupling



Ordinary instanton: action

The disks with moduli insertions yield the action

Smod =
DcDc

2g2
0

+ iDc(w̄uτ cwu) + iλ · (µ̄uwu + w̄uµu)

The dimensions of the moduli are chosen as follows:

xµ Dc θα λα̇ wα̇ µ µ′

M−1 M2 M−1/2 M3/2 M−1 M−1/2 M−1/2

I xµ, θα have the dimensions of supercoordinates
I They do not enter in the pure moduli action



Ordinary instanton: action

The disks with moduli insertions yield the action

Smod =
DcDc

2g2
0

+ iDc(w̄uτ cwu) + iλ · (µ̄uwu + w̄uµu)

The dimensions of the moduli are chosen as follows:

xµ Dc θα λα̇ wα̇ µ µ′

M−1 M2 M−1/2 M3/2 M−1 M−1/2 M−1/2

I The wα̇u are related to the size and orientation of the
instanton: w̄u · wu = ρ2 once the constraints are solved



Field-dependent terms

New diagrams with insertions of matter fields from D3(0)/D3(1)
strings give extra terms in the moduli action Back

µ̄

φ†

µ1

w̄
β̇

∂µφ
†

µ1

θα

w̄α̇

ψ̄α̇

µ1

Smod + w̄u
α̇

(
φ†(x)Φ(x , θ) + Φ(x , θ)φ†(x)

)
w α̇

v

+ µ̄uφ†fu (x)µ′f − µ̄
′fφ†uf (x)µu + w̄ α̇uψ†α̇u (x)µ′ − µ̄′ψ†uα̇ (x)w α̇

u

I Φu
f is a chiral multiplet:

Φ(x , θ) = φ(x) + θαψα(x) + θ2F (x)

I The moduli x , θ enter in the moduli action only through this
expansion



Field-dependent terms

New diagrams with insertions of matter fields from D3(0)/D3(1)
strings give extra terms in the moduli action Back

µ̄

φ†

µ1

w̄
β̇

∂µφ
†

µ1

θα

w̄α̇

ψ̄α̇

µ1

Smod + w̄u
α̇

(
φ†(x)Φ(x , θ) + Φ(x , θ)φ†(x)

)
w α̇

v

+ µ̄uφ†fu (x)µ′f − µ̄
′fφ†uf (x)µu + w̄ α̇uψ†α̇u (x)µ′ − µ̄′ψ†uα̇ (x)w α̇

u

I The moduli action is not holomorphic.
I The dependence on φ†(x) = Φ†(x , θ̄ = 0), is not extended

(in the α′ → 0 limit) to anti-chiral multiplets Φ†(x , θ̄),



Field-dependent terms

New diagrams with insertions of matter fields from D3(0)/D3(1)
strings give extra terms in the moduli action Back

µ̄

φ†

µ1

w̄
β̇

∂µφ
†

µ1

θα

w̄α̇

ψ̄α̇

µ1

Smod + w̄u
α̇

(
φ†(x)Φ(x , θ) + Φ(x , θ)φ†(x)

)
w α̇

v

+ µ̄uφ†fu (x)µ′f − µ̄
′fφ†uf (x)µu + w̄ α̇uψ†α̇u (x)µ′ − µ̄′ψ†uα̇ (x)w α̇

u

I These terms involve the “quarks”, and can be rewritten in
terms of D̄α̇Φ†(x , θ̄)

∣∣
θ̄=0

I Responsible for Beasley-Witten multifermion terms in the
effective action (see later)

Blumenhagen et al, 0708.0403; Garcia-Extebarria, 0805.0713



Symmetries of the moduli action

I The gauge theory action and the moduli action are
invariant under U(1)3 ⊂ SO(6) global symmetries
surviving the orbifold projection.

I We can assign to the fields/moduli the following charges

φ ψα µ, µ̄, θα µ′, µ̄′ λα̇
q 1 −1/2 3/2 −1 −3/2
q′ 1 1 0 1 0
q′′ 1 1 0 1 0

The bosonic moduli aµ,wα̇, w̄α̇,Dc are invariant
I These symmetries powerfully constrain the form of the

instantonic contributions to the effective action
I They can be extended to {kA} D-instantons in a generic

quiver theory with {NA} D3-branes



Non-perturbative F-terms

Low energy effective action in the instanton sector:

Sn.p. =

∫
d4x d2θ e2πτYM (Ms)(Ms)3Nc−Nf

∫
dM̂ e−Smod (Φ,Φ†)



Non-perturbative F-terms

Low energy effective action in the instanton sector:

Sn.p. =

∫
d4x d2θ e2πτYM (Ms)(Ms)3Nc−Nf

∫
dM̂ e−Smod (Φ,Φ†)

I The pure disks and annuli attached to the D(-1) give the
exponential of the classical instanton action with the 1-loop
coupling τYM evaluated at Ms = 1/

√
α′

I The dimensionality of dM implies the factor M3Nc−Nf
s

I Together, these terms reconstruct the dynamical scale
Λ3Nc−Nf = Λb1



Form of the F-term corrections

I Write

Sn.p. =

∫
d4x d2θ Wn.p. , Wn.p. = Λb1

∫
d M̂ e−Smod (Φ,Φ†)

I Ansatz (due to the form of Smod )

Wn.p. ∼ Λb1 (Φ†)n Φm (D̄α̇Φ† D̄α̇Φ†
)p
∣∣∣
θ̄=0

I Exploit the U(1)3 symmetry requiring that

q,q′,q′′[Wn.p.] = q,q′,q′′[dM]

This fixes

p = −n = 1− Nc + Nf , m = 1− Nc − Nf .



Form of the F-term corrections

I Write

Sn.p. =

∫
d4x d2θ Wn.p. , Wn.p. = Λb1

∫
d M̂ e−Smod (Φ,Φ†)

I The form of the induced interactions is thus

Wn.p. ∼ Λb1

(
D̄α̇Φ† D̄α̇Φ†

)p

(Φ†)p Φ p+2Nc−2

∣∣∣∣∣
θ̄=0

for p = 0,1, . . ..



The ADS superpotential

I In the case p = 0, i.e. Nf = Nc − 1, the structure is
Wn.p. ∼ Λ2Nf +3Φ−2Nf

I The integrals over the moduli can be done explicitly
I Wn.p. should depend on low-energy fields only. We have to

impose the D-flatness condition Recall

I By doing so, in the result of the integration over dM only
the low-energy d.o.f. (meson fields, ...) appear

I We get the ADS superpotential

W (M) =
Λ2Nf +3

detM

where M is the meson superfield (M) f ′
f = Q̃ u

f Q f ′
u



BW multifermion terms

I For p > 0, i.e. Nf ≥ Nc , one gets the multifermion instanton
interactions in SQCD of BW Beasley and Witten, 0409149

I For p = 1 and Nf = Nc = 2, the form of the interaction is

Wn.p. ∼ Λ4 D̄α̇Φ† D̄α̇Φ†

Φ†Φ3

∣∣∣∣∣
θ̄=0

I The moduli integral in this case can be done Matsuo et al, 0803.0798.
Result in accordance with the above structure:

Wn.p. = C Λ4
εf1f ′1

εf2f ′2 D̄α̇M†f1f2 D̄α̇M†f
′
1
f ′2

+ 2 D̄α̇B†D̄α̇B̃†(
trM†M + B†B + B̃†B̃

)3/2

∣∣∣∣∣
θ̄=0

in terms of the SU(2) meson and baryon fields.



BW multifermion terms

I For p > 0, i.e. Nf ≥ Nc , one gets the multifermion instanton
interactions in SQCD of BW Beasley and Witten, 0409149

I For p > 1, more general multi-fermion terms
I The BW multi-fermion terms are non-holomorphic but are

annihilated by the anti-chiral supercharges Qα̇



Possible multi-instanton corrections

I More general configurations of
“ordinary” D-instantons: k0, k1 generic
(but k2 = k3 = 0)

k0

N0 = Nc N1 = Nf

k1

I In this case one can argue that there can be holomorphic
non-perturbative corrections of the form

Wn.p. = CM(k0b1+k1β1)
s e2πi(k0τ0+k1τ1) φ(3−k0b1−k1β1)

(here φ is the v.e.v. of the chiral multiplet Φ).
I Can be promoted to depende on the entire multiplet Φ,

I See Schmidt-Sommerfeld’s talk for a general discussion of
Multi D-instanton Effects in String Compactifications
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Flux effects and stringy instantons



Incorporating flux effects

I From the table derived before Recall one sees that D3
fermions couple to the flux combination

G = F − i
gs

H

I One finds that G3,0 gives mass to the gaugino while G0,3
corresponds to the GVW bulk superpotential Gukov et al, 9906070

W ∼
∫

G ∧ Ω ∼ G0,3

I We want to investigate flux effects in the low energy
effective theory for the massless d.o.f. in the Higgs phase

I The fluxes may modify the non-perturbative contributions
which in this context are due to (fractional) D(-1) branes



Flux corrections

Applying our results for the flux interactions on D(-1)’s Recall

to the “ordinary” instanton configuration (k0 = 1) one gets extra
contributions to the moduli action of the form: Back

S(flux)
mod ∼ iα′2G(0,3)λα̇λ

α̇ + iG(3,0)θαθ
α + iG(3,0)µ̄uµ

u

(The last term corrisponds to couplings with twisted moduli)
I I will now briefly discuss some of the effects that these

extra terms induce in the non-perturbative low energy
effective action

I For simplicity, from now on G = G(3,0) and Ḡ = G(0,3).



One-instanton effects at G 6= 0

I If we pull down once the term Gµ̄uµ
u, we get

Sn.p.(G) =

∫
d4x d2θWn.p.(G) ,

Wn.p.(G) = Λb1

∫
d M̂ e−Smod (Φ,Φ̄) (i Gµ̄ µ)

I Ansatz:

Wn.p.(G) = CG Λb1 (Φ†)n Φm (D̄α̇Φ† D̄α̇Φ†
)p
∣∣∣
θ̄=0

I Exploiting the U(1)3 symmetries (one has q[G] = −3), one
finds

p = −n − 2 = 2− Nc + Nf , m = −Nc − Nf



Multifermion terms at Nf = Nc − 1

The case p = 1 corresponds to an SQCD with Nf = Nc − 1
I In presence of G-flux, besides the ADS superpotential, we

get a multifermion interaction of the form

Wn.p.(G) = CG Λ2Nc+1 D̄α̇Φ† D̄α̇Φ†

(Φ†)3 Φ2Nc−1

∣∣∣∣
θ̄=0

I For Nc = 2 the moduli integral can be explicitly done and
the result can be expressed in terms of the low energy d.o.f

Wn.p.(G) = CG Λ5 D̄2M†

(M†M)3/2

∣∣∣∣
θ̄=0

I This appears as a non-perturbative effect of the soft
supersymmetry breaking due to the G-flux in the
microscopic theory.



Stringy effects in ordinary instantons
G(0,3) appears in the moduli action with an α′2 in front. We must
include other terms vanishing in the α′ → 0 limit

I From disk diagrams one has extra terms that
correspond to

Φ†(x , θ̄ = 0)→ Φ̄†(x , θ̄ = α′λ)

D̄α̇Φ†(x , θ̄ = 0)→ D̄α̇Φ†(x , θ̄ = α′λ)

in the moduli action, which becomes Recall

b)

ψ̄α̇

µ̄

µ1

λα̇

µ̄

φ†

µ1

a)

Smod =
2π3α′2

gs
DcDc + i Dc

(
w̄α̇(τ c)α̇

β̇
w β̇
)

+ i
√

2
πα′

θ̄α̇
(
µ̄w α̇ + w̄ α̇ µ

)
+

1
2

w̄α̇
(
Φ Φ† + Φ†Φ

)
w α̇ +

i
2
µ̄1 Φ† µ− i

2
µ̄Φ† µ1

+ i w̄α̇
(
D̄α̇Φ†

)
µ1 − i µ̄1(D̄α̇Φ†

)
w α̇ + flux terms



Stringy effects in ordinary instantons

When the λ-integration is saturated using θ̄-terms in the above
superfields

I The fermionic ADHM constraint is not imposed: we lose
contact with gauge instanton solutions

I We get explicit α′ factors in front of the corresponding
contributions, which are D-terms:

Sn.p. =

∫
d4x d2θ d2θ̄ Kn.p. , Kn.p. = α′2 Λb1

∫
d M̂′ e−S′mod (Φ,Φ†)

I The form of is constrained by the U(1)3 symmetries to be

Kn.p. = C α′2 Λ3Nc−Nf (Φ†)3+Nc−Nf Φ3−Nc−Nf
(
D̄α̇Φ† D̄α̇Φ†

)Nf−Nc +. . . .

I Such terms deserve to be further investigated



Stringy effects in ordinary instantons
with Ḡ 6= 0

I If we perform the d2θ̄ integration using the Ḡ θ̄θ̄ interaction
Recall we get

Sn.p.(Ḡ) = α′2
∫

d4x d2θ Wn.p.(Ḡ)

Wn.p.(Ḡ) = α′2
2πi
gs

Λb1 Ḡ
∫

d M̂′ e−Smod (Φ,Φ†)|
θ̄=0

I The schematic form of Wn.p. can be fixed similarly to
previous cases



Non-holomorphic terms at Nf = Nc

Let us consider, for instance, the case Nf = Nc .
I At Ḡ = 0 we got BW multifermion F-terms
I Now we get also a non-holomorphic contribution of the

form
Wn.p. = C α′2 Ḡ Λ2Nc Φ†

3
Φ3−2Nc

∣∣∣
θ̄=0

I For Nc = 2, the explicit integral over the moduli yields

Wn.p. = C α′2 Ḡ Λ4 det M†(
trM†M + B†B + B̃†B̃

)1/2

∣∣∣∣∣
θ̄=0

,

(M is the meson, B and B̃ the baryon superfields).



Exotic (stringy) instantons

I Let us consider a set-up in which the
instantonic brane does not
correspond to a classical instanton
for the gauge group

I D(-1)/D3 strings have only fermionic
excitations µu, µ̄

u and µ′f , µ̄′f k2 = 1

N1 = NfN0 = Nc

Φ̃

µ′

Φ

µ

I The field-dependent moduli action is simply

Smod = (α′)2DcDc + µuΦ(x , θ)u
f µ̄
′f − µ′f Φ̃(x , θ)f

uµ̄
u

Notice that the field-dependent terms are now holomorphic
I The integration over the θ̄ = α′λ’s kills any contribution to

the effective action



Exotic (stringy) instantons

I Let us consider a set-up in which the
instantonic brane does not
correspond to a classical instanton
for the gauge group

I D(-1)/D3 strings have only fermionic
excitations µu, µ̄

u and µ′f , µ̄′f k2 = 1

N1 = NfN0 = Nc

Φ̃

µ′

Φ

µ

I Including flux corrections, the moduli action becomes

Smod = (α′)2DcDc+µuΦ(x , θ)u
f µ̄
′f−µ′f Φ̃(x , θ)f

uµ̄
u+Ḡ θ̄α̇θ̄

α̇+. . .

I The θ̄ integral can now be saturated with the Ḡ θ̄α̇θ̄
α̇ term

I At linear level, other flux interactions become irrelevant



Exotic but Holomorphic

I We get therefore

Sn.p. =

∫
d4x d2θWn.p.(Ḡ) ,

Wn.p. = C α′2 Ms
−(Nc+Nf ) e2πiτ2 Ḡ

×
∫

d3D dNcµ2 dNc µ̄2 dNfµ3 dNf µ̄3 e−
2π3α′2

gs
DcDc+ i

2 (µ̄3Φµ2−µ̄2Φµ3)

I The integration vanishes unless Nc = Nf , in which case it
is easy and we get an holomorphic superpotential
contribution

Wn.p. = CM2−2Nc
s e2πiτ2 Ḡ det M .

I Ms does not combine with e2πiτ2 to give the scale Λ: τ2 is
not the YM coupling on the Nc branes
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s e2πiτ2 Ḡ det M .

I Ms does not combine with e2πiτ2 to give the scale Λ: τ2 is
not the YM coupling on the Nc branes



Conclusions

I The technologies of the so-called “stringy instanton
calculus” are an essential tool to devise the structure of
non-perturbative contributions to the effective action for
gauge theories engineered by brane constructions in a
string compactification.

I In such a situation
I Different types of instantonic branes, ordinary (i.e.,

corresponding to gauge instantons) and exotic
I Fluxes may be turned on

and we must be able to follow the pattern through which
the l.e.e.a is affected by all this
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General result (RR)
Back

AF = −8cF Θ′ΓMΘ
[
FR0(2I1−I2)

]
M +

4cF

3!
Θ′ΓMNPΘ

[
FR0I2

]
MNP

I ΘA: polarization of the open string R vertex, with
A = 1, . . . ,16 = (antichiral) 10d spinor index labeling
~εA = 1

2(±,±,±,±,±)



General result (RR)
Back

AF = −8cF Θ′ΓMΘ
[
FR0(2I1−I2)

]
M +

4cF

3!
Θ′ΓMNPΘ

[
FR0I2

]
MNP

I The IIB RR vertex is a bi-spinor containing the fields
strengths:

FAB =
∑

n=1,3,5

1
n!

FM1...Mn

(
ΓM1...Mn

)
AB

,



General result (RR)
Back

AF = −8cF Θ′ΓMΘ
[
FR0(2I1−I2)

]
M +

4cF

3!
Θ′ΓMNPΘ

[
FR0I2

]
MNP

I l.m. and r.m. fields identification at the boundary:

X̃ M(z) = (R0)M
N X N(z) , s̃~εA(z) = (R0)AB s~εB(z)

where R0 is the spinorial reflection matrix. Thus

FAB → (FR0)AB



General result (RR)
Back

AF = −8cF Θ′ΓMΘ
[
FR0(2I1−I2)

]
M +

4cF

3!
Θ′ΓMNPΘ

[
FR0I2

]
MNP

I I1 and I2 are ~ϑ-dependent diagonal matrices:

(
I1
) A3
A3

=
1
2

e−
iπα′s

2

(
e−2πi

(
α′t−~ϑ·~ε3

)
− 1
)

B
(
α′s;α′t − ~ϑ · ~ε3

)
(
I2
) A3
A3

=
1
2

e−
iπα′s

2

(
e−2πi

(
α′t−~ϑ·~ε3

)
− 1
)

B
(
α′s + 1;α′t − ~ϑ · ~ε3

)
where ~ε3 is the spinorial weight of the r.m. part of the RR
vertex

that



General result (NS-NS)

AH = −4cH Θ′ΓNΘ δMP [∂BR0(2I1 − I2)
]

[MN]P

+ 2cH Θ′ΓMNPΘ
[
∂BR0I2

]
MNP

I We use an effective NS-NS vertex containing the
derivatives of B

VH(z, z) = NH
(
∂MBNP

)
e−iπα′kL·kR

[
ψMψNei kL·X

]
(z)

×
[
ψ̃P e−

eφ ei kR·eX ](z)



General result (NS-NS)

AH = −4cH Θ′ΓNΘ δMP [∂BR0(2I1 − I2)
]

[MN]P

+ 2cH Θ′ΓMNPΘ
[
∂BR0I2

]
MNP

I In presence of D-branes, the left-right identifications leads
to

(∂B)→ (∂BR0)

with the vectorial reflection matrix R0



General result (NS-NS)

AH = −4cH Θ′ΓNΘ δMP [∂BR0(2I1 − I2)
]

[MN]P

+ 2cH Θ′ΓMNPΘ
[
∂BR0I2

]
MNP

I I1 and I2 are again given by:

(
I1
) A3
A3

=
1
2

e−
iπα′s

2

(
e−2πi

(
α′t−~ϑ·~ε3

)
− 1
)

B
(
α′s;α′t − ~ϑ · ~ε3

)
(
I2
) A3
A3

=
1
2

e−
iπα′s

2

(
e−2πi

(
α′t−~ϑ·~ε3

)
− 1
)

B
(
α′s + 1;α′t − ~ϑ · ~ε3

)
but ~ε3 is now the vectorial weight associated to ψP(z3) in
the r.m. part of the NS-NS vertex



Details on the orbifold

Back

I Character table and Clebsh-Gordan series:
e h1 h2 h3

R0 1 1 1 1
R1 1 1 −1 −1
R2 1 −1 1 −1
R3 1 −1 −1 1

R0 ⊗ RA = RA , Ri ⊗ Rj = δijR0 + |εijk |Rk

I Transformations of massless string fields:

NS fields irrep

∂Z i , Ψi Ri
,

chiral SA anti-chiral SA irrep

S0 ≡ S+++ S0 ≡ S−−− R0

S1 ≡ S+−− S1 ≡ S−++ R1

S2 ≡ S−+− S2 ≡ S+−+ R2

S3 ≡ S−−+ S3 ≡ S++− R3
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