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Foreword

Mostly based on

@ M. Billo, M. Frau, L. Gallot, A. Lerda and |. Pesando,
“Classical solutions for exotic instantons?,”, JHEP 03
(2009) 056, arXiv:0901.1666 [hep-th].

@ Same authors + L. Ferro, in preparation.

It builds over a vast literature
» | apologize for missing references...
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Non-perturbative sectors

in brane-worlds
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» (Susy) gauge and matter sectors on the
uncompactified part of (partially wrapped) D-branes

» chiral matter, families from multiple intersections,
tuning different coupling constants...



Non-perturbative sectors

in brane-worlds
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» (Susy) gauge and matter sectors on the
uncompactified part of (partially wrapped) D-branes
» chiral matter, families from multiple intersections,
tuning different coupling constants...
» Non-perturbative sectors from partially wrapped
E(uclidean)-branes

> Pointlike in the R1-3 space-time: “instanton
configurations”



Ordinary vs. exotic

» E-branes identical to D-branes in the internal
directions: gauge instantons
» ADHM from strings attached to the instantonic
branes Witten, 1995; Douglas, 1995-1996; ...

» non-trivial instanton profile of the gauge field
Billo et al, 2001
» E-branes different from D-branes in internal
directions do not represent gauge instantons
» They are called exotic or stringy instantons
» in certain cases can give important contributions to
the effective action, .e.g. Majorana masses for

neutrinos, moduli stabilizing terms, ...
Blumenhagen et al 0609191; Ibanez and Uranga, 0609213; (long list)... ; Petersson 0711.1837



World-sheet properties

» Consider the strings stretching
between the gauge D-branes and
the E-branes

» NS sector (lowest KK level) physicity condition

1 3.9
Lo——:Nx—|—N¢—|—Z—:0
2 i:12

’

» Ordinary case: internal twists 6; = 0. There are
bosonic moduli wg typical of ADHM construction,
related to the size

» Exotic case: 6; > 0, i.e., there are “more than 4 ND
directions” . The moduli wg are absent. Hints at
zero-size limit of some gauge field configuration.



World-sheet properties

» Consider the strings stretching
between the gauge D-branes and
the E-branes

» In the R sector, the ground states always: fermionic
anti-chiral moduli A4
» Ordinary case: Lagrange multipl. of fermionic ADHM
constraints
» Exotic case: the the abelian component of the A’s is
a true fermionic zero-mode since the abelian part of
ADHM constraint vanishes (would cointain the wg)



World-sheet properties

» Consider the strings stretching
between the gauge D-branes and
the E-branes

» Exotic case: need to remove the fermionic
zero-mode to get non-zero correlators
» orientifold projections argurio et al, 2007; ..,
» |lift with closed string fluxes

Blumenhagen et al, 2007; Billo et al, 2008; ...

» other mechanisms petersson, 2007; ...



World-sheet properties

» Consider the strings stretching
between the gauge D-branes and
the E-branes

» These w.s. properies of the exotic systems must be
taken into account when trying to answer the
question:

» Do exotic instantonic branes correspond to some
classical configuration of gauge/matter fields?



World-sheet properties

» Consider the strings stretching
between the gauge D-branes and
the E-branes

» We will consider this problem in a simplified setting:
D(-1)/D7 in type I’ on T?

» It has more than 4 ND directions (eight, in fact):
exotic

» Built-in orientifod projection that eliminates the A4
ferm. 0-modes

» However, the gauge theory part lives in 8
dimensions



Instanton counting and dualities

» Beside providing (new) non-perturbative couplings
in the effective actions see aneros taic instantons (also
exotic ones?) play a key role in duality statements,
both at the field theory and the string theory level
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» Beside providing (new) non-perturbative couplings
in the effective actions see aneros taic instantons (also
exotic ones?) play a key role in duality statements,
both at the field theory and the string theory level

» In theories with higher susy, sum over all instanton
# needed to check dualities and exact results

» D-instanton partition function from matrix integrals
Moore et al, 1998 Checks against expression derived by
Self—duality of type 1B Green-Gutperle, 1997

» Seiberg-Witten sol. by instanton counting nekrasov, 2002



Instanton counting and dualities

» Beside providing (new) non-perturbative couplings
in the effective actions see aneros taic instantons (also
exotic ones?) play a key role in duality statements,
both at the field theory and the string theory level

» In theories with higher susy, sum over all instanton
# needed to check dualities and exact results

» D-instanton partition function from matrix integrals
Moore et al, 1998 Checks against expression derived by
self-duality of type IIB Green-Gutperle, 1997

» Seiberg-Witten sol. by instanton counting nekrasov, 2002

» Effective action at O(F*) summing over D(-1)’s in
type I’ must match by string duality the Het SO(4)*
one: — 2nd part of this talk



“Exotic” instantons in type I’




A D(-1)/D7 system in type I’

» Type I’ is type IIB on T, modded out by
Q=w(-1)t1;

where w = w.s. parity, F; = left-moving w.s. fermion
#, I, = inversion on T>

» Q has four fixed-points on T, where
four O7-planes are placed
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requires 8 D7-branes at each fix C
point




A D(-1)/D7 system in type I’

» Type I’ is type IIB on T, modded out by
Q=w(-1)t1;

where w = w.s. parity, F; = left-moving w.s. fermion
#, I, = inversion on T>

» Q has four fixed-points on T, where
four O7-planes are placed

» Admits D(-1), D3 and D7’s @ @ ---nneev

transverse to T We focus on one
. fix point:
» Local RR tadpole cancellation L/ P
requires 8 D7-branes at each fix C ~

point




The gauge theory on the D7’s

» From the D7/D7 strings we get N =1 vector
multiplet in d = 8 in the adjoint of SO(8):

{AuN ¢m}, p=1,...8, m=8,9

» Can be assembled into a “chiral” superfield
1
®(x, ) = ¢(x) + V2 ON(X) + OO () + ...

where ¢ = (¢o + ip10)/ V2.

» Formally very similarto AV =2ind=4



Effective action on the D7's

Effective action in Fy, an its derivatives: NABI

1 FuyFHY 1
Sp7 = stxTr - 5 ts F*
8mgs (2nv/a”)*  3(2m)

a/
+— fdsxﬁ(s)(f:, DF)+---
gs

= Sym+S5@)+55)+:,

» The Yang-Mills action Syy has a dimensionful
coupling g2, = 4ngs(2mv/a’)*



Effective action on the D7's

Effective action in Fy, an its derivatives: NABI
1 FuyFHY 1
Spr = f d®xTr [ = tg F4}
8mgs uva’)*  3(2m)

a/
+— fdsxa(s)(F, DF) +
gs
= Sym+S5@4) +S5)+

» The quartic action has a dimensionless
coupling A4 = 4m3gs:
d®xTr(tgFt)

4= "3



Effective action on the D7's

Effective action in Fy, an its derivatives: NABI

1 FuvFHY 1
Sp7 = Jdngr - ts F*
8mgs (uva’)*  3(2m)?

a/
+— fdsxﬁ(s)(f:, DF)+---
gs

= Sym+5@)+55) +:,

» Adding the WZ term, we can write

5(4) = f d8xTr(t8F4) —2miCy C(a)

_4!4n3g5

where c(4) is the fourth Chern number



Effective action on the D7's

Effective action in Fy, an its derivatives: NABI

1 FuvFHY 1
Sp7 = stxTr — ts F*
8mgs uv/a’)*  3(2m)?

o
+— Jd8X£(5)(F, DF) +---
gs

= Sym+S@)+55) +0,

» Contributions of higher order in (a’): role to be
discussed later



Adding D-instantons

» Add k D-instantons.

@
» D7/D(-1) form a 1/2 BPS system K D(-1)
with 8 ND directions

» D(-1) classical action

21 ) ,
Sei=k(— —2miCp) = —-2mikT,

gs

» Coincides with the quartic action on the D7
for gauge fields F with c¢4) =k and

41
f d®xTr(tgF*) = —% J d®xTr(egF*) = —3'(211)4 C(a)



Adding D-instantons

» Add k D-instantons.

@
» D7/D(-1) form a 1/2 BPS system K D(-1)
with 8 ND directions

» D(-1) classical action

21 ) ,
Sei=k(— —2miCp) = —-2mikT,
gs
» Analogous to relation with self-dual YM config.s in
D3/D(-1)
» Suggests relation to some 8d instanton of the
quartic action



The moduli spectrum

» Besides the classical action, we must consider the
spectrum and interactions of strings ending on a
D(-1).



The moduli spectrum

Spectrum:
Sector Name Meaning Chan-Paton Dimension
-1/—-1 NS ay centers symm SO(k) (length)
X, X adj SO(k) (length)~1
Dm  Lagr. mult. : (length)—2

R mMa partners symm SO(k) (Iength)%
A¢  Lagr. mult.  adjSO(k)  (length)~2

-1/7 R U 8 xk (length)
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R Mo partners symm SO(k) (Iength)%
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-1/7 R U 8 xk (length)

» The SO(k) rep. is determined by the orientifold
projection Q



The moduli spectrum

Spectrum:
Sector Name Meaning Chan-Paton Dimension
-1/-1 NS ay centers symm SO(k) (length)
X, X adj SO(k) (length)~1
Dm Lagr. mult. : (length)~2

R M partners symm SO(k) (Iength)%
Aa Lagr. mult. adj SO(k) (Iength)‘%

-1/7 R U 8 xk (length)

» Abelian part of a,, My ~ Goldstone modes of the
(super)translations on the D7 broken by D(-1)’s

» ldentified with coordinates x,,64



The moduli spectrum

Spectrum:
Sector Name Meaning Chan-Paton Dimension
-1/-1 NS ay centers symm SO(k) (length)
X, X adj SO(k) (length)~1
Dm Lagr. mult. : (length)~2

R Mo partners symm SO(k) (Iength)%
A¢  Lagr. mult.  adjSO(k) (length)~3

-1/7 R U 8 xk (length)

» Abelian part of A4 would be a dangerous 0-mode
» Removed by the orientifold projection



The moduli spectrum

Spectrum:
Sector Name Meaning Chan-Paton Dimension
-1/-1 NS ay centers symm SO(k) (length)
X, X adj SO(k) (length)~1
Dm Lagr. mult. : (length)~2

R Mo partners symm SO(k) (Iength)%
Aa Lagr. mult. adj SO(k) (Iength)‘%

-1/7 R U 8 xk (length)

» One needs auxiliary fields D,,, m=1,...7 to
disentangle the quartic interaction [ay, av] [a*, a"].

» “Octonionic” analogue of the fact that for D(-1)/D3
systems one needs D, c=1,2,3



The moduli spectrum

Spectrum:

Sector Name Meaning Chan-Paton Dimension

-1/-1 NS ay centers symm SO(k) (length)
X, X adj SO(k) (length)~1
Dm Lagr. mult. : (length)~2

R Mo partners symm SO(k) (Iength)%
3
Aa Lagr. mult. adj SO(k) (length)™2

-1/7 R U 8 xk (length)

» For “mixed” strings, no bosonic moduli from the NS
sector

» This is a characteristic of “exotic” instantons



The moduli action

Beside the classical action we have

S = Squartic + Scubic + Smixed



The moduli action

Beside the classical action we have

S = Squartic + Scubic + Smixed

» The quartic part can be (partly) disentangled with
auxiliary fields Dp,:

1 1 1
Squartic = —5 U’{—DmDm + =Dm(TM)uv [@*, @"]
95 2 2

_ 1 _
~ [aw X] 18, X + 5 1% X0 |



The moduli action

Beside the classical action we have

S = Squartic + Scubic + Smixed

» The cubic part reads:

1o . 5
Seubic = tr{ixa(v*)% [ay, Mg] — ixalx, A%
0

— iMq X, M} .



The moduli action

Beside the classical action we have

S = Squartic + Scubic + Smixed

» From diagrams with mixed b.c.’s

Smixed = iztr{_iIJTXIJ} ;
90



The moduli action

Beside the classical action we have

S = Squartic + Scubic + Smixed

» In the case k =1 all of these contributes vanish (no
adjoint moduli!). We are left with the classical part
only

Scl=—2TiT
» Coincides with the quartic action on the D7 for
gauge fields F s.t.
> =1
> Tr(tgF%) = —1/2Tr(egF*)
» Suggests interpretation as “instantons” but ...



No gauge field emission

» Ordinary” instantonic brane systems

(such as D(-1)/D3): classical instanton w
profile due to the emission of gauge P
field from mixed disks siio et al, 2001 -~
. - xV Au(p)
A =207 — ...
H MY |x|4 w

(SU(2), sing. gauge, large-|x|, 2p2 = trwgw® )
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diagram for A, because there are no bosonic mixed
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No gauge field emission

» Ordinary” instantonic brane systems

(such as D(-1)/D3): classical instanton w
profile due to the emission of gauge P
field from mixed disks siio et al, 2001 -~
. - xV Au(p)
Al =2p°n — ...
H MY |x|4 w

(SU(2), sing. gauge, large-|x|, 2p2 = trwgw® )

» In the “exotic” D(-1)/D7 system there is no emission
diagram for A, because there are no bosonic mixed
moduli w

» The classical profile vanishes outside the location of
the D(-1)



Interpretation as 8d instanton solutions




Expected features

» A D(-1) inside the D7’s should correspond to the
zero-size limit of some “instantonic” configuration
of the SO(8) gauge field such that

> has 4-th Chern number c(4) =1

» the quartic action reduces to the D(-1) action
» preserves SO(8) “Lorentz” invariance

» corresponds to a 1/2 BPS config. in susy case



Expected features

» A D(-1) inside the D7’s should correspond to the
zero-size limit of some “instantonic” configuration
of the SO(8) gauge field such that

> has 4-th Chern number c(4) =1

» the quartic action reduces to the D(-1) action
» preserves SO(8) “Lorentz” invariance

» corresponds to a 1/2 BPS config. in susy case

» Many generalizations of 4d instantons to 8d In
particular “linear” instantons (corrigan, 1982; Fubini-nicolai, 1985;...]

1
FI_“/ + 5 T[Ivaa]Fpo = 0,

> Bianchis imply YM e.o.m DHF;, =0
» do not fully preserve the SO(8) Lorentz group, and
are less than 1/2 BPS



The SO(8) instanton

» All our requirements met by the SO(8) instanton

[Grossmann e al, 1985]

a (Yuv)*F xV
R

with p = instanton size and r? = x,x#, while af €
adjoint of the SO(8) gauge group.

> is “self-dual” in the sense that FA F=(F A F)*
> satisfies tgF* = —1/2€gF* from Clifford Algebra
> has cs)=1and Sy = =27t



The SO(8) instanton

» All our requirements met by the SO(8) instanton

[Grossmann e al, 1985]

a (Yuv)*F xV
R

with p = instanton size and r? = x,x#, while af €
adjoint of the SO(8) gauge group.

> is “self-dual” in the sense that FA F=(F A F)*
> satisfies tgF* = —1/2€gF* from Clifford Algebra
> has cs)=1and Sy = =27t

» However, it is not a solution of Y.M. e.o.m. in d = 8:
4(d — 4)p?

DuFuv(X) = Yuvxv



Consistency conditions

» Eff. action on the D7 is the NABI action

» To keep the quartic action and the instanton effects
the field-theory limit must be

o’ -0, gsfixed



Consistency conditions

» Eff. action on the D7 is the NABI action

» To keep the quartic action and the instanton effects
the field-theory limit must be

o’ -0, gsfixed

» This limit is dangerous on the YM action Syy since
gy, < gsa’2. On the SO(8) instanton, however, we

have (R regulates the volume):

p*
Sym — 750 log (o/R) .

which vanishes in the zero-size limit p — 0 if
p?/a’? — 0 (done before removing R)



Consistency conditions

» Eff. action on the D7 is the NABI action

» To keep the quartic action and the instanton effects
the field-theory limit must be

o’ -0, gsfixed

» Consider the higher order o’ corrections to the NABI
action. On the SO(8) instanton, by dimensional
reasons, must be

[e's) G/ n
Pd_s Z an (—2) ,
n=1 p

» The coefficients a, should vanish for consistency!



O(F>) terms in the NABI

» The first coefficient a; arises from the integral of
LB)(F, DF), i.e.the term of order a’3 w.r.t to the YM
action.

» We would like to check that it vanishes. Crucial
point: which is the form of £®)(F, DF)?
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» Various proposals in the literature
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» obtained by different methods
» differing by terms which vanish “on-shell”, i.e. upon
use of the YM e.o.m.



O(F>) terms in the NABI

» The first coefficient a; arises from the integral of
£O)(F, DF), i.e.the term of order a’3 w.r.t to the YM
action.

» We would like to check that it vanishes. Crucial
point: which is the form of £®)(F, DF)?
» Various proposals in the literature
Refolli et al, Koerber-Sevrin, Grasso, Barreiro-Medina, ...

» obtained by different methods
» differing by terms which vanish “on-shell”, i.e. upon
use of the YM e.o.m.
» One proposal is singled out by admitting a susy
extension colinucci et al, 2002



Check at O(F?) in the NABI

» The bosonic part of the supersimmetrizable O(a’?)
lagrangian is

¢3)
£ = TTI’{4[F;11;12, Fu3u4] [[FHUB' Fuzus]' Fu4u5]

2 [ Fuupzs Fuspa | [[mef Fluss |, qus]

2[Fuypos DpsFuypa | [ DusFruomss Fusua |
- 2 [Fulﬂ2' DH4FN3H5] [DMFuzﬂsr Fﬂlua]

[Fusuizr DusFuuspa ] [DusFupz. Fu3u4]}



Check at O(F?) in the NABI

» Plugging the instanton profile into g—;fd8x£(5) we

get [Using the CADABRA program by Kasper Peeters]

a’ g(3) 249 n¥21(9 —d/2)

x (d—1)(d - 2)(d — 4) (—d(Q - g) +(d+ 2)%)
namely a result proportional to
d(d-1)(d-2)(d-4)(d-8)

» The quintic action vanishes on the SO(8) instanton!
The check is successful



D(-1)'s and type I'/Heterotic duality




Type I'/Heterotic duality

11-d sugra
Type lIA

» In the web of string dualities, the
S-duality between Het. SO(32) and Type IIB
Type | plays a fundamental réle Hot

» Upon compactification (e.g. on T3),

other dualities follow from it Type |

Het SO(32)
» The Type I’ theory is S-dual to Het SO(8)* (obtained
with Wilson lines on T3)
» The mapping of parameters involve the relation

Te—T

» T: (complexified) string coupling in type I’
» T: the Kahler param. of the torus in the Het.



The heterotic F4 effective action

» Het SO(8)* is a theory of closed strings. Focus on
the effective action for one of the SO(8) gauge
factors

F

» The BPS-saturated tgF* terms F
arise just at 1-loop. Threshold
corrections organize as a series
in q= e2miT



The heterotic F* effective action

» Het SO(8)* is a theory of closed strings. Focus on
the effective action for one of the SO(8) gauge
factors

» The BPS-saturated tgF* terms ;
arise just at 1-loop. Threshold
corrections organize as a series
ing=e2m ’ d

» At even powers in g one gets contributions to the
fO”OW|ng structures: Lerche-stieberger, Gutperle,...

EIHIEEE DT
—tg (TrF))> [%Z(Z %)qzk _ %(”Zk: %)qzlk]

k Ik



The heterotic F* effective action

» Het SO(8)* is a theory of closed strings. Focus on

the effective action for one of the SO(8) gauge
factors

» The BPS-saturated tgF* terms ;
arise just at 1-loop. Threshold
corrections organize as a series
ing= e2miT b F

» For SO(8) there is another quartic gauge invariant,
Pf(F) = €a,...agF?92 ... F%79 (Lorentz indices
omitted). Gets contributions at odd powers in g

Gava et al

8tsPr(F) > (D.)d"

kodd Ik !



The type I’ F* effective action

» Under the Het/type I’ duality,

2miT 27T

g=e’"T—qg=e

» The series of threshold corrections maps to a series
of non-perturbative corrections

» These corrections can be provided by D-instantons:
indeed g~ is the weight e=5¢ for k D(-1)

» The explicit check that the coefficients of the
expansion agree would represent a direct, highly
non-trivial, test of this string duality



The type I’ F* effective action

» Under the Het/type I’ duality,

2miT 27T

g=e’"T—qg=e

» The series of threshold corrections maps to a series
of non-perturbative corrections

» These corrections can be provided by D-instantons:
indeed g~ is the weight e=5¢ for k D(-1)
» The explicit check that the coefficients of the

expansion agree would represent a direct, highly
non-trivial, test of this string duality

» Much discussed in this setting cutperie, 1999 Or in the
T-dual one (D1/D9 systems in Type 1)

Bachas et al, 1997; Kiritsis-Obers, 1997; ...




The type I’ F* effective action

Under the Het/type I’ duality,

q= e21riT —q= e2ni'r
The series of threshold corrections maps to a series
of non-perturbative corrections

These corrections can be provided by D-instantons:
indeed g~ is the weight e=5¢ for k D(-1)

The explicit check that the coefficients of the
expansion agree would represent a direct, highly
non-trivial, test of this string duality

The explicit derivation of the coefficients in the
type I’ side has never been performed (to our
knowledge)



Interaction with the multiplet ¢

How can D(-1) contribute to the F# effective action?

» There’'s no emission diagram leading to a classical
profile, but there are mixed disks (related by SUSY)
involving D7/D7 fields

t

Nt Nt H
<X
[ A o F
6
~9
H u H
» Net effect: moduli action dependence on the

superfield ®(x, 0)

Sy [®] = —2TiTk 4 Squartic + Scubic + Smixed + Tr utou



The moduli integration

» The effective action for the gauge fields is obtained
integrating, for each k, over the D-instanton moduli

Mky = (%, 8, M():
Z[p, N\ F] = J d8xd892f dMyeStlex.0)]
K
= f d®xd®equartic inv. (o(x, 6))

Second step from dimensionality: [dﬂ(k)] =4
» The integration over 6 yields then a tg F* term:

J dBO(BYH1V10)F v, ... (OYH4V40)F 1,y = tg F*



Integration at k=1

» At k =1 spectrum of moduli is extremely reduced
Zy = e—ZHITJ d8Xd89d8ue_Tr“t¢“ _ e—znirf dsdeGPf(CD)

» To go to higher k, exploit the susy of the moduli
action leading to
» an (equivariant) cohomological BRS structure
» localization of the integrals (upon suitable
deformations from closed string backgrounds)
» Similar kind of techniques to those used for
» D(-1) partition function in type IIB moore etal, .. ...
» resummation of instantons in A/ =2 SYM leading to
the SW solution nekrasov, 2002 re-obtained by D3/D(-1)
on orbifold siio et al, 2006



BRS reformulation

» Single out one of the supercharges Qg, say O = Qs.
» After relabeling some of the moduli:

Mg =My =(Mm, —Mg), Ag— (Am,N) = (Am, As)
one has

Qak =MH, QAm=—Dm, Qx=—-iV2n, Qx=0, Qu=W



BRS reformulation

» Single out one of the supercharges Qg, say O = Qs.
» After relabeling some of the moduli:

Mg =My =(Mm, —Mg), Ag— (Am,N) = (Am, As)
one has
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BRS reformulation

» Single out one of the supercharges Qg, say O = Qs.
» After relabeling some of the moduli:

Mg =My =(Mm, —Mg), Ag— (Am,N) = (Am, As)
one has

Qak =MH, QAm=—Dm, Qx=—-iV2n, Qx=0, Qu=W

» On any modulus, O’e =T(x) e +R(¢)e
» T(x) = SO(k) rotation in the appropriate rep
» R(¢) a gauge SO(8) rot.

» The complete moduli action is Q-exact

S§=0=



Deformations from RR background

» To perform the computation, it is convenient to
simply cosider the part. function with
d(x,0) = ¢ = (P).
» Integration over the moduli x, & would then diverge
» Introduce suitable deformations that

» regulate the divergence
» help to fully localize the integral

, : A
» Arise from RR field-strengths
3-form with one index on T> .
§ I R
Fuv =F Fuw=F '- ® '
uv =ruvz uv = uvz 1 3
» Disk diagrams RR insertions

modify the moduli action (A




BRS deformation

» Let us parametrize the RR backround as follows:

1 B 1_
Fuv = Efmn(‘l'mn)uv +hm (MM, Fuv = Efmﬂ(Tmn)HV ’

The moduli action is modified to

v

S, _ QE/

v

frmn only appear in the “gauge fermion” =’: the final
result does not depende on them

fmn, hm parametrize SO(7)c SO(8) (Lorentz) with
spinorial embedding and modify the action of O

v

Q'* e =T(x)® +R(§)e+G(F)e

where G is the appropriate SO(7) action



Symmetries of the moduli

» The Action of the BRS charge O is determined by
the symmetry properties of the moduli

SO(k) | SO(7) | SO(8)
ak | symm 8; 1
MH | symm 8; 1
Dm adj 7 1
Am adj 7 1
X adj 1 1
n adj 1 1
X adj 1 1
7] k 1 8y




Scaling to localization

» The BRS structure allows to suitably rescale the
bosonic and fermionic moduli in such a way that

» the (super)jacobian of the rescaling is one (the
measure is unaffected)

» one can take a limit in which the exponent reduces
to a quadratic expression

» The integration over some moduli is trivially done,
and one is left with (at inst. # k)

Zk = Ny e2mk f {dxda"dMHdDgd) 4 du}
x @t (§DmD™ = 4An0 AT+ £ 2, FH Q' 3l 4 £ My FH My —tru Q1)

fladj,6c7,1)(Q"*)Pfik,1,8,)(Q"%)

1/2 2
det(symm,ss,l)(ol )

. P
:Nk ezmTkJ{dX}



General expressions

» Considering ¢ in the Cartan of SO(8), f in the
Cartan of SO(7) and bringing x to the Cartan of
SO(k) one gets (here for k =2n+1)

/
2mir(znsyy (1F213)" [ dX!
gn+l) ) 7 2mi

Zon+1 =MNontie

[Tk xR (k)R (xi) TTi<j (X )? (O )2 Re (X R (X))
nmRE(ZXm)RE Xm) l_[p<q qu) E(X;q)
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/
2mir(znsyy (1F213)" [ dX!
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Here X;}: =XixXj, E1=1/2(-f1+ L +1),..., E=E1E2E3E4
and




General expressions

» Considering ¢ in the Cartan of SO(8), f in the
Cartan of SO(7) and bringing x to the Cartan of
SO(k) one gets (here for k =2n+1)

/
2mir(znsyy (1F213)" [ dX!
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Analogous expression for k = 2n




General expressions

» Considering ¢ in the Cartan of SO(8), f in the
Cartan of SO(7) and bringing x to the Cartan of
SO(k) one gets (here for k =2n+1)

/
2mir(znsyy (1F213)" [ dX!
gn+l) ) 7 2mi
[Tk xR (k)R (xi) TTi<j (X )? (O )2 Re (X R (X))
[T RE@Xm)RE(Xm) [ Tp<q REX5)RE(XS,)

The x integration are actually contour integrals to be
done with certain prescriptions on the Im parts of the
poles wooreetal, .. (follows from BRS structure)

Zon+1 =MNontie




The prepotential

» Cosider the complete part. function
Z(¢,f) = ZJ dM (k) eSO =" 2} 2Tk = %" 2, gk
k k k

» To a given order in q, contribute also
“disconnected” configurations (instantons of lower
numbers k;, with > k; = k).

» To isolate the connected components, take the
logarithm



The prepotential

» Cosider the complete part. function
Z(¢,f) = ZJ dM (k) eSO =" 2} 2Tk = %" 2, gk
k k k

> In dM k) we have included the “center of mass” dx*
and d6 integrals.
» Without deformations these would diverge (with ¢
constant), now they give %



The prepotential

» Cosider the complete part. function
Z(¢,f) = Zf dM) e~S@N = %" 2 e2mTh = %" 2 gk
K K K
» The effective action for ®(x, ) is written as
stxdf‘e F(®(x, 6), f = 0)
where

F(9, 1) =Elog (1 +Z(¢, 1))
F(9, 1) =D Fk(¢, F)d"
k



Explicit results at low k

By direct integration of the expression of Zx and
taking the log we get

1 1 5 (1 1
F=Tro* | —g?+-q*+... | = (Tre2)" | —g?+—q* +...
(2Q+4q+ ) (Tre*) 29 T4 T
43 0 5
+8Pfog+—-9g°+—-qg°+...
3 5
in perfect agreement with the Heterotic results!

» The fact that for F is finite in the f — O limit is highly
non-trivial, requires very delicate cancellations



Explicit results at low k

By direct integration of the expression of Zx and
taking the log we get

1 1 S (1 1
F=Tro* | —q?+ q*+... | = (Tre2)" | —q®+ —g*+...
(2q 29 (Tre?) PR
43 0 5
+8Pf o q+§q +gq +...

in perfect agreement with the Heterotic results!
» The fact that for F is finite in the f — O limit is highly
non-trivial, requires very delicate cancellations
» If we keep the RR background turned on to the

prepotential, we compute also gravitational
corrections of the form tg tr R* and tg (tr R?)?
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Conclusions and perspectives

» D(-1)'s on D7, exotic from the w.s. point of view,
seen as zero-size limit of a 8d instanton solution
» Does such an interpretation carry on, and is it
useful, to compactified cases relevant to 4d eff.
theories?
» |s there some similar interpretation for other exotic
instantons (wrapped E-branes at angles, ...)?
» Consistency condition: the SO(8) instanton must be
a solution of the full NABI action
» check at O(F?) singles out the supersimmetrizable
action of collinucci et al, 2002
» Integrating over the D(-1) moduli reproduces the F*
effective action of the dual Het SO(8)* theory
» Checked up to k =5 (next step: all k proof)
» Gravitational corrections to be checked against
Heterotic



The tensor tg

» We have
1
Tr(tgF*) = t“”"2 RO T (Fpiyy -+ Fruops )
Vo EAU 1 (2% A

1 v A 1 VEPA
~ 5 FunF For P = = FiuyFonFEYFP )
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