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Abstract. We investigate the predictability problem in dynamical systems with many degrees
of freedom and a wide spectrum of temporal scales. In particular, we study the case of
three-dimensional turbulence at high Reynolds numbers by introducing a finite-size Lyapunov
exponent which measures the growth rate of finite-size perturbations. For sufficiently small
perturbations this quantity coincides with the usual Lyapunov exponent. When the perturbation
is still small compared to large-scale fluctuations, but large compared to fluctuations at the
smallest dynamically active scales, the finite-size Lyapunov exponent is inversely proportional
to the square of the perturbation size. Our results are supported by numerical experiments on shell
models. We find that intermittency corrections do not change the scaling law of predictability.
We also discuss the relation between the finite-size Lyapunov exponent and information entropy.

1. Introduction

The ability to predict has been the single most important qualifier of what constitutes
scientific knowledge, ever since the successes of Babylonian and Greek astronomy. Indeed,
the famous statement of Laplace that an intelligent being with complete knowledge of the
present and of the laws of Nature will know the future for all time, assumes that the future
is completely predicated by the past, and that perfect prediction would, in principle, be
possible. In more mathematical terms one can say that in the physical sciences, whether
in the classical or the quantum regime, one believes that Nature is ultimately described by
differential equations, and if one knows them and how to solve them, one knows all there
is to know about the world [1].

Laplacian determinism is always conditioned by the fact that in the real world initial
conditions can never be known to arbitrary accuracy. More recent is the general appreciation
of the fact that in the presence of deterministic chaos, predictability is even more severely
limited, because small errors typically grow exponentially with time [2]. Most sufficiently
complex systems in the world display chaos. Therefore, most sufficiently complex systems
can only be predicted for a finite time. However, there may be some aspects of a system
that are stable, while others vary. To take a familiar example, weather prediction is possible,
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typically for about 10 days on temperate latitudes, but how the wind blows on the corner
of the street is in practice unpredictable from one moment to the next [3].

The words predictability and prediction are rather empty by themselves: one has to
ask for predictability of what feature against what perturbation, in particular, against a
perturbation of what size. In complex and spatially extended systems one can typically
talk about large-scale features and small-scale features. The predictability of a small-scale
feature against a small-scale perturbation is typically shorter than the predictability of a
large-scale feature against a large-scale perturbation. Certainly this is not always true, and
we will consider a counter example, two-dimensional turbulence, below. But it seems to
be a very common situation. That successful large-scale prediction essentially can mean
just assuming that things do not change, is notper sean argument against prediction in the
large. Also in weather prediction the assumption that the weather tomorrow will be like
today is a fairly good one.

In this work, a further development of results presented in a recent brief report [4],
we will introduce a quantity which measures predictability in the large, and apply it to
hydrodynamic turbulence. Before we proceed to the definitions, let us first recall some
facts about predictability in the small, i.e. the effects of dynamical chaos. A system is said
to be chaotic if small—i.e. infinitesimal—perturbations grow exponentially with time. If
the initial perturbation is of sizeδ, and the accepted error tolerance,1, is still small, then
a rough estimate gives that the predictability time is

Tp ∼ 1

λmax
ln

(
1

δ

)
(1)

whereλmax is the leading Lyapunov exponent [5].
Already within the framework of infinitesimal perturbations there are important

modifications to (1) [6, 7]. In fact, in typical chaotic systems, (1) is not quite true [8].
The exponentλmax is a global quantity which measures theaverageexponential rate of
separation of nearby trajectories, and fluctuations of the local exponential growth should
be taken into account [7], but these effects are not what concern us here. In this paper we
shall address the problem of predictability in systems with many characteristic times, e.g.
the case of fully developed turbulence where a hierarchy of different eddy turnover times
do exist, or when the thresholdδ is not small. In these cases the predictability timeTp

is determined by the details of the nonlinear mechanism responsible for the growth of the
error [3, 9]. In particular,Tp may have no relation with the maximum Lyapunov exponent
governed by the linearized equations for the infinitesimal error. In general, in this case the
predictability time strongly depends on the details of the system [3, 8].

According to the Oseledec theorem, the leading eigenvalue of the linearized equations
of motion is exp(λmaxt), except on a set of points of measure zero. The sub-leading
eigenvalues have the form eλi t , and, taken together, the leading and sub-leading Lyapunov
exponents measure the growth rate ofd-dimensional volumes spanned byd infinitesimal
vectors, whered can range from 1 to the dimensionality of the space where the motion
takes place.

In dynamical systems, in addition to Lyapunov exponents, an important dynamical
characterization is given by the Kolmogorov–Sinai entropy, which measures the bandwidth
necessary to observe a system over time, so that it could later be faithfully reproduced
from the observations [5]. Arguing heuristically, new observations are necessary if an error
grows in time, and the necessary rate of accumulation of information is the growth rate of
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the error, and therefore one expects the Pesin theorem,

hKS =
∑
λi>0

λi (2)

to hold true for a large class of systems.
It was realized by Shannon that with finite error tolerance, the relevant quantity is the

bandwidth necessary to observe a system such that it could later by reproduced within
this error, not to arbitrarily high accuracy. This quantity was called ‘source entropy with
respect to a fidelity criterion’ by Shannon [10], and ‘ε-entropy’ by Kolmogorov [11], who
found analytic formulae, valid for Gaussian variables and Gaussian stationary processes.
Recently the concept ofε-entropy was taken up by Gaspard and Wang, who computed it
from experimental data in thermal turbulence [12], and for a very large variety of model
problems in stochastic processes and statistical physics [13]. We especially recommend
their lucid and remarkably complete review [13].

However, theε-entropy does not say all one wants to know about predictability in the
large. Just as the Lyapunov exponent is often more relevant, and more easily computable,
than the Kolmogorov–Sinai entropy, so the predictability time with respect to a finite
perturbation should be determined by a quantity analogous to the Lyapunov exponent, and
not by theε-entropy.

The natural starting point in looking for such a quantity is the time it takes for a pertur-
bation to grow from an initial sizeδ to a tolerance1. We call this the(δ, 1) predictability
time and denote it byT (δ, 1). Generally speaking, the predictability time will fluctuate.
The natural definition of the finite-size Lyapunov exponent is, therefore, an average of some
function of the predictability time, such that if bothδ and1 are in the infinitesimal range,
we will recover the usual Lyapunov exponent, and an obvious choice is then

λ(δ, 1) =
〈

1

T (δ, 1)

〉
ln

(
1

δ

)
. (3)

In appendix A we discuss other possible definitions for the finite-size Lyapunov exponent
and the relation with theε-entropy.

In contrast to infinitesimal perturbations, for finite perturbations the threshold1 is
typically not to be taken much larger than the perturbationδ. What is interesting, and what
makes finite-size Lyapunov exponents different from Lyapunov exponents for infinitesimal
perturbations, is the dependence onδ.

This paper is organized as follows. In section 2 we recall the multifractal approach
to turbulence, and Lorenz approach to the predictability problem within the Kolmogorov
theory. We show that there are no multifractal corrections to the results of Lorenz, but that
the scaling range for the finite-size Lyapunov exponents is shorter. In section 3 we describe
numerical experiments on predictability in shell models for three-dimensional and two-
dimensional fully developed turbulence. In section 4 we present the results from the eddy
damped quasi-normal Markovian (EDQNM) approximation for the shell model, and compare
them with the results of section 3. In section 5 we summarize our results and present
conclusions. In appendix A we discuss alternative ways of defining the finite-size Lyapunov
exponent. Appendix B contains a derivation of the Kolmogorov results ofε-entropy for
Gaussian processes and Gaussian random fields. In appendix C we apply the results of
appendix B to spacetime Gaussian fields with spectra as in Kolmogorov 1941 theory of
three-dimensional turbulence, and to fictitious zero-dimensional fields that describe shell
models. We show that the finite-size Lyapunov exponent is the same for any dimensionality,
but the ε-entropy largely depends on the dimensionality-dependent density of degrees of
freedom. The results of sections 2 and 3 were also presented in less generality in [4].
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2. Multifractals and multiscaling

Our understanding of high Reynolds-number turbulence is still mainly based on the
fundamental contribution of Kolmogorov in 1941 [14]. Here we will just discuss
the predictions of the Kolmogorov theory and of its multifractal generalizations on a
phenomenological level [15, 17].

Turbulence is a statistically stationary state of matter on macroscopic scales maintained
by external forces. One considers only effects that are captured in a hydrodynamic level
of description, that is the time evolution is supposed to be completely described by the
macroscopic Navier–Stokes equations [18]

∂tu + (u · ∇)u = −∇P + ν∇2u (4)

∇ · u = 0 (5)

whereu is the velocity field. From the typical length scaleL, the typical fluctuations of
velocity on that scaleV , and the viscosityν, we can form the Reynolds number,

Re = LV

ν
(6)

which characterizes the flow.
The multifractal model [15–17, 8] consists in assuming that at scales much less than

L, however sufficiently large that the action of viscosity is weak, the velocity differences
assume a scaling form

|u(x + l) − u(x)| = ul ∼ V

(
l

L

)h

. (7)

Different values ofh are assumed to occur according to a probability distribution, which
also takes a scaling form

Prob

{
ul

V
∈

[(
l

L

)h

,

(
l

L

)h+dh
]}

∼
(

l

L

)3−D(h)

dh. (8)

The function D(h) is the fractal dimension of the subset with scaling exponenth. The
moments of the velocity differences on length scalel can be computed as

〈|u(x + l) − u(x)|q〉 ∼ V q

∫ (
l

L

)qh (
l

L

)3−D(h)

dh (9)

and, for smalll (i.e. in the inertial range), the integral in (9) can be evaluated by the
saddle-point method:

〈|u(x + l) − u(x)|q〉 ∼ V q

(
l

L

)ζq

(10)

ζq = min
h

[qh + 3 − D(h)]. (11)

The model is physically reasonable for a large set of possible choices of the function
D(h), but not entirely arbitrary. By normalization, the value of D(h) must always be6 3,
and the maximum must be obtained for someh. That is

3 − D(h) > 0. (12)

The function D(h) can have support only at positiveh, because a negative value ofh implies
that velocity fluctuations in a local inertial frame of sizel increase without limit asl tends
to zero. The Navier–Stokes equations are derived under the assumption that all velocities
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are much smaller than the velocity of sound, and this condition would then no longer hold
[17]. Furthermore, an exact result of Kolmogorov assures thatζ3 = 1, so that

3h + 3 − D(h) > 1 (13)

where equality is obtained for at least one value ofh [17]. The inequality (13) is analogous
for turbulence of the inequalityf (α) 6 α for multifractal measures [8].

In terms of the multifractal model, the Kolmogorov theory is formulated by supposing
that the function D(h) has support only at a single point. From (12) and (13) it then follows
that this point must beh = 1

3, and that D( 1
3) = 3. It further follows the Kolmogorov law

〈|u(x + l) − u(x)|p〉 ∼ V p

(
l

L

)p/3

. (14)

Energy dissipation per unit mass and time,ε, has dimensionV 3/L. We could, therefore,
also write the right-hand side of (14) in the more familiar form(εl)p/3

From (14) it follows by balancing in (4), that viscous forces become comparable with
inertial forces at the Kolmogorov scaleη which marks the lower end of the inertial range:

η = LRe−3/4. (15)

If there exists more than one value ofh then eachh selects a different damping scaleη(h).
By using (7) and balancing, one gets [19]

η(h) = LRe−1/(1+h). (16)

Lorenz investigated the predictability problem within the framework of the Kolmogorov
theory [20]. Assume that a disturbance on scalel grows with a a characteristic time rate
given by the turn-over time at this scale:

τ(l) = l√
〈u2

l 〉
∼ L

V

(
l

L

)2/3

. (17)

We can turn around (17) and say that after a timet a disturbance will have grown large on
all scales smaller than

l(t) ∼ L

(
V t

L

)3/2

(18)

since all the smaller scales contribute relatively little. The size of the disturbance will then
be 〈u2

l(t)〉1/2. If we call the difference between two fieldsδ and use the Kolmogorov relation

δ ∼ V (l/L)1/3 (see (7) withh = 1
3), we can rewrite (17) as the predictability time with

respect to a perturbation of sizeδ:

τ(δ) ∼ L

V

(
δ

V

)2

. (19)

In other words, the predictability time of a perturbation of sizeδ grows asδ2 in Lorenz
scenario. The finite-size Lyapunov exponent thus decreases with the error threshold asδ−2.
Finally, we can insertδ in (18), and find how the error grows with time:

δ(t) ∼ V

√
V t

L
. (20)

The upshot of these simple estimates is that finite error growth and predictability in high
Reynolds number turbulence are characterized byalgebraic laws, very different from the
exponentiallaws characteristic of infinitesimal perturbations in chaotic dynamical systems.
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We now turn to possible consequences of a spectrum ofh’s to the predictability problem,
in direct analogy with the Lorenz theory. We can rewrite the probability distribution (8) as

Prob

{
δ

V
∈

[(
l

L

)h

,

(
l

L

)h+dh
]}

∼
(

δ

V

)3−D(h)/h

dh (21)

where we have identifiedul with δ, and used (7) to relatel and δ. The lengthl is now
assumed a fluctuating quantity, and has the interpretation of the scale such that two fields
are uncorrelated on all scales smaller thanl, while the distance between the two field
configurations isδ.

The finite-size Lyapunov exponent is, according to (3), proportional to the expectation
value of the inverse predictability time:〈

1

T (δ)

〉
=

〈ul

l

〉
∼ V

L

∫ (
δ

V

)1− 1
h
(

δ

V

)3−D(h)

h

dh. (22)

In the small error limit the integral can be evaluated by the saddle-point method and we
thus expect the finite-size Lyapunov exponent to scale as a power of the error size:〈

1

T (δ)

〉
∼ V

L

(
δ

V

)χ

(23)

χ = min
h

[
1 + 2 − D(h)

h

]
. (24)

The exponentχ is always equal to the Lorenz value−2. This follows from the inequality
(13), which can be rewritten in the form

1 + 2 − D(h)

h
> −2 for all h. (25)

The equality holds for the exponenth3 which dominates the third-order structure function.
As far as we know this result is new. One could therefore conclude that the exponentχ

for the scaling of the finite-size Lyapunov exponent with error threshold is a new invariant
of the multifractal approach to turbulence, and that the law〈1/T (δ)〉 ∼ δ−2 can be easily
observed in numerical experiments. This is not quite simple, due to the influence of the
fluctuating cut-off (16). The smallest fluctuation in a field scaling with exponenth̃ is

δ(h̃) = V Re−h̃/(1+h̃) (26)

which inversely determines the smallest value ofh contributing to a fluctuation of sizeδ.
A modified version of (22) therefore reads〈

1

T (δ)

〉
=

〈ul

l

〉
∼ V

L

∫ hmax

h̃

(
δ

V

)1−1/h (
δ

V

)(3−D(h))/h

dh. (27)

The integral is dominated byh3 as long asδ is much larger thanδ∗ ∼ V Re−h3/(1+h3). For
smallerδ values, the integral is dominated by the lower end-point in (27), which leads to an
intermediate dissipative range, in the sense of Frisch and Vergassola [21]. As a consequence,
we have

〈
1

T (δ)

〉
∼


λmax for δ < δ(hmax)

δχ(δ) for δ(hmax) < δ < δ∗

δ−2 for δ > δ∗
(28)
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with

χ(δ) = 1 + 2 − D(h̃)

h̃
(29)

where h̃ and δ are related via (26). From (13) it follows thath3 6 1
3 in the multifractal

approach, and therefore the bottom of the scaling range of the finite-size Lyapunov exponent
is larger than the corresponding error size in the Kolmogorov theory. The scaling range for
the finite-size Lyapunov exponent thus is generally shorter in a multifractal model.

3. Error growth in shell models

Simplified dynamical models of fluid turbulence with relatively few degrees of freedom,
collectively referred to asshell models, have been studied since the 1970s. These models,
by construction, typically include a Richardson cascade of energy from large to small
scales. Some of the models are dynamically stable, with a fixed point which reproduces
the Kolmogorov law for the energy spectrum,E(k) ∼ k−5/3. An historical overview, with
references to much of the early work, can be found in a recent monograph [22].

More interestingly, other models are dynamically unstable, with chaotic motion taking
place on a strange attractor where the Kolmogorov5

3 law holds to good accuracy, but not
exactly. One of the simplest examples is the family of models introduced by Gledzer [23],
and Yamada and Ohkitani [24], now commonly called the GOY models [25]. They have
recently been the subject of several investigations [26, 27, 7, 28, 29]. An in-depth description
of this work can also be found in [22].

The GOY models are defined as follows. Fourier space is divided inton = 1, . . . , N

shells, labelled by the wavevector moduluskn = k02n, wherek0 is a constant. The velocity
difference over a length scaleln ∼ k−1

n are represented, each by one complex variableun,
which obeys the following system of coupled ordinary differential equations:

d

dt
un = −νk2

nun + ign + f δn,4 (30)

gn = aknu
∗
n+1u

∗
n+2 + bkn−1u

∗
n−1u

∗
n+1 + ckn−2u

∗
n−2u

∗
n−1 (31)

wheref is the strength of the external force, acting on large scales, andν the viscosity.
For any values of the three coefficientsa, b andc, phase-space volume is preserved in the
force-free inviscid limit.

The restricted number of degrees of freedom is both the main advantage and
disadvantage of shell models. It is an advantage, because it allows simulations at much
lower viscosity and for much longer time than in the full Navier–Stokes equations. But it
is also a severe departure. All spatial structure of the field is ignored.

One of the coefficients in (31), saya, can be scaled to one and the condition of energy
conservation fixes one more, such that, in terms of one parameterε, b is equal to−ε andc to
−(1 − ε). With ε greater than one the GOY equations conserve one more positive definite
quantity besides energy, i.e. an analogous situation to two-dimensional hydrodynamics.
The dynamical behaviour of the GOY models in this range is rather far removed from
two-dimensional turbulence as was shown in recent papers [30, 31]. We include below a
study of predictability in such shell models, but just as a simplified model to demonstrate
one possible scaling behaviour of the finite-size Lyapunov exponent.

With parameterε in the range between zero and one, the GOY models also preserve
another invariant, but one which is not positive definite. In the following we will look at
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the GOY model with the standard choice ofε equal to 1
2, i.e.

a = 1 b = − 1
2 c = − 1

2. (32)

The second invariant then has a physical dimension of helicity [28]. Presumably that is the
reason why this particular model has turned out to be so close to numerical and experimental
data on Navier–Stokes turbulence in three-dimensional [32, 33].

Before we turn to the numerical experiments, let us summarize some salient features
of the system defined by (30)–(32). Energy is pumped into the system by the force, which
acts only on shells with low values ofn, and is removed at high shells by viscosity. From
k0, ν and the typical fluctuations of velocity on large scales,V , we can form a Reynolds
numberRe = V/k0ν. We consider the situation whereRe is large, such that there is a
wide range inn where the external and viscous forces are both negligible compared to the
inertial forces. In this inertial range, we have〈|un|2〉 ∼ k

−ζ2
n , where the exponentζ2 is close

to 2
3 [27].
An estimate of the smallest excited scale is in analogy with the Kolmogorov scale

kn∗ ∼ k0Re3/4. The slowest dynamical scale is the time-scale of the shells containing most
energy, about 1/k0V , and the fastest isτ−1

n∗ ∼ kn∗ 〈|un∗ |2〉1/2, or, aboutk0V Re1/2. From the
fastest time scale it follows, by dimensional analysis in the Kolmogorov theory, that the
leading Lyapunov exponent should grow with the Reynolds number asRe1/2, a prediction
due to Ruelle [34]. In the multifractal picture there are corrections to this estimate and that
the leading Lyapunov exponent of the GOY shell model scales asReα where

α = max
h

[
D(h) − 1 − 2h

1 + h

]
. (33)

It is indeed numerically observed to scale asRe0.495, in good agreement with a computation
of α staring from a function D(h), obtained by a parametric fit of measured values of the
scaling exponentsζq in experiments [16, 7].

The mean square fluctuations at the Kolmogorov scale are〈|un∗ |2〉 ∼ Re−1/2. If we
compute the distance between two shell variable configurations as

|u − u′| =
√∑

n

|un − u′
n|2 (34)

an error smaller than O(Re−1/4) is relatively small all over the inertial range. It can be
taken to be infinitesimal, and its growth rate will be the fastest linear growth rate.

If, however, the error is larger than O(Re−1/4), it could be larger than the typical size
of the fluctuations at the Kolmogorov scale. Such an error would have to be concentrated
on larger scales, since otherwise we have that for somen un and/oru′

n is much larger than
the typical size. In other words, a physical perturbation larger than O(Re−1/4) cannot be
obtained by a random perturbation of that size uniformly distributed over all the shells.

In appendix A we discuss some possible definitions for the finite Lyapunov exponents.
In what follows we adopt the following procedure. After a long integration time to let the
system relax towards the statistically stationary state, we introduce a very small error. This
is done by generating a new shell variable configurationu′

n differing from un by a small
fraction of 〈|un|2〉1/2. Another possible approach would be, that if we want an initial error
of size ε, we determine a shellnε such that〈|unε

|2〉1/2 is aboutε, and we concentrate the
perturbation on shells abovenε .

We then iterateun andu′
n (perturbed system) for again a long time, such that the error

has grown to a threshold, which is still small compared toV Re−1/4. We thus have two
realizations of configurations in the statistically stationary state, which only differ by a small
error, which we callδ0.
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Further we define a series of thresholdsδn = rnδ0, and we measure the times it takes
for the error to grow fromδ0 to δ1, and so on. For brevity we will call these times error
doubling times, even ifr can be different from two. The threshold rater should not be
taken too large, because then the error has to grow through several different scales before
reaching the next threshold. On the other hand, the rater cannot be too close to one, so
a sensible threshold rate is on the order of 2. The most convenient choice ofr clearly
depends on the how the fluctuations in the shell variable depend onn, and in what way we
measure the error. For our model (31) with the error measured by (34), the range of error
sizes in the inertial range is not large, scaling asRe−1/4. For 35 shells, which is the largest
system we simulate, we can takeRe equal to 1010, which gives an the error range of about
300. With error threshold rate equal to 2, that would give about eight data points, with
some points lost on both ends due to boundary effects. For practical reasons we therefore
taker equal to

√
2.

When we have performedN error-doubling experiments, we can form an estimate of
the expectation value of some quantityA:

〈A〉e = 1

N

N∑
i=1

Ai. (35)

This is not the same as taking a time-average, since different error doubling experiments
may take different times. Indeed, we have

〈A〉t = 1

T

∫ T

0
A(t) dt =

∑
i Aiτi∑

i τi

= 〈Aτ 〉e
〈τ 〉e . (36)

A particular case of the above relation concerns the mean error doubling times themselves.
Let Tr(δn) be the time it takes for an error to grow from thresholdδn to δn+1. Then

λ(δn) =
〈

1

Tr(δn)

〉
t

ln r = 1

〈Tr(δn)〉e ln r (37)

where we have used the definition of (3).
The finite-size Lyapunov exponents,λ(δn), can be compared with shell turn-over times

as follows. We first select a shellnδ such that〈|unδ
|2〉1/2 is aboutδ, and then estimateτ−1

δ

as knδ
δ, which scales asδ−2. This argument for typical error growth times is the same as

the Lorenz argument for three-dimensional turbulence [20], discussed above in section 2.
In figure 1 we compare error doubling times and shell turn-over times, as a function of

size of the perturbation and of the typical fluctuations in the corresponding shell. Below
the Kolmogorov scale, the turn-over times increase: we are here in the dissipation range,
where the shell amplitudes decrease quickly. On the other hand, the doubling times tend to
a constant as the error threshold is small. We are here in the infinitesimal range, and the
constant is approximatively the inverse of the Lyapunov exponent. At the Kolmogorov scale,
there is a rather large discrepancy between the Lyapunov exponent and the turn-over time.
This observation, that the Lyapunov exponent obeys a scaling law with a sizeable numerical
pre-factor, has been made before [27], but without a plausible explanation. Here we find
good agreement with our prediction that the inertial range for the finite-size Lyapunov
exponent is shorter than the spectral inertial range, because the first is limited from below
by the scaling exponenth3, as in equation (26), while the second is limited from below by
the scaling exponenth2 [21].

In figure 2 we compare the error doubling times for different Reynolds numbers. For
small thresholds the doubling times scale as the Lyapunov exponent, i.e. asRe−1/2. We also
observe that the bend away from the infinitesimal growth rate occurs at smaller error scales
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Figure 1. Inverse error doubling times (open diamond) compared with inverse shell turn-over
times (plus). NumberN of simulated shells is 27, and Reynolds numberRe = ν−1 = 109,
k0 = 0.05 andf = (1 + i) × 0.005. The equations were integrated with a slaved-frog scheme
[25, 46], with constant time step 2× 10−6. The initial perturbation was randomly uniform over
all shells in the inertial range, with amplitude less than 10−6. The perturbed and unperturbed
configurations were integrated until the error reached the first thresholdδ0 at 10−4. The error
growth rate parameterr is 21/2. The number of error doubling experiments was 400. The
broken line has slope−2.

Figure 2. ln〈1/Tr (δu)〉 versus ln(δu) for different Reynolds numbersRe = ν−1. Parameters as
in figure 1, except that the time step has been adjusted to the changing viscosity. The different
symbols refer to:N = 24 andν = 10−8 (open diamond);N = 27 andν = 10−9 (plus);N = 32
andν = 10−10 (open square);N = 35 andν = 10−11 (cross). The chain line has slope−2.

for larger Reynolds numbers. This suggests that a simple scaling ansatz can be sought in
the following form: times and errors are scaled with the turn-over time and the typical
scale of fluctuations at the Kolmogorov scale, that is byRe−1/2 andRe−1/4, respectively.
In figure 3 we show such re-scaled data. The data collapse is reasonable.
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Figure 3. ln
[〈1/Tr (δu)〉/Re1/2

]
versus ln

[
δu/Re−1/4

]
at different Reynolds numbersRe =

ν−1. Parameters as in figure 1, except that the time step has been adjusted to the changing
viscosity. The different symbols refer to:N = 24 andν = 10−8 (open diamond);N = 27 and
ν = 10−9 (plus); N = 32 andν = 10−10 (open square);N = 35 andν = 10−11 (cross). The
chain line has slope−2.

To improve the data collapse, taking into account multifractal corrections, we made a
scaling based on multiscaling [21], i.e. of the form

ln〈1/Tr(δv)〉
ln(Re/R0)

= f (ln(δv/V0)/ ln(Re/R0)) (38)

whereR0, V0 are parameter to be fixed, andf (x) is the scaling function. According to the
argument at the end of section 2, we havef (x) ∼ x−2 for largex, while f (x) is constant
for small values ofx. In the intermediate regimef (x) has a nontrivial form which depends
on the shape of D(h), as follows from (28) and (29). The result is shown in figure 4. The
data collapse is clearly improved.

We conclude this section discussing the case of two-dimensional turbulence. The two
dimensional Euler equation has the peculiar property of an infinite number of invariants.
Two of them are retained in a finite Fourier discretization, the energy and the average square
vorticity, or enstrophy. As we previously discussed, the second conserved quantity in the
GOY shell model depends on the choice of the parameterε. With the choiceε = 5

4, leading
to

a = 1 b = − 5
4 c = 1

4 (39)

equations (30) conserve in the unforced and inviscid limit, in addition to the energy, the
enstrophy is here defined as

Z = 1
2

∑
n

k2
n|un|2. (40)

Despite the fact that the two-dimensional shell model superficially has the same physical
justification of its three-dimensional corresponding model, it has been demonstrated that
it has little to do with turbulence [30, 31]. Moreover, all the numerical simulations
of two-dimensional Navier–Stokes equation at sufficiently high Reynolds number have
demonstrated the dynamical relevance of coherent structures which emerge spontaneously
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Figure 4. Multiscaling data collapse [see (38)]. Parameters as in figure 1, except that the time
step has been adjusted to the changing viscosity. The different symbols refer to:N = 24 and
ν = 10−8 (open diamond);N = 27 andν = 10−9 (plus); N = 32 andν = 10−10 (open
square);N = 35 andν = 10−11 (cross). The chain line has slope−2. The fitting parameters
areR0 = 6 × 106, V0 = 5 × 10−2, andRe = ν−1.

from the turbulent flow. The predictability problem, which is more relevant for geophysical
flows in this case than in three-dimensional turbulence, is also ruled by a coherent vortex
motion in the physical space, rather than modes dynamics in Fourier space [35].

With this limitation, the study of the predictability problem, as addressed in the present
paper, in the two-dimensional shell model is nevertheless interesting because of the different
scaling behaviour with respect to the three-dimensional situation. Dimensional analysis [36]
shows that in the enstrophy cascade one expects constant—i.e. independent on the scale—
turn-over times. Hence an argument similar to that of section 2 shows that〈

1

Tr(δv)

〉
∼ constant= λmax/ ln r (41)

where λmax is the largest Lyapunov exponent. The predictability time for the two-
dimensional shell model is thus determined by a single value 1/λmax ∼ ε

−1/3
Z , whereεZ

is the enstrophy flux toward small scales, up to a perturbation of the order of the large-
scale velocity field, where saturation effects are dominant. Figure 5 shows the finite-size
Lyapunov exponentλ(δv) for a simulation withN = 24 shells. The forcing term is now
f = 5 × 10−4(1 + i) andν = 10−8. Because of the inverse energy cascade we introduce
in the equation (30) an artificial large-scale dissipationν ′/kn (ν ′ = 10−5) in the first shells
n 6 3 [26].

The velocity field shows a pseudo-cascade power law, see [30],〈|un|2〉1/2 ∼ ε
1/3
Z k−1

n in
a wide range 16 kn 6 103. The mean enstrophy flux in this range isεZ = 5× 10−6 which
is in agreement with the dimensional evaluation of the eddy turnover timeτn ∼ ε

1/3
Z .

The data plotted in figure 5 are obtained by using the method described in appendix A
for computing the size-dependent Lyapunov exponent. The same results, not reported, can
be obtained from the doubling time algorithm.

We stress once more that, in the light of the results discussed in [30], the two-dimensional
shell model is not a good model for two-dimensional turbulence. As a consequence a
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Figure 5. Scale-dependent Lyapunov exponentλ(δu) for two-dimensional shell model with
N = 24 shells,k0 = 0.05, ν = 10−15 andf = (1 + i) × 0.005. Note the linear scales on the
ordinate axis.

discussion of the predictability problem for two-dimensional turbulence requires the direct
study of Navier–Stokes equations [35]. Preliminary results show that this scenario remains,
nevertheless, valid in the direct cascade [37].

4. Closure approximation

In this section we describe the results obtained from the EDQNM for the shell model. The
basic idea of closure approximations is quite simple: write down the Reynolds hierarchy
for moments of the shell variables and truncate the chain to the lowest sensible order. The
important point is that in the closure approximation intermittent effects are washed out, so
we can directly test if the relevant mechanism is due to the existence of many characteristic
times. We do not report the derivation of the EDQNM equations for the shell model. The
interested reader can find it in [38].

We consider two independent realizations of the shell model field,un andvn, with the
same energy spectrumEn = 〈unu

∗
n〉 = 〈vnv

∗
n〉, and both evolving according the shell model

equations (30)–(32). The distance between the two fields can be defined in terms of the
energy difference at shelln:

1n = 1
2〈(un − vn)(u

∗
n − v∗

n)〉 = (En − <Wn) (42)

whereWn = 〈unv
∗
n〉, and< denotes the real part. From the definition it follows

δv(t) =
[ ∑

n

1n(t)

]1/2

. (43)

The evolution equations ofEn andWn in the EDQNM approximation read:(
d

dt
+ 2νk2

n

)
En = 2[k2

nθ(n, t)(En+1En+2 − 1
2EnEn+2 − 1

2EnEn+1)

− 1
2k2

n−1θ(n − 1, t)(EnEn+1 − 1
2En−1En+1 − 1

2En−1En)

− 1
2k2

n−2θ(n − 2, t)(En−1En − 1
2En−2En − 1

2En−2En−1)] + 2εδn,4 (44)
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and(
d

dt
+ 2νk2

n

)
Wn = 2[k2

nθ(n, t)(W ∗
n+1W

∗
n+2 − 1

2WnEn+2 − 1
2WnEn+1)

− 1
2k2

n−1θ(n − 1, t)(WnEn+1 − 1
2W ∗

n−1W
∗
n+1 − 1

2En−1Wn)

− 1
2k2

n−2θ(n − 2, t)(En−1Wn − 1
2En−2Wn − 1

2W ∗
n−2W

∗
n−1)] + 2εδn,4 (45)

where

θ(n, t) = 1 − e−[ν(k2
n+k2

n+1+k2
n+2)+µn+µn+1+µn+2]t

ν(k2
n + k2

n+1 + k2
n+2) + µn + µn+1 + µn+2

(46)

and

µn ≡ µ(kn, En) = αknE
1/2
n . (47)

We have one free parameter, the dimensionless constantα. It should be adjusted such that
the spectrum is as similar as possible to the spectrum obtained in simulations of the full
equation. The energy spectrum of the shell model in the EDQNM approximation must
therefore obeyEn ' C(α)ε2/3k

−2/3
n in the inertial range. The undetermined functionC(α)

is the Kolmogorov constant.
On the other hand it has become clear in several independent investigations that

intermittency corrections exist in shell models. The energy spectrum is, therefore, in reality
more closely described byEn ∼ F(ε)k

−ζ2
n , where the exponentζ2 has been estimated to be

0.70 [27]. The functionF that gives the prefactor to the power law in the inertial range
should not depend on viscosity, but depends on the forcing throughε, the mean dissipation
of energy per unit time, or, equivalently, the mean energy input into the system from the
force. In a really large inertial range the two power-laws are not good approximations to one
other. The best that can be done is to demand that the spectra agree as closely as possible
at the upper end of the inertial range. A reasonable agreement is obtained forα = 0.06,
leading toC(α) = 1.5 which is the value observed both in simulations of the shell model
and in experiments [39].

The procedure described in the previous section to compute the scale dependent
Lyapunov exponent for the shell model can be adopted here for the closure equations.
In practice after a long iteration time, to have a well stabilized energy spectrumEn, we
take a small initial distanceδv(0) and perform the doubling experiment similar to those of
the previous section iterating equations (45).

In figure 6 we show〈1/Tr(δv)〉/Re1/2 as a function of the rescaled distanceδv/Re−14,
for different Re = ν−1. The other parameters areN = 32 shells,k0 = 0.05, integration
step 10−6 and r = 21/2. From figure 6 we see that the closure approximation leads to the
same scenario observed for the shell model, confirming that this is due to the existence of
many characteristic scales. We note that the slope of the curve forδv/Re−1/4 > 10 is the
Lorenz value−2 since in the EDQNM approximation there are no intermittent corrections.

We note that in this case, since there is no intermittency, the effective inertial range
roughly coincides with the inertial range. In figure 7 we compare〈1/Tr(δv)〉 and the inverse
of the turnover timeτ−1(n) = knE

1/2
n as a function of the distanceδv. In the figure we

usedr = 2.

5. Conclusion

We have introduced a generalizationλ(δ) of the leading Lyapunov exponent to finite
perturbations of sizeδ. The generalization is quite general, since it is based on ‘doubling’
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Figure 6. 〈1/Tr (δu)〉/Re1/2 as a function ofδu/Re−1/4 for different values of the Reynolds
numberRe = ν−1 for the EDQNM approximation. The different symbols refer to:ν = 10−8

(open diamond),ν = 10−9 (plus) andν = 10−10 (open square). The dotted line gives the
Lorenz results−2. The other parameters areN = 32, k0 = 0.05, ε = 1 andα = 0.06.

Figure 7. 〈1/Tr (δu)〉 (open diamond) as a function ofδu for the EDQNM approximation of
GOY model withN = 32, k0 = 0.05, ε = 1 andν = 10−10. The plus are the inverse of the
eddy turn-over timesτ−1(δu) = kn E

1/2
n versusδu = (2NEn)

1/2. The broken line has slope−2.

error times; hence, it can be used any times an error can be defined, and thus also for
systems with spatial complexity, such as two-dimensional and three-dimensional turbulence.
We note, however, that in these cases the presence of coherent structures can make the
definition of a ‘good’ distance more subtle, see e.g. [35].

Unlike the Lyapunov exponent,λ(δ) contains direct information on the predictability
time for an extended chaotic system and it is particularly useful in the presence of several
characteristic times. Moreover, it is computationally no more expensive than the standard
Lyapunov exponent.
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In the limit of infinitesimal perturbationδ, the finite-size Lyapunov exponent gives the
leading Lyapunov exponent. The way in which this limit is reached depends on the details
of the particular system and gives information about the characteristic time scales. In the
case of three-dimensional fully developed turbulence we have found a universal scaling law
λ(δ) ∼ δ−2 where the value−2 of the exponent is an invariant of the multifractal approach.

The scaling law is confirmed by extensive numerical simulations on shell model for
turbulence at very high Reynolds numbers, but we warn that it would be very difficult to
observe such a scaling in experimental data because of the reduction of the scaling range
in presence of intermittency.

We have also shown and discussed the relationship between our approach and theε-
entropy results in literature. In conclusion, we think that it would be useful to compute
the finite-scale Lyapunov exponent in other complex dynamical systems, as a new tool for
investigating the presence of characteristic times and the predictability properties.
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Appendix A. Finite-size Lyapunov exponents andε-entropy

Here we discuss some alternative ways of computing the finite-size Lyapunov exponent
beyond the definition (3).

The first method is a modification of the standard technique [40, 41]. We integrate two
trajectoriesu(t) andu′(t) with initial Euclidean distanceδu(0) = δ and record the timeTr

when their separation becomesrδ, wherer is a given constant coefficient. The perturbed
trajectoryu′(Tr) is then rescaled at the original distanceδ, keeping the directionu′ − u
constant, and the procedure is repeated several times.

The finite-size Lyapunov exponent at scaleδ is obtained by averaging the divergence
rate

λ(δ) =
〈

1

Tr

ln

(
δu(Tr)

δu(0)

)〉
= 1

〈Tr〉e ln r (A1)

along the unperturbed trajectoryu(t). The average〈· · ·〉e is over many error doubling
experiments. In the case of infinitesimal errorδ, and not too large factorr, this definition
leads to the maximal Lyapunov exponentλmax.

The possible problem with this definition is that it assumes that the statistically stationary
state of the system is homogeneous with respect to perturbations of finite size. One may
plausibly argue that the structure of the attractor in phase space on which the motion takes
place may be fractal, and not at all equally dense at all distances from a given point. The
procedure outlined would then not necessarily exactly sample the motion on the attractor.
In practice, as it is shown by the numerical experiments, we do not find any difference
with the numerical method presented in the main text, so the effect must be quite small.
For the usual Lyapunov exponent the problem does not exist since we only use small finite
perturbations as an approximation to infinitesimal perturbations.
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The above method assumes that the distance between two states is continuous in time.
This is not true for maps and the method has to be slightly modified. In this caseTr is the
minimum time such that the distance between the two realizations is larger or equal torδ.
Since nowδu(Tr) is a fluctuating quantity, instead of (A1) we have the following formula,
see (36):

λ(δ) = 1

〈Tr〉e

〈
ln

(
δu(Tr)

δ

)〉
e

. (A2)

Definitions (A1) and (A2) are valid for any value ofr. However, to have sensible results,
i.e. λ(δ) independent ofr, the value should not be too large to avoid the interference of
different scales. In our simulations we usedr = √

2 andr = 2.
One could also think of removing the threshold condition used for definingTr and

simply compute the average error growth rate after a given time interval, e.g. at every time
step. In other words, at every time stepδt of the integration, the perturbed trajectoryu′(t)
is rescaled to the original distanceδ, keeping the directionu − u′ constant. The finite-size
Lyapunov exponent is given by the average of the one-step exponential divergence:

λ(δ) = 1

δt

〈
ln

(
δu(t + δt)

δu(t)

)〉
t

(A3)

which is equivalent to the above definitions (A1) and (A2). This method is indeed the
one used for computingλ(δ) in the case of the two-dimensional shell model. The one-step
method (A3) has the advantage that it can be easily generalized to compute the sub-leading
finite-size Lyapunov exponent following the standard orthonormalization method [40]. One
introducesk perturbed trajectoriesu(1), . . . ,u(k) each at distanceδ from u and such that
u(k) − u are orthogonal each to the others. At every time step, any differenceu(k) − u
is rescaled at the original value and orthogonalized, while the corresponding finite-size
Lyapunov exponent is accumulated according to (A3). Here we have again the problem of
the implicitly assumed homogeneity of the attractor, but also a problem of isotropy when
we re-orthogonalize the perturbations. We note that this could be a more serious problem,
which will not be discussed here any further.

The method can be easily modified to compute the average error growth aftern time
steps. To have sensible resultsn should not be too large to avoid possible interferences of
different scales.

For systems with only one positive Lyapunov exponent the size-dependent Lyapunov
exponentλ(δ), definition (A2), or (3), coincides with theε-entropy widely described below
in appendix B and by Gaspard and Wang [12, 13]. We consider now some examples.

A.1. Map with noise

Consider a chaotic deterministic map perturbed by a Gaussian term:

x(n + 1) = f (x(n)) + σy(n) (A4)

wherey(n) is a stochastic variable with Gaussian distribution of zero mean and unit variance.
The y(n) for different timesn are independent. Whenσ = 0 the mapf (x) is chaotic with
positive Lyapunov exponentλ. A simple computation shows that

δx(n) ∼ δx(0)eλn + σδy(n − 1). (A5)

For |δx(0)| � σ the noise term is negligible, so thatλ(|δx(0)|) ' λ. In the opposite limit,
|δx(0)| � σ , the first term in (A5) can be neglected so thatδx(n) ∼ σδy(n − 1). Thus
in one iteration of the map the distance between the two trajectories grows to O(σ ), larger
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than the tolerance. From (A2) we haveλ(|δx(0)|) ∼ ln(σ/|δx(0)|). These are the same
results obtained for theε-entropy (see [13, section 3.5]).

A.2. Ornstein–Uhlenbeck process and Yaglom noises

Consider the Gaussian process described by the Langevin equation

dx

dt
= −ax + cη (A6)

wherea > 0 andη is a white noise with zero mean and correlation〈η(t)η(t ′)〉η = δ(t − t ′).
The formal solution of (A6) reads

x(t) = e−atx(0) + c

∫ t

0
e−a(t−t ′)η(t ′) dt ′ (A7)

so that the distance between two different process behaves in time as

δx(t) = e−at δx(0) + c

∫ t

0
e−a(t−t ′)δη(t ′) dt ′. (A8)

This implies thatδx(t) ∼ √
ct , and thus the predictability timeT (δx(0), 1) behaves as

T (δx(0), 1) ∼ (1/c)2 so that λ(δx(0), 1) ∼ (c/1)2 ∼ (c/δx(0))2, as found for the
ε-entropy (see below or [13, section 3.6.2]).

Similar computations can be done for the Yaglom noise (see [13, section 3.6.3]).

A.3. Model of deterministic diffusion

The one-dimensional map

x(n + 1) = x(n) + p sin(2πx(n)) (A9)

presents deterministic diffusion. For example forp = 0.8 the diffusion coefficient is
D ' 0.18. The size-dependent Lyapunov exponent for this map can be computed
numerically using the definition (A2). From figure A1 we see thatλ(δ) ' λ for small

Figure A1. Scale dependent Lyapunov exponentλ(δ) for the map (A9). The broken line has
slope−2.
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δ, while λ(δ) ∼ δ−2 for large values ofδ. The ε-entropy shows the same behaviour (see
[13, figure 25(b)]). Note that in [13] theε-entropy is measured in units of digit/iteration,
so there is a multiplicative factor ln 10' 2.3 with λ(δ) of figure 8.

Appendix B. The Kolmogorov result on ε-entropies of Gaussian processes

The purpose of this appendix is to derive systematically on a physical level of rigour the
results of Kolmogorov on theε-entropy of Gaussian variables and Gaussian processes and
random fields. These results were stated without proof by Kolmogorov [11], and in the
review by Tikhomirov [42]. The published proofs we are aware of are either not easily
accessible, or carried out in such generality that the simple underlying idea may be lost to
the less mathematically inclined reader. Hence the interest of including a simple derivation
here. Let us just for completeness refer to a comparatively recent paper [43].

The general setting is that of two random variablesξ andη, taking values in spacesX
andY . The values in two realizations ofξ andη are denotedx andy, respectively, where
x lies in X andy lies in Y . WhenX andY are continuous the probability distributions of
ξ andη will be denotedPξ (dx) andPη(dy). Except for the trivial case, the variablesξ and
η are not independent, but characterized by the joint probability distributionPξ,η(dx, dy).

The single-variable probabilities are determined from the joint distribution as

Pξ (dx) =
∫

y

Pξ,η(dx, dy) Pη(dy) =
∫

x

Pξ,η(dx, dy). (B1)

The conditional probabilities are

Pξ |η(dx) = Pξ,η(dx, dy)

Pη(dy)
Pη|ξ (dy) = Pξ,η(dx, dy)

Pξ (dx)
. (B2)

B.1. Preliminaries from information theory

We suppose in this subsection that the spacesX and Y are discrete, and consist of
finitely many points,x1, . . . , xn and y1, . . . , ym, and associated probabilitiesp1, . . . , pn

andq1, . . . , qm.
The entropy of the random variableξ is

H(ξ) = −
n∑

i=1

pi ln pi. (B3)

If we want to code a message ofN letters, which are given byN consecutive independent
realizations ofξ , so taking values inx1, . . . xn, this can be done, in the limit whenN is large,
by usingH(ξ)/ ln 2 bits per letter [10]. The pairξ andη specify both a source signal and
the output after sending the signal through a channel of transmission. The joint probability
distribution Pξ,η can be decomposed either to the pairξ (an input) andη|ξ (an output,
given the input), or to the pairη and ξ |η. In the discrete case these second conditional
probabilities are denotedpi|j , wherei ranges from 1 ton, andj ranges from 1 tom. The
equivocationis

〈H(ξ |η)〉y =
∑

j

pj

(
−

∑
i

pi|j ln pi|j

)
. (B4)

Shannon [10] considered agedankenexperiment where we send an error-correcting message
parallel to the transmission ofξ to η, and asked for the number of bits in the error-correcting
message needed to transmitN letters in the original message virtually without error. In the
limit of large N , the answer is〈H(ξ |η)〉y/ ln 2 bits per letter.



20 E Aurell et al

Suppose further that we have some source of information which we can recode into
letters fromξ , then transmit toη, and then observe. The rate of transmission of information
is not the source entropy, since we must correct for the equivocation, but themutual
information:

I (ξ, η) = H(ξ) − 〈H(ξ |η)〉y. (B5)

If we introduce the discrete joint probabilitiespi,j and rearrange terms, we see that (B5)
can be rewritten in a more symmetrical way, namely:

I (ξ, η) =
∑
i,j

pi,j ln
pi,j

pipj

. (B6)

A channel of transmission of information can be considered as a collection of pairsξ

and η, where theξ ’s are the possible inputs, and theη’s the corresponding outputs. The
capacity of the channel is the maximum rate of information transfer

C = max
ξ,η

I (ξ, η) (B7)

where the maximization is performed over the collection of pairsξ andη that describe the
channel. The fundamental Shannon theorem says that a source signal can be transmitted
over a channel, if the source entropy is less than the channel capacity.

Finally, suppose that we have an inputξ and we wish that the outputη contains only
some partial information aboutξ , saying that some fidelity criterion is fulfilled. We consider
all channels consisting of the fixed sourceξ and different outputsη. The least rate of
information transfer needed to specifyξ in this way issource entropy with respect to the
fidelity criterion

R = min
η

I (ξ, η) Pξ fixed (B8)

where the minimization is performed over allη which satisfy the criterion withξ .
In practice many fidelity criteria can be written

G(ξ, η) 6 ε (B9)

whereG is some suitable function andε is a measure of the fidelity. In this case the source
entropy is naturally considered as a function ofε, and we have the Kolmogorovε-entropy

H(ξ, ε) = min
η

I (ξ, η) whereG(ξ, η) 6 ε andPξ fixed. (B10)

B.2. Continuous random variables

Suppose we have a random variable with a continuous distribution, that isPξ (dx) =
pξ (x) dx with continuous densitypξ (x). Then (B3) is infinite.

As stressed by Kolmogorov, the mutual information, (B5), the capacity, (B7), and, in
particular, the rate of information production with respect to a fidelity criterion, (B8), (B10),
are all also well-defined in the continuous case. In other words, although a real number
observed with infinite accuracy contains an infinite amount of information, a real number
observed with finite accuracy contains only a finite amount of information.

We can see this in a simple heuristic way as follows. If we introduce a discretization
of the spaceX into boxes with diameterδ, we have a new random variable that we can call
ξδ with entropy

H(ξδ) = d ln

(
1

δ

)
−

∫
pξ (x) ln pξ (x) dx + O(δ) (B11)

whered is the dimension ofX.
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Similarly, from the conditional variableξ |η we have a new random variableξδ|η with
equivocation

〈H(ξδ|η)〉y = d ln

(
1

δ

)
−

∫
pη(y)

( ∫
pξ |η(x, y) ln pξ |η(x, y) dx

)
dy + O(δ). (B12)

Rearranging terms as in (B6), the mutual information betweenξδ andη is thus

I (ξδ, η) =
∫

pξ,η(x, y) ln

(
pξ,η(x, y)

pξ (x)pη(y)

)
dx dy + O(δ). (B13)

As the discretization tends to zero the mutual information tends to a finite value,
provided that the joint probabilityPξ,η(dx, dy) is not singular with respect to the product
Pξ (dx)Pη(dy), a result due to Yaglom and Gel’fand [11].

We can give a meaning to the most random continuous distribution with respect to some
given constraints by maximizing the entropy of a discretized continuous variable, as in
(B11), subject to these constraints, and then letting the discretization tend to zero. The most
random distribution with given first and second moments is thus, not surprisingly, a Gaussian
distribution with the same first and second moments. The entropy of a discretization of a
d-dimensional real Gaussian random variableξ with correlation matrixC is

H(ξδ) = d ln

(
1

δ

)
+ ln

√
(2πe)d detC + O(δ). (B14)

All these results on the Gaussian distributions are due to Shannon [10].

B.3. Theε-entropy result

The spacesX and Y are now identical. We consider first a one-dimensional Gaussian
random variable, and then a finite-dimensional variable and show that the Kolmogorov
formula holds in these cases. In the next subsection, we then observe that the Fourier
components of Gaussian processes and Gaussian random fields are independent Gaussian
random variables, and so, taking the formal infinite-dimensional limit, we find the desired
result.

The fidelity criterion will be the mean square deviation:

〈(ξ − η)2〉 6 ε2. (B15)

Let us first estimate the answer by dimensional arguments. If the finite-dimensional normal
variableξ is decomposed in its principal components, a fluctuation in directioni will be of
typical sizeσi . To estimate the fluctuation in directioni with an accuracyε we need about
ln(σi/ε) bits. The answer should, therefore, be of the form

H(ξ, ε) = A
∑
σi>ε

ln
(σi

ε

)
+ B. (B16)

The result of the analysis will be thatA is 1 andB is 0.
Let ξ be a Gaussian one-dimensional random variable with varianceσ 2. The random

variableξ |η is defined on the support ofPη. We suppose it to have meanm(y) and variance
α(y). We have the obvious inequality∫

α(y)Pη(dy) 6 〈ξ2〉 (B17)

and the equality∫
α(y)Pη(dy) = 〈(ξ − η)2〉. (B18)
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On the other hand, the equivocation, (B12), with fixed outcomey of η and given meanm(y)

and varianceα(y) is maximized if the variable is Gaussian with varianceα(y). Therefore,
the mutual information betweenξ andη is bounded from below by

I (ξ, η) >
∫

1

2
ln

(
σ 2

α(y)

)
Pη(dy). (B19)

We can, therefore, pose a constrained minimization problem over the auxiliary positive
functionα(y). Strictly speaking,H(ξ, ε) is only bounded from below by the minimization,
but, as we will see, the solution can be realized in terms of variablesξ andη with desired
properties.

H(ξ, ε) = min
α(y)

∫
1

2
ln

(
σ 2

α(y)

)
Pη(dy) (B20)

ε2 >
∫

α(y)Pη(dy) (B21)

σ 2 >
∫

α(y)Pη(dy). (B22)

Either one or the other of the two constraints will be satisfied at the minimum in (B20).
A variation with Lagrange multipliers gives thatα(y) must be constant, either equal toε2

or to σ 2. We therefore have

H(ξ, ε) = max
[
ln

(σ

ε

)
, 0

]
. (B23)

The derivation also shows clearly that the solution can be realized as follows. Ifσ is less
thanε, thenξ |η is Gaussian with mean zero and varianceσ 2, andη a delta function with
support at the origin. If, on the other hand,σ is greater thanε, thenξ |η is Gaussian with
meanm(y) equal toy and varianceε2, and η is Gaussian with mean zero and variance
σ 2 − ε2. By the semigroup property of Gaussian kernels it follows in both cases thatξ is
Gaussian with mean zero and varianceσ 2.

The generalization to the higher-dimensional case is as follows. The variableξ

is Gaussian with second momentsCij , with principal components in a diagonal basis
(σ 2

1 , . . . , σ 2
d ). At a pointy1, . . . , yd in the support ofPη we consider the variableξ |η with

first momentsmi(y1, . . . , yd) and second momentsαij (y1, . . . , yd). We have, in analogy
with the one-dimensional case,∫

αii(y1, . . . , yd)Pη(dy) 6 〈ξ2
i 〉 = σ 2

i (B24)

and ∫ ∑
i

αii(y1, . . . , yd)Pη(dy) = 〈(ξ − η)2〉 6 ε2. (B25)

The mutual information betweenξ andη is bounded by

I (ξ, η) >
∫

1
2(ln detCij − ln detαij )Pη(dy). (B26)

Some of the inequalities (B24) may hold as equalities in the solution, some not. It does,
however, follow from the diagonal structure of (B24) and (B25) and the relation

δ ln detα = Tr
δα

α
(B27)
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that when (B26) is minimized,αij (y) must be constant iny and diagonal ini and j . Let
the diagonal elements ofα beD2

i . We then have the following simpler discrete constrained
minimization problem:

H(ξ, ε) = min
∑

i

ln

(
σi

Di

)
(B28)

ε2 >
∑

i

D2
i (B29)

σ 2
i > D2

i . (B30)

The minimum can be found by starting with allDi ’s very small and increasing them
proportionally to the gradient, that is, at the same rate. When one of theDi ’s hits the
constraint (B30) we keep it constant from thereon and increase the others. The constraint
(B29) will eventually be fulfilled when theDi ’s that still change are equal toθ , and there
we stop. The solution is thus implicitly given in terms ofθ , which can be interpreted as a
cut-off threshold for modes where normal fluctuations are small:

H(ξ, ε) =
∑

i

max
[
ln

(σi

θ

)
, 0

]
ε2 =

∑
i

min[σ 2
i , θ2]. (B31)

The solution can be realized by takingη as a random variable with independent components,
diagonal in the same basis asξ , and letting theith component ofξ only depend on theith
component ofη. The variablesηi andξi |ηi are then constructed as in the one-dimensional
case, with the only difference that the parameterθ substitutes for the errorε.

B.4. Gaussian random fields

Let us now consider a scalar Gaussian random field inD-dimensional space. A particular
example (D = 1) is Gaussian processes. We begin by the approximation that the field is
periodic with periodL in all directions. Fourier components of Gaussian random fields are
independently distributed Gaussian random variables. Therefore (B31) can be rewritten,
using the volume element1k, equal to(2π/L)D:

H(ξ, ε)

(
2π

L

)D

=
∑

k

max
[
ln

(σk

θ

)
, 0

]
1k (B32)

ε2

(
2π

L

)D

=
∑

k

min[σ 2
k , θ2]1k. (B33)

In the limit whenL tends to infinity the right-hand sides turn into integrals, and the left-hand
sides to entropy and mean square distance per unit volume. Therefore, we have

hvolume(ξ, ε) =
(

1

2π

)D ∫
max

[
1

2
ln

(
E(k)

θ2

)
, 0

]
dDk (B34)

ε2 =
(

1

2π

)D ∫
min[E(k), θ2] dDk (B35)

which, for D = 1, is the Kolmogorov result for theε-entropy per unit time of a Gaussian
random process. We note thatθ is still a cut-off to eliminate modes such that the energy of
the fluctuations in these modes is less thanθ2. In fields with a power-law spectrum, such
as turbulence,θ can simply be substituted for a wavenumber cut-offK.
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B.5. Other distributions and other fidelity criteria

The mean square fidelity criterion is convenient for analytical computations, but it is not
the only one possible. Shannon lists also the maximum distance, another choice would be
the mean absolute distance.

More interestingly, there may be cases where the most appropriate fidelity criteria is not
simply proportional to the distance in the mean or in maximum value. If the signalξ is a
Lévy-process it will have a non-negligible probability of changing by a large amount over
a short interval of time [44]. In many applications one would then like an approximating
signal η to accurately capture well the large jumps, but one would be less interested in a
very precise approximation whenξ changes comparatively little [45]. A reasonable fidelity
criterion would then be that there is only a small probability that the distance betweenξ

andη is large.
As far as we know no investigations have been performed of the entropy of such sources

with respect to such fidelity criteria. Of course, for a Lévy process a mean square error
function is not possible, since the second moment is infinite. It would be possible to use
mean absolute error, as was done implicitly by Gaspard and Wang in [13], but the relevance
of such computation would have to be motivated in each case by the application at hand.

Appendix C. Spacetime processes

In this appendix we want to discuss and compare the finite-size Lyapunov exponent and the
ε-entropy for a turbulent flow and for the shell model. We assume that the flow and the
shell model are both Gaussian as in appendix B, and we assume that the spectrum follows
the Kolmogorov theory, as described in section 2. Non-Gaussian effects and intermittency
correction to the spectrum are not taken into account.

At a given error thresholdδ, we have seen that the finite-size Lyapunov exponent scales
asλ(δ) ∼ δ−2, and this holds as well for the shell model as for three-dimensional turbulence.
Let us now consider theε-entropy, and first give a simple dimensional estimate. It will then
be seen that the expressions (B34) and (B35) just reproduce this result. The dimensional
estimate starts from the time scales in the Kolmogorov theory,τ(k) ∼ k− 2

3 . The distance
between two fields that only differ in wavenumbers greater thank is δ2 ∼ k− 2

3 , that is,
it does not depend on the dimensionality of space, but only of the form of the spectrum
E(k) ∼ k− 5

3 . On the other hand, the number of degrees of freedom at wavenumbers less
than or equal tok is proportional tokD. The system must be observed at a rateτ(k)−1 to
capture all the motion in wavenumbers less thank. The amount of information per unit
time and space needed to describe the system up to an error toleranceδ is thuskDτ(k)−1.
Translating this into a functional dependence onδ we have

hspacetime(δ) ∼ δ−2−3D (C1)

which, forD = 3, leads tohspacetime(δ) ∼ δ−11. As far as we can see there is an inconsistency
between this result, also derived in [13], and the result stated in [12], which we believe is
a misprint resulting from using an argument that really applies to the finite-size Lyapunov
exponent and not theε-entropy. The very different scaling lawsh ∼ δ−11 andλ(δ) ∼ δ−2

is also a further motivation why introducing the quantity finite-size Lyapunov exponent.
This straight-forward dimensional analysis can easily be generalized to a generic

stationary Gaussian processes with spectral density (see [13, section 6.2.6),

8(k, ω) ∼ k−yF
( ω

kz

)
. (C2)
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The functionF is supposed to vanish for arguments much larger and much smaller than
unity, and its integral is on the order of unity. The energy spectrum is, therefore,

E(k) ∼ kD−1
∫

8(k, ω) dω ∼ kz−y+D−1. (C3)

Here we will check that the previous dimensional estimates can also be obtained from
the Kolmogorov formulae (B34) and (B35), that we write in this case as follows

hspacetime(δ) =
(

1

2π

)D+1 ∫
max

[
1

2
ln

(
8(k, ω)

θ2

)
, 0

]
dDk dω (C4)

δ2 =
(

1

2π

)D+1 ∫
min

[
8(k, ω), θ2

]
dDk dω. (C5)

The first observation is that the integral overω in (C5) gives a contribution of order
kz−y if k−y is less thanθ2, but otherwise a contribution of orderkzθ2. The error is thus
determined by a cut-off wave numberK such that

δ2 ∼ Kz−y+D K−y ∼ θ.2 (C6)

The second observation is that the integral overω in (C4) gives a vanishing contribution
k−y less thanθ2, that is, for wavenumbers larger than the cut-offK. For smaller
wavenumbers the integration overω gives a contribution of the order ofkz, up to a
logarithmic correction that we do not take into account. Theε-entropy with cut-off
wavenumberK is thus

hspacetime(δ) ∼ Kz+D K−y ∼ θ2. (C7)

Combining (C5) and (C4) we find

h(δ) ∼ δ2(D+z)/(z+D−y) (C8)

which is equation (6.14) of [13]. By inserting the valuesD = 3, y = 13
3 andz = 2

3 of the
Kolmogorov theory we reproduce the result (C1).
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