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Abstract. We investigate the predictability problem in dynamical systems with many degrees
of freedom and a wide spectrum of temporal scales. In particular, we study the case of
three-dimensional turbulence at high Reynolds numbers by introducing a finite-size Lyapunov
exponent which measures the growth rate of finite-size perturbations. For sufficiently small
perturbations this quantity coincides with the usual Lyapunov exponent. When the perturbation
is still small compared to large-scale fluctuations, but large compared to fluctuations at the
smallest dynamically active scales, the finite-size Lyapunov exponent is inversely proportional
to the square of the perturbation size. Our results are supported by numerical experiments on shell
models. We find that intermittency corrections do not change the scaling law of predictability.
We also discuss the relation between the finite-size Lyapunov exponent and information entropy.

1. Introduction

The ability to predict has been the single most important qualifier of what constitutes
scientific knowledge, ever since the successes of Babylonian and Greek astronomy. Indeed,
the famous statement of Laplace that an intelligent being with complete knowledge of the
present and of the laws of Nature will know the future for all time, assumes that the future
is completely predicated by the past, and that perfect prediction would, in principle, be
possible. In more mathematical terms one can say that in the physical sciences, whether
in the classical or the quantum regime, one believes that Nature is ultimately described by
differential equations, and if one knows them and how to solve them, one knows all there
is to know about the world [1].

Laplacian determinism is always conditioned by the fact that in the real world initial
conditions can never be known to arbitrary accuracy. More recent is the general appreciation
of the fact that in the presence of deterministic chaos, predictability is even more severely
limited, because small errors typically grow exponentially with time [2]. Most sufficiently
complex systems in the world display chaos. Therefore, most sufficiently complex systems
can only be predicted for a finite time. However, there may be some aspects of a system
that are stable, while others vary. To take a familiar example, weather prediction is possible,
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typically for about 10 days on temperate latitudes, but how the wind blows on the corner
of the street is in practice unpredictable from one moment to the next [3].

The words predictability and prediction are rather empty by themselves: one has to
ask for predictability of what feature against what perturbation, in particular, against a
perturbation of what size. In complex and spatially extended systems one can typically
talk about large-scale features and small-scale features. The predictability of a small-scale
feature against a small-scale perturbation is typically shorter than the predictability of a
large-scale feature against a large-scale perturbation. Certainly this is not always true, and
we will consider a counter example, two-dimensional turbulence, below. But it seems to
be a very common situation. That successful large-scale prediction essentially can mean
just assuming that things do not change, is p@t sean argument against prediction in the
large. Also in weather prediction the assumption that the weather tomorrow will be like
today is a fairly good one.

In this work, a further development of results presented in a recent brief report [4],
we will introduce a quantity which measures predictability in the large, and apply it to
hydrodynamic turbulence. Before we proceed to the definitions, let us first recall some
facts about predictability in the small, i.e. the effects of dynamical chaos. A system is said
to be chaotic if small—i.e. infinitesimal—perturbations grow exponentially with time. If
the initial perturbation is of sizé, and the accepted error tolerance, is still small, then
a rough estimate gives that the predictability time is

T~ (?) @)

Amax

whereimax is the leading Lyapunov exponent [5].

Already within the framework of infinitesimal perturbations there are important
modifications to (1) [6,7]. In fact, in typical chaotic systems, (1) is not quite true [8].
The exponent.na is @ global quantity which measures theerageexponential rate of
separation of nearby trajectories, and fluctuations of the local exponential growth should
be taken into account [7], but these effects are not what concern us here. In this paper we
shall address the problem of predictability in systems with many characteristic times, e.g.
the case of fully developed turbulence where a hierarchy of different eddy turnover times
do exist, or when the threshollis not small. In these cases the predictability tiffie
is determined by the details of the nonlinear mechanism responsible for the growth of the
error [3,9]. In particular,T, may have no relation with the maximum Lyapunov exponent
governed by the linearized equations for the infinitesimal error. In general, in this case the
predictability time strongly depends on the details of the system [3, 8].

According to the Oseledec theorem, the leading eigenvalue of the linearized equations
of motion is exgimaxt), €xcept on a set of points of measure zero. The sub-leading
eigenvalues have the formte and, taken together, the leading and sub-leading Lyapunov
exponents measure the growth ratedeflimensional volumes spanned Byinfinitesimal
vectors, where/ can range from 1 to the dimensionality of the space where the motion
takes place.

In dynamical systems, in addition to Lyapunov exponents, an important dynamical
characterization is given by the Kolmogorov-Sinai entropy, which measures the bandwidth
necessary to observe a system over time, so that it could later be faithfully reproduced
from the observations [5]. Arguing heuristically, new observations are necessary if an error
grows in time, and the necessary rate of accumulation of information is the growth rate of
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the error, and therefore one expects the Pesin theorem,

hks =D Ai 2
2i>0
to hold true for a large class of systems.

It was realized by Shannon that with finite error tolerance, the relevant quantity is the
bandwidth necessary to observe a system such that it could later by reproduced within
this error, not to arbitrarily high accuracy. This quantity was called ‘source entropy with
respect to a fidelity criterion’ by Shannon [10], andéntropy’ by Kolmogorov [11], who
found analytic formulae, valid for Gaussian variables and Gaussian stationary processes.
Recently the concept of-entropy was taken up by Gaspard and Wang, who computed it
from experimental data in thermal turbulence [12], and for a very large variety of model
problems in stochastic processes and statistical physics [13]. We especially recommend
their lucid and remarkably complete review [13].

However, thec-entropy does not say all one wants to know about predictability in the
large. Just as the Lyapunov exponent is often more relevant, and more easily computable,
than the Kolmogorov—Sinai entropy, so the predictability time with respect to a finite
perturbation should be determined by a quantity analogous to the Lyapunov exponent, and
not by thee-entropy.

The natural starting point in looking for such a quantity is the time it takes for a pertur-
bation to grow from an initial sizé to a toleranceA. We call this the(8, A) predictability
time and denote it byf'(§, A). Generally speaking, the predictability time will fluctuate.
The natural definition of the finite-size Lyapunov exponent is, therefore, an average of some
function of the predictability time, such that if boshand A are in the infinitesimal range,
we will recover the usual Lyapunov exponent, and an obvious choice is then

1 A
1o A= <r<m>' (a) ' )

In appendix A we discuss other possible definitions for the finite-size Lyapunov exponent
and the relation with the-entropy.

In contrast to infinitesimal perturbations, for finite perturbations the thresholid
typically not to be taken much larger than the perturbasiohVhat is interesting, and what
makes finite-size Lyapunov exponents different from Lyapunov exponents for infinitesimal
perturbations, is the dependencen

This paper is organized as follows. In section 2 we recall the multifractal approach
to turbulence, and Lorenz approach to the predictability problem within the Kolmogorov
theory. We show that there are no multifractal corrections to the results of Lorenz, but that
the scaling range for the finite-size Lyapunov exponents is shorter. In section 3 we describe
numerical experiments on predictability in shell models for three-dimensional and two-
dimensional fully developed turbulence. In section 4 we present the results from the eddy
damped quasi-normal Markovian (EDQNM) approximation for the shell model, and compare
them with the results of section 3. In section 5 we summarize our results and present
conclusions. In appendix A we discuss alternative ways of defining the finite-size Lyapunov
exponent. Appendix B contains a derivation of the Kolmogorov results-erftropy for
Gaussian processes and Gaussian random fields. In appendix C we apply the results of
appendix B to spacetime Gaussian fields with spectra as in Kolmogorov 1941 theory of
three-dimensional turbulence, and to fictitious zero-dimensional fields that describe shell
models. We show that the finite-size Lyapunov exponent is the same for any dimensionality,
but the e-entropy largely depends on the dimensionality-dependent density of degrees of
freedom. The results of sections 2 and 3 were also presented in less generality in [4].
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2. Multifractals and multiscaling

Our understanding of high Reynolds-number turbulence is still mainly based on the
fundamental contribution of Kolmogorov in 1941 [14]. Here we will just discuss
the predictions of the Kolmogorov theory and of its multifractal generalizations on a
phenomenological level [15, 17].

Turbulence is a statistically stationary state of matter on macroscopic scales maintained
by external forces. One considers only effects that are captured in a hydrodynamic level
of description, that is the time evolution is supposed to be completely described by the
macroscopic Navier—Stokes equations [18]

du+ (u-Viu=—-VP +vVu 4)
V.u=0 (5)
wherew is the velocity field. From the typical length scalg the typical fluctuations of
velocity on that scalé/, and the viscosity, we can form the Reynolds number,
LV
Vv
which characterizes the flow.
The multifractal model [15-17, 8] consists in assuming that at scales much less than

L, however sulfficiently large that the action of viscosity is weak, the velocity differences
assume a scaling form

Re = (6)

/ h
ute+) —u@i =~V (1) . @

Different values ofsz are assumed to occur according to a probability distribution, which
also takes a scaling form

el <[ ()6

The function Oh) is the fractal dimension of the subset with scaling exporientThe
moments of the velocity differences on length sdaéan be computed as

qh 3—-D(h)
(e + )~ w@ ) ~ v [ (i) (,{) d (©)

and, for smalll (i.e. in the inertial range), the integral in (9) can be evaluated by the
saddle-point method:

L
{q = rrlin[qh +3—-D()]. (11)

4
(lu@+1) —u(@)]|?) ~ V7 <l) (10)

The model is physically reasonable for a large set of possible choices of the function
D(h), but not entirely arbitrary. By normalization, the value of/p must always be< 3,
and the maximum must be obtained for someThat is

3— D(h) > 0. (12)

The function Ok) can have support only at positivie because a negative value/oimplies
that velocity fluctuations in a local inertial frame of sizéncrease without limit ag tends
to zero. The Navier—Stokes equations are derived under the assumption that all velocities
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are much smaller than the velocity of sound, and this condition would then no longer hold
[17]. Furthermore, an exact result of Kolmogorov assuresghat 1, so that

3h+3-D(h) =1 (13)

where equality is obtained for at least one valué: $17]. The inequality (13) is analogous
for turbulence of the inequality («) < « for multifractal measures [8].

In terms of the multifractal model, the Kolmogorov theory is formulated by supposing
that the function k) has support only at a single point. From (12) and (13) it then follows
that this point must bé = % and that Dé%) = 3. It further follows the Kolmogorov law

p/3
(lu(@+1) —u(@)|’) ~ VP (2) . (14)

Energy dissipation per unit mass and tinag, has dimensiori’3/L. We could, therefore,
also write the right-hand side of (14) in the more familiar fofeh)?/3

From (14) it follows by balancing in (4), that viscous forces become comparable with
inertial forces at the Kolmogorov scalewhich marks the lower end of the inertial range:

n=LRe ¥%, (15)
If there exists more than one value /othen each: selects a different damping scajéh).
By using (7) and balancing, one gets [19]

n(h) = LRe Y0, (16)

Lorenz investigated the predictability problem within the framework of the Kolmogorov
theory [20]. Assume that a disturbance on sdafgows wih a a characteristic time rate
given by the turn-over time at this scale:

I L (1\*®
(u?)

We can turn around (17) and say that after a tingedisturbance will have grown large on
all scales smaller than

3/2
I(t) ~ L (‘f) (18)

since all the smaller scales contribute relatively little. The size of the disturbance will then
be (u,z(,))l/z. If we call the difference between two fieldsand use the Kolmogorov relation

8 ~ V(/L)*? (see (7) withh = 1), we can rewrite (17) as the predictability time with
respect to a perturbation of side

L [(8\?
)~ (V> . (19)

In other words, the predictability time of a perturbation of sizgrows ass? in Lorenz
scenario. The finite-size Lyapunov exponent thus decreases with the error thresbold as
Finally, we can inser$ in (18), and find how the error grows with time:

Vi
8(1) ~ v,/f. (20)

The upshot of these simple estimates is that finite error growth and predictability in high
Reynolds number turbulence are characterizedliggbraic laws, very different from the
exponentiallaws characteristic of infinitesimal perturbations in chaotic dynamical systems.
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We now turn to possible consequences of a spectrulrsdb the predictability problem,
in direct analogy with the Lorenz theory. We can rewrite the probability distribution (8) as

ol v | (1) (1) |} (0) e @

where we have identified; with §, and used (7) to relattand§. The length/ is now
assumed a fluctuating quantity, and has the interpretation of the scale such that two fields
are uncorrelated on all scales smaller thHarwhile the distance between the two field
configurations iss.

The finite-size Lyapunov exponent is, according to (3), proportional to the expectation
value of the inverse predictability time:

()=t G G)

In the small error limit the integral can be evaluated by the saddle-point method and we
thus expect the finite-size Lyapunov exponent to scale as a power of the error size:

(o) 2 (v) @
2—hD(h)] . (24)

X =rr}1in[1+

The exponenty is always equal to the Lorenz value2. This follows from the inequality
(13), which can be rewritten in the form

2—D(h) S _
h

The equality holds for the exponeht which dominates the third-order structure function.
As far as we know this result is new. One could therefore conclude that the exgonent

for the scaling of the finite-size Lyapunov exponent with error threshold is a new invariant

of the multifractal approach to turbulence, and that the {&\T (§)) ~ 62 can be easily

observed in numerical experiments. This is not quite simple, due to the influence of the

fluctuating cut-off (16). The smallest fluctuation in a field scaling with exponeist

1+ 2 for all A. (25)

8(h) = VRe M+ (26)

which inversely determines the smallest value:odontributing to a fluctuation of sizé.
A modified version of (22) therefore reads

1 B u V hmax 5 1-1/h 8 (3-D(h))/h
Fo)= L[ 6G) () - @)

The integral is dominated b as long ass is much larger thaw* ~ V Re~"3/(1+h)  For
smallers values, the integral is dominated by the lower end-point in (27), which leads to an
intermediate dissipative range, in the sense of Frisch and Vergassola [21]. As a consequence,
we have

Amax for § < 8(hmay)
1
<T(8)> ~ 5@ for §(hmay) < 8 < 8* (28)
572 for § > §*
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with

=1+ 2700 2

where/ and s are related via (26). From (13) it follows thag < % in the multifractal
approach, and therefore the bottom of the scaling range of the finite-size Lyapunov exponent
is larger than the corresponding error size in the Kolmogorov theory. The scaling range for

the finite-size Lyapunov exponent thus is generally shorter in a multifractal model.

3. Error growth in shell models

Simplified dynamical models of fluid turbulence with relatively few degrees of freedom,
collectively referred to ashell modelshave been studied since the 1970s. These models,
by construction, typically include a Richardson cascade of energy from large to small
scales. Some of the models are dynamically stable, with a fixed point which reproduces
the Kolmogorov law for the energy spectrutii(k) ~ k~>3. An historical overview, with
references to much of the early work, can be found in a recent monograph [22].

More interestingly, other models are dynamically unstable, with chaotic motion taking
place on a strange attractor where the Kolmogogdaw holds to good accuracy, but not
exactly. One of the simplest examples is the family of models introduced by Gledzer [23],
and Yamada and Ohkitani [24], now commonly called the GOY models [25]. They have
recently been the subject of several investigations [26, 27,7, 28, 29]. An in-depth description
of this work can also be found in [22].

The GOY models are defined as follows. Fourier space is dividednintol, ..., N
shells, labelled by the wavevector moduliys= k02", wherekg is a constant. The velocity
difference over a length scalg ~ k! are represented, each by one complex variaple
which obeys the following system of coupled ordinary differential equations:

d .
&Mn = _ngun +18n + f‘sn,4 (30)
8n = akntty g1ty o+ bk 1ty _quy g + Chy_guy ity g (31)

where f is the strength of the external force, acting on large scales,vath@ viscosity.
For any values of the three coefficientsbh andc, phase-space volume is preserved in the
force-free inviscid limit.

The restricted number of degrees of freedom is both the main advantage and
disadvantage of shell models. It is an advantage, because it allows simulations at much
lower viscosity and for much longer time than in the full Navier—Stokes equations. But it
is also a severe departure. All spatial structure of the field is ignored.

One of the coefficients in (31), say can be scaled to one and the condition of energy
conservation fixes one more, such that, in terms of one parameétés equal to—e andc to
—(1—¢). With ¢ greater than one the GOY equations conserve one more positive definite
guantity besides energy, i.e. an analogous situation to two-dimensional hydrodynamics.
The dynamical behaviour of the GOY models in this range is rather far removed from
two-dimensional turbulence as was shown in recent papers [30,31]. We include below a
study of predictability in such shell models, but just as a simplified model to demonstrate
one possible scaling behaviour of the finite-size Lyapunov exponent.

With parametere in the range between zero and one, the GOY models also preserve
another invariant, but one which is not positive definite. In the following we will look at
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the GOY model with the standard choice eotqual to%, ie.

a=1 b=—% c:—%. (32)

The second invariant then has a physical dimension of helicity [28]. Presumably that is the
reason why this particular model has turned out to be so close to numerical and experimental
data on Navier—Stokes turbulence in three-dimensional [32, 33].

Before we turn to the numerical experiments, let us summarize some salient features
of the system defined by (30)—(32). Energy is pumped into the system by the force, which
acts only on shells with low values af and is removed at high shells by viscosity. From
ko, v and the typical fluctuations of velocity on large scal&s,we can form a Reynolds
numberRe = V/kov. We consider the situation wheiRe is large, such that there is a
wide range im where the external and viscous forces are both negligible compared to the
inertial forces. In this inertial range, we havia,|2) ~ k, %2, where the exponen is close
to % [27].

An estimate of the smallest excited scale is in analogy with the Kolmogorov scale
k.- ~ koRe¥*. The slowest dynamical scale is the time-scale of the shells containing most
energy, about AkoV, and the fastest is.* ~ k. (|lu,+|?)*?, or, aboutkoV Re*/2. From the
fastest time scale it follows, by dimensional analysis in the Kolmogorov theory, that the
leading Lyapunov exponent should grow with the Reynolds numbete&€, a prediction
due to Ruelle [34]. In the multifractal picture there are corrections to this estimate and that
the leading Lyapunov exponent of the GOY shell model scaleBeéswhere

D(h) —1—2h
“_rq?x[ 1+h ] (33)
It is indeed numerically observed to scale”4%, in good agreement with a computation
of o staring from a function 7), obtained by a parametric fit of measured values of the
scaling exponents, in experiments [16, 7].

The mean square fluctuations at the Kolmogorov scale(jare|?) ~ Re V2. If we

compute the distance between two shell variable configurations as

=l = 3 Juy —u? (34)

an error smaller than @e~/%) is relatively small all over the inertial range. It can be
taken to be infinitesimal, and its growth rate will be the fastest linear growth rate.

If, however, the error is larger than(®e~1/4), it could be larger than the typical size
of the fluctuations at the Kolmogorov scale. Such an error would have to be concentrated
on larger scales, since otherwise we have that for semg and/oru/, is much larger than
the typical size. In other words, a physical perturbation larger thaRe@/#) cannot be
obtained by a random perturbation of that size uniformly distributed over all the shells.

In appendix A we discuss some possible definitions for the finite Lyapunov exponents.
In what follows we adopt the following procedure. After a long integration time to let the
system relax towards the statistically stationary state, we introduce a very small error. This
is done by generating a new shell variable configuratiprdiffering from u, by a small
fraction of (Ju,|?)¥/?. Another possible approach would be, that if we want an initial error
of sizee, we determine a shell, such that(|u, |?)Y/? is aboute, and we concentrate the
perturbation on shells above.

We then iterate:, andu,, (perturbed system) for again a long time, such that the error
has grown to a threshold, which is still small comparedvt@e /4. We thus have two
realizations of configurations in the statistically stationary state, which only differ by a small
error, which we callso.
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Further we define a series of threshobjs= r"§y, and we measure the times it takes
for the error to grow fromsy to 6;, and so on. For brevity we will call these times error
doubling times, even if can be different from two. The threshold rateshould not be
taken too large, because then the error has to grow through several different scales before
reaching the next threshold. On the other hand, the ratannot be too close to one, so
a sensible threshold rate is on the order of 2. The most convenient choiceleérly
depends on the how the fluctuations in the shell variable depemd @and in what way we
measure the error. For our model (31) with the error measured by (34), the range of error
sizes in the inertial range is not large, scalingRas/#. For 35 shells, which is the largest
system we simulate, we can take equal to 18°, which gives an the error range of about
300. With error threshold rate equal to 2, that would give about eight data points, with
some points lost on both ends due to boundary effects. For practical reasons we therefore
taker equal tov/2.

When we have performedy error-doubling experiments, we can form an estimate of
the expectation value of some quantity

1 N
(Ao = ZA,-. (35)
i=1

This is not the same as taking a time-average, since different error doubling experiments
may take different times. Indeed, we have

1 /7 Z‘Aifi (AT).
A, == | A@)dr = = = . 36
(A) T[o (t) dr S5 =y (36)

A particular case of the above relation concerns the mean error doubling times themselves.
Let 7,(8,) be the time it takes for an error to grow from threshé|do §,,1. Then

A(S8y) =< 1 > Inr = 71 Inr (37)
T.Gn) [, (T (8n))e

where we have used the definition of (3).

The finite-size Lyapunov exponents(s,), can be compared with shell turn-over times
as follows. We first select a shel} such that(|u,, |?)*? is abouts, and then estimate;™*
ask,,8, which scales ag=2. This argument for typical error growth times is the same as
the Lorenz argument for three-dimensional turbulence [20], discussed above in section 2.

In figure 1 we compare error doubling times and shell turn-over times, as a function of
size of the perturbation and of the typical fluctuations in the corresponding shell. Below
the Kolmogorov scale, the turn-over times increase: we are here in the dissipation range,
where the shell amplitudes decrease quickly. On the other hand, the doubling times tend to
a constant as the error threshold is small. We are here in the infinitesimal range, and the
constant is approximatively the inverse of the Lyapunov exponent. At the Kolmogorov scale,
there is a rather large discrepancy between the Lyapunov exponent and the turn-over time.
This observation, that the Lyapunov exponent obeys a scaling law with a sizeable numerical
pre-factor, has been made before [27], but without a plausible explanation. Here we find
good agreement with our prediction that the inertial range for the finite-size Lyapunov
exponent is shorter than the spectral inertial range, because the first is limited from below
by the scaling exponerits, as in equation (26), while the second is limited from below by
the scaling exponerit, [21].

In figure 2 we compare the error doubling times for different Reynolds numbers. For
small thresholds the doubling times scale as the Lyapunov exponent, Re-H$. We also
observe that the bend away from the infinitesimal growth rate occurs at smaller error scales
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Figure 1. Inverse error doubling times (open diamond) compared with inverse shell turn-over
times (plus). Numbew of simulated shells is 27, and Reynolds numbier = v—1 = 10°,

ko = 0.05 andf = (1+ i) x 0.005. The equations were integrated with a slaved-frog scheme
[25, 46], with constant time step>210~5. The initial perturbation was randomly uniform over

all shells in the inertial range, with amplitude less tharré.0The perturbed and unperturbed
configurations were integrated until the error reached the first threspaiti 104, The error

growth rate parameter is 2/2. The number of error doubling experiments was 400. The
broken line has slope-2.
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Figure 2. In(1/ T, (5u)) versus In8u) for different Reynolds numberBe = v—1. Parameters as

in figure 1, except that the time step has been adjusted to the changing viscosity. The different
symbols refer to:N = 24 andv = 10-8 (open diamond)N = 27 andv = 10~° (plus); N = 32
andv = 10719 (open square)N = 35 andv = 10~ (cross). The chain line has slope.

for larger Reynolds numbers. This suggests that a simple scaling ansatz can be sought in
the following form: times and errors are scaled with the turn-over time and the typical
scale of fluctuations at the Kolmogorov scale, that isRey /2 and Re~%4, respectively.

In figure 3 we show such re-scaled data. The data collapse is reasonable.
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Figure 3. In[(1/T.(8u))/Re¥/?] versus I{éu/Re~%/4] at different Reynolds numberBe =

v~ Parameters as in figure 1, except that the time step has been adjusted to the changing

viscosity. The different symbols refer t&v = 24 andv = 108 (open diamond)N = 27 and
v =109 (plus); N = 32 andv = 1010 (open square)N = 35 andv = 10~ (cross). The
chain line has slope-2.

To improve the data collapse, taking into account multifractal corrections, we made a
scaling based on multiscaling [21], i.e. of the form

In{1/ T, (6v))
In(Re/Ro)

where R, Vp are parameter to be fixed, arfdx) is the scaling function. According to the
argument at the end of section 2, we ha¥e) ~ x~2 for large x, while f(x) is constant
for small values ofc. In the intermediate regimg(x) has a nontrivial form which depends
on the shape of Ot), as follows from (28) and (29). The result is shown in figure 4. The
data collapse is clearly improved.

We conclude this section discussing the case of two-dimensional turbulence. The two
dimensional Euler equation has the peculiar property of an infinite number of invariants.
Two of them are retained in a finite Fourier discretization, the energy and the average square
vorticity, or enstrophy. As we previously discussed, the second conserved quantity in the
GOY shell model depends on the choice of the paramet®Yith the choice: = g, leading
to

= f(In(6v/Vo)/In(Re/Ro)) (38)

a=1 b:—g’1 c=

equations (30) conserve in the unforced
enstrophy is here defined as

Z=3 Kul. (40)

(39)
nd inviscid limit, in addition to the energy, the

) ENIE

Despite the fact that the two-dimensional shell model superficially has the same physical
justification of its three-dimensional corresponding model, it has been demonstrated that
it has little to do with turbulence [30,31]. Moreover, all the numerical simulations
of two-dimensional Navier—Stokes equation at sufficiently high Reynolds number have
demonstrated the dynamical relevance of coherent structures which emerge spontaneously
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Figure 4. Multiscaling data collapse [see (38)]. Parameters as in figure 1, except that the time
step has been adjusted to the changing viscosity. The different symbols refér+024 and

v = 10°8 (open diamond);N = 27 andv = 1079 (plus); N = 32 andv = 1019 (open
square);N = 35 andv = 10~ (cross). The chain line has slope2. The fitting parameters
areRg =6 x 10°, Vg =5x 1072, andRe = vL.

from the turbulent flow. The predictability problem, which is more relevant for geophysical
flows in this case than in three-dimensional turbulence, is also ruled by a coherent vortex
motion in the physical space, rather than modes dynamics in Fourier space [35].

With this limitation, the study of the predictability problem, as addressed in the present
paper, in the two-dimensional shell model is nevertheless interesting because of the different
scaling behaviour with respect to the three-dimensional situation. Dimensional analysis [36]
shows that in the enstrophy cascade one expects constant—i.e. independent on the scale—
turn-over times. Hence an argument similar to that of section 2 shows that

<T,(18v)> ~ constant=s Amay/ IN7 (42)

where Amax iS the largest Lyapunov exponent. The predictability time for the two-
dimensional shell model is thus determined by a single valug,g ~ 621/3, wheree;

is the enstrophy flux toward small scales, up to a perturbation of the order of the large-
scale velocity field, where saturation effects are dominant. Figure 5 shows the finite-size
Lyapunov exponent(§v) for a simulation withN = 24 shells. The forcing term is now
f=5x10"%1+i) andv = 10°8. Because of the inverse energy cascade we introduce
in the equation (30) an artificial large-scale dissipatitfk, (v = 107°) in the first shells

n < 3 [286].

The velocity field shows a pseudo-cascade power law, see [3Q]2)Y2 ~ ¢/°kL in
a wide range K k, < 10°. The mean enstrophy flux in this rangeeis = 5 x 106 which
is in agreement with the dimensional evaluation of the eddy turnover timee .

The data plotted in figure 5 are obtained by using the method described in appendix A
for computing the size-dependent Lyapunov exponent. The same results, not reported, can
be obtained from the doubling time algorithm.

We stress once more that, in the light of the results discussed in [30], the two-dimensional
shell model is not a good model for two-dimensional turbulence. As a consequence a
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Figure 5. Scale-dependent Lyapunov exponeubu) for two-dimensional shell model with
N = 24 shells,kp = 0.05, v = 10715 and f = (1+ i) x 0.005. Note the linear scales on the
ordinate axis.

discussion of the predictability problem for two-dimensional turbulence requires the direct
study of Navier—Stokes equations [35]. Preliminary results show that this scenario remains,
nevertheless, valid in the direct cascade [37].

4. Closure approximation

In this section we describe the results obtained from the EDQNM for the shell model. The
basic idea of closure approximations is quite simple: write down the Reynolds hierarchy
for moments of the shell variables and truncate the chain to the lowest sensible order. The
important point is that in the closure approximation intermittent effects are washed out, so
we can directly test if the relevant mechanism is due to the existence of many characteristic
times. We do not report the derivation of the EDQNM equations for the shell model. The
interested reader can find it in [38].

We consider two independent realizations of the shell model figland v,, with the
same energy spectrufy, = (u,u;) = (v,v}), and both evolving according the shell model
equations (30)—(32). The distance between the two fields can be defined in terms of the
energy difference at sheil:

Ay = 3 — V) — ) = (B, — RW,) (42)
whereW, = (u,v}), and) denotes the real part. From the definition it follows
1/2
su(t) = [Z An(t):| : (43)

The evolution equations af, and W, in the EDQNM approximation read:
d
(dt + kaf) E, = 2[k20(n. 1)(En11En12 — 3EnEnia — 3EnEns1)

— k2100 — L, t)(EyEps1 — SEn_1Eni1 — SEqu1Ey)
—3kZ2 00 — 2, t)(Ey—1Ey — 3Eq2E, — SEq_2E,_1)] + 2€8,.4 (44)
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and
d
(dt + 2vk§) W, = 2[k20(n, ) (W, s Wyp — AW, Epip — W, E 0

—3ke 10 = L)Wy Epp1 — 3Wi Wiy — 3E, W)
—2k2_ 0 — 2, 1)(Ey_i Wy — SE,oW, — SWI ,Wr )] + 2€8,4 (45)

where
1-— e_[”(k3+k;21+1+k,2,+2)+//«n+/er+1+lln+2]l
On.1)=— > 2 2 (46)
v(ky + kn+l + kn+2) + Un + Unt1 + Unt2
and
Un = M(kn’ En) = aknEi-/z- (47)

We have one free parameter, the dimensionless constalttshould be adjusted such that
the spectrum is as similar as possible to the spectrum obtained in simulations of the full
equation. The energy spectrum of the shell model in the EDQNM approximation must
therefore obeyE, ~ C(oz)ez/3k;2/3 in the inertial range. The undetermined functiGiix)

is the Kolmogorov constant.

On the other hand it has become clear in several independent investigations that
intermittency corrections exist in shell models. The energy spectrum is, therefore, in reality
more closely described b¥, ~ F(€)k, ©?, where the exponertk has been estimated to be
0.70 [27]. The functionF that gives the prefactor to the power law in the inertial range
should not depend on viscosity, but depends on the forcing threutite mean dissipation
of energy per unit time, or, equivalently, the mean energy input into the system from the
force. In a really large inertial range the two power-laws are not good approximations to one
other. The best that can be done is to demand that the spectra agree as closely as possible
at the upper end of the inertial range. A reasonable agreement is obtained=d.06,
leading toC(«x) = 1.5 which is the value observed both in simulations of the shell model
and in experiments [39].

The procedure described in the previous section to compute the scale dependent
Lyapunov exponent for the shell model can be adopted here for the closure equations.
In practice after a long iteration time, to have a well stabilized energy spediymve
take a small initial distancé&v(0) and perform the doubling experiment similar to those of
the previous section iterating equations (45).

In figure 6 we show1/ 7, (8v))/Re/? as a function of the rescaled distartag/ Re =14,
for different Re = v=1. The other parameters aré = 32 shells,kg = 0.05, integration
step 10° andr = 2%2, From figure 6 we see that the closure approximation leads to the
same scenario observed for the shell model, confirming that this is due to the existence of
many characteristic scales. We note that the slope of the cundvfdte >4 > 10 is the
Lorenz value—2 since in the EDQNM approximation there are no intermittent corrections.

We note that in this case, since there is no intermittency, the effective inertial range
roughly coincides with the inertial range. In figure 7 we compayd, (5v)) and the inverse
of the turnover timer—1(n) = k, EY? as a function of the distanc®. In the figure we
usedr = 2.

5. Conclusion

We have introduced a generalizatiaris) of the leading Lyapunov exponent to finite
perturbations of sizé. The generalization is quite general, since it is based on ‘doubling’
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Figure 7. (1/T,(Su)) (open diamond) as a function é# for the EDQNM approximation of
GOY model withN = 32, ko = 0.05, ¢ = 1 andv = 1071%. The plus are the inverse of the
eddy turn-over times ~1(8u) = k, E~/? versusiu = (2N E,)/2. The broken line has slope2.

error times; hence, it can be used any times an error can be defined, and thus also for
systems with spatial complexity, such as two-dimensional and three-dimensional turbulence.
We note, however, that in these cases the presence of coherent structures can make the
definition of a ‘good’ distance more subtle, see e.g. [35].

Unlike the Lyapunov exponent(§) contains direct information on the predictability
time for an extended chaotic system and it is particularly useful in the presence of several
characteristic times. Moreover, it is computationally no more expensive than the standard
Lyapunov exponent.
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In the limit of infinitesimal perturbatiod, the finite-size Lyapunov exponent gives the
leading Lyapunov exponent. The way in which this limit is reached depends on the details
of the particular system and gives information about the characteristic time scales. In the
case of three-dimensional fully developed turbulence we have found a universal scaling law
A(8) ~ 82 where the value-2 of the exponent is an invariant of the multifractal approach.

The scaling law is confirmed by extensive numerical simulations on shell model for
turbulence at very high Reynolds numbers, but we warn that it would be very difficult to
observe such a scaling in experimental data because of the reduction of the scaling range
in presence of intermittency.

We have also shown and discussed the relationship between our approach and the
entropy results in literature. In conclusion, we think that it would be useful to compute
the finite-scale Lyapunov exponent in other complex dynamical systems, as a new tool for
investigating the presence of characteristic times and the predictability properties.
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Appendix A. Finite-size Lyapunov exponents andce-entropy

Here we discuss some alternative ways of computing the finite-size Lyapunov exponent
beyond the definition (3).

The first method is a modification of the standard technique [40, 41]. We integrate two
trajectoriesu(r) andw’(¢t) with initial Euclidean distancéu(0) = § and record the timé&,
when their separation become$, wherer is a given constant coefficient. The perturbed
trajectory«/(7,) is then rescaled at the original distant;ekeeping the directions’ — u
constant, and the procedure is repeated several times.

The finite-size Lyapunov exponent at scélés obtained by averaging the divergence

rate
(1 (a1
HO) = <n n ( 5(0) )> =@, " (A1)

along the unperturbed trajectony(z). The average---). is over many error doubling
experiments. In the case of infinitesimal erdprand not too large factar, this definition
leads to the maximal Lyapunov exponént,x.

The possible problem with this definition is that it assumes that the statistically stationary
state of the system is homogeneous with respect to perturbations of finite size. One may
plausibly argue that the structure of the attractor in phase space on which the motion takes
place may be fractal, and not at all equally dense at all distances from a given point. The
procedure outlined would then not necessarily exactly sample the motion on the attractor.
In practice, as it is shown by the numerical experiments, we do not find any difference
with the numerical method presented in the main text, so the effect must be quite small.
For the usual Lyapunov exponent the problem does not exist since we only use small finite
perturbations as an approximation to infinitesimal perturbations.
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The above method assumes that the distance between two states is continuous in time.
This is not true for maps and the method has to be slightly modified. In thisTgasehe
minimum time such that the distance between the two realizations is larger or equal to
Since nowsu(T,) is a fluctuating quantity, instead of (A1) we have the following formula,

see (36):
1 Su(T,)
o= g o (*57), 2

Definitions (A1) and (A2) are valid for any value of However, to have sensible results,

i.e. A(8) independent of-, the value should not be too large to avoid the interference of
different scales. In our simulations we usee- /2 andr = 2.

One could also think of removing the threshold condition used for defiffingnd
simply compute the average error growth rate after a given time interval, e.g. at every time
step. In other words, at every time stépof the integration, the perturbed trajectai(r)
is rescaled to the original distanégkeeping the directiom — v’ constant. The finite-size
Lyapunov exponent is given by the average of the one-step exponential divergence:

_ 1 Su(t + 6t)
o= (M), )

which is equivalent to the above definitions (A1) and (A2). This method is indeed the
one used for computing(d) in the case of the two-dimensional shell model. The one-step
method (A3) has the advantage that it can be easily generalized to compute the sub-leading
finite-size Lyapunov exponent following the standard orthonormalization method [40]. One
introducesk perturbed trajectories®, ..., u® each at distancé from » and such that
u® — 4 are orthogonal each to the others. At every time step, any differaff¢e- u
is rescaled at the original value and orthogonalized, while the corresponding finite-size
Lyapunov exponent is accumulated according to (A3). Here we have again the problem of
the implicitly assumed homogeneity of the attractor, but also a problem of isotropy when
we re-orthogonalize the perturbations. We note that this could be a more serious problem,
which will not be discussed here any further.

The method can be easily modified to compute the average error growthdftae
steps. To have sensible resultshould not be too large to avoid possible interferences of
different scales.

For systems with only one positive Lyapunov exponent the size-dependent Lyapunov
exponenti(§), definition (A2), or (3), coincides with the-entropy widely described below
in appendix B and by Gaspard and Wang [12, 13]. We consider now some examples.

A.1. Map with noise
Consider a chaotic deterministic map perturbed by a Gaussian term:
x(n+1) = f(x(n)) +oyn) (Ad)

wherey(n) is a stochastic variable with Gaussian distribution of zero mean and unit variance.
The y(n) for different timesn are independent. When = 0 the mapf (x) is chaotic with
positive Lyapunov exponerit. A simple computation shows that

sx(n) ~ 8x(0)e" + a8y(n — 1). (A5)

For |6x(0)| « o the noise term is negligible, so that|sx(0)|) >~ A. In the opposite limit,
|6x(0)| > o, the first term in (A5) can be neglected so tidat{n) ~ ody(n — 1). Thus
in one iteration of the map the distance between the two trajectories growsso l@rger
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than the tolerance. From (A2) we haw€|sx(0)|) ~ In(o/|8x(0)]). These are the same
results obtained for the-entropy (see [13, section 3.5]).

A.2. Ornstein—Uhlenbeck process and Yaglom noises

Consider the Gaussian process described by the Langevin equation
dx
G- +cn (AB)

wherea > 0 andy is a white noise with zero mean and correlatigii), (t')), = §( —1t').
The formal solution of (A6) reads
t

x(t) = e “x(0) + c/ e () di’ (A7)
0

so that the distance between two different process behaves in time as
t
Sx(1) = € “5x(0) + ¢ / e sn'ydr. (A8)
0

This implies thatsx(r) ~ +/ct, and thus the predictability tim& (5x(0), A) behaves as
T(5x(0), A) ~ (A/c)? so thati(8x(0), A) ~ (c/A)?> ~ (c/8x(0))?, as found for the
e-entropy (see below or [13, section 3.6.2]).

Similar computations can be done for the Yaglom noise (see [13, section 3.6.3]).

A.3. Model of deterministic diffusion
The one-dimensional map
x(n+1) = x(n) + psin2rx(n)) (A9)

presents deterministic diffusion. For example for= 0.8 the diffusion coefficient is
D ~ 0.18. The size-dependent Lyapunov exponent for this map can be computed
numerically using the definition (A2). From figure Al we see th&t) ~ 1 for small
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Figure Al. Scale dependent Lyapunov exponeiid) for the map (A9). The broken line has
slope—2.
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8, while A(8) ~ 52 for large values oB. The e-entropy shows the same behaviour (see
[13, figure 25b)]). Note that in [13] thec-entropy is measured in units of digit/iteration,
so there is a multiplicative factor In 19 2.3 with A(8) of figure 8.

Appendix B. The Kolmogorov result on e-entropies of Gaussian processes

The purpose of this appendix is to derive systematically on a physical level of rigour the
results of Kolmogorov on the-entropy of Gaussian variables and Gaussian processes and
random fields. These results were stated without proof by Kolmogorov [11], and in the
review by Tikhomirov [42]. The published proofs we are aware of are either not easily
accessible, or carried out in such generality that the simple underlying idea may be lost to
the less mathematically inclined reader. Hence the interest of including a simple derivation
here. Let us just for completeness refer to a comparatively recent paper [43].

The general setting is that of two random variakjesnd n, taking values in space%
andY. The values in two realizations gfandn are denoted andy, respectively, where
x liesin X andy liesinY. WhenX andY are continuous the probability distributions of
& andn will be denotedP: (dx) and P,(dy). Except for the trivial case, the variablesand
n are not independent, but characterized by the joint probability distribuRigyidx, dy).

The single-variable probabilities are determined from the joint distribution as

P = [ Pndy Py = [ Py, (B1)
y X
The conditional probabilities are
Pg n(dx,dy) PE n(dX,dy)
Pepp(dy) = =2 =7 Pye(dy) = = =7, B2
ey () P,(dy) le (dy) P, (dx) (B2)

B.1. Preliminaries from information theory

We suppose in this subsection that the spa&esnd Y are discrete, and consist of
finitely many points,xs, ..., x, and y1, ..., y,, and associated probabilitigs, ..., p,
andgs, ..., qm-

The entropy of the random variabl€ is

HE =-) pinp. (B3)
i=1

If we want to code a message df letters, which are given by consecutive independent
realizations ot, so taking values iny, ... x,, this can be done, in the limit whew is large,

by using H(¢)/In 2 bits per letter [10]. The paif andn specify both a source signal and
the output after sending the signal through a channel of transmission. The joint probability
distribution Pz, can be decomposed either to the pgian input) andn| (an output,
given the input), or to the paip and&|n. In the discrete case these second conditional
probabilities are denoteg;;, wherei ranges from 1 to, and j ranges from 1 ton. The
equivocationis

(H(Em)y =ij<—ZPi|j |npij>~ (B4)
J i

Shannon [10] consideredgedankerexperiment where we send an error-correcting message
parallel to the transmission gfto n, and asked for the number of bits in the error-correcting
message needed to transmiitletters in the original message virtually without error. In the
limit of large N, the answer iSH (§]1)),/In 2 bits per letter.
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Suppose further that we have some source of information which we can recode into
letters fromé&, then transmit toy, and then observe. The rate of transmission of information
is not the source entropy, since we must correct for the equivocation, buntieal
information

1§, m) = H(E) — (H(En)y. (B5)

If we introduce the discrete joint probabilitigs ; and rearrange terms, we see that (B5)
can be rewritten in a more symmetrical way, namely:
Pi,j
I¢Em=>) pijn=L, (B6)
ij PiPj
A channel of transmission of information can be considered as a collection ofgairs
and n, where the¢’s are the possible inputs, and thé the corresponding outputs. The
capacity of the channel is the maximum rate of information transfer

€ = maxi (¢, m) (B7)
N

where the maximization is performed over the collection of paiendn that describe the
channel. The fundamental Shannon theorem says that a source signal can be transmitted
over a channel, if the source entropy is less than the channel capacity.

Finally, suppose that we have an inguand we wish that the output contains only
some patrtial information abogt saying that some fidelity criterion is fulfilled. We consider
all channels consisting of the fixed sourgeand different outputs;. The least rate of
information transfer needed to specifyin this way issource entropy with respect to the
fidelity criterion

R=minI(&,n) P; fixed (B8)
n

where the minimization is performed over allwhich satisfy the criterion witl§.
In practice many fidelity criteria can be written

GE,n) <e (B9)

whereG is some suitable function anrdis a measure of the fidelity. In this case the source
entropy is naturally considered as a functioncpfind we have the Kolmogoraa+entropy

HE, e) =minI (&, n) whereG (€, n) < € and P:fixed (B10)
n

B.2. Continuous random variables

Suppose we have a random variable with a continuous distribution, that(dx) =
pe (x) dx with continuous density; (x). Then (B3) is infinite.

As stressed by Kolmogorov, the mutual information, (B5), the capacity, (B7), and, in
particular, the rate of information production with respect to a fidelity criterion, (B8), (B10),
are all also well-defined in the continuous case. In other words, although a real number
observed with infinite accuracy contains an infinite amount of information, a real number
observed with finite accuracy contains only a finite amount of information.

We can see this in a simple heuristic way as follows. If we introduce a discretization
of the spaceX into boxes with diametes, we have a new random variable that we can call
& with entropy

H(g) = dIn <;) - [ peon e x4 06) (B11)

whered is the dimension ofX.
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Similarly, from the conditional variablé|n we have a new random varialjg|n with
equivocation

1
(H(&slm)y =dIn (8) - / Pn(y)</ Pein(x, ¥) In pepy (x, y) dX> dy + O(5). (B12)

Rearranging terms as in (B6), the mutual information betwgesnd is thus

pé,n(xv }’)
I1(&,n) = ) In [ 1222
. 1) /pg"’(x y)n (ps(X)pn(y)

As the discretization tends to zero the mutual information tends to a finite value,
provided that the joint probability’: ,(dx, dy) is not singular with respect to the product
P:(dx) P, (dy), a result due to Yaglom and Gel'fand [11].

We can give a meaning to the most random continuous distribution with respect to some
given constraints by maximizing the entropy of a discretized continuous variable, as in
(B11), subject to these constraints, and then letting the discretization tend to zero. The most
random distribution with given first and second moments is thus, not surprisingly, a Gaussian
distribution with the same first and second moments. The entropy of a discretization of a
d-dimensional real Gaussian random variablwith correlation matrixC is

H(&) =dIn (;) +1Iny/(2re)? detC + O ). (B14)

All these results on the Gaussian distributions are due to Shannon [10].

) dx dy + O(). (B13)

B.3. Thee-entropy result

The spacesX and Y are now identical. We consider first a one-dimensional Gaussian
random variable, and then a finite-dimensional variable and show that the Kolmogorov
formula holds in these cases. In the next subsection, we then observe that the Fourier
components of Gaussian processes and Gaussian random fields are independent Gaussian
random variables, and so, taking the formal infinite-dimensional limit, we find the desired
result.

The fidelity criterion will be the mean square deviation:

(E—m?% <€ (B15)

Let us first estimate the answer by dimensional arguments. If the finite-dimensional normal
variable¢ is decomposed in its principal components, a fluctuation in directioil be of
typical sizeo;. To estimate the fluctuation in directiérwith an accuracy we need about

In(o; /€) bits. The answer should, therefore, be of the form

HE =AY In (%) +B. (B16)

o >€

The result of the analysis will be that is 1 andB is 0.

Let £ be a Gaussian one-dimensional random variable with variaAceélhe random
variable&|n is defined on the support @f,. We suppose it to have mean(y) and variance
a(y). We have the obvious inequality

f a(y)P,(dy) < (£?) (B17)

and the equality

/ a()P,(dy) = (€ — ). (B18)
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On the other hand, the equivocation, (B12), with fixed outcomén and given meam (y)
and variancex(y) is maximized if the variable is Gaussian with variarge). Therefore,
the mutual information betweenandyn is bounded from below by

1 o?

ren > [ 5in( ) pn. (B19)
2 \a®y)

We can, therefore, pose a constrained minimization problem over the auxiliary positive

functiona(y). Strictly speakingH (€, €) is only bounded from below by the minimization,

but, as we will see, the solution can be realized in terms of varigbbasd n with desired

properties.

H(E )—min/lln<"2)P(d) (B20)
=) 2 \ay )T

> / a(y) P, (dy) (821)

o> / a(y) P, (dy). (822)

Either one or the other of the two constraints will be satisfied at the minimum in (B20).
A variation with Lagrange multipliers gives thaiy) must be constant, either equald®
or to 2. We therefore have

H(E, €) = max[m (%) ,o] . (B23)

The derivation also shows clearly that the solution can be realized as followsislfess
thane, then&|n is Gaussian with mean zero and variance andn a delta function with
support at the origin. If, on the other hangl,is greater thar, then&|n is Gaussian with
meanm(y) equal toy and variance:2, and is Gaussian with mean zero and variance
o2 — €. By the semigroup property of Gaussian kernels it follows in both caseg tisat
Gaussian with mean zero and variance

The generalization to the higher-dimensional case is as follows. The vagable
is Gaussian with second moment3;, with principal components in a diagonal basis

(02,...,02). Atapointyy, ...,y in the support of?, we consider the variablg|n with
first momentsm; (y4, ..., y4) and second moments;(y1, ..., ys). We have, in analogy
with the one-dimensional case,

/ i (y1, - -+ ya) Py (dy) < (E7) = of (B24)
and

[ St one = - nt < & (B25)

The mutual information betweenandn is bounded by
I, n) > / s(IndetC;; — Indeta;;) P, (dy). (B26)

Some of the inequalities (B24) may hold as equalities in the solution, some not. It does,
however, follow from the diagonal structure of (B24) and (B25) and the relation

5
5Indeta = Tr 2% (B27)
o
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that when (B26) is minimizedy;; (y) must be constant iy and diagonal in and j. Let
the diagonal elements of be Dl?. We then have the following simpler discrete constrained
minimization problem:

. g;
H(, €)= mle In (D,> (B28)
€= D! (B29)
02> D2 (B30)

The minimum can be found by starting with al);’s very small and increasing them
proportionally to the gradient, that is, at the same rate. When one obDtlehits the
constraint (B30) we keep it constant from thereon and increase the others. The constraint
(B29) will eventually be fulfilled when thed;’s that still change are equal t and there

we stop. The solution is thus implicitly given in terms @fwhich can be interpreted as a
cut-off threshold for modes where normal fluctuations are small:

HE =) max[m (%) ,o] € = " minfo?. 67]. (B31)

The solution can be realized by takings a random variable with independent components,
diagonal in the same basis &sand letting theth component of only depend on théth
component ofy. The variables); andg;|n; are then constructed as in the one-dimensional
case, with the only difference that the paraméteubstitutes for the errar.

B.4. Gaussian random fields

Let us now consider a scalar Gaussian random fiel@hidimensional space. A particular
example P = 1) is Gaussian processes. We begin by the approximation that the field is
periodic with periodL in all directions. Fourier components of Gaussian random fields are
independently distributed Gaussian random variables. Therefore (B31) can be rewritten,
using the volume elememntk, equal to(2r/L)?:

27 \? o
H(, €) (Z) = Xk: max[ln (;’“) , 0] Ak (B32)
2 (2”>D =" min[o?, 6% Ak. (B33)
L - k>

In the limit whenL tends to infinity the right-hand sides turn into integrals, and the left-hand
sides to entropy and mean square distance per unit volume. Therefore, we have

D
pvolumes oy <2;> /max[;m <Ee(f)> ,o} dPk (B34)
D
2 <2i) /min[E(k),@Z]de (B35)

which, for D = 1, is the Kolmogorov result for the-entropy per unit time of a Gaussian
random process. We note thats still a cut-off to eliminate modes such that the energy of
the fluctuations in these modes is less than In fields with a power-law spectrum, such
as turbulenced can simply be substituted for a wavenumber cutff
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B.5. Other distributions and other fidelity criteria

The mean square fidelity criterion is convenient for analytical computations, but it is not
the only one possible. Shannon lists also the maximum distance, another choice would be
the mean absolute distance.

More interestingly, there may be cases where the most appropriate fidelity criteria is not
simply proportional to the distance in the mean or in maximum value. If the sigismh
Lévy-process it will have a non-negligible probability of changing by a large amount over
a short interval of time [44]. In many applications one would then like an approximating
signaln to accurately capture well the large jumps, but one would be less interested in a
very precise approximation whénchanges comparatively little [45]. A reasonable fidelity
criterion would then be that there is only a small probability that the distance betjveen
andp is large.

As far as we know no investigations have been performed of the entropy of such sources
with respect to such fidelity criteria. Of course, for &W process a mean square error
function is not possible, since the second moment is infinite. It would be possible to use
mean absolute error, as was done implicitly by Gaspard and Wang in [13], but the relevance
of such computation would have to be motivated in each case by the application at hand.

Appendix C. Spacetime processes

In this appendix we want to discuss and compare the finite-size Lyapunov exponent and the
e-entropy for a turbulent flow and for the shell model. We assume that the flow and the
shell model are both Gaussian as in appendix B, and we assume that the spectrum follows
the Kolmogorov theory, as described in section 2. Non-Gaussian effects and intermittency
correction to the spectrum are not taken into account.

At a given error threshold, we have seen that the finite-size Lyapunov exponent scales
asi(8) ~ 872, and this holds as well for the shell model as for three-dimensional turbulence.
Let us now consider the-entropy, and first give a simple dimensional estimate. It will then
be seen that the expressions (B34) and (B35) just reproduce this result. The dimensional
estimate starts from the time scales in the Kolmogorov theog) ~ k—5. The distance
between two fields that only differ in wavenumbers greater thas 6% ~ k=3, that is,
it does not depend on the dimensionality of space, but only of the form of the spectrum
E(k) ~ k3. On the other hand, the number of degrees of freedom at wavenumbers less
than or equal tc is proportional tok”. The system must be observed at a rate)~* to
capture all the motion in wavenumbers less tltanThe amount of information per unit
time and space needed to describe the system up to an error tolérantteusk”t (k)~1.
Translating this into a functional dependenceéowe have

hspacetim%) ~ 87273D (Cl)

which, for D = 3, leads taiP2°eim¢s) ~ s—11. As far as we can see there is an inconsistency

between this result, also derived in [13], and the result stated in [12], which we believe is

a misprint resulting from using an argument that really applies to the finite-size Lyapunov

exponent and not the-entropy. The very different scaling laws~ §~* andA(8) ~ 62

is also a further motivation why introducing the quantity finite-size Lyapunov exponent.
This straight-forward dimensional analysis can easily be generalized to a generic

stationary Gaussian processes with spectral density (see [13, section 6.2.6),

Ok, w) ~kF (kf) . (C2)
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The function F is supposed to vanish for arguments much larger and much smaller than
unity, and its integral is on the order of unity. The energy spectrum is, therefore,

E(k) ~ kP~ f & (k, ) dw ~ kKF+PL, (C3)

Here we will check that the previous dimensional estimates can also be obtained from
the Kolmogorov formulae (B34) and (B35), that we write in this case as follows

. 1\’ 1. [Pk, o)
spacetim _( = - > D
h t5) = (271) /max[zln( 02 )O} d’k dw (C4a)
1 D+1
82 = <2n> /min[d)(k,a)),ez] d’k do. (C5)

The first observation is that the integral owerin (C5) gives a contribution of order
k*= if k7 is less tharp?, but otherwise a contribution of ordéf92. The error is thus
determined by a cut-off wave numbg&r such that

82 ~ KTTYHD KY~02 (C6)

The second observation is that the integral avém (C4) gives a vanishing contribution
k= less than@?, that is, for wavenumbers larger than the cut-&f For smaller
wavenumbers the integration over gives a contribution of the order of?, up to a
logarithmic correction that we do not take into account. Tentropy with cut-off
wavenumberk is thus

hspacetimf(s) ~ KZtD K7V ~ 92. (C?)
Combining (C5) and (C4) we find
h(8) ~ §2(D+2)/(z+D=y) (Cg)

which is equation (6.14) of [13]. By inserting the valuBs= 3, y = %2 andz = 3 of the
Kolmogorov theory we reproduce the result (C1).
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