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For a general introduction...

... see previous talk!
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Gauge theories from String Theory

I String theory (which might well lead us to the T.O.E.) is
anyhow, more modestly, a very precious tool to study gauge
theories. For instance,

I perturbative amplitudes (may gluons, ...) via string techniques;
I AdS/CFT and its extensions;
I instantonic effects, (see previous talk).

I In the string framework, gauge d.o.f. arise from open strings
suspended between D-branes in a well-suited limit

α′ → 0 with gauge quantities fixed.



Introduction N = 1/2 theory from strings ADHM moduli space The instanton solution Conclusions

Gauge theories from String Theory

I String theory (which might well lead us to the T.O.E.) is
anyhow, more modestly, a very precious tool to study gauge
theories. For instance,

I perturbative amplitudes (may gluons, ...) via string techniques;
I AdS/CFT and its extensions;
I instantonic effects, (see previous talk).

I In the string framework, gauge d.o.f. arise from open strings
suspended between D-branes in a well-suited limit

α′ → 0 with gauge quantities fixed.



Introduction N = 1/2 theory from strings ADHM moduli space The instanton solution Conclusions

Gauge theories in closed string backgrounds

I Open strings interact with closed strings. We can turn on a
closed string background and still look at the massless open
string d.o.f..

I In this way, deformations of the gauge theory are naturally
suggested by their string realization. Such deformations are
characterized by

I new geometry in (super)space-time;
I new mathematical structures;
I new types of interactions and couplings.
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Non-commutative field theories and NS-NS backgrounds

Bµν background: new geometry

I The most famous example is that of (gauge) field theories in
the background of the Bµν field of the NS-NS sector of closed
string.

I They are a stringy realization of non-commutative field
theories, i.e. theories defined on a non commutative
space-time:

[xµ, xν ] = θµν(B) .
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Non-commutative field theories and NS-NS backgrounds

Bµν background: new mathematical structure

I There arises a non-commutative associative algebra:
ordinary product → Moyal ? product:

f(x)?g(x) = f(x)exp
( i

2

←−−
∂

∂xµ
θµν

−−→
∂

∂xν

)
g(x)

= f(x)g(x) +
i

2
∂µf(x)θµν∂νg(x) +O(θ2)
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Non-commutative field theories and NS-NS backgrounds

Bµν background: new interactions
There are new interactions and couplings.

For instance, a 3-photon coupling in the U(1)
theory(
A1 ·A2 p2 ·A3 + cyclic

)
p1 · θ · p2 +O(θ3) .
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Non-anticommutative theories and RR backgrounds

Cµν RR background: new geometry

I Another case, recently attracting attention, is that of gauge
(and matter) fields in the background of a “graviphoton” field
strength Cµν from the Ramond-Ramond sector of closed
strings.

I These turn out to be defined on a non-anticommutative
superspace, where the, say, anti-chiral fermionic coordinates
satisfy {

θα̇, θβ̇
}
∝ Cα̇β̇ ∝ (σµν)α̇β̇Cµν .

.
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Non-anticommutative theories and RR backgrounds

Cµν RR background: new structure

I The superspace deformation can be rephrased as a
modification of the product among functions, which now
becomes

f(θ) ? g(θ) = f(θ) exp
(
− 1

2

←−−
∂

∂θα̇
Cα̇β̇

−−→
∂

∂θβ̇

)
g(θ) .

I There are also new interactions between the gauge and matter
fields: see later in the talk.
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The focus of the talk

I We shall analyze a particular deformation of a gauge theory
induced by a RR background.

I This is the case where the N = 1 superspace becomes partly
non-anticommutative because of the “graviphoton” Cµν

background and the pure N = 1 gauge theory is deformed to
the so-called N = 1/2 theory of [Seiberg, 2003].

I We shall derive explicitely from string diagrams (in the
traditional RNS formulation) the N = 1/2 theory.

I Moreover, along the lines of the previous talk, we will derive
from string diagrams the instantonic solutions of this theory
and their ADHM moduli space.
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The N = 1/2 gauge theory from open strings

We will now proceed as follows.

I Review the set-up to retrieve the action of pure N = 1 gauge
theory from open string disk amplitudes.

I Retrieve the action of the so-called N = 1/2 gauge theory
[Seiberg, 2003] by inserting closed string vertices for a certain
constant RR field strength.
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The set-up

I Type IIB string theory on target space

R4 × R6

Z2 × Z2

Decompose xM → (xµ, xa), (µ = 1, . . . 4 , a = 5, . . . , 10.

I Z2 × Z2 ⊂ SO(6) is generated by
I g1: a rotation by π in the 7-8 and by −π in the 9-10 plane;
I g1: a rotation by π in the 5-6 and by −π in the 9-10 plane.

I The origin is a fixed point ⇒ the orbifold is a singular,
non-compact, Calabi-Yau space.
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The set-up: Killing spinors

I Of the 8 spinor weights of SO(6),

~λ = (±1
2
,±1

2
,±1

2
)

it is easy to see that the only invariant ones w.r.t. the
generators g1,2 are

~λ(+) = (+
1
2
,+

1
2
,+

1
2
) , ~λ(−) = (−1

2
,−1

2
,−1

2
)

(resp. chiral and anti-chiral). In this orbifold realization, they
describe the 2(= 8/4) Killing spinors of the CY.

I We remain with 8(= 32/4) real susies in the bulk.
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The set-up: internal spin fields

I Bosonizing the SO(6) current algebra by

eiϕ1 =
ψ5 + iψ6

√
2

, eiϕ2 =
ψ7 + iψ8

√
2

, eiϕ3 =
ψ9 + iψ10

√
2

.

(up to cocycles), the spin fields are S
~λ = eiλiϕi .

I The correlators of spin fields are immediate upon use of

〈ϕi(z)ϕj(w)〉 = δij log(z − w) .

I Only two of these internal spin fields survive the orbifold
projection:

S(±) = eiλ(±)iϕi = e±
i
2
(ϕ1+ϕ2+ϕ3) .
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Fractional D3 branes

I Place N fractional D3 branes, localized at
the orbifold fixed point. The branes preserve
4 = 8/2 real supercharges.

I The Chan-Patons of open strings attached
to fractional branes transform in an irrep of
Z2 × Z2.

I The fractional branes must sit at the orbifold
fixed point (otherwise would transform in
the reducible regular rep)
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Fractional D3 branes and pure N = 1 gauge theory

I Spectrum of massless open strings attached to the N
fractional D3’s corresponds to N = 1 pure U(N) gauge
theory. Schematically,

NS:

{
ψµ → Aµ

6ψa no scalars!
R:

{
SαS(+) → Λα

Sα̇S(−) → Λα̇

I The action is retrieved from disk amplitudes in the α′ → 0
limit, as described in Alberto’s talk. One gets indeed

S =
1

g2
YM

∫
d4xTr

(1
2
F 2

µν − 2Λ̄α̇D̄/
α̇βΛβ

)
.
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Auxiliary fields

I The action can be obtained from cubic diagram only
introducing the (anti-selfdual) auxiliary field Hµν ≡ Hcη̄

c
µν :

S′ =
1

g2
YM

∫
d4x Tr

{(
∂µAν − ∂νAµ

)
∂µAν + 2i ∂µAν

[
Aµ, Aν

]
− 2Λ̄α̇D̄/

α̇βΛβ +HcH
c +Hc η̄

c
µν

[
Aµ, Aν

]}
,

I Integrating out Hc gives Hµν ∝ [Aµ, Aν ] and the usual action

I N.B. The 3 d.o.f of an (anti)-self-dual tensor are enough
because of u(N) Jacobi identities.
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Auxiliary fields in the open string set-up

I The auxiliary field Hµν is associated to the (non-BRST
invariant) vertex

VH(y; p) = (2πα′)
Hµν(p)

2
ψνψµ(y) ei

√
2πα′p·X(y) .

We have then, for instance,

1
2
〈〈 VH VA VA 〉〉 = − 1

g2
YM

Tr
(
Hµν(p1)Aµ(p2)Aν(p3)

)
,

+ other ordering

 last term in the previous action.



Introduction N = 1/2 theory from strings ADHM moduli space The instanton solution Conclusions

Auxiliary fields in the open string set-up

I The auxiliary field Hµν is associated to the (non-BRST
invariant) vertex

VH(y; p) = (2πα′)
Hµν(p)

2
ψνψµ(y) ei

√
2πα′p·X(y) .

We have then, for instance,

1
2
〈〈 VH VA VA 〉〉 = − 1

g2
YM

Tr
(
Hµν(p1)Aµ(p2)Aν(p3)

)
,

+ other ordering

 last term in the previous action.



Introduction N = 1/2 theory from strings ADHM moduli space The instanton solution Conclusions

Auxiliary fields in the open string set-up

I The auxiliary field Hµν is associated to the (non-BRST
invariant) vertex

VH(y; p) = (2πα′)
Hµν(p)

2
ψνψµ(y) ei

√
2πα′p·X(y) .

We have then, for instance,

1
2
〈〈 VH VA VA 〉〉 = − 1

g2
YM

Tr
(
Hµν(p1)Aµ(p2)Aν(p3)

)
,

+ other ordering

 last term in the previous action.



Introduction N = 1/2 theory from strings ADHM moduli space The instanton solution Conclusions

The graviphoton background

I RR vertex in 10D, in the symmetric superghost picture:

FȦḂ S
Ȧe−φ/2(z) S̃Ḃe−φ̃/2(z̄) .

Bispinor FȦḂ  1-, 3- and a.s.d. 5-form field strengths.

I On R4 × R6

Z2×Z2
, a surviving 4D bispinor vertex is

Fα̇β̇ S
α̇S(+)e−φ/2(z) S̃β̇S̃(+)e−φ̃/2(z̄) .

with Fα̇β̇ = Fβ̇α̇.

I This ∼ decomposing the 5-form along the holom. 3-form of
the CY  an a.s.d. 2-form in 4D

Cµν ∝ Fα̇β̇(σ̄µν)α̇β̇ ,

the graviphoton f.s. of N = 1/2 theories.
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Inserting graviphotons in disk amplitudes

I Conformally mapping the disk to the upper
half z-plane, the D3 boundary conditions on
spin fields read

Sα̇S(+)(z) = S̃α̇S̃(+)(z̄)
∣∣∣
z=z̄

.

(opposite sign for S̃αS̃(+)(z̄)).
I When closed string vertices are inserted in a

D3 disk,

S̃α̇S̃(+)(z̄) −→ Sα̇S(+)(z̄) .
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Disk amplitudes with a graviphoton

Start inserting a graviphoton vertex:

〈〈 VΛ VΛ VA VF 〉〉

where

VF (z, z̄) = Fα̇β̇ S
α̇S(+)e−φ/2(z)Sβ̇S(+)e−φ/2(z̄) .

 we need two S(−) operators to “saturate the
charge”
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Disk amplitudes with a graviphoton

We insert therefore two chiral gauginos:

〈〈 VΛ VΛ VA VF 〉〉

with vertices

VΛ(y; p) = (2πα′)
3
4 Λα(p)SαS

(−) e−
1
2
φ(y)

ei
√

2πα′p·X(y) .

Without other insertions, however,

〈Sα̇Sβ̇SαSβ〉 ∝ εα̇β̇εαβ

 vanishes when contracted with Fα̇β̇.
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We insert therefore two chiral gauginos:

〈〈 VΛ VΛ VA VF 〉〉

with vertices

VΛ(y; p) = (2πα′)
3
4 Λα(p)SαS

(−) e−
1
2
φ(y)

ei
√

2πα′p·X(y) .

Without other insertions, however,

〈Sα̇Sβ̇SαSβ〉 ∝ εα̇β̇εαβ

 vanishes when contracted with Fα̇β̇.
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Disk amplitudes with a graviphoton

To this effect, insert a gauge field vertex:

〈〈 VΛ VΛ VA VF 〉〉

that must be in the 0 picture:

VA(y; p) = 2i (2πα′)
1
2 Aµ(p)(

∂Xµ(y) + i (2πα′)
1
2 p · ψ ψµ(y)

)
ei
√

2πα′p·X(y)

 finally, we may get a non-zero result!
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that must be in the 0 picture:

VA(y; p) = 2i (2πα′)
1
2 Aµ(p)(

∂Xµ(y) + i (2πα′)
1
2 p · ψ ψµ(y)

)
ei
√

2πα′p·X(y)

 finally, we may get a non-zero result!
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Evaluation of the amplitude

I We have

〈〈 VΛVΛVAVF 〉〉 ≡ C4

∫ ∏
i dyidzdz̄

dVCKG〈
VΛ(y1; p1)VΛ(y2; p2)VA(y3; p3)VF (z, z̄)

〉
where the normalization for a D3 disk is

C4 =
1

π2α′2
1

g2
YM

and the SL(2,R)-invariant volume is

dVCGK =
dya dyb dyc

(ya − yb)(yb − yc)(yc − ya)
.
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Explicit expression of the amplitude

I Altogether, the explicit expression is

〈〈 VΛ VΛ VA VF 〉〉 =
8

g2
YM

(2πα′)
1
2 Tr

(
Λα(p1) Λβ(p2) pν

3A
µ(p3)

)
Fα̇β̇

×
∫ ∏

i dyidzdz̄

dVCKG

{〈
Sα(y1)Sβ(y2) :ψνψµ : (y3)Sα̇(z)Sβ̇(z̄)

〉
×
〈
S(−)(y1)S(−)(y2)S(+)(z)S(+)(z̄)

〉
×
〈
e−

1
2
φ(y1)e−

1
2
φ(y2)e−

1
2
φ(z)e−

1
2
φ(z̄)
〉

×
〈
ei
√

2πα′p1·X(y1)ei
√

2πα′p2·X(y2)ei
√

2πα′p3·X(y3)
〉}

.
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Evaluation of the amplitude: correlators

I The relevant correlators are:
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Evaluation of the amplitude: correlators

I The relevant correlators are:

1. Superghosts〈
e−

1
2 φ(y1) e−

1
2 φ(y2) e−

1
2 φ(z) e−

1
2 φ(z̄)

〉
=
[
(y1 − y2) (y1 − z) (y1 − z̄) (y2 − z) (y2 − z̄) (z − z̄)

]− 1
4
.
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Evaluation of the amplitude: correlators

I The relevant correlators are:

2. Internal spin fields〈
S(−)(y1)S(−)(y2)S(+)(z)S(+)(z̄)

〉
= (y1 − y2)

3
4 (y1 − z)−

3
4 (y1 − z̄)−

3
4 (y2 − z)−

3
4 (y2 − z̄)−

3
4

× (z − z̄) 3
4 .
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Evaluation of the amplitude: correlators

I The relevant correlators are:

3. 4D spin fields 〈
Sγ(y1)Sδ(y2) :ψµψν : (y3)Sα̇(z)Sβ̇(z̄)

〉
=

1
2

(y1 − y2)−
1
2 (z − z̄)− 1

2

×

(
(σµν)γδ ε

α̇β̇ (y1 − y2)
(y1 − y3)(y2 − y3)

+ εγδ (σ̄µν)α̇β̇ (z − z̄)
(y3 − z)(y3 − z̄)

)
.
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Evaluation of the amplitude: correlators

I The relevant correlators are:

4. Momentum factors〈
ei
√

2πα′p1·X(y1)ei
√

2πα′p2·X(y2)ei
√

2πα′p3·X(y3)
〉 on shell−→ 1 .
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Evaluation of the amplitude: SL(2, R) fixing

I We may, for instance, choose

y1 →∞ , z → i , z̄ → −i .

I The remaining integrations turn out to be∫ +∞

−∞
dy2

∫ y2

−∞
dy3

1(
y2
2 + 1

) (
y2
3 + 1

) =
π2

2
.

Symmetry factor 1/2 and other ordering compensate each
other.
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Evaluation of the amplitude: SL(2, R) fixing

I We may, for instance, choose

y1 →∞ , z → i , z̄ → −i .

I The remaining integrations turn out to be∫ +∞

−∞
dy2

∫ y2

−∞
dy3

1(
y2
2 + 1

) (
y2
3 + 1

) =
π2

2
.

Symmetry factor 1/2 and other ordering compensate each
other.
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Final result for the amplitude

I We finally obtain for 〈〈 VΛ VΛ VA VF 〉〉 the result

8π2

g2
YM

(2πα′)
1
2 Tr

(
Λ(p1)·Λ(p2) pν

3A
µ(p3)

)
Fα̇β̇ (σ̄νµ)α̇β̇ .

I This result is finite for α′ → 0 if we keep constant

Cµν ≡ 4π2 (2πα′)
1
2 Fα̇β̇ (σ̄µν)

α̇β̇

I Cµν , of dimension (length) will be exactly the one of N = 1/2
theory.

I We get an extra term in the gauge theory action:

i
g2
YM

∫
d4x Tr

(
Λ·Λ

(
∂µAν − ∂νAµ

))
Cµν .
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graviphoton insertion is

〈〈 VΛ VΛ VH VF 〉〉 .
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Another contribute

I Another possible diagram with a
graviphoton insertion is

〈〈 VΛ VΛ VH VF 〉〉 .

I Recall that the auxiliary field vertex in
the 0 picture is

VH(y; p) =

(2πα′)
Hµν(p)

2
ψνψµ(y)ei

√
2πα′p·X(y)
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Another contribute

I Another possible diagram with a
graviphoton insertion is

〈〈 VΛ VΛ VH VF 〉〉 .

I The evaluation of this amplitude
paralles exactly the previous one and
contributes to the field theory action
the term:

1
2g2

YM

∫
d4x Tr

(
Λ·ΛHµν

)
Cµν ,

having introduced Cµν as above.



Introduction N = 1/2 theory from strings ADHM moduli space The instanton solution Conclusions

Another contribute

I Another possible diagram with a
graviphoton insertion is

〈〈 VΛ VΛ VH VF 〉〉 .

I All other amplitudes involving F
vertices either

I vanish because of their tensor
structure;

I vanish in the α′ → 0 limit, with Cµν

fixed.
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The deformed gauge theory action

I From disk diagrams with RR insertions we obtain, in the field
theory limit

α′ → 0 with Cµν fixed

the action

S̃′ =
1

g2
YM

∫
d4x Tr

{(
∂µAν − ∂νAµ

)
∂µAν + 2i ∂µAν

[
Aµ, Aν

]
− 2Λ̄α̇D̄/

α̇βΛβ + i
(
∂µAν − ∂νAµ

)
Λ·ΛCµν

+HcH
c +Hc η̄

c
µν

([
Aµ, Aν

]
+

1
2

Λ·ΛCµν
)}

.
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The deformed gauge theory action

I Integrating on the auxiliary field Hc, we get

S̃ =
1

g2
YM

∫
d4x Tr

{1
2
F 2

µν − 2Λ̄α̇D̄/
α̇βΛβ

+ iFµν Λ·ΛCµν −
1
4

(
Λ·ΛCµν

)2}
=

1
g2
YM

∫
d4x Tr

{ (
F (−)

µν +
i
2

Λ·ΛCµν

)2
+

1
2
FµνF̃

µν

− 2Λ̄α̇D̄/
α̇βΛβ

}
,

i.e., exactly the action of Seiberg’s N = 1/2 gauge theory.
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The deformed gauge theory action

I Integrating on the auxiliary field Hc, we get

S̃ =
1

g2
YM

∫
d4x Tr

{1
2
F 2

µν − 2Λ̄α̇D̄/
α̇βΛβ

+ iFµν Λ·ΛCµν −
1
4

(
Λ·ΛCµν

)2}
=

1
g2
YM

∫
d4x Tr

{ (
F (−)

µν +
i
2

Λ·ΛCµν

)2
+

1
2
FµνF̃

µν

− 2Λ̄α̇D̄/
α̇βΛβ

}
.

 How is the instantonic sector affected?
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Instantonic effects in the deformed theory

I As we saw in the previous talk, adding
(fractional) D(-1) branes to the D3’s
 instantonic sectors in the gauge
theory.
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Instantonic effects in the deformed theory

I As we saw in the previous talk, adding
(fractional) D(-1) branes to the D3’s
 instantonic sectors in the gauge
theory.

I The open strings stretching
I between a D(-1) and another D(-1);
I between a D(-1) and a D3

carry no momentum  ADHM moduli
in the gauge theory.

I Disks with D(-1) and mixed D(-1)/D3
boundary  “measure” on moduli
space
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 instantonic sectors in the gauge
theory.
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carry no momentum  ADHM moduli
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I Disks with D(-1) and mixed D(-1)/D3
boundary  “measure” on moduli
space
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Instantonic effects in the deformed theory

I As we saw in the previous talk, adding
(fractional) D(-1) branes to the D3’s
 instantonic sectors in the gauge
theory.

I Mixed D(-1)/D3 disks can emit gauge
theory fields produce the instantonic
solutions of the gauge theory.
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Instantonic effects in the deformed theory

I As we saw in the previous talk, adding
(fractional) D(-1) branes to the D3’s
 instantonic sectors in the gauge
theory.

I We shall now
I Review this in the N = 1 case;
I Deform it with the graviphoton.
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Moduli spectrum in the N = 1 case

D(-1)/D(-1) strings
With k D(-1)’s, all vertices have Chan-Paton factors
in the adjoint of U(k).

NS sector
The vertices surviving the orbifold projection are

Va(y) = (2πα′)
1
2 g0 aµ ψ

µ(y) e−φ(y) .
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Moduli spectrum in the N = 1 case

D(-1)/D(-1) strings
With k D(-1)’s, all vertices have Chan-Paton factors
in the adjoint of U(k).

NS sector
The vertices surviving the orbifold projection are

Va(y) = (2πα′)
1
2 g0 aµ ψ

µ(y) e−φ(y) .

I Here g0 is the coupling on the D(-1) theory:

C0 =
1

2π2α′2
1
g2
0

=
8π2

g2
YM

.
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Moduli spectrum in the N = 1 case

D(-1)/D(-1) strings
With k D(-1)’s, all vertices have Chan-Paton factors
in the adjoint of U(k).

NS sector
The vertices surviving the orbifold projection are

Va(y) = (2πα′)
1
2 g0 aµ ψ

µ(y) e−φ(y) .

I C0 = normaliz. of disks with (partly) D(-1) boundary. Since
gYM is fixed as α′ → 0, g0 blows up.
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Moduli spectrum in the N = 1 case

D(-1)/D(-1) strings
With k D(-1)’s, all vertices have Chan-Paton factors
in the adjoint of U(k).

NS sector
The vertices surviving the orbifold projection are

Va(y) = (2πα′)
1
2 g0 aµ ψ

µ(y) e−φ(y) .

I The moduli aµ are rescaled with powers of g0 so that their
interactions survive when α′ → 0 with g2

YM fixed.
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Moduli spectrum in the N = 1 case

D(-1)/D(-1) strings
With k D(-1)’s, all vertices have Chan-Paton factors
in the adjoint of U(k).

NS sector
The vertices surviving the orbifold projection are

Va(y) = (2πα′)
1
2 g0 aµ ψ

µ(y) e−φ(y) .

I The moduli aµ have dimension (length) ∼ positions of the
(multi)center of the instanton
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Moduli spectrum in the N = 1 case

D(-1)/D(-1) strings
With k D(-1)’s, all vertices have Chan-Paton factors
in the adjoint of U(k).

NS sector
The vertices surviving the orbifold projection are

Va(y) = (2πα′)
1
2 g0 aµ ψ

µ(y) e−φ(y) .

Moreover, we have the auxiliary vertex decoupling the quartic inter-
actions

VD(y) = (2πα′)
Dc η̄

c
µν

2
ψνψµ(y) ,
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Moduli spectrum in the N = 1 case

D(-1)/D(-1) strings
With k D(-1)’s, all vertices have Chan-Paton factors
in the adjoint of U(k).

Ramond sector
The vertices surviving the orbifold projection are

VM (y) = (2πα′)
3
4
g0√
2
M ′α Sα(y)S(−)(y) e−

1
2
φ(y) ,

Vλ(y) = (2πα′)
3
4 λα̇ S

α̇(y)S(+)(y) e−
1
2
φ(y) .

I M ′α has dimensions of (length)
1
2 ;

λα̇ has dimensions of (length)−
3
2 .
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Moduli spectrum in the N = 1 case

D(-1)/D3 strings
All vertices have Chan-Patons in the bifundamental
of U(k)×U(N).

NS sector
The vertices surviving the orbifold projection are

Vw(y) = (2πα′)
1
2
g0√
2
wα̇ ∆(y)Sα̇(y) e−φ(y) ,

Vw̄(y) = (2πα′)
1
2
g0√
2
w̄α̇ ∆̄(y)Sα̇(y) e−φ(y) ,

I The (anti-)twist fields ∆, ∆̄ switch the b.c.’s on the Xµ string
fields.
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Moduli spectrum in the N = 1 case

D(-1)/D3 strings
All vertices have Chan-Patons in the bifundamental
of U(k)×U(N).

NS sector
The vertices surviving the orbifold projection are

Vw(y) = (2πα′)
1
2
g0√
2
wα̇ ∆(y)Sα̇(y) e−φ(y) ,

Vw̄(y) = (2πα′)
1
2
g0√
2
w̄α̇ ∆̄(y)Sα̇(y) e−φ(y) ,

I w and w have dimensions of (length) and are related to the
size of the instanton solution.
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Moduli spectrum in the N = 1 case

D(-1)/D3 strings
All vertices have Chan-Patons in the bifundamental
of U(k)×U(N).

Ramond sector
The vertices surviving the orbifold projection are

Vµ(y) = (2πα′)
3
4
g0√
2
µ∆(y)S(−)(y) e−

1
2
φ(y) ,

Vµ̄(y) = (2πα′)
3
4
g0√
2
µ̄ ∆̄(y)S(−)(y) e−

1
2
φ(y) .

I The fermionic moduli µ,µ̄ have dimensions of (length)1/2.
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The N = 1 moduli action

I (Mixed) disk diagrams with the above moduli, for α′ → 0 yield

Smod = tr

{
− iDc

(
W c + iη̄c

µν

[
a′

µ
, a′

ν])
−iλα̇

(
wu

α̇ µ̄u + µuw̄α̇u +
[
a′αα̇,M

′α])}

where

(W c) i
j = wiu

α̇ (τ c)α̇
β̇
w̄β̇

uj

I Dc and λα̇ ∼ Lagrange multipliers for the (super)ADHM
constraints.
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uj

I Dc and λα̇ ∼ Lagrange multipliers for the (super)ADHM
constraints.
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The N = 1 ADHM constraints

I The ADHM constraints are three k × k matrix eq.s

W c + iη̄c
µν

[
a′µ, a′ν

]
= 0 .

I and their fermionic counterparts

wu
α̇ µ̄u + µuw̄α̇u +

[
a′αα̇,M

′α] = 0 .

I Once these constraints are satisfied, the moduli action
vanishes.
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The N = 1 ADHM constraints

I The ADHM constraints are three k × k matrix eq.s

W c + iη̄c
µν

[
a′µ, a′ν

]
= 0 .

I and their fermionic counterparts

wu
α̇ µ̄u + µuw̄α̇u +

[
a′αα̇,M
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I Once these constraints are satisfied, the moduli action
vanishes.
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The graviphoton in D(-1) disks

I Inserting VF in a disk with all boundary on D(-1)’s is
perfectely analogous to the D3 case (but we have non
momenta).

I The only possible diagram is

〈〈 VMVMVDVF 〉〉

=
π2

2
2πα′)

1
2 tr
(
M ′ ·M ′Dc

)
η̄c

µνFα̇β̇ (σ̄νµ)α̇β̇

= −1
2

tr
(
M ′ ·M ′Dc

)
Cc ,

where

Cc =
1
4
η̄c

µν C
µν .



Introduction N = 1/2 theory from strings ADHM moduli space The instanton solution Conclusions

The graviphoton in D(-1) disks

I Inserting VF in a disk with all boundary on D(-1)’s is
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momenta).

I The only possible diagram is
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2
2πα′)

1
2 tr
(
M ′ ·M ′Dc

)
η̄c

µνFα̇β̇ (σ̄νµ)α̇β̇

= −1
2

tr
(
M ′ ·M ′Dc

)
Cc ,

where

Cc =
1
4
η̄c

µν C
µν .
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The graviphoton in mixed disks

I We can also insert VF in a disk with mixed b.c.’s.

I There is a possible diagram

〈〈 Vµ̄VµVDVF 〉〉
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The graviphoton in mixed disks

I We can also insert VF in a disk with mixed b.c.’s.

I There is a possible diagram

〈〈 Vµ̄VµVDVF 〉〉

I We have different b.c.s on the two parts of the
boundary, but the spin fields in the RR vertex
VF have the same identification on both:

Sα̇S(+)(z) = S̃α̇S̃(+)(z̄)
∣∣∣
z=z̄

.
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The graviphoton in mixed disks

I We can also insert VF in a disk with mixed b.c.’s.

I There is a possible diagram

〈〈 Vµ̄VµVDVF 〉〉

I This is because we chose D(-1)’s to represent
instantons with self-dual f.s. and Fµν to be anti-
self-dual.
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The graviphoton in mixed disks

I We can also insert VF in a disk with mixed b.c.’s.

I There is a possible diagram

〈〈 Vµ̄VµVDVF 〉〉

I The µ, µ̄ vertices contain bosonic twist fields
with correlator

∆(y1) ∆̄(y2) ∼ (y1 − y2)−
1
2 .
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The graviphoton in mixed disks

I We can also insert VF in a disk with mixed b.c.’s.

I There is a possible diagram

〈〈 Vµ̄VµVDVF 〉〉

I Taking into account all correlators, the
SL(2,R) gauge fixing, the integrations and the
normalizations, we find the result

− π2

2
(2πα′)

1
2 tr
(
µ̄uµ

uDc

)
η̄c

µνFα̇β̇ (σ̄νµ)α̇β̇

=
1
2

tr
(
µ̄uµ

uDc

)
Cc .
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Effects of the graviphoton on the moduli measure

I No other disk diagrams contribute in our α′ → 0 limit.

I The two terms above are linear in the auxiliary field Dc

 deform the bosonic ADHM constraints to

W c + iη̄c
µν

[
a′

µ
, a′

ν]+ i
2

(
M ′ ·M ′ + µuµ̄u

)
Cc = 0 .

I This is the only effect of the chosen anti-self-dual.
graviphoton bckg.

I Had we chosen a self-dual graviphoton, we would have no
effect.
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The emitted gauge field

I Mixed disks represent sources for the gauge
theory fields. In particular, the amplitude for
the emission of a gauge field AI

µ results in

〈〈 Vw̄ VAI
µ
(−p)Vw 〉〉

= i (T I)v
u p

ν η̄c
νµ

(
wu

α̇ (τ c)α̇
β̇
w̄β̇

v

)
e−ip·x0 .

I The VAI
µ
(−p) has no polarization and outgoing

momentum.

I N.B. From now on we set k = 1, i.e. we
consider instanton number 1.
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The emitted gauge field in presence of Cµν

I In the graviphoton background, we have the
extra emission diagram

〈〈 Vµ̄ VAI
µ
(−p)VµVF 〉〉

= 2π2 (2πα′)
1
2 (T I)v

u p
ν(σ̄νµ)α̇β̇ Fα̇β̇ µ

uµ̄v e−ip·x0

=
1
2

(T I)v
u p

ν η̄c
νµ µ

uµ̄v C
c e−ip·x0 ,

I No other diagrams with only two moduli
contribute to the emission of a gauge field.
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The classical solution

I Altogether, the emission amplitude is

AI
µ(p) = i (T I)v

u p
ν η̄c

νµ

[
(T c)u

v + (Sc)u
v

]
e−ip·x0 ,

where (T I)v
u are the U(N) generators and

(T c)u
v = wu

α̇ (τ c)α̇
β̇
w̄β̇

v , (Sc)u
v = − i

2
µuµ̄v C

c .

I From this we obtain the profile of the classical solution

AI
µ(x) =

∫
d4p

(2π)2
AI

µ(p)
1
p2

eip·x

= 2 (T I)v
u

[
(T c)u

v + (Sc)u
v

]
η̄c

µν

(x− x0)ν

(x− x0)4
.
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The classical solution

I The above solution will represents the leading term at long
distance of the deformed instanton solution in the singular
gauge.

I However, above appeared the unconstrained moduli µ, µ̄, w, w̄.
I We need to enforce the deformed ADHM contraints, for k = 1:

W c + i
2

(
M ′ ·M ′ + µuµ̄u

)
Cc = 0 ,

wu
α̇, µ̄u + µuw̄α̇u = 0 .
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The classical solution in the true moduli space

I Using the ADHM constraints, the solution can be written as

AI
µ(x) = 2

(
Mcb Tr

(
T Itb

)
+W cTr

(
T It0

)
+ Tr

(
T ISc

))
× η̄c

µν

(x− x0)ν

(x− x0)4
.
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AI
µ(x) = 2

(
Mcb Tr

(
T Itb

)
+W cTr

(
T It0

)
+ Tr

(
T ISc

))
× η̄c

µν

(x− x0)ν

(x− x0)4
.

I On the bosonic ADHM constraints,

W c = − i
2

(
M ′ ·M ′ + µuµ̄u

)
Cc ≡ Ŵ c.

Without the RR deformation, W c would vanish.
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AI
µ(x) = 2

(
Mcb Tr

(
T Itb

)
+W cTr

(
T It0

)
+ Tr

(
T ISc

))
× η̄c

µν

(x− x0)ν

(x− x0)4
.

I The matrixM is Mab = W 0
√
W 2

0 − | ~W |2
(
R−

1
2

)ab
, with(

R
)ab = W 2

0 δ
ab −W aW b , where

W 0 = wu
α̇ w̄

α̇
u .

At Cc = 0, W 0 = 2ρ2, where ρ = size of the instanton.
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The classical solution in the true moduli space

I Using the ADHM constraints, the solution can be written as

AI
µ(x) = 2

(
Mcb Tr

(
T Itb

)
+W cTr

(
T It0

)
+ Tr

(
T ISc

))
× η̄c

µν

(x− x0)ν

(x− x0)4
.

I The N ×N matrices ta and t0, depending on the moduli
w, w̄, generate a u(2) subalgebra
 the instanton field contains an abelian factor, beside su(2).

I Moreover, the matrix (Sc)u
v = − i

2 µ
uµ̄v C

c commutes with
this u(2)  another abelian factor.
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An explicit case of the solution

I We can write the above general expression choosing a
particular solution to the ADHM constraints, to make contact
with the literature [Grassi et al, 2003, Britto et al, 2003].

I Decomposing u = (α̇, i) with α̇ = 1, 2 and i = 3, . . . , N , the
bosonic ADHM constraints are solved by{

wβ̇
α̇ = ρ δβ̇

α̇ + 1
4ρ Ŵc (τ c)β̇

α̇ ,

wi
α̇ = 0 .

I Having fixed w, w̄, the fermionic constraints are solved by

µα̇ = µ̄α̇ = 0 .

Moreover, up to a U(N − 2) rotation, we can choose a single
µi, say µ3 being 6= 0.
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An explicit case of the solution

I The instanton gauge field (Aµ)u
v reduces then to

(Aµ)α̇
β̇

=

{
ρ2(τc)α̇

β̇
− i

4

(
M ′ ·M ′ + µ3µ̄3

)
Cc δ

α̇
β̇

+
1

32ρ2

(
|~C|2(τc)α̇

β̇
− 2CcC

b(τb)α̇
β̇

)
M ′ ·M ′ µ3µ̄3

}
η̄c

µν

(x− x0)ν

(x− x0)4

and

(Aµ)33 = − i
2
µ3µ̄3Cc η̄

c
µν

(x− x0)ν

(x− x0)4
.

This agrees with [Britto et al, 2003].
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Additional remarks

I The mixed disks emit also a gaugino Λα, I  
account for its leading profile in the
super-instanton solution.

I Subleading terms in the long-distance expansion
of the solution arise from emission diagrams
with more moduli insertions.

I At the field theory level, they correspond to
having more source terms.

I This, is exactly the field-theoretical procedure
utilized in [Grassi et al, 2003, Britto et al, 2003]
to determine the (deformed) super-instanton
profile,
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Conclusions

I The open string realization of gauge theories is a very
powerful tool, also in discussing possible deformations
(induced by closed string backgrounds).

I In particular, the deformation of N = 1 gauge theory to
N = 1/2 gauge theory is exactly described in the open string
set-up by the inclusion of a particular Ramond-Ramond
background.

I The stringy description of gauge instantons and of their
moduli space by means of D3/D(-1) systems extends to the
deformed case, proving itself to be a valuable tool.
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Perspectives

I Deformations of N = 2 theories:
I deformations of N = 2 superspace by RR backgrounds (work

in progress);
I stringy interpretation of the deformations leading to the

localization á la Nekrasov of the integrals on instanton moduli
space (under investigation, in collab. also with Tor Vergata).

I Derivation of the effects of constant Ramond-Ramond field
strengths (gauge theory action, instantons, etc) using
Berkovits’ formalism instead of RNS (work in progress).

I Derivation of the instantonic sector of non-commutative
gauge theory from the string realization with constant Bµν

background.
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