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Foreword

Mostly based on

M. Billo, M. Frau, L. Gallot, A. Lerda and I. Pesando,
“Classical solutions for exotic instantons?,”, JHEP 03
(2009) 056, arXiv:0901.1666 [hep-th].

Same authors + L. Ferro, in preparation.

It builds over a vast literature
É I apologize for missing references...
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Motivations



Non-perturbative sectors
in brane-worlds

D6b

CY3

D6a
R1,3

É (Susy) gauge and matter sectors on the
uncompactified part of (partially wrapped) D-branes
É chiral matter, families from multiple intersections,

tuning different coupling constants...

É Non-perturbative sectors from partially wrapped
E(uclidean)-branes
É Pointlike in the R1,3 space-time: “instanton

configurations”



Non-perturbative sectors
in brane-worlds

D6b

CY3

D6a
R1,3

E3a

É (Susy) gauge and matter sectors on the
uncompactified part of (partially wrapped) D-branes
É chiral matter, families from multiple intersections,

tuning different coupling constants...

É Non-perturbative sectors from partially wrapped
E(uclidean)-branes
É Pointlike in the R1,3 space-time: “instanton

configurations”



Ordinary vs. exotic

É E-branes identical to D-branes in the internal
directions: gauge instantons
É ADHM from strings attached to the instantonic

branes Witten, 1995; Douglas, 1995-1996; ...

É non-trivial instanton profile of the gauge field
Billo et al, 2001

É E-branes different from D-branes in internal
directions do not represent gauge instantons
É They are called exotic or stringy instantons
É in certain cases can give important contributions to

the effective action, .e.g. Majorana masses for
neutrinos, moduli stabilizing terms, . . .

Blumenhagen et al 0609191; Ibanez and Uranga, 0609213; (long list)... ; Petersson 0711.1837



World-sheet properties

É Consider the strings stretching
between the gauge D-branes and
the E-branes

É NS sector (lowest KK level) physicity condition

L0 −
1

2
= NX +Nψ +

3
∑

i=1

θi

2
= 0 ,

É Ordinary case: internal twists θi = 0. There are
bosonic moduli wα̇ typical of ADHM construction,
related to the size

É Exotic case: θi > 0, i.e., there are “more than 4 ND
directions” . The moduli wα̇ are absent. Hints at
zero-size limit of some gauge field configuration.



World-sheet properties

É Consider the strings stretching
between the gauge D-branes and
the E-branes

É In the R sector, the ground states always: fermionic
anti-chiral moduli λα̇
É Ordinary case: Lagrange multipl. of fermionic ADHM

constraints
É Exotic case: the the abelian component of the λ’s is

a true fermionic zero-mode since the abelian part of
ADHM constraint vanishes (would cointain the wα̇)



World-sheet properties

É Consider the strings stretching
between the gauge D-branes and
the E-branes

É Exotic case: need to remove the fermionic
zero-mode to get non-zero correlators
É orientifold projections Argurio et al, 2007; ...,
É lift with closed string fluxes

Blumenhagen et al, 2007; Billo et al, 2008; ...

É other mechanisms Petersson, 2007; ....



World-sheet properties

É Consider the strings stretching
between the gauge D-branes and
the E-branes

É These w.s. properies of the exotic systems must be
taken into account when trying to answer the
question:
É Do exotic instantonic branes correspond to some

classical configuration of gauge/matter fields?



World-sheet properties

É Consider the strings stretching
between the gauge D-branes and
the E-branes

É We will consider this problem in a simplified setting:
D(-1)/D7 in type I’ on T2

É It has more than 4 ND directions (eight, in fact):
exotic

É Built-in orientifod projection that eliminates the λα̇
ferm. 0-modes

É However, the gauge theory part lives in 8
dimensions



Instanton counting and dualities

É Beside providing (new) non-perturbative couplings
in the effective actions see Alberto’s talk instantons (also
exotic ones?) play a key rôle in duality statements,
both at the field theory and the string theory level

É In theories with higher susy, sum over all instanton
# needed to check dualities and exact results
É D-instanton partition function from matrix integrals

Moore et al, 1998 checks against expression derived by
self-duality of type IIB Green-Gutperle, 1997

É Seiberg-Witten sol. by instanton counting Nekrasov, 2002

É Effective action at O(F4) summing over D(-1)’s in
type I’ must match by string duality the Het SO(4)4

one: → 2nd part of this talk
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“Exotic” instantons in type I’



A D(-1)/D7 system in type I’

É Type I’ is type IIB on T2 modded out by

Ω = ω (−1)FL I2

where ω = w.s. parity, FL = left-moving w.s. fermion
#, I2 = inversion on T2

É Ω has four fixed-points on T2 where
four O7-planes are placed

É Admits D(-1), D3 and D7’s
transverse to T2

É Local RR tadpole cancellation
requires 8 D7-branes at each fix
point

O7



A D(-1)/D7 system in type I’

É Type I’ is type IIB on T2 modded out by

Ω = ω (−1)FL I2

where ω = w.s. parity, FL = left-moving w.s. fermion
#, I2 = inversion on T2

É Ω has four fixed-points on T2 where
four O7-planes are placed

É Admits D(-1), D3 and D7’s
transverse to T2

É Local RR tadpole cancellation
requires 8 D7-branes at each fix
point

O7



A D(-1)/D7 system in type I’

É Type I’ is type IIB on T2 modded out by

Ω = ω (−1)FL I2

where ω = w.s. parity, FL = left-moving w.s. fermion
#, I2 = inversion on T2

É Ω has four fixed-points on T2 where
four O7-planes are placed

É Admits D(-1), D3 and D7’s
transverse to T2

É Local RR tadpole cancellation
requires 8 D7-branes at each fix
point

D7



A D(-1)/D7 system in type I’

É Type I’ is type IIB on T2 modded out by

Ω = ω (−1)FL I2

where ω = w.s. parity, FL = left-moving w.s. fermion
#, I2 = inversion on T2

É Ω has four fixed-points on T2 where
four O7-planes are placed

É Admits D(-1), D3 and D7’s
transverse to T2

É Local RR tadpole cancellation
requires 8 D7-branes at each fix
point

We focus on one
fix point



The gauge theory on the D7’s

É From the D7/D7 strings we get N = 1 vector
multiplet in d = 8 in the adjoint of SO(8):

¦

Aμ,Λα, ϕm
©

, μ = 1, . . .8 , m = 8,9

É Can be assembled into a “chiral” superfield Back

Φ(x, θ) = ϕ(x) +
p

2θΛ(x) +
1

2
θγμνθFμν(x) + . . .

where ϕ = (ϕ9 + iϕ10)/
p

2.
É Formally very similar to N = 2 in d = 4



Effective action on the D7’s

Effective action in Fμν an its derivatives: NABI Back

SD7 =
1

8πgs

∫

d8xTr

�

FμνFμν

(2π
p
α′)4

−
1

3 (2π)2
t8 F

4

�

+
α′

gs

∫

d8xL(5)(F,DF) + · · ·

= SYM + S(4) + S(5) + · · · ,

É The Yang-Mills action SYM has a dimensionful
coupling g2

YM ≡ 4πgs(2π
p
α′)4



Effective action on the D7’s

Effective action in Fμν an its derivatives: NABI Back

SD7 =
1

8πgs

∫

d8xTr

�

FμνFμν

(2π
p
α′)4

−
1

3 (2π)2
t8 F

4

�

+
α′

gs

∫

d8xL(5)(F,DF) + · · ·

= SYM + S(4) + S(5) + · · · ,

É The quartic action Detail has a dimensionless
coupling λ4 ≡ 4π3gs:

S(4) = −
1

4!λ4

∫

d8xTr
�

t8F
4
�



Effective action on the D7’s

Effective action in Fμν an its derivatives: NABI Back

SD7 =
1

8πgs

∫

d8xTr

�

FμνFμν

(2π
p
α′)4

−
1

3 (2π)2
t8 F

4

�

+
α′

gs

∫

d8xL(5)(F,DF) + · · ·

= SYM + S(4) + S(5) + · · · ,

É Adding the WZ term, we can write Back

S(4) = −
1

4! 4π3gs

∫

d8xTr
�

t8F
4
�

− 2πiC0 c(4)

where c(4) is the fourth Chern number



Effective action on the D7’s

Effective action in Fμν an its derivatives: NABI Back

SD7 =
1

8πgs

∫

d8xTr

�

FμνFμν

(2π
p
α′)4

−
1

3 (2π)2
t8 F

4

�

+
α′

gs

∫

d8xL(5)(F,DF) + · · ·

= SYM + S(4) + S(5) + · · · ,

É Contributions of higher order in (α′): rôle to be
discussed later



Adding D-instantons

É Add k D-instantons.
É D7/D(-1) form a 1/2 BPS system

with 8 ND directions
k D(-1)

É D(-1) classical action Back Back’

Scl = k(
2π

gs
− 2πiC0) ≡ −2πikτ ,

É Coincides with the quartic action Recall on the D7
for gauge fields F with c(4) = k and
∫

d8xTr
�

t8F
4
�

= −
1

2

∫

d8xTr
�

ε8F
4
�

= −
4!

2
(2π)4 c(4)



Adding D-instantons

É Add k D-instantons.
É D7/D(-1) form a 1/2 BPS system

with 8 ND directions
k D(-1)

É D(-1) classical action Back Back’

Scl = k(
2π

gs
− 2πiC0) ≡ −2πikτ ,

É Analogous to relation with self-dual YM config.s in
D3/D(-1)

É Suggests relation to some 8d instanton of the
quartic action



The moduli spectrum

É Besides the classical action, we must consider the
spectrum and interactions of strings ending on a
D(-1).



The moduli spectrum

Spectrum: Back

Sector Name Meaning Chan-Paton Dimension
−1/ − 1 NS aμ centers symm SO(k) (length)

χ, χ̄ adj SO(k) (length)−1

Dm Lagr. mult.
... (length)−2

R Mα partners symm SO(k) (length)
1
2

λα̇ Lagr. mult. adj SO(k) (length)−
3
2

−1/7 R μ 8× k (length)



The moduli spectrum

Spectrum:

Sector Name Meaning Chan-Paton Dimension
−1/ − 1 NS aμ centers symm SO(k) (length)

χ, χ̄ adj SO(k) (length)−1

Dm Lagr. mult.
... (length)−2

R Mα partners symm SO(k) (length)
1
2

λα̇ Lagr. mult. adj SO(k) (length)−
3
2

−1/7 R μ 8× k (length)

É The SO(k) rep. is determined by the orientifold
projection Ω



The moduli spectrum

Spectrum:

Sector Name Meaning Chan-Paton Dimension
−1/ − 1 NS aμ centers symm SO(k) (length)

χ, χ̄ adj SO(k) (length)−1

Dm Lagr. mult.
... (length)−2

R Mα partners symm SO(k) (length)
1
2

λα̇ Lagr. mult. adj SO(k) (length)−
3
2

−1/7 R μ 8× k (length)

É Abelian part of aμ, Mα ∼ Goldstone modes of the
(super)translations on the D7 broken by D(-1)’s

É Identified with coordinates xμ,θα



The moduli spectrum

Spectrum:

Sector Name Meaning Chan-Paton Dimension
−1/ − 1 NS aμ centers symm SO(k) (length)

χ, χ̄ adj SO(k) (length)−1

Dm Lagr. mult.
... (length)−2

R Mα partners symm SO(k) (length)
1
2

λα̇ Lagr. mult. adj SO(k) (length)−
3
2

−1/7 R μ 8× k (length)

É Abelian part of λα̇ would be a dangerous 0-mode
É Removed by the orientifold projection



The moduli spectrum

Spectrum:

Sector Name Meaning Chan-Paton Dimension
−1/ − 1 NS aμ centers symm SO(k) (length)

χ, χ̄ adj SO(k) (length)−1

Dm Lagr. mult.
... (length)−2

R Mα partners symm SO(k) (length)
1
2

λα̇ Lagr. mult. adj SO(k) (length)−
3
2

−1/7 R μ 8× k (length)

É One needs auxiliary fields Dm, m = 1, . . .7 to
disentangle the quartic interaction

�

aμ, aν
�

[aμ, aν].
É “Octonionic” analogue of the fact that for D(-1)/D3

systems one needs Dc, c = 1,2,3



The moduli spectrum

Spectrum:

Sector Name Meaning Chan-Paton Dimension
−1/ − 1 NS aμ centers symm SO(k) (length)

χ, χ̄ adj SO(k) (length)−1

Dm Lagr. mult.
... (length)−2

R Mα partners symm SO(k) (length)
1
2

λα̇ Lagr. mult. adj SO(k) (length)−
3
2

−1/7 R μ 8× k (length)

É For “mixed” strings, no bosonic moduli from the NS
sector

É This is a characteristic of “exotic” instantons



The moduli action

Beside the classical action Recall we have Back

S = Squartic + Scubic + Smixed



The moduli action

Beside the classical action Recall we have Back

S = Squartic + Scubic + Smixed

É The quartic part can be (partly) disentangled with
auxiliary fields Dm:

Squartic =
1

g2
0

tr
n1

2
DmD

m +
1

2
Dm(τm)μν [aμ, aν]

−
�

aμ, χ̄
�

[aμ, χ] +
1

2
[χ̄, χ]2

o



The moduli action

Beside the classical action Recall we have Back

S = Squartic + Scubic + Smixed

É The cubic part reads:

Scubic =
1

g2
0

tr
n

iλα̇(γμ)α̇β
�

aμ,Mβ

�

− iλα̇[χ, λα̇]

− iMα [χ̄,Mα]
o

.



The moduli action

Beside the classical action Recall we have Back

S = Squartic + Scubic + Smixed

É From diagrams with mixed b.c.’s

Smixed =
1

g2
0

tr
n

−i μTχμ
o

;
χ

μt

μ



The moduli action

Beside the classical action Recall we have Back

S = Squartic + Scubic + Smixed

É In the case k = 1 all of these contributes vanish (no
adjoint moduli!). We are left with the classical part
only

Scl = −2πiτ

É Coincides with the quartic action on the D7 for
gauge fields F s.t. Back

É c(4) = 1
É Tr(t8F4) = −1/2Tr(ε8F4)

É Suggests interpretation as “instantons” but ...



No gauge field emission

É Ordinary” instantonic brane systems
(such as D(-1)/D3): classical instanton
profile due to the emission of gauge
field from mixed disks Billo et al, 2001

Ai
μ

= 2ρ2η̄i
μν

xν

|x|4
+ . . .

(SU(2), sing. gauge, large-|x|, 2ρ2 = tr w̄α̇wα̇ )

p

w̄

w

Aμ(p)

É In the “exotic” D(-1)/D7 system there is no emission
diagram for Aμ because there are no bosonic mixed
moduli w

É The classical profile vanishes outside the location of
the D(-1)
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+ . . .
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diagram for Aμ because there are no bosonic mixed
moduli w

É The classical profile vanishes outside the location of
the D(-1)



Interpretation as 8d instanton solutions



Expected features

É A D(-1) inside the D7’s should correspond to the
zero-size limit of some “instantonic” configuration
of the SO(8) gauge field such that
É has 4-th Chern number c(4) = 1
É the quartic action reduces to the D(-1) action Recall

É preserves SO(8) “Lorentz” invariance
É corresponds to a 1/2 BPS config. in susy case

É Many generalizations of 4d instantons to 8d In
particular “linear” instantons [Corrigan, 1982; Fubini-Nicolai, 1985;...]

Fμν +
1

2
T[μνρσ]F

ρσ = 0,

É Bianchis imply YM e.o.m DμFμν = 0
É do not fully preserve the SO(8) Lorentz group, and

are less than 1/2 BPS
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The SO(8) instanton

É All our requirements met by the SO(8) instanton
[Grossmann e al, 1985]

�

Aμ(x)
�αβ

=
(γμν)αβ xν

r2 + ρ2

with ρ = instanton size and r2 = xμxμ, while αβ ∈
adjoint of the SO(8) gauge group.

É is “self-dual” in the sense that F∧ F = (F∧ F)∗

É satisfies t8F4 = −1/2ε8F4 from Clifford Algebra
É has c(4) = 1 and S(4) = −2πiτ

É However, it is not a solution of Y.M. e.o.m. in d = 8:

DμFμν(x) =
4(d− 4)ρ2

(r2 + ρ2)3
γμνx

ν .



The SO(8) instanton

É All our requirements met by the SO(8) instanton
[Grossmann e al, 1985]

�

Aμ(x)
�αβ

=
(γμν)αβ xν

r2 + ρ2

with ρ = instanton size and r2 = xμxμ, while αβ ∈
adjoint of the SO(8) gauge group.

É is “self-dual” in the sense that F∧ F = (F∧ F)∗

É satisfies t8F4 = −1/2ε8F4 from Clifford Algebra
É has c(4) = 1 and S(4) = −2πiτ

É However, it is not a solution of Y.M. e.o.m. in d = 8:

DμFμν(x) =
4(d− 4)ρ2

(r2 + ρ2)3
γμνx

ν .



Consistency conditions
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É To keep the quartic action and the instanton effects
the field-theory limit must be

α′ → 0 , gs fixed



Consistency conditions

É Eff. action on the D7 is the NABI action Recall

É To keep the quartic action and the instanton effects
the field-theory limit must be

α′ → 0 , gs fixed

É This limit is dangerous on the YM action SYM since
g2
YM

∝ gsα′2. On the SO(8) instanton, however, we
have (R regulates the volume):

SYM →
ρ4

α′2 gs
log

�

ρ/R
�

,

which vanishes in the zero-size limit ρ→ 0 if
ρ2/α′2→ 0 (done before removing R)



Consistency conditions

É Eff. action on the D7 is the NABI action Recall

É To keep the quartic action and the instanton effects
the field-theory limit must be

α′ → 0 , gs fixed

É Consider the higher order α′ corrections to the NABI
action. On the SO(8) instanton, by dimensional
reasons, must be

ρd−8
∞
∑

n=1

an

�

α′

ρ2

�n

,

É The coefficients an should vanish for consistency!



O(F5) terms in the NABI

É The first coefficient a1 arises from the integral of
L(5)(F,DF), i.e.the term of order α′3 w.r.t to the YM
action.

É We would like to check that it vanishes. Crucial
point: which is the form of L(5)(F,DF)?

É Various proposals in the literature
Refolli et al, Koerber-Sevrin, Grasso, Barreiro-Medina, ...

,
É obtained by different methods
É differing by terms which vanish “on-shell”, i.e. upon

use of the YM e.o.m.
É One proposal is singled out by admitting a susy

extension Collinucci et al, 2002



O(F5) terms in the NABI

É The first coefficient a1 arises from the integral of
L(5)(F,DF), i.e.the term of order α′3 w.r.t to the YM
action.

É We would like to check that it vanishes. Crucial
point: which is the form of L(5)(F,DF)?

É Various proposals in the literature
Refolli et al, Koerber-Sevrin, Grasso, Barreiro-Medina, ...

,
É obtained by different methods
É differing by terms which vanish “on-shell”, i.e. upon

use of the YM e.o.m.

É One proposal is singled out by admitting a susy
extension Collinucci et al, 2002



O(F5) terms in the NABI

É The first coefficient a1 arises from the integral of
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Check at O(F5) in the NABI

É The bosonic part of the supersimmetrizable O(α′3)
lagrangian is

L(5) =
ζ(3)

2
Tr
n

4
�

Fμ1μ2 , Fμ3μ4

�

h

�

Fμ1μ3 , Fμ2μ5

�

, Fμ4μ5

i

+ 2
�

Fμ1μ2 , Fμ3μ4

�

h

�

Fμ1μ2 , Fμ3μ5

�

, Fμ4μ5

i

+ 2
�

Fμ1μ2 ,Dμ5Fμ1μ4

��

Dμ5Fμ2μ3 , Fμ3μ4

�

− 2
�

Fμ1μ2 ,Dμ4Fμ3μ5

��

Dμ4Fμ2μ5 , Fμ1μ3

�

+
�

Fμ1μ2 ,Dμ5Fμ3μ4

��

Dμ5Fμ1μ2 , Fμ3μ4

�

o



Check at O(F5) in the NABI

É Plugging the instanton profile into α′

gs

∫

d8xL(5) we
get [Using the CADABRA program by Kasper Peeters]

α′ ζ(3)

gs
2d/2+9 π

d/2 Γ(9− d/2)

9!ρ10−d

× (d− 1)(d− 2)(d− 4)

�

−d
�

9−
d

2

�

+
�

d+ 2
�d

2

�

namely a result proportional to

d(d− 1)(d− 2)(d− 4)(d− 8)

É The quintic action vanishes on the SO(8) instanton!
The check is successful



D(-1)’s and type I’/Heterotic duality



Type I’/Heterotic duality

É In the web of string dualities, the
S-duality between Het. SO(32) and
Type I plays a fundamental rôle

É Upon compactification (e.g. on T2),
other dualities follow from it

11-d sugra

Het SO(32)
Type I

Het E8 × E8

Type IIB

Type IIA

É The Type I’ theory is S-dual to Het SO(8)4 (obtained
with Wilson lines on T2)

É The mapping of parameters involve the relation

τ↔ T
É τ: (complexified) string coupling in type I’
É T: the Kähler param. of the torus in the Het.



The heterotic F4 effective action

É Het SO(8)4 is a theory of closed strings. Focus on
the effective action for one of the SO(8) gauge
factors

É The BPS-saturated t8F4 terms
arise just at 1-loop. Threshold
corrections organize as a series
in q ≡ e2πiT
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the effective action for one of the SO(8) gauge
factors

É The BPS-saturated t8F4 terms
arise just at 1-loop. Threshold
corrections organize as a series
in q ≡ e2πiT

É At even powers in q one gets contributions to the
following structures: Lerche-Stieberger, Gutperle,... Back

t8Tr F
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The heterotic F4 effective action

É Het SO(8)4 is a theory of closed strings. Focus on
the effective action for one of the SO(8) gauge
factors

É The BPS-saturated t8F4 terms
arise just at 1-loop. Threshold
corrections organize as a series
in q ≡ e2πiT

É For SO(8) there is another quartic gauge invariant,
Pf (F) = εa1...a8F

a1a2 . . . Fa7a8 (Lorentz indices
omitted). Gets contributions at odd powers in q

Gava et al

8 t8 Pf (F)
∑

kodd

�
∑

l|k

1

l

�

qk



The type I’ F4 effective action

É Under the Het/type I’ duality,

q = e2πiT↔q = e2πiτ

É The series of threshold corrections maps to a series
of non-perturbative corrections

É These corrections can be provided by D-instantons:
indeed qk is the weight e−Scl for k D(-1) Recall

É The explicit check that the coefficients of the
expansion agree would represent a direct, highly
non-trivial, test of this string duality
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q = e2πiT↔q = e2πiτ

É The series of threshold corrections maps to a series
of non-perturbative corrections

É These corrections can be provided by D-instantons:
indeed qk is the weight e−Scl for k D(-1) Recall

É The explicit check that the coefficients of the
expansion agree would represent a direct, highly
non-trivial, test of this string duality

É Much discussed in this setting Gutperle, 1999 or in the
T-dual one (D1/D9 systems in Type I)

Bachas et al, 1997; Kiritsis-Obers, 1997; . . .



The type I’ F4 effective action

É Under the Het/type I’ duality,

q = e2πiT↔q = e2πiτ

É The series of threshold corrections maps to a series
of non-perturbative corrections

É These corrections can be provided by D-instantons:
indeed qk is the weight e−Scl for k D(-1) Recall

É The explicit check that the coefficients of the
expansion agree would represent a direct, highly
non-trivial, test of this string duality

É The explicit derivation of the coefficients in the
type I’ side has never been performed (to our
knowledge)



Interaction with the multiplet Φ

How can D(-1) contribute to the F4 effective action?
É There’s no emission diagram leading to a classical

profile, but there are mixed disks (related by SUSY)
involving D7/D7 fields

Λ

μt

μ

θ

ϕ

μt

μ

F

μt

μ

θ

θ

É Net effect: moduli action Recall dependence on the
superfield Φ(x, θ) Recall

S(k)[Φ] = −2πiτk + Squartic + Scubic + Smixed + Tr μtΦμ



The moduli integration

É The effective action for the gauge fields is obtained
integrating, for each k, over the D-instanton moduli
M(k) = (x, θ,ÓM(k)): Recall

Z[ϕ,Λ, F] =

∫

d8xd8θ
∑

k

∫

dÓM(k)e−S(k)[Φ(x,θ)]

=

∫

d8xd8θquartic inv. (Φ(x, θ))

Second step from dimensionality: [dÓM(k)] = l−4

É The integration over θ yields then a t8 F4 term:
∫

d8θ (θγμ1ν1θ)Fμ1ν1 . . . (θγμ4ν4θ)Fμ4ν4 = t8 F
4



Integration at k = 1

É At k = 1 spectrum of moduli is extremely reduced

Z1 = e−2πiτ
∫

d8xd8θd8μe−Tr μ
tΦμ = e−2πiτ

∫

d8xd8θPf (Φ)

É To go to higher k, exploit the susy of the moduli
action leading to
É an (equivariant) cohomological BRS structure
É localization of the integrals (upon suitable

deformations from closed string backgrounds)
É Similar kind of techniques to those used for

É D(-1) partition function in type IIB Moore et al, ...; . . .

É resummation of instantons in N = 2 SYM leading to
the SW solution Nekrasov, 2002 re-obtained by D3/D(-1)
on orbifold Billo et al, 2006



BRS reformulation

É Single out one of the supercharges Qα̇, say Q = Q8.
É After relabeling some of the moduli:

Mα →Mμ ≡ (Mm,−M8) , λα̇ → (λm, η) ≡ (λm, λ8)

one has

Qaμ = Mμ , Qλm = −Dm , Qχ̄ = −i
p

2η , Qχ = 0 , Qμ = W

É On any modulus, Q2• = T(χ) •+R(ϕ)•
É T(χ) = SO(k) rotation in the appropriate rep
É R(ϕ) a gauge SO(8) rot.

É The complete moduli action is Q-exact

S = QΞ
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Deformations from RR background

É To perform the computation, it is convenient to
simply cosider the part. function with
Φ(x, θ)→ ϕ = 〈Φ〉.

É Integration over the moduli x, θ would then diverge
É Introduce suitable deformations that

É regulate the divergence
É help to fully localize the integral

É Arise from RR field-strengths
3-form with one index on T2

Fμν ≡ Fμνz , F̄μν ≡ Fμνz

É Disk diagrams RR insertions
modify the moduli action

F

λ

λ



BRS deformation

É Let us parametrize the RR backround as follows:

Fμν =
1

2
fmn(τmn)μν + hm(τm)μν , F̄μν =

1

2
f̄mn(τmn)μν ,

É The moduli action is modified to

S′ = QΞ′

É f̄mn only appear in the “gauge fermion” Ξ′: the final
result does not depende on them

É fmn, hm parametrize SO(7)⊂ SO(8) (Lorentz) with
spinorial embedding and modify the action of Q

Q′ 2 • = T(χ)•+R(ϕ)•+G(F)•

where G is the appropriate SO(7) action



Symmetries of the moduli

É The Action of the BRS charge Q is determined by
the symmetry properties of the moduli

SO(k) SO(7) SO(8)
aμ symm 8s 1
Mμ symm 8s 1
Dm adj 7 1
λm adj 7 1
χ̄ adj 1 1
η adj 1 1
χ adj 1 1
μ k 1 8v



Scaling to localization

É The BRS structure allows to suitably rescale the
bosonic and fermionic moduli in such a way that
É the (super)Jacobian of the rescaling is one (the

measure is unaffected)
É one can take a limit in which the exponent reduces

to a quadratic expression
É The integration over some moduli is trivially done,

and one is left with (at inst. # k)

Zk =Nk e2πiτk
∫

{dχdaμdMμdDm̂dλm̂dμ}

× e−tr
�

g
2Dm̂Dm̂− g

2λm̂Q
′2λm̂+ t

4aμF̄
μνQ′2a′

ν
+ t

4MμF̄μνMν−trμtQ′2μ
�

=Nk e2πiτk
∫

{dχ}
Pf(adj,6⊂7,1)(Q′2)Pf(k,1,8v)(Q′2)

det1/2
(symm,8s,1)(Q′2)



General expressions

É Considering ϕ in the Cartan of SO(8), f in the
Cartan of SO(7) and bringing χ to the Cartan of
SO(k) one gets (here for k = 2n+ 1) Back

Z2n+1 = Ñ2n+1e2πiτ(2n+1)
(f1f2f3)n

E(n+1)

∫ n
∏

l=1

dχl

2πi

×

∏

k χ
2
kRϕ(χk)Rf (χk)

∏

i<j(χ
−
ij )2(χ+

ij )2Rf (χ−ij )Rf (χ+
ij )

∏

mRE(2χm)RE(χm)
∏

p<qRE(χ−
pq

)RE(χ+
pq

)
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Here χ±ij = χi±χj, E1 = 1/2(−f1 + f2 + f3), . . ., E = E1E2E3E4

and

Rϕ(x) ≡
4
∏

u=1

�

x2 − ϕ2
u

�

,

Rf (x) ≡
3
∏

a=1

�

x2 − f2
a

�

, RE(x) ≡
4
∏

A=1

�

x2 − E2
A

�
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Analogous expression for k = 2n
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The χ integration are actually contour integrals to be
done with certain prescriptions on the Im parts of the
poles Moore et al, ... (follows from BRS structure)



The prepotential

É Cosider the complete part. function

Z(ϕ, f ) =
∑

k

∫

dM(k) e−S(k)(ϕ,f) =
∑

k

Ẑk e2πiτ k =
∑

k

Ẑk q
k

É To a given order in q, contribute also
“disconnected” configurations (instantons of lower
numbers ki, with

∑

ki = k).
É To isolate the connected components, take the

logarithm



The prepotential

É Cosider the complete part. function

Z(ϕ, f ) =
∑

k

∫

dM(k) e−S(k)(ϕ,f) =
∑

k

Ẑk e2πiτ k =
∑

k

Ẑk q
k

É In dM(k) we have included the “center of mass” dxμ

and dθ integrals.
É Without deformations these would diverge (with ϕ

constant), now they give 1
E



The prepotential

É Cosider the complete part. function

Z(ϕ, f ) =
∑

k

∫

dM(k) e−S(k)(ϕ,f) =
∑

k

Ẑk e2πiτ k =
∑

k

Ẑk q
k

É The effective action for Φ(x, θ) is written as
∫

d8xd8θ F(Φ(x, θ), f = 0)

where
F(ϕ, f ) = E log (1 +Z(ϕ, f ))

F(ϕ, f ) =
∑

k

Fk(ϕ, f )qk



Explicit results at low k

By direct integration of the expression of Zk Recall and
taking the log we get

F = TrΦ4

�

1

2
q2 +

1

4
q4 + . . .

�

−
�

Tr Φ2
�2
�

1

4
q2 +

1

4
q4 + . . .

�

+ 8Pf Φ

�

q+
4

3
q3 +

6

5
q5 + . . .

�

in perfect agreement with the Heterotic results! Recall

É The fact that for F is finite in the f → 0 limit is highly
non-trivial, requires very delicate cancellations

É If we keep the RR background turned on to the
prepotential, we compute also gravitational
corrections of the form t8 tr R4 and t8 (tr R2)2
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Conclusions and perspectives



Conclusions and perspectives

É D(-1)’s on D7, exotic from the w.s. point of view,
seen as zero-size limit of a 8d instanton solution
É Does such an interpretation carry on, and is it

useful, to compactified cases relevant to 4d eff.
theories?

É Is there some similar interpretation for other exotic
instantons (wrapped E-branes at angles, ...)?

É Consistency condition: the SO(8) instanton must be
a solution of the full NABI action
É check at O(F5) singles out the supersimmetrizable

action of Collinucci et al, 2002

É Integrating over the D(-1) moduli reproduces the F4

effective action of the dual Het SO(8)4 theory
É Checked up to k = 5 (next step: all k proof)
É Gravitational corrections to be checked against

Heterotic
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The tensor t8

É We have Back

Tr
�

t8F
4
�

≡
1

16
t
μ1μ2···μ7μ8
8 Tr

�

Fμ1μ2 · · ·Fμ7μ8

�

=Tr
�

FμνF
νρFλμFρλ +

1

2
FμνF

ρνFρλF
μλ

−
1

4
FμνF

μνFρλF
ρλ −

1

8
FμνFρλF

μνFρλ
�
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