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Turbulence plays a major role in shaping marine community structure as it
affects organism dispersal and guides fundamental ecological interactions.
Below oceanographic mesoscale dynamics, turbulence also impinges on
subtle physical–biological coupling at the single cell level, setting a sea of
chemical gradients and determining microbial interactions with profound
effects on scales much larger than the organisms themselves. It has been
only recently that we have started to disentangle details of this coupling
for swimming microorganisms. However, for non-motile species, which
comprise some of the most abundant phytoplankton groups on Earth, a
similar level of mechanistic understanding is still missing. Here, we explore
by means of extensive numerical simulations the interplay between buoy-
ancy regulation in non-motile phytoplankton and cellular responses to
turbulent mechanical cues. Using a minimal mechano-response model, we
show how such a mechanism would contribute to spatial heterogeneity
and affect vertical fluxes and trigger community segregation.
1. Introduction
The spatial distribution of aquatic microorganisms has profound effects on the
ecology of our oceans [1,2] affecting fundamental ecological interactions, popu-
lation stability, species diversity [3] and, hence, affecting the functioning of
whole marine food webs [4]. Highly sparse non-uniform spatial distributions,
or patchiness, have distinct origins at different scales: while at the mesoscale,
it is mostly driven by reproduction, grazing, nutrient availability [5] and advec-
tion by currents [6], at smaller scales (from the scale of the cell up to the order of
a metre), the interplay between biological and physical factors plays a major
role. These include microorganismal motility and its interaction with fluid
flows and, among other processes, it shapes encounter rates [7,8], the formation
of thin layers [9], cell clustering [10] and segregation [11]. Small-scale patches
also serve as hotspots of microbial activity facilitating, for instance, interaction
with bacteria in the ‘phycosphere’, influencing global carbon and nutrient
cycling, and regulating ecosystem productivity [12,13].

Recent efforts have clearly established that motile marine microorganisms
are patchily distributed in the presence of turbulent flows [14]. Cell motility
and the response to chemical and mechanical landscapes conspire with fluid
flows to accumulate and disperse cells in different spatial environments. How-
ever, and despite non-motile species comprising two of the most important
ecological groups in the ocean (cyanobacteria, essential for nitrogen fixation
[15,16], and diatoms, carrying out about one-fifth of the total photosynthesis
on Earth [17]), a largely unanswered question concerns the response of non-
motile cells to the same turbulent cues and how it affects their sinking
dynamics, of paramount importance for global biogeochemical cycles.

Motivated by the physiological regulation of buoyancy prevalent in non-
motile phytoplankton species [18–21], here we investigate, by means of direct
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numerical simulations, the dynamics of active but non-motile
cells in a three-dimensional turbulent flow. In particular, we
focus on cells’ response to mechanical stresses such as those
locally induced by fluid forces. Although non-motile species
possess the required mechanosensitive machinery to display
rapid active responses to imposed mechanical stresses
(triggering, for instance, the production of cytosolic Ca2+

[22]), the effect of hydrodynamic stresses in buoyancy regu-
lation has been largely overlooked. Overcoming adverse
environmental conditions, including light and nutrient limit-
ations, has been considered as the most relevant driver for
buoyancy regulation [23–25]. While certainly important,
more recent work suggests this is only part of the story:
even under nutrient replete conditions, transcriptional analy-
sis reveals rapid changes in gene expression solely associated
with the exposure to turbulent flows. These include an
increase in the fatty acid biosynthesis pathways (which may
also serve as buoyancy regulators) and other determinants
of cellular metabolic state [26]. Moreover, fast and active
physiological responses are also known to directly regulate
cells’ instantaneous sinking speeds [25]. While none of
these studies disentangles the mechano-transduction path-
way linking physiological responses to changes in cell
density, they unambiguously show that non-motile cells are
able to perceive, and actively respond to, mechanical stimuli
in short times. Since buoyancy regulation is the only known
mechanism for non-motile species to control their position
in the water column, the above results render mechano-
induced buoyancy regulation as a plausible hypothesis that
serves as the starting point for our minimal model.

Here we show that, in contrast to passive tracers, a simple
law for buoyancy regulation leads to cell clustering and
species segregation, and we demonstrate how these processes
depend on physical parameters such as the cells’ settling
speed. Finally, we discuss its implication for the ecology of
marine phytoplankton.
2. Mathematical model
We consider the motion of small spherical particles of radius a
andvariable density ρp immersed in three-dimensional turbulent
flows described by the incompressible Navier–Stokes equations

r � u ¼ 0

and @tuþ u � ru ¼ � 1
r
rpþ nr2uþ f :

9>=
>;

(2:1)

Here u(x, t) is the fluid velocity, p(x, t) the pressure, ρ the uniform
fluid density and ν its kinematic viscosity. The forcing term, f,
represents a zero-mean, temporally uncorrelated, Gaussian for-
cing which injects energy at large scales at a given rate, ɛ,
necessary to sustain a statistically stationary state. Together
with the kinematic viscosity, the energy injection rate defines
the Kolmogorov scales for the length, η= (ν3/ɛ)1/4, time,
τη= (ν/ɛ)1/2, and velocity, uη= ηk/τk = (νɛ)1/4 [27]. These scales
will be used to make physical quantities dimensionless.

Small spherical particles follow the Maxey–Riley equation
[28]. In our case, as the Reynolds number Rep based on the par-
ticles’ radius a and the characteristic velocity Ua (i.e. the
maximum between particle sedimentation velocity and the
characteristic velocity fluctuation at the scale of the particle)
is very small, Rep =Ua a/ν≪ 1, derivatives computed follow-
ing the particles, d/dt, are well approximated by derivatives
along fluid streamlines, D/Dt. Furthermore, we neglect
Faxen corrections and the Basset history terms, following
standard approaches justified for very small relaxation time
[29–31]. Finally, the acceleration of the particle is written as

du p

dt
¼ b

du
dt

� u p � u
t p

� (1� b)gk̂, (2:2)

where up = dxp/dt is the particle velocity, β = 3ρ/(2ρp + ρ) is the
ratio of the fluid density to the particle density ρp, τp = a2/(3νβ)
is the Stokes relaxation time and g represents the acceleration
of gravity.

We further simplify the equations taking into account the
fact that particles are almost neutrally buoyant (β ≃ 1), that
g≫ |du/dt|—a typical condition in the ocean—and that
the Stokes time (order 10−3 s for Stephanodiscus rotula, a∼
50 × 106 m, ρ∼ 1020 kg m−3 [32]) is usually much smaller
than the smallest time scale in the flow (range from 0.1 s in
coastal regions ɛ∼ 10−4 W kg−1 to 10 s in the open ocean
ɛ∼ 10−8 W kg−1 [33]). Under these conditions, the equation
of motion (2.2) reduces to an equation for particle position

dx p

dt
¼ u p ¼ u� vsk̂, (2:3)

where vs = (1− β)τpg is the particle sinking speed in still fluid
and k̂ represents the vertical direction.

For particles with constant density, ρp, the motion
described by (2.3) is identical to that of ideal fluid tracers in
the presence of an additional constant vertical drift due to
buoyancy forces. Dynamics under these conditions cannot
produce particle clustering as the relativemotion between par-
ticles is identical to that of fluid elements.More formally, in this
case, the effective velocity field up is divergence free and there-
fore the rate of contraction in physical space is zero [34]. This
dynamics does not hold in the case of particles which are
able to regulate their density (buoyancy) as is the case of dia-
toms and cyanobacteria. In the following, we will describe
our model for buoyancy regulation in response to fluid mech-
anical stresses, following that discussed in [21]. To be specific,
we assume that the particle density is dependent on the norm S
of the local strain tensor Sij ¼ 1=2(@iu j þ @ jui), and in particu-
lar, we employ the Frobenius norm S ¼ [tr(SSt)]1=2. Since a
change in the density of particles corresponds to a change in
sedimentation velocity, the latter will depend on the flow
strain rate computed on the particle position vs = vs(Sp). As
the detailed mechanism responsible for how intracellular
responses translate into the regulation of buoyancy is still
unclear, we will analyse two possible scenarios differing in the
sign of the response: we refer to cells whose density decreases
(increases) with the mechanical stresses as shear-thinning
(shear-thickening), respectively [21].

To model how cell sedimentation velocity changes with the
local strain rate, we take inspiration from Michaelis–Menten
kinetics. We choose a response function of the form f(S) =
S/(S + SH), where SH is the strain rate half-saturation constant.
Examples of this response function are shown in figure 1
together with a typical steady distribution of strain rate in a
turbulent flow obtained from the integration of (2.1).
We further assume that the density of the particle varies line-
arly with the response function f(S) in the range ρ≤ ρp≤ 2ρ
[21], where the minimum density corresponds to a neutrally
buoyant particle. Thus, the density law for the shear-thinning
case is ρp = ρ[2− f(S)], whereas for the shear-thickening case it
is ρp = ρ[1 + f(S)]. These density laws provide the variation
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Figure 1. Probability density function of the Eulerian strain rate. Coloured
dots indicate six different values of SH used in our direct numerical simu-
lations: SHτη = 0.06, 0.18, 0.3, 0.47, 1.36, 3.0. Insets show the response
function for shear-thickening (a) and for shear-thinning (b) particles, with
different colours corresponding to the values of SH indicated in the main
panel: SH1τη = 0.06 (violet), SH4τη = 0.47 (orange) and SH6τη = 3.0 (red).
(Online version in colour.)
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of the still fluid sedimentation velocity with the norm of
the strain rate for the shear-thinning case, vs(S) = [1− S/(S +
SH)]vs,max and the shear-thickening case vs(S) = [S/(S +
SH)]vs,max, where vs,max = 2a2g/(9ν) is the still fluid sedimen-
tation velocity at the maximum density ρp = 2ρ. Note that at
the half-saturation constant we have vs(SH) = vs,max/2. The
choice of 2ρ for the maximum density is not restrictive since vs
is given by a combination of ρ and a and the results for a differ-
ent maximum density would be equivalent to those obtained
for a cell of different size. We emphasize that in deriving the
model of buoyancy, we have assumed that the particle regulates
its buoyancy immediately. This is in agreement with the charac-
teristic time scale measured in the back-and-forth transition in
the sinking rate in [25] and the measured time response to
other environmental signals [22]. It is important to clarify
that the buoyancy model derived therein does not include
any adaptive response to mechanical stresses and that, in [25],
buoyancy regulation is seen as a mechanism able to enhance
nutrient uptake by altering the nutrient-deplete boundary
layer around the cell, regardless of the external flow. However,
this does not mean that this process is not relevant or does not
take placewithin a turbulent environment (where the boundary
layer argument at the basis of [25] would be less stringent).
Indeed, it was recently shown that motile phytoplankton are
able to actively modify their migration strategy to evade turbu-
lent layers [35], while non-motile phytoplankton (e.g. diatoms)
modify their gene expression to trigger energy storage
pathways when exposed to turbulent flows [26].
3. Numerical results
We have performed a numerical investigation of the statistical
properties of several populations of both shear-thinning and
shear-thickening cells. By means of direct numerical simu-
lations of the Navier–Stokes equations (2.1) using a fully
dealiased pseudo-spectral code [36], we obtain the incom-
pressible velocity field. Statistical stationarity of the flow is
guaranteed by a white-in-time forcing f acting at a large
scale only. Simulations are done at three different resolutions
N = 64, 128, 512 (N is the number of grid points per side on
the periodic cube of size LB) corresponding to three different
Reynolds numbers or turbulence intensities. Resolutions are
chosen such that the maximum wavenumber available kmax

satisfies the relation kmaxη > 1.8 to guarantee sufficient accu-
racy at small scales at the different turbulence intensities. In
stationary conditions, a population of Nc cells is initialized
with uniform random positions xp in the domain. Particle tra-
jectories are obtained by the simultaneous integration of (2.1)
and (2.3) where the velocity field and the strain rate at the cell
positions are obtained by a third-order polynomial interp-
olation. After the particle distribution has reached a
statistically steady state, we collect data for several large-
scale eddy turnover times to ensure statistical convergence.

The numerical populations differ both in the relative sen-
sitivity to the hydrodynamic cues and in the maximum
sedimentation velocity they can reach. We have chosen 1≤
Π≤ 30 (where P ¼ vs,max=uh), which corresponds to 0.18≤
vs,max≤ 5.4 mm s−1 when we rescale time and space such
that ɛ = 10−9 W kg−1, so that we can cover rather well the
range of typical oceanic values of settling speed [37]. The
range of reported values is quite wide, since there is a signifi-
cant variation in terms of diatom species, methods for
analysing sinking speeds and experimental conditions (nutri-
ents, light, temperature, flows) [25,37–42]. In order to choose
a set of values of SH that represent different relevant situ-
ations, we computed the Eulerian strain rate of the
turbulent flow. Numerical results are presented at fixed inter-
mediate turbulence level ɛ, except for §3.2 where the effects of
different turbulent intensities on the sedimentation time are
discussed. Figure 1 shows the probability density function
(PDF) of S; coloured dots on the PDF curve indicate the
six different values of the strain constant SH used in the
simulations of the adaptive cells.
3.1. Clustering and preferential sampling
We first discuss the formation of cell clusters as a result of
buoyancy regulation. We measure inhomogeneities in the
spatial distribution of a population by its correlation
dimension D2, defined as the scaling exponent of the
probability to find two particles at a distance less than
r :P(jX1 � X2j , r)/ rD2 , as r→ 0. D2 is directly related to
encounter rates between cells, which is a crucial determinant
for ecological interactions [7]. If a given type of interaction
happens only once, cells are at a certain distance �r, the rate at
which two cells get close enough for such interaction to occur
is proportional to (i) the probability density for the cells to be
at exactly that distance P(r ¼ �r) and (ii) the typical relative
velocity of cells at that distance [43,44]. The former is simply
given by the probability density for the particles to be on
a spherical surface of radius �r, which is /�rD2�1. In short, if
D2 < 3, the probability of having particles at small distances
decays more slowly as r→ 0 than in a homogeneously
distributed population and, as a result, encounter rates increase.

For a homogeneous distribution in a space of dimension d
(here d = 3), one has D2 = d, while D2 < d indicates fractal clus-
tering. In the absence of buoyancy regulation, our simulations
show no clustering, as is expected since in this case particle
velocity is given by a constant downwards term added to an
incompressible velocity field. When regulation is switched
on, we observe parameter-dependent clustering for both
shear-thinning and shear-thickening cells (see the example in
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figure 2). In figure 3, we plot the correlation dimension com-
puted for both modes of regulation as a function of Π and
for different values of SH. In both cases, when the sedimen-
tation velocity is small, we find D2≃ 3, signalling that
distributions remain homogeneous regardless of SH. On the
other hand, for large values of Π clustering strongly depends
on the response to hydrodynamic stresses.

In the shear-thickening case, clustering is maximum (i.e.
D2 is minimum) for large values of Π and SH, while D2≃ 3
when SH is very low. In this limit, cells tend to become
very heavy (vs∼ vs,max) and fast saturation means that corre-
lation with the flow rapidly becomes very weak. As a
consequence, cells behave very similarly to the unregulated
case and mostly sink with a constant speed. In the opposite
limit (large SH), we have that vs∼ S(vs,max)/SH and observe
clustering. In this case, regulation is very sensitive and vari-
ations in sedimentation speed are strongly correlated with
the flow. However, in order to have a relevant degree of clus-
tering, vs,max has to be large to balance the large values of SH,
otherwise particles behave as slow sinkers with a consequent
reduction in fractal clustering compared to the other SH
curves at same value of Π. The non-monotonic behaviour
of D2 with SH is shown in the inset of figure 3 for thickening
cells at Π = 10 and Π = 20.

In a similar way, shear-thinning cells display stronger clus-
tering by increasing the sedimentation velocity, while the
dependency from the strain constant is opposite compared to
the first case. Indeed in the limit of large SH cells tend to
sink since vs∼ vs,max and we find D2≃ 3, while for small SH
fractal clustering can take place. The latter limit is not obvious
because it would seem that particles behave like passive tra-
cers (vs∼ 0), but from the shear-thinning density law we
obtain that vs∼ vs,max(SH/S), so regulation is a first-order
effect, although vs,max has to be large to compensate for the
small value of strain rate constant similarly to that discussed
about shear-thickening cells for the curve at SH6.

Small-scale clustering is often accompanied by a preferen-
tial sampling of regions characterized by certain properties of
the flow. This behaviour has been observed both in inertial
particles [45–47] and in swimming phytoplankton [14,48,49]
and it is also present in this case. Figure 4 depicts the average
vertical velocity of the fluid, 〈uz〉, calculated on the particle
positions as a function of the mean sedimentation speed
〈vs〉. While shear-thinning cells appear to spend more time
in regions of upwards flow velocity, shear-thickening par-
ticles preferentially sample downwards velocities. This
effect does not affect deeply the cells’ dynamics, since the
contribution of the average vertical fluid velocity is small
compared to the average sedimentation speed, and it is
related to the different buoyancy response. Indeed in both
cases, the preferential sampling is larger for the same
values of SH for which the strongest clustering occurs, that
means the largest shear half-saturation constant for shear
thickening particles and lowest SH for thinning cells.
3.2. Sedimentation time
We explore the effects of buoyancy regulation on sinking par-
ticles by looking at the distribution of sedimentation times,
defined as the time Ts needed to cover a certain vertical dis-
tance L which we will take as a multiple of LB. We compare
each population of thinning/thickening cells with passive
particles sinking at the respective maximum speed vs,max

without regulation.
The average time needed by the passive particles to cover

the distance L is known a priori and it is smaller than for
active cells. Figure 5 shows the comparison between the
PDFs of Ts for the active populations, normalized with the
average sedimentation time for passive cells �T p ¼ L=vs,max,
for both shear thickening and thinning cells for the case
Π = 10 and for L = 4LB. It is evident that there is a remarkable
difference between the PDFs’ maxima: as expected, buoyancy
control allows cells to sink more slowly compared to maxi-
mum density passive particles. The mean sedimentation
time of shear-thickening particles increases for larger values
of SH, while the opposite is true for shear-thinning cells.
The major effect of buoyancy regulation in this respect is to
lower the time-averaged ‘instantaneous cell density’ (and,
hence, the instantaneous sinking speed) well below the maxi-
mum passive value, effectively keeping cells suspended for
much longer times before ultimately sinking to the deep
ocean. Moreover, it is evident that not only does the mean
sedimentation time increase (since the comparison is made
with unregulated cells with vs = vs,max) but also the distri-
bution becomes broader, with wider tails in the PDFs. In
other words, buoyancy regulation does not simply shift
rigidly the PDF of the sedimentation time but also modifies
its shape: this implies that in the shear-thickening (thinning)
case, for large (small) SH a number of cells, contributing to
the right tail of the PDF, will remain suspended for a time
significantly larger than the average population.

This behaviour can be rationalized by considering the ver-
tical motion of sinking particles as a stochastic process with
drift. Indeed, we can replace the deterministic vertical
motion described by (2.3) with a stochastic version with a
drift given by the average of the vertical component of par-
ticle velocity Vd = 〈up,z〉 and a diffusion coefficient Dz which
takes into account the turbulent fluctuations (assumed
Gaussian), including the fluctuations of S which induce the
modulations of vs. In this way, we can recast the problem as
a standard first-passage problem [50] where the PDF of the
sedimentation times takes the form of an inverse Gaussian
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function [51] (detailed derivation is given in the electronic
supplementary material)

P(Ts) ¼ L

(4pDzT3
s )

1=2 e
�(VdTs�L)2=4DzTs : (3:1)

In figure 5, we plot this analytical prediction with the only
free parameter, Dz, fixed by the value of the variance of sedi-
mentation times which, according to (3.1), is given by
hT2

s i � hTsi2 ¼ 2DzL=V3
d . As mentioned above, buoyancy

regulation affects the shape of the PDFs resulting in an
increase of Dz (i.e. wider tails of PDFs) as a consequence of
the turbulent fluctuations that, through S variations, control
vs. This provides an excellent agreement with the numerical
data, which confirm the validity of our approach.

In a realistic physical situation, phytoplankton cells will
face different flow environments, with possibly vastly differ-
ent turbulent intensities on a seasonal or even daily basis.
It is, therefore, interesting to study how the sedimentation
time of a cell with a fixed set of parameters depends on the
strength of the turbulent flow. To this aim, we performed
simulations at three values of energy dissipation rate
ɛ≃ 10−10, 10−9 and 10−7 W kg−1, numerically obtained by
increasing the intensity of the forcing at constant viscosity.
We remark that this scenario is not equivalent to simply
taking into consideration different values of SH, as done in
figures 1–5, since the statistics of the strain changes with Re.
Figure 6 shows the sedimentation time statistics for cells
with Π = 10 and SH = SH4 in the flows of different intensities.
When turbulence is more intense, particles experience, in
general, larger values of the local shear. One can parametrize
such effect, for example, by non-dimensionalizing SH with
the value Speak corresponding to the maximum in the PDF
of strain in each run. The three cases considered have SH/
Speak = 3.76, 1.02 and 0.07, respectively. As a consequence,
more intense turbulence produces faster sedimentation for
shear-thickening particles. On the contrary, when shear-
thinning particles experience intense turbulence, they
become extremely light, almost neutral, leading to large sedi-
mentation times. Since the longest sedimentation times are
observed at the largest Re, which is, in turn, more computa-
tionally expensive, we present here only the statistics for
the two lower values of ɛ in the shear-thinning case. For
the same reason, sedimentation times are computed for L =
LB. It can be appreciated, from figure 6a, that shear-thickening
cells develop wider tails as the flow Re increases. For the case
of shear-thinning cells, increased shear slows down the sedi-
mentation. However, increased turbulence also widens the
distribution of sedimentation times, so that many cells sedi-
ment faster or slower than the average. This is probably the
most remarkable consequence of this kind of buoyancy
regulation for diatoms living in a changing turbulent environ-
ment: different levels of shear, indeed, would not only change
the average sedimentation speed, but also affect the shape of
the distribution of sedimentation times.
3.3. Segregation
Having determined that both shear-thickening and shear-
thinning cells show small-scale clustering, we then focus on
the relative spatial distribution of different populations. Com-
munity segregation (or the degree of spatial overlap) is a
hallmark of biological diversity as it facilitates the compe-
tition for resources by allowing distinct populations to
explore different ecological niches. Here, we look at how
community segregation depends on the clustering properties
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of the individual populations. We quantify segregation by the
metric defined in [52]:

S1,2(r) ¼ 1
N1 þN2

XM(r)

i¼1

jn1i � n2i j, (3:2)

where M(r) is the number of cubes in which the volume L3 is
partitioned (since this approach is based on a coarse graining
over a scale r). We computed the segregation between one
shear-thickening and one shear-thinning population charac-
terized by different parameters (SH, Π). We indicate by N1

and N2 the total number of particles of each type, while n1i
and n2i are the number of particles of either population con-
tained in each cube i. The observable in equation (3.2)
varies in the range [0, 1]; S1,2(r) = 0 implies that the total
number of the two types is the same at scale r, while the
limit S1,2(r) = 1 means that there is no overlapping between
the two distributions at the considered scale. Complete separ-
ation is expected at very small scale, giving that limr→0

S1,2(r) = 1, while no structure can be observed on the scale
of the numerical box, with limr→L S1,2(r) = 0. Finally, we
define the segregation length scale—the scale up to which
the two distributions do not overlap—as R* = r(S1,2 = 1/2).
At scales below R*, one population is sensibly more abundant
than the other and, hence, cross-population encounters will
be depleted except on the boundaries of such areas.
We consider here both populations with maximum clus-
tering and having quasi-homogeneous distributions. For the
case of homogeneously distributed particles, we take those
having correlation dimension closer to 3 and sedimentation
velocity close to zero, representing Poissonian samples. As
examples of inhomogeneous distributions, we have con-
sidered the case of the strongest clustering: shear-thickening
cells characterized by the largest SH and thinning particles
with the smallest strain constant, in both cases setting
Π = 30. Figure 7 shows the comparisons just described.
Furthermore, we have compared the values SH = SH1 and
Π = 30 for thinning cells with different Π for thickening
particles (while the condition SH = SH6 has not changed), in
order to study how the segregation length scale varies with
the parameters. The top inset of figure 7 shows the segre-
gation length, rescaled by the Kolmogorov length scale, for
the different parameter combinations as a function of the
non-dimensional maximum sedimentation velocity. The
bottom inset of figure 7 shows the cells in a thin slab taken
from the numerical box, for the case of maximum clustering
and consequently maximum segregation.

Although the correlation dimension of the attractors for the
two individual populations characterized by the maximum
clustering is, under the chosen set of parameters, almost
identical, their dynamics follow very different rules. As a con-
sequence, the two attractors are not necessarily overlapping,
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leading to well-segregated populations, as shown in figure 7.
It is also possible to appreciate how the correlation length R*
reduces accordingly to the decrease of clustering.
4. Conclusion
In this paper, we present the first analysis of the impact of
turbulence on the spatial inhomogeneous distribution of non-
motile, but actively responsive, phytoplankton in the ocean.
By means of thorough numerical simulations of a minimal
model of active buoyancy regulation of cells embedded in
three-dimensional isotropic turbulence, we show that the non-
linear interplay between advection by turbulent flows and
cellular activity leads to cell clustering in low dimensional
patches (fractal manifolds), it affects average sinking rates
and it promotes the segregation of distinct populations.
Clustering prompts encounter rates which are key to ecological
processes fundamental for population survival, such as sexual
reproduction, grazing avoidance or chemical signalling. At the
same time, clustering accelerates physical coagulation mechan-
isms and, ultimately, the formation of marine snow, coupling
buoyancy control with global biogeochemical cycles through
the regulation of vertical fluxes of organic carbon in the
ocean (i.e. the biological carbon pump). Community segre-
gation, on the contrary, facilitates the competition for
resources by allowing distinct populations to explore different
ecological niches. We also observed a preferential sampling of
certain regions of the flow based on the sign of the vertical
component of fluid velocity. This effect could, in principle, be
relevant in the case of intense, coherent structures. One such
example is Langmuir circulation [53,54]. In the latter case, the
proposed mechanism could lead to accumulation along the
upwelling and downwelling regions between the circulation
rolls. The ecological relevance of inhomogeneous planktonic
distributions (which can be produced by many different
dynamics [55,56]) along Langmuir circulation has been noted
by several authors (see [55] for a review).

In order to emphasize the significance of active cellmechano-
responses in spatial inhomogeneities, we have intentionally left
out of our minimal description any other biological processes
affecting population dynamics. However, as soon as the charac-
teristic time of sinking becomes of the order of the characteristic
time of population growth, the interplay between purely
biological (growth of the population) and physico-biological
mechanisms (buoyancy control) becomes relevant. This inter-
play should be addressed in future studies. Furthermore, a
detailed experimental characterization of cell responses tomech-
anical stresses, beyond qualitative first accounts [22], is still
pressing. In particular, quantifying physiological responses to
hydrodynamic stresses by directly measuring changes in the
sinking rate when cells are exposed to different flow conditions
is paramount. Finally, we would like to remark once again that
a similar, hypothetical mechanism of buoyancy regulation
would likely be much more complex than the minimal model
considered here, as it would depend on many factors, including
environmental conditions and the physiological state of the cell.
If buoyancy regulation similar to themodel proposed is found to
be realized in phytoplankton, our analysis would provide a
furtherexample of the role playedby turbulence in shapingocea-
nic community structure not solely through its large-scale direct
effect on phytoplankton dispersal but also through less explored
subtle physical–biological coupling at the single-cell level.
Data accessibility. Scripts and data used to produce figures can be found
at: https://github.com/mborgnino/data-buoyancy-regulating-phy-
toplankton.git.
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