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We investigate the spreading of passive tracers in closed basins. If the characteristic length scale of
the Eulerian velocities is not very small compared with the size of the basin the usual diffusion
coefficient does not give any relevant information about the mechanism of spreading. We introduce
a finite size characteristic timet(d) which describes the diffusive process at scaled. Whend is
small compared with the typical length of the velocity field one hast(d);l21, wherel is the
maximum Lyapunov exponent of the Lagrangian motion. At larged the behavior oft(d) depends
on the details of the system, in particular the presence of boundaries, and in this limit we have found
a universal behavior for a large class of system under rather general hypothesis. The method of
working at fixed scaled makes more physical sense than the traditional way of looking at the
relative diffusion at fixed delay times. This technique is displayed in a series of numerical
experiments in simple flows. ©1997 American Institute of Physics.@S1070-6631~97!03111-5#
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I. INTRODUCTION

The understanding of diffusion and transport of pass
tracers in a given velocity field has both theoretical and pr
tical relevance in many fields of science and engineer
e.g., mass and heat transport in geophysical flows~for a re-
view, see Refs. 1 and 2!, combustion, and chemica
engineering.3

One common interest is the study of the mechanis
which lead to transport enhancement as a fluid is driven
ther from the motionless state. This is related to the fact
the Lagrangian motion of individual tracers can be rat
complex even in simple laminar flows.4,5

The dispersion of passive scalars in a given velocity fi
is the result, usually highly nontrivial, of two different con
tributions: molecular diffusion and advection. In particula
one can have rather fast transport, even without molec
diffusion, in the presence ofLagrangian chaos, which is the
sensitivity to initial conditions of Lagrangian trajectories.
addition, also for a two-dimensional~2D! stationary velocity
field, where one cannot have Lagrangian chaos,6 in the pres-
ence of a particular geometry of the streamlines the diffus
can be much larger than the one due only to the molec
contribution, as in the case of spatially periodic station
flows.7,8

Taking into account the molecular diffusion, the motio
of a test particle~the tracer! is described by the following
Langevin equation:
3162 Phys. Fluids 9 (11), November 1997 1070-6631/97/
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dx

dt
5u~x,t !1h~ t !, ~1!

whereu(x,t) is the Eulerian incompressible velocity field
the pointx and timet, h(t) is a Gaussian white noise wit
zero mean and

^h i~ t !h j~ t8!&52D0d i j d~ t2t8!, ~2!

whereD0 is the ~bare! molecular diffusivity.
DenotingQ(x,t) the concentration of tracers, one has

] tQ1~u•¹!Q5D0DQ. ~3!

For an Eulerian velocity field periodic in space, or anyw
defined in infinite domains, the long-time, large-distance
havior of the diffusion process is described by the effect
diffusion tensorDi j

E ~eddy-diffusivity tensor!:

Di j
E5 lim

t→`

1

2t
^~xi~ t !2^xi&!~xj~ t !2^xj&!&, ~4!

where nowx(t) is the position of the tracer at timet, i , j
51,•••,d ~d being the spatial dimension!, and the average is
taken over the initial positions or, equivalently, over an e
semble of test particles. The tensorDi j

E gives the long-time,
large-distance equation for^Q&, i.e., the concentration field
locally averaged over a volume of linear distance mu
larger than the typical lengthl u of the velocity field, accord-
ing to
9(11)/3162/10/$10.00 © 1997 American Institute of Physics



on
a
o

th
r

u

u

ffu
e
ly

r
din
ls
ce
tie
R
t i

on

ri
t

lu
e

pl

th
o-

s

the

ite
ed
in-

r is

of
res,
or-
the

ibe
on
nu-

e
’’
ds
-

r-
t

ibu-
-

e

ite

two

po-

. In
] t^Q&5 (
i , j 51

d

Di j
E ]2

]xi]xj
^Q&. ~5!

The above case, with finiteDi j
E , is the typical situation where

the diffusion, for very large times, is a standard diffusi
process. However, there are also cases showing the so-c
anomalous diffusion: The spreading of the particles does n
behave linearly with time but has a power lawt2n with n
Þ1/2. Transport anomalies are, in general, indicators of
presence of strong correlation in the dynamics, even at la
time and space scales.9

In the case of infinite spatial domains and periodic E
lerian fields the powerful multiscale technique~also known
as homogenization in mathematical literature! gives a useful
tool for studying standard diffusion and, with some preca
tions, also the anomalous situations.10

On the other hand we have to stress the fact that di
sivity tensor~4! is mathematically well defined only in th
limit of infinite times, therefore it gives a sensible result on
if the characteristic lengthl u of the velocity field is much
smaller than the sizeL of the domain.

The case whenl u andL are not well separated is rathe
common in many geophysical problems, e.g., the sprea
of pollutants in the Mediterranean or the Baltic sea, and a
in plasma physics. Therefore it is important to introdu
some other characterizations of the diffusion proper
which can be used also in nonideal cases. For instance,
11 proposes to employ exit times for the study of transpor
basins with complicated geometry.

In Sec. II we introduce a characterization of the diffusi
behavior in terms of the typical timet(d) at scaled; this
allows us to define a finite size diffusion coefficientD(d)
;d2/t(d). From the shape oft(d) as a function ofd, one
can distinguish different spreading regimes.

In Sec. III we present the results of numerical expe
ments in closed basins and present new results relative to
behavior of the diffusion coefficient near the boundary~a
detailed discussion is in the Appendix!.

In Sec. IV we summarize our results, present conc
sions, and discuss the possibility of treatment of experim
tal data according to the method introduced in Sec. II.

II. FINITE SIZE DIFFUSION COEFFICIENT

Before a general discussion let us start with a sim
example. Consider the relative diffusion of a cloud ofN test
particles in a smooth, spatially periodic velocity field wi
characteristic lengthl u . We assume that the Lagrangian m
tion is chaotic, i.e., the maximum Lyapunov exponentl is
positive. Denoting withR2(t) the square of the typical radiu
of the cloud

R2~ t !5^^uxi~ t !2^^xi~ t !&&u2&&, ~6!

where

^^xi~ t !&&5
1

N(
i 51

N

xi~ t ! ~7!

we expect the following regimes to hold
Phys. Fluids, Vol. 9, No. 11, November 1997
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R2~ t !.H R2~0!exp„L~2!t… if R2~ t !1/2! l u

2Dt if R2~ t !1/2@ l u

, ~8!

whereL(2)>2l is the generalized Lyapunov exponent,12,13

D is the diffusion coefficient, and the overbar denotes
average over initial conditions.

In this paper we prefer to study the relative diffusion~6!
instead of the usual absolute diffusion. For spatially infin
cases, without mean drift there is no difference; for clos
basins the relative dispersion is, for many aspects, more
teresting than the absolute one and, in addition, the latte
dominated by the sweeping induced by large scale flow.

Furthermore we underline that although the dynamics
the ocean circulation is dominated by large mesoscale gy
the smaller scales activities within the gyres control imp
tant local phenomena such as deep water formation in
North Atlantic and in the Mediterranean basin.14 Therefore
the study of relative diffusion could be relevant to descr
this small-scale motion and can give crucial information
the way to parametrize the subgrid scales in the ocean
merical global model.15

Another, at first sight rather artificial, way to describ
the above behavior is by introducing the ‘‘doubling time
t(d) at scaled as follows: We define a series of threshol
d (n)5r nd (0), whered (0) is the initial size of the cloud, de
fined according to~6!, and then we measure the timeT(d (0))
it takes for the growth fromd (0) to d (1)5rd (0), and so on for
T(d (1)),T(d (2)), . . . , up to thelargest scale under conside
ation. For the threshold rater any value can be chosen bu
too large ones might not separate different scale contr
tions, though strictly speaking the term ‘‘doubling time’’ re
fers to the threshold rater 52.

Performing N @1 experiments with different initial
conditions for the cloud, we define the typical doubling tim
t(d) at scaled as

t~d!5^T~d!&e5
1

N
(
i 51

N

Ti~d!. ~9!

Let us stress the fact that the average in~9! is different from
the usual time average.

From the average doubling time we can define the fin
size Lagrangian Lyapunov exponent as

l~d!5
ln r

t~d!
, ~10!

which is a measure of the average rate of separation of
particles at a distanced. Let us remark thatl(d) is indepen-
dent of r , for r→11. For very small separations~i.e., d
! l u) one recovers the standard Lagrangian Lyapunov ex
nentl,

l5 lim
d→0

1

t~d!
ln r . ~11!

See Ref. 16 for a detailed discussion about these points
this framework the finite size diffusion coefficientD(d) di-
mensionally turns out to be

D~d!5d2l~d!. ~12!
3163Artale et al.
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Note the absence of the factor 2, as one can expect by
definition ~4!, in the denominator ofD(d) in Eq. ~12!; this is
due to the fact thatt(d) is a difference of times. For a
standard diffusion processD(d) approaches the diffusion co
efficientD @see Eq.~8!# in the limit of very large separation
(d@ l u). This result stems from the scaling of the doubli
timest(d);d2 for normal diffusion.

Thus the finite size Lagrangian Lyapunov expone
l(d), or its counterpartD(d), embody the asymptotic be
haviors

l~d!;H l if d! l u

D/d2 if d@ l u.
~13!

One could naively conclude, matching the behaviors ad
; l u , that D;l l u

2 . This is not always true, since one ca
have a rather large range for the crossover due to the fact
nontrivial correlations can be present in the Lagrang
dynamics.17

Another case where the behavior oft(d) as a function of
d is essentially well understood is 3D fully developed turb
lence. For the sake of simplicity we neglect intermitten
effects. There are then three different ranges:

~1! d!h5 Kolmogorov length: 1/t(d);l;
~2! h!d! l 5 typical size of the energy containing eddies

from the Richardson lawR2(t);t3 one has 1/t(d)
;d22/3;

~3! d@ l : usual diffusion behavior 1/t(d);d22.

One might wonder that the proposal to introduce
time t(d) is just another way to look atR2(t) as a function
of t. This is true only in limiting cases, when the differe
characteristic lengths are well separated and intermittenc
weak. In Refs. 18–20 rather close techniques are used fo
computation of the diffusion coefficient in nontrivial case

The method of working at fixed scaled allows us to
extract the physical information at that spatial scale avoid
unpleasant troubles associated with the method of workin
a fixed delay timet. For instance, if one has a strong inte
mittency, and this is a rather usual situation,R2(t) as a func-
tion of t can appear very different in each realization. Ty
cally one can have, see Fig. 1~a!, different exponential rates
of growth for different realizations, producing a rather o
behavior of the averageR2(t) without any physical meaning
For instance, in Fig. 1~b! we show the averageR2(t) versus
time t; at large times we recover the diffusive behavior but
intermediate times there appears an apparent anomalou
gime which is only due to the superposition of exponen
and diffusive contributions by different samples at the sa
time. On the other hand exploiting the tool of doubling tim
one has an unambiguous result@see Fig. 1~c!#.

Of course the interesting situations are those where
different characteristic lengths (h,l ,L) are not very different
and therefore each scaling regime forR2(t) is not well evi-
dent.
3164 Phys. Fluids, Vol. 9, No. 11, November 1997
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III. NUMERICAL RESULTS

Here we present some numerical experiments in sim
models with Lagrangian chaos in the zero molecular dif
sion limit. Before showing the results, we describe the n
merical method adopted.

We choose a passive tracer trajectory having a cha
behavior, i.e., with a positive maximum Lyapunov expone
computed by using standard algorithms.21 Then we placeN
21 passive tracers around the first one in a cloud of ini
size

R~0!5d~0!5d~0!,

with R(0) defined by Eq.~6!. In order to have average prop
erties we repeat this procedure reconstructing the pas
cloud around the last position reached by the reference
otic tracer in the previous expansion. This ensures that
initial expansion of the cloud is exponential in time, with
typical exponential rate equal to the Lyapunov exponent.

Further we define a series of thresholdsd (n)5r nd (0) ~as
described in Sec. II! n51, . . . ,nmax and we measure the tim
Tn spent in expanding fromd (n) to d (n11). The value ofnmax

has to be chosen in such a way thatd (nmax);dmax, wheredmax

corresponds to the uniform distribution of the tracers in
basin~see forthcoming discussion and the Appendix!. Each
realization stops whend(t)5d (nmax).

Therefore following Ref. 16 we define a scale-depend
Lagrangian Lyapunov exponent as

l~d~n!!5
1

^Tn&e
ln r 5

1

t~d~n!!
ln r . ~14!

In Eq. ~14! we have implicitly assumed that the evolution
the sized(t) of the cloud is continuous in time. This is no
true in the case of discontinuous processes such as ma
in the analysis of experimental data taken at fixed de
times. DenotingTn the time to reach sized̃ >d (n11) from
d (n), now d̃ is a fluctuating quantity, Eq.~14! has to be
modified as follows:16

l~d~n!!5
1

^Tn&e
K lnS d̃

d~n!D L
e

. ~15!

In our numerical experiments we have the regimes descr
in Sec. II: exponential regime, i.e.,l(d)5l, and diffusion-
like regime, i.e.,l(d)5D/d2, at least if the sizeL of the
basin is large enough.

For cloud sizes close to the saturation valuedmax we
expect the following behavior to hold for a broad class
systems:

l~d!5
D~d!

d2
}

~dmax2d!

d
. ~16!

The constant of proportionality is given by the second eig
value of the Perron–Frobenius operator which is related
the typical time of the exponential relaxation of the trace
density to the uniform distribution. Actually, the analytic
evaluation of this eigenvalue can be performed only for
tremely simple dynamical systems~for instance, random
Artale et al.
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FIG. 1. ~a! Three realizations ofR2(t) as a function of t built as follows: R2(t)5d0
2 exp(2gt) if R2(t),1 and R2(t)52D(t2t* ) with

g50.08, 0.05, 0.3, andd051027, D51.5. ~b! R2(t) as function oft averaged on the three realizations shown in~a!. The apparent anomalous regime an
the diffusive one are shown.~c! l(d) vs d, with Lyapunov and diffusive regimes.
3165Phys. Fluids, Vol. 9, No. 11, November 1997 Artale et al.
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walkers, as shown in the Appendix!. As a consequence th
range of validity for~16! can be assessed only by numeric
simulation.

A. A model for transport in Rayleigh–Be ´nard
convection

The advection in two-dimensional incompressible flo
is described, in absence of molecular diffusion, by
Hamiltonian equation of motion where the Hamilton fun
tion is the stream functionc:

dx

dt
5

]c

]y
,

dy

dt
52

]c

]x
. ~17!

If c is time dependent the system~17! is nonautonomous an
in general nonintegrable, then chaotic trajectories may e

One example is the model introduced in Ref. 22 to d
scribe the chaotic advection in the time-periodic Rayleig
Bénard convection. It is defined by the stream function:

c~x,y,t !5
A

k
sin$k@x1B sin~vt !#%W~y!, ~18!

whereW(y) is a function that satisfies rigid boundary co
ditions on the surfacesy50 and y5a @we use W(y)
5 sin(py/a)]. The directiony is identified with the vertical
direction and the two surfacesy5a andy50 are the top and
bottom surfaces of the convection cell. The time depend
term Bsin(vt) represents lateral oscillations of the roll pa
tern which mimic the even oscillatory instability.22

Trajectories starting near the roll separatrices could h
a positive Lyapunov exponent and thus display chaotic m
tion and diffusion in thex direction. It is remarkable that in
spite of the simplicity of the model, the agreement of t
numerical results with experimental ones is quite good.22

Defining a passive cloud in thex direction ~i.e., a seg-
ment! and performing the expansion experiment describe
the previous section we have that, untild is below a fraction
of the dimension of the cell,l(d)5l @Fig. 2~a!#. For larger
values ofd we have the standard diffusionl(d)5D/d2 with
good quantitative agreement with the value of the diffus
coefficient evaluated by the standard technique, i.e., u
R2(t) as a function of timet @compare Fig. 2~a! with Fig.
2~b!#.

To confine the motion of tracers in a closed domain, i
xP@2L,L#, we must slightly modify the streamfunctio
~18!. We have modulated the oscillating term in such a w
that for uxu5L the amplitude of the oscillation is zero, i.e
B→B sin(px/L) with L52 pn/k (n is the number of con-
vective cells!. In this way the motion is confined in
@2L,L#.

In Fig. 3 we showl(d) for two values ofL. If L is large
enough one can well see the three regimes, the expone
one, the diffusive one, and the saturation given by Eq.~16!.
DecreasingL decreases the range of the diffusive regim
and for small values ofL it disappears.

B. Modified standard map

One of the simplest deterministic dynamical systems d
playing both exponential growth of separation for close t
3166 Phys. Fluids, Vol. 9, No. 11, November 1997
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jectories and asymptotic diffusive behavior is the stand
~Chirikov–Taylor! mapping.23 It is customarily defined as

xn115xn1K sin yn ,

yn115yn1xn11 mod 2p.
~19!

This mapping conserves the area in the phase space.
widely known that for large enough values of the nonline
ity strength parameterK@Kc.1 the motion is strongly cha
otic in almost all the phase space. In this case the stan
map, in the x direction mimics the behavior of a one
dimensional random walker, still being deterministic, and
one expects the behavior ofl(d) to be quite similar to the
one already encountered in the model for Rayleigh–Be´nard
convection without boundaries. Numerical iteration of~19!
for a cloud of particles clearly shows the two regimes d
scribed in~13!, similar to that shown for the model discusse
in the previous section.

We turn now to the more interesting case in which t
domain is limited by boundaries reflecting back the partic
To achieve the confinement of the trajectory inside
bounded region we modify the standard map in the follow
way

xn115xn1K f ~xn11!sin yn .

yn115yn1xn112K f 8~xn11!cosyn mod 2p,
~20!

where f (x) is a function which has its only zeros in6L.
Since the mapping is defined in implicit form, the shape of
must be chosen in such a way as to assure a unique defin
for (xn11 ,yn11) given (xn ,yn). For any f fulfilling this re-
quest the mapping~20! conserves the area. A trial choic
could be

f ~x!5H 1, uxu,l

L2uxu
L2l

, l ,uxu,L
. ~21!

Strictly speaking this is not quite an appropriate choice, si
it renders the map discontinuous atuxu5l , but this is an
irrelevant point and it is easy to bypass this obstacle by
suming a suitably smoothed version of~21!.

Performing the doubling times computation~9! one re-
covers both the exponential and diffusive regimes forl(d),
and in addition one has the saturation regime~16!. Figure 4
shows the behavior of the scale dependent diffusion coe
cient D(d) ~12!. Approaching the saturation valuedmax the
diffusion coefficient quickly drops to zero, following th
asymptotic law~16! derived in the Appendix. The qualitativ
behaviors in Fig. 4 do not depend on the details of the fu
tion f .

C. Point vortices in a disk

As another example, we consider the two-dimensio
time-dependent flow generated by the motion ofN point vor-
tices in a closed domain.24 For a disk of unit radius the
positions of the vortices (xi5r i cosui ,yi5ri sinui), with cir-
culationG i , evolve according to the Hamiltonian dynamic

ẋi5
1

G i

]H

]yi
, ẏi52

1

G i

]H

]xi
, ~22!
Artale et al.
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FIG. 2. Lagrangian motion given by the Rayleigh–Be´nard convection model with:A50.2, B50.4, v50.4, k51.0, a5p, the number of realizations is
N 52000 and the series of thresholds isdn5d0r n with d051024 and r 51.05. ~a! l(d) vs d, the horizontal line indicates the Lyapunov expone

l50.022, the dashed line isDd22 with D50.26. ~b! R2(t) as a function oft, the line is 2Dt with D50.26.
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where the Hamiltonian is

H52
1

4p(
i . j

G iG j logF r i
21r j

222r i r j cos~u i2u j !

11r i
2r j

222r i r j cos~u i2u j !
G

1
1

4p(
i 51

N

G i
2 log~12r i

2!. ~23!

Passive tracers evolve according to~17! with c given by

c~x,y!52
1

4p(
i

N

G i logF r 21r i
222rr i cos~u2u i !

11r 2r i
222rr i cos~u2u i !

G ,

~24!
wherex5r cosu andy5r sinu denote the tracer position.

Figure 5 shows the relative diffusion as a function
time in a system with four vortices. Apparently there is
intermediate regime of anomalous diffusion. On the ot
Phys. Fluids, Vol. 9, No. 11, November 1997
f

r

hand from Fig. 6 one can see rather clearly that, with
method of working at fixed scale, only two regimes surviv
the exponential one and that one due to the saturation. C
paring Figs. 5 and 6 one understands that the mechan
described in Sec. II has to be held responsible for this s
rious anomalous diffusion. We stress the fact that these m
leading behaviors are due to the superposition of differ
regimes and that the method of working at fixed scale has
advantage of eliminating this trouble.

The absence of the diffusive rangel(d);d22 is due to
the fact that the characteristic length of the velocity fie
which is comparable with the typical distance between t
close vortices, is not much smaller than the size of the ba

IV. CONCLUSIONS

In this paper we investigated the relative dispersion
passive tracers in closed basins. Instead of the custom
3167Artale et al.



FIG. 3. l(d) vs d for the same model and parameters of Fig. 2, but in a closed domain with 6~crosses! and 12~diamonds! convective cells. The lines are
respectively:~a! Lyapunov regime withl50.017;~b! diffusive regime withD50.021;~c! saturation regime withdmax519.7; and~d! saturation regime with
dmax55.7.

FIG. 4. D(d) vs d for the modified standard map withK58, L51000, andl 5990. The series of thresholds isdn5d0r n with d051024 and r 521/16. The
horizontal line indicates the diffusion coefficient in the limit of the infinite system, the dashed curve represents the saturation regime.
3168 Phys. Fluids, Vol. 9, No. 11, November 1997 Artale et al.



FIG. 5. R2(t) for the four vortex system withG15G252G352G451. The threshold parameter isr 51.03 andd051024, the dashed line is the power law

R2(t);t1.8. The number of realizations isN 52000.
rs ive

ad-
w,
approach based on the average size of the cloud of trace
a function of time, we introduced a typical inverse timel(d)
which characterizes the diffusive process at fixed scaled.

For very small values ofd, l(d) coincides with the
Phys. Fluids, Vol. 9, No. 11, November 1997
asmaximum Lagrangian Lyapunov exponent which is posit
in the case of chaotic Lagrangian motion. For largerd the
shape ofl(d) depends on the detailed mechanism of spre
ing which is given by the structure of the advecting flo
e
FIG. 6. l(d) vs d for the same model and parameters of Fig. 5. The horizontal line indicates the Lyapunov exponent (l50.14), the dashed curve is th
saturation regime withdmax50.76.
3169Artale et al.
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which is in turn conditioned by the presence of boundar
In the case of diffusive regime, one expects the sca
l(d).d22, which leads to a natural generalization of t
diffusion coefficient asD(d)5l(d)d2.

The effectiveness of finite size quantitiesl(d) or D(d)
in characterizing the dispersion properties of a cloud of p
ticles is demonstrated by several numerical examples.

Furthermore, whend gets close to its saturation valu
~i.e., the characteristic size of the basin!, a simple argumen
gives the shape ofl(d) which is expected to be universa
with respect to a wide class of dynamical systems.

In the limiting case when the characteristic length of t
Eulerian velocity l u and the size of the basinL are well
separated, the customary approach and the proposed m
give the same information. In presence of strongly interm
tent Lagrangian motion, or whenl u /L is not much smaller
than one, the traditional method can give misleading resu
for instance apparent anomalous scaling over a rather w
time interval, as demonstrated by a simple example.

We want to stress that our method is very powerful
separating the different scales acting on diffusion and con
quently it could give improvement about the parametrizat
of small-scale motions of complex flows. The propos
method could be also relevant in the analysis of drifter
perimental data or in numerical models for Lagrangian tra
port, in particular for addressing the question about the e
tence of low dimensional chaotic flows.
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APPENDIX: ASYMPTOTIC BEHAVIOR

In this Appendix we present the derivation of th
asymptotic behavior~16! of l(d) for d near to the saturation
for a one-dimensional Brownian motion in the domain
@2L,L#, with reflecting boundary conditions. The evolutio
of the probability densityp is ruled by the Fokker–Planc
equation

]p

]t
5

1

2
D

]2p

]x2
~A1!

with the Neumann boundary conditions

]p

]x
~6L !50. ~A2!

The general solution of~A1! is

p~x,t !5 (
k52`

`

p̂~k,0!eikxe2t/tk1c.c., ~A3!

where
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s.
g

r-

hod
-

s,
de

e-
n
d
-
-

s-

e

tk5S D

2

p2

L2 k2D 21

, k50,61,62, . . . . ~A4!

At large times p approaches the uniform solutionp0

51/2L. Writing p as p(x,t)5p01dp(x,t) we have, fort
@t1 ,

dp; exp~2t/t1!. ~A5!

The asymptotic behavior for the relative dispersionR2(t) is

R2~ t !5 1
2E ~x2x8!2p~x,t !p~x8,t !dxdx8. ~A6!

For t@t1 using ~A5! we obtain

R2~ t !;S L2

3
2Ae2t/t1D . ~A7!

Therefore ford(t)5R(t) one has

d~ t !;S L

A3
2

A3A

2L
e2t/t1D . ~A8!

The saturation value ofd is dmax5L/A3, so for t@t1, or
equivalently for (dmax2d)/d!1, we expect

d

dt
lnd5l~d!5

1

t1

dmax2d

d
~A9!

which is ~16!.
Let us remark that in the previous argument forl(d) for

d.dmax the crucial point is the exponential relaxation to t
asymptotic uniform distribution. In a generic determinis
chaotic system it is not possible to prove this property in
rigorous way. Nevertheless one can expect that this reque
fulfilled at least in nonpathological cases. In the terminolo
of chaotic systems the exponential relaxation to asympt
distribution corresponds to have the second eigenvaluea of
the Perron–Frobenius operator inside the unitary circle; n
the relaxation time ist152 lnuau.25
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