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We present a detailed investigation of the particle pair separation process in homogeneous isotropic
turbulence. We use data from direct numerical simulations up to R��280 following the evolution
of about two million passive tracers advected by the flow over a time span of about three decades.
We present data for both the separation distance and the relative velocity statistics. Statistics are
measured along the particle pair trajectories both as a function of time and as a function of their
separation, i.e., at fixed scales. We compare and contrast both sets of statistics in order to gain
insight into the mechanisms governing the separation process. We find very high levels of
intermittency in the early stages, that is, for travel times up to order ten Kolmogorov time scales.
The fixed scale statistics allow us to quantify anomalous corrections to Richardson diffusion in the
inertial range of scales for those pairs that separate rapidly. It also allows a quantitative analysis of
intermittency corrections for the relative velocity statistics. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2130742�
I. INTRODUCTION

The relative dispersion of pairs of particles is important
because of its connection with the problem of concentration
fluctuations1–3 and because of the insight it provides into the
spatial structure of turbulent flows. In contrast with single-
particle dispersion, which is mostly driven by the large-scale
�energy-containing� eddies, the dispersion of pairs of par-
ticles depends on velocity fluctuations of order the separation
of the pairs. Thus, the early stages of relative dispersion, up
to the integral time scale, are expected to reflect the universal
nature of small-scale turbulence �independent of the large-
scale flow� and the intermittent character of the energy cas-
cade. The latter appears to manifest itself in some particle
pairs remaining close together for long periods of time while
others separate rapidly.

Clearly, a good understanding of the mechanisms of rela-
tive dispersion will lead to better models. Among key fea-
tures of relative dispersion are a separation-dependent time
scale and long-time correlations of quantities such as the
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relative velocity. Many different types of quantitative models
of relative dispersion have been proposed including Lagrang-
ian stochastic models, e.g., Refs. 3–5, and kinematic
simulation.6,7 For a review of relative dispersion and La-
grangian stochastic models in particular, we refer the reader
to Sawford.8 In recent years it has become apparent that the
success of these models at small scales will depend on their
ability to capture the intermittency of the separation process.5

One purpose of this paper is to provide a detailed quantita-
tive and qualitative analysis of the separation process which
we hope will eventually lead to improved models.

Results from observations of the spread of marked par-
ticles �pairs or clouds of tracers in the atmosphere and in the
ocean�, summarized in classical textbooks such as those by
Monin and Yaglom9 and Pasquill and Smith,10 are testimony
of the difficulty in getting reliable experimental data in fully
developed turbulence. Although much progress has been
made in recent years in experimental measurements of single
Lagrangian particles,11,12 relatively few Lagrangian measure-
ments have been obtained following pairs of particles. A no-
table exception is Ott and Mann13, who report Lagrangian

inertial range scaling even at modest Reynolds numbers, of
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the order R��100, where R� is the Taylor scale Reynolds
number. As a result, direct numerical simulation �DNS� is
still the most important source of detailed Lagrangian statis-
tics �e.g., Refs. 14–18 at Reynolds numbers up to order R�

�280�. In this paper, we analyze the results of a recent DNS
of three-dimensional �3D� homogeneous isotropic turbulence
seeded with Lagrangian particles.19 Although homogeneous
isotropic turbulence has limited application to real situations,
it is the simplest configuration for studying the statistics of
relative dispersion.

The paper is organized as follows. In Sec. II we outline
the numerical scheme used for calculating the data and dis-
cuss statistical uncertainty and variability. We present results
on the statistical properties of both the particle pair separa-
tion and its relative velocity. These are considered in Secs.
III and IV, respectively. In both cases, we compute the sta-
tistics as a function of time and as a function of separation,
that is, at fixed scales. The latter allows for a more accurate
separation of the dissipative, inertial, and integral scale
regions.

II. DNS METHODOLOGY

The direct numerical simulation of homogeneous isotro-
pic turbulence was performed on 5123 and 10243 cubic lat-
tices with Reynolds numbers R��180 and R��280, respec-
tively. The Navier-Stokes equations were integrated using
fully de-aliased pseudospectral methods for a total time
spanning nearly three decades �from the order of a tenth of
the Kolmogorov time scale, ��, to approximately three times
the integral time scale, TL�. The flow was forced by keeping
the total energy constant in the first two wavenumber
shells.20 The flow at R�=284 was seeded with approximately
two million Lagrangian passive tracers once a statistically
stationary velocity field had been obtained. The positions and
velocities of the particles were stored at a sampling rate of
0.07��. The numerical parameters are summarized in Table I.
In this DNS, dissipative scales are well resolved, satisfying
��dx, where dx is the grid spacing. The Lagrangian veloc-
ity was calculated using linear interpolation, which was dem-
onstrated to be adequate for obtaining well-resolved particle
accelerations.21

The particles were initially arranged in tetrads which
were uniformly distributed in the flow. A total of 960 000
pairs with initial separations r0=1.2� and r0=2.5� were
formed this way. Particle pairs with larger initial separations
were formed by following pairs chosen from different tet-
rads. In this way, we also follow pairs with initial separations

TABLE I. Parameters of the numerical simulations: Taylor scale Reynolds
�, Kolmogorov length scale �= ��3 /��1/4, integral scale L0, large-eddy turno
time scale ��= �� /��1/2, total integration time T, grid spacing dx, resolution

R� urms � � � L0

183 1.5�1� 0.88�8� 0.002 05 0.01 3.14

284 1.7�1� 0.81�8� 0.000 88 0.005 3.14
r0=9.8� and r0=19.6�. The number of pairs varied from 5
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�105 to 1�106 depending on the chosen initial separation.
In both cases, a particle may have been used more than once
to form a pair.

Previous studies have shown that Lagrangian statistics
are affected by highly non-Gaussian fluctuations �see, e.g.,
Refs. 14 and 18�. Thus, it is important to quantify the statis-
tical uncertainty of some typical variable in order to ensure
the reliability of the results within our statistical sample. Sta-
tistical errors were estimated by dividing the sample into five
subensembles and calculating the minimum and maximum
values. We find that the error is at worst approximately 15%
for the separation skewness and approximately 25% for the
relative velocity skewness. The nature of the forcing scheme
used in the present DNS meant that relatively little temporal
variability of globally averaged quantities was observed �see
Overholt and Pope22 for discussion on forcing schemes and
temporal variability�. In particular, fluctuations about the
mean of the energy dissipation, �, were at most 10% during
the evolution of the DNS. Thus, in the following we may
safely use � �and other globally averaged quantities� to scale
the two-particle statistics.

III. SEPARATION STATISTICS

A. Fixed-time statistics

We consider the motion of two marked fluid particles,
labeled by the superscripts �1� and �2�. In homogeneous tur-
bulence, it is sufficient to consider the statistics of the instan-
taneous separation of the positions of the two particles,
namely r�t�=r�1��t�−r�2��t�. Furthermore, in isotropic turbu-
lence, the separation magnitude r= �r� plays a fundamental
role in the problem of relative dispersion.

Following the well known ideas of Richardson,23 rela-
tive dispersion in the inertial range of time scales, ��� t
�TL, can be modeled in terms of a diffusion equation for the
probability density function �PDF� of the pair separation
p�r , t�. In spherical coordinates this is given by

�p�r,t�
�t

=
1

r2

�

�r
�r2K�r�

�p�r,t�
�r

� , �1�

where K�r� is a scalar eddy diffusivity. On the basis of ex-
perimental measurements in the atmosphere, Richardson pro-
posed that K�r�=k0�1/3r4/3, where k0 is a dimensionless con-
stant. Assuming a small enough initial separation and a large
enough travel time, it can be shown �see, e.g., Monin and
Yaglom,9 p. 574� that a spherically symmetric solution of �1�

er R�, root-mean-square velocity urms, mean energy dissipation �, viscosity
ime TE=L0 /urms, Lagrangian velocity autocorrelation time TL, Kolmogorov
nd number of Lagrangian tracers Np.

TL �� T dx N3 Np

1.3 0.048 5 0.012 5123 0.96�106

1.2 0.033 4.4 0.006 10243 1.92�106
numb
ver t
N3, a

TE

2.1

1.8
is given by
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p�r,t� =
Ar2

�k0�1/3t�9/2 exp�−
9r2/3

4k0�1/3t
� , �2�

where A= �3/2�8 /��9/2� is a normalization constant. This
exhibits strong non-Gaussianity with a narrow peak at the
origin and very large tails and gives rise to the celebrated
scaling for the second-order moment

	r2
 = g�t3. �3�

Here g=1144k0
3 /81 is the Richardson constant which is

supposed to be universal. This result was also derived by
Obukhov24 using Kolmogorov’s classical theory of turbu-
lence �K41�.9

The Richardson PDF is perfectly self-similar; all posi-
tive moments behave according to the dimensional law rp

	 t3p/2. The scaling �3� is notoriously difficult to achieve both
in laboratory experiments and in DNS on account of the
large separation of scales that is required to observe it. As a
result, estimates of g have varied widely, from 0.06 to 3.5.8

The main practical difficulties in achieving a long inertial
subrange are due to dissipative range effects at the ultraviolet
end of the spectrum, integral scale effects at the infrared end
of the spectrum, and the finite initial separation of the pairs.
In the dissipation range, pairs separate exponentially and
with widely varying growth rates—some pairs separate rap-
idly while others remain close together. This leads to the
formation of a broad distribution of separations. As a result,
slowly separating pairs �which remain in the dissipative
range� and rapidly separating pairs �which approach the in-
tegral scales� “contaminate” the statistics in the inertial
range. A very large Reynolds number is therefore required to
produce reliable Lagrangian statistics in the inertial range.

In Fig. 1 we plot the mean-square separation 	r2
 vs t,
normalized by the Kolmogorov microscales, � and ��, re-
spectively. Although the curves begin to collapse at large t,
they do not display a t3 scaling and still show a dependence
on the initial separation. Thus, any attempt to extract the
value of the Richardson constant will be marred by the
memory of the initial separation. The simplest way to mea-

2 3

FIG. 1. The evolution of 	r�t�2
 /�2 vs t /�� for the initial separations r0

=1.2�, r0=2.5�, r0=9.8�, and r0=19.6�. The straight line is proportional to
t3. Inset: 	r�t�2
 /�t3 for the same four initial separations starting from t /��

�15.
sure g is to plot 	r 
 scaled by the asymptotic prediction, �t ,
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and look for a plateau. These curves are displayed in the
inset of Fig. 1. It is clear that none of them produces a good
plateau, and, given the spread of curves with different initial
separations, the value will be at best an order of magnitude
estimate subject to considerable uncertainty.

An alternative method, used in Refs. 13, 15, and 18,
consists of fitting a straight line to 	r2
1/3 in a suitable time
interval. If Eq. �3� holds, this straight line, when extrapolated
back toward t=0, should pass through the origin and have a
slope of �g��1/3. For all curves, we find a small nonzero
intercept whose value varies with r0. This introduces an extra
free parameter in the linear fit corresponding to the nonzero
intercept. The curve with the smallest nonzero intercept has
r0=2.5� and gives a value of g=0.47 with an error of the
order of approximately 10% depending on the time range
�here taken to be 15��
 t
75���. This value of g is smaller
than that found by Yeung and Borgas18 and Ishihara and
Kaneda,15 though still of the same order of magnitude, but
agrees well with that of Ott and Mann13 and Boffetta and
Sokolov.14

In order to make a more complete analysis of Richard-
son’s model, we compute the PDF of the separation distance.
The Richardson PDF relies on two phenomenological as-
sumptions: the first is that the eddy diffusivity is self-similar,
the second is that the velocity field is short-time correlated.
However, it is known that anomalous corrections to the K41
scalings exist �see, e.g., Ref. 25�, and these are likely to
complicate the situation.

In Fig. 2 we compare the separation PDF for the smallest
initial separation, r0=1.2�, calculated from the DNS data,
with that predicted by Richardson, namely �2�. For small
times �up to t�40���, we observed a rapid change in shape
with the PDF showing a pronounced tail, which indicates
that while most pairs are still close together, some have
moved very far apart �not shown�. At these times the curves
do not rescale, indicating that the early stages of the separa-
tion process are very intermittent. Here, the physics of the
dissipative range still exerts an influence on the separation
process and so we would not expect agreement with the Ri-

FIG. 2. Comparison of the Richardson PDF with the DNS data. The curves
refer to data for r0=1.2� at t=5.2�� �solid line�, t=7�� �long dashed line�,
t=14�� �short dashed line�, t=42�� �dotted line�, and t=70�� �dot-dashed
line�. The thick solid line is the Richardson PDF �2�.
chardson PDF. Only for times in the range 40–70�� do we
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find reasonable agreement with the Richardson PDF. We note
that while at t�40�� we find good agreement for the tail but
a large mismatch for values close to the peak, at t�70�� the
PDF is almost indistinguishable from �2�. At large times, the
particles are moving more or less independently and so the
PDF of r2 will be a chi-squared distribution with three de-
grees of freedom �not shown�.

A more detailed analysis of the separation PDF can be
made by considering the separation skewness, Sr�t�= 	�r�t�
−r�t��3
 / ��r

2�t��3/2, and the kurtosis, Kr�t�= 	�r�t�
−r�t��4
 / ��r

2�t��2, where r̄ is the mean separation distance
and �r is the root-mean-square separation distance. These are
shown in Fig. 3 for r0=1.2� and clearly show the intermit-
tent nature of the separation process at small times, in agree-
ment with that found by Yeung and Borgas.18 The Richard-
son PDF, of course, predicts constant values for the skewness
and kurtosis, namely 1.7 and 7.81, respectively, and which
are not reached until approximately t�35��. This time is
within the inertial subrange and we may have expected the
skewness and kurtosis to level off before decreasing to their
large time values �0.49 and 3.1, respectively�. That this is
clearly not the case suggests that either contamination of the
inertial range due to the dissipative and integral scales pre-
vents us from having a region of constant skewness and kur-
tosis, or there are shortcomings in the Richardson model.

These results put the difficulties of calculating Richard-
son’s constant �described above� into context. A perfect col-
lapse of curves in the PDF would have implied self-
similarity, but its absence is not necessarily an indication of
the failure of the Richardson model; as we have already dis-
cussed, each end of the inertial range is affected by, respec-
tively, dissipation range and integral scale effects. In Sec.
III B, we show how these problems may be overcome by
measuring statistics at fixed scales.

We conclude this section by considering the correlation
function R�t ,��= 	r�t�r�t+��
 of the separation distance for
travel times within the inertial subrange. This quantity, which

FIG. 3. The separation kurtosis for the smallest initial separation r0=1.2�.
Also shown at some times are the error bars calculated from the minimum
and maximum values of the five subensembles. Inset: the separation skew-
ness for the same initial separation together with the error bars at the same
times. The horizontal lines are the appropriate values derived from the Ri-
chardson PDF and the chi-squared distribution with three degrees of free-
dom. These values are 1.7 and 0.49, respectively, for the skewness and 7.81
and 3.1, respectively, for the kurtosis.
probes two different times along the separation process, is
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influenced by the temporal properties of the turbulent energy
cascade sustaining the separation growth. In the inset of Fig.
4 we plot R�t ,�� for −t
�
0 at different travel times t for
pairs with initial separation r0=1.2�. In agreement with Jul-
lien et al.,26 we find that R�t ,�� broadens with increasing
travel time, indicating that the pairs decorrelate more slowly
at larger travel times, a consequence of the fact that larger
and larger eddies have slower and slower dynamics. In the
body of the figure, we plot the same data versus � / t. Dimen-
sional analysis, based on the assumption that the correlation
function decays with the eddy turn over time at scale r,
shows that R�t ,�� /R�t ,0�= f�� / t�. The collapse of all curves
onto a single one supports the above dimensional prediction
and tells us that, notwithstanding that the pair separation is a
nonstationary process in the Lagrangian framework, there is
a single correlation function which applies to the whole in-
ertial range.

B. Fixed-scale statistics

To disentangle the effects of different scales, an alterna-
tive approach, based on exit time statistics, has been
proposed.27 This consists of fixing a set of thresholds, rn

=�nr0, where �
1 and n=1,2 ,3 , . . ., and then calculating
the time T taken for the pair separation to change from rn to
rn+1. By averaging over the particle pairs, we obtain the
mean exit time, 	T��rn�
, or mean doubling time if �=2. For-
mally, we are calculating the first passage time. The advan-
tage of this approach is that all pairs are sampled at the same
scales and that finite Reynolds number effects are less
important.27 For particle pairs with initial condition p�r ,0�
=�2��r−rn /�� /4�rn

2, and an absorbing boundary condition at
r=rn, the PDF of the exit time, T, is defined to be

P�,rn
�T� = −

d

dT
�

�r��rn

p�r,T�dr , �4�

FIG. 4. The normalized correlation function R�t ,�� /R�t ,0� vs � / t for r0

=1.2� at different travel times. Inset: the same correlation functions now
plotted vs � /�� with −t
�
0. Curves �from left to right� refer to travel
times t=77��, t=63��, t=49��, t=35��, and t=21��.
from which we get
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P�,rn
�T� = � − 4�k0�1/3rn

10/3�p

�r
�

r=rn

, �5�

on making use of �1�. Following Boffetta and Sokolov,28 we
can derive a solution of the 3D diffusion equation �1� in
terms of an eigenfunction decomposition. This gives us

p��,t� = 

i=1

�

ci exp�− �i
2t��−7/2J7/2�3�i�� , �6�

where �= �k0�1/3�−1/2r1/3, J7/2�x� is a Bessel function of the
first kind, �i=1/3�k0�1/3�1/2r−1/3j7/2,i, where j7/2,i are the ze-
ros of J7/2�x� and ci are constants. It then follows from �5�
that the large-time asymptotic form of the exit time PDF is
given by

P�,rn
�T� � exp�− �

2k0�1/3

rn
2/3 T� , �7�

where ��2.72 is a numerical constant derived from the
leading zero of the Bessel function described above.

Using Richardson’s diffusion equation �1�, the mean exit
time can be shown to be14

	T��rn�
 =
1

2k0

�2/3 − 1

�2/3

rn
2/3

�1/3 . �8�

In the body of Fig. 5 we plot 	T��rn�
 for a range of
initial separations. It is immediately clear that there is no
dependence on the initial separation in contrast to the mean-
square separation calculated as a function of time �see Fig.
1�. Moreover, we see a much clearer inertial scaling region in
which the mean exit time grows almost like r2/3.

Equation �8� provides us with a method for calculating
the Richardson constant �since k0 is related to g�:

g =
143

81

��2/3 − 1�3

�2

r2

�	T��r�
3 . �9�

In the inset of Fig. 5, we plot the expression �9� for the

FIG. 5. The mean exit time for the initial separations r0=1.2� �thin con-
tinuous line�, r0=2.5� �long dashed line�, r0=9.8� �short dashed line�, and
r0=19.6� �dotted line� with �=1.25. The straight line is proportional to r2/3.
In the inset we show Richardson’s constant, g, vs r /� as given by �9� for the
same initial separations at R�=284. To evaluate the variability of g with the
Reynolds number, we also plot a curve �thick continuous line� for the initial
separation r0=1.2� at R�=183.
Richardson constant versus r for various initial conditions.
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We see that a collapse of curves is beginning to form for all
initial separations. We estimate the value of g to be approxi-
mately 0.50±0.05, which agrees with the value computed
above and with previous estimates of g.13,14,29 This method
has the advantage of relative insensitivity to the initial sepa-
ration and avoids the problem of the nonzero intercept dis-
cussed in Sec. III A. Of course, the present calculation of g
assumes the validity of Richardson’s model. We find that g
does not change significantly for �� �1.15,2�. It is also
worth noticing that the estimate of g is not very sensitive to
the Reynolds number �see the inset of Fig. 5�.

The exit time PDF, P�,rn
�T�, is shown in Fig. 6 for r0

=1.2� and clearly shows the exponential nature of the exit
time PDF at large times. At intermediate and large exit times,
T��rn�� 	T��rn�
, the exit time PDF agrees well with the the-
oretical prediction �7�, when reexpressed in a universal form
using the mean exit time �8�:

P�,rn
�T� � exp�− �

�2/3 − 1

�2/3

T

	T��rn�

� . �10�

The clear collapse of curves for T��rn�� 	T��rn�
 indi-
cates that the exit time statistics in this range are self-similar
�although we note that the collapse deteriorates with increas-
ing ��. The deterioration of the collapse at very large exit
times is due to statistical noise—there are relatively few
pairs which remain close together for long periods of time.
Here we have shown that by focusing on statistics at fixed
scales, such that the effect of the infrared and ultraviolet
cutoffs on the inertial range is reduced and the finite initial
separation of the particle pairs becomes unimportant, the Ri-
chardson diffusion model appears to work well for the iner-
tial range of scales. For small exit times, T��rn�� 	T��rn�
, on
the other hand, we do not find a complete collapse of curves
at different thresholds, indicating that rapidly separating
pairs are likely to exhibit intermittency �see the inset of
Fig. 6�.

The higher-order moments of T are dominated by those
pairs which separate slowly. Conversely, the moments of the

p

FIG. 6. The log-linear plot of the exit time PDF for r0=1.2� with �=1.25 at
r=21.8� �dashed line�, r=83.3� �dotted line�, and r=130.1� �dot-dashed
line�. The solid line is the large time prediction �10�. Inset: a lin-lin plot of
the same figure showing more detail.
inverse exit times, 	�1/T��r�� 
, are dominated by those pairs
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which separate rapidly and correspond to positive moments
of the separation. Kolmogorov scaling based on dimensional
analysis then leads to

�� 1

T��r�
�p� � �p/3r−2p/3. �11�

Assuming that a reasonable estimate of the exit time is
given by T�r��r /ur, where ur is the relative velocity at scale
r, intermittency corrections can be quantified in terms of the
multifractal formalism,30

�� 1

T��r�
�p� �

1

TL
p� r

L0
��E�p�−p

, �12�

where �E�p� are the scaling exponents of the Eulerian veloc-
ity structure functions as predicted by the multifractal for-
malism. In Fig. 7, we plot 	�1/T��r��p
1/p scaled by the Kol-
mogorov scaling exponents �11� and intermittent scaling
exponents �12�, respectively. The �E�p� are calculated using
the She-Lévêque formula.31 As already remarked at lower
Reynolds numbers by Boffetta and Sokolov,14 there is a
small but clear improvement in the scaling of the inverse exit
times when scaled by the multifractal predictions.

Before concluding this section, we note that the exit time
statistics can be used to measure the largest Lyapunov expo-
nent in the flow. This is because for small thresholds, rn, the
mean exit time probes the exponential growth of the separa-
tion distances. The exact relation between the “finite size
Lyapunov exponent” and the mean exit time is32

� = lim
rn→0

1

	T��rn�

log��� . �13�

In Fig. 8, we show the right-hand side of �13� for three
different Reynolds numbers �two from this numerical simu-
lation, see Table I� and one from a previous DNS study,14 at
different thresholds, rn. The usual Lyapunov exponent is re-
covered from the saturation value in the limit of small rn. As
may be seen in the figure, the data show a clear proportion-
ality between the Kolmogorov time, ��, and the Lyapunov
exponents, �, for all available Reynolds numbers. Thus, we

FIG. 7. The inverse exit time moments, 	�1/T��r��p
1/p, for p=1, . . . ,4 com-
pensated with the Kolmogorov scalings �solid lines� and the multifractal
predictions �dashed lines� for the initial separation r0=1.2� and for �
=1.25.
get
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��� � 0.115 ± 0.005.

This value is comparable with the one found by Girimaji
and Pope.33

IV. RELATIVE VELOCITY STATISTICS

A. Fixed-time statistics

We now consider the statistics of the relative velocity of
the particle pairs during the separation process and which we
denote as ur�t�=u�1��t�−u�2��t�. The relative velocity statis-
tics are of interest because they provide information on the
rate of separation of the particle pairs. We consider the sta-
tistics of the relative velocity projected in the direction of the
separation vector, the “longitudinal” component, and the pro-
jection of the relative velocity orthogonal to the separation,
the “transverse” component. The former is given by

u� =
dr

dt
= ur · r̂ ,

where r̂=r /r. The transverse component of the relative ve-
locity is given by

u� = ur − u�r̂ .

There are, of course, two transverse components of the
relative velocity, but since the turbulence is isotropic it suf-
fices to consider only one. We comment here that the relative
magnitudes of 	�ur�
, 	u�
, and 	�u��
 and the alignment prop-
erties of ur, r�t�, and r�0� have been discussed extensively
by Yeung and Borgas.18 Here, we state simply that our data
give similar results and concentrate on the PDFs of the ve-
locity components and their properties.

In Fig. 9 we plot the PDF of the longitudinal component
of the relative velocity, u��t�, for r0=1.2�. The PDF is nega-
tively skewed at t=0 �not shown�, corresponding to the Eu-
lerian distribution, but as t increases, it quickly becomes
positively skewed, indicating that pairs with small initial
separation are more likely to be diverging than converging.
This skewness then decreases and the PDF tends toward a
Gaussian distribution for travel times of order TL. The PDF

FIG. 8. The finite-size Lyapunov exponents as a function of the separation
rn for different Reynolds numbers.
of one component of u� for the same initial separation is
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shown in Fig. 10. Unlike the PDF of u�, it is symmetric about
the mean. Thus, negative velocities are as common as posi-
tive velocities indicating that there is no preferred direction
of rotation as may be expected in isotropic and parity invari-
ant turbulence. We note here that for both longitudinal and
transverse PDFs we do not see a complete collapse of curves
for times in the range t� �10,70���.

We consider the PDFs of the relative velocity compo-
nents in more detail by analyzing their skewness Su�t� and
kurtosis Ku�t�. These are shown in Fig. 11 for r0=1.2�, and
compare well with the results reported in Ref. 18. At t=0, the
Lagrangian statistics �not shown� are identical to the Eule-
rian statistics. This is reflected in the negative skewness of
u�, which is close to −0.55, the value commonly observed for
Eulerian velocity structure functions at moderate to high
Reynolds numbers.34 We also note that at early times �up to
t�10�� the maximum values of the skewness and kurtosis of
the velocity statistics are higher than the corresponding
maxima of the separation statistics. We conclude this section
by measuring the correlation of the relative velocity along
the particle pair trajectories. In the inset of Fig. 12 we plot
D�t ,��= 	u��t�u��t+��
 for −t
�
0 for pairs with initial
separation r0=1.2�. In agreement with Fig. 4 we find that
D�t ,�� broadens with increasing travel time, confirming that

FIG. 9. The PDF of u� for r0=1.2� at the following travel times �from outer
to inner curve�: t=5.2��, t=7��, t=14��, t=42��, and t=70��. The thick
solid line is a Gaussian distribution.

FIG. 10. The PDF of u�z for r0=1.2� at the same times as Fig. 9. The thick

solid line is a Gaussian distribution.
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the velocity decorrelates more slowly at larger travel times.
In the body of the same figure we plot the same data rescaled
versus � / t. We note here that the rescaling does not give as
good a collapse as for the separation statistics. This may be
due to the finite size of the inertial subrange or the presence
of tiny anomalous fluctuations in the characteristic times
governing the decorrelation of eddies of different size.

B. Fixed-scale statistics

Following the exit time method of Sec. III B, we calcu-
late the relative velocity at fixed scales in order to achieve
“uncontaminated” inertial range statistics and which we term
the exit velocities. We compute the value of the relative ve-
locity components u��r� and u��r� whenever a particle pair
has a separation within a specified logarithmic shell of radius
r=rn�1±0.1�, with rn=�nr0. This differs from the method we
used to calculate the exit times above as here we are calcu-
lating not just the velocity at the first passage but also at all
subsequent passages.

In Fig. 13 we plot the mean longitudinal exit velocity,
	u��r�
, as a function of the absolute separation, r, for differ-
ent r0. The lack of dependence on r0 is immediately appar-
ent. We also see a clear separation between dissipative and

FIG. 11. The kurtosis of u� �continuous line� and of u� �dashed line� for the
smallest initial separations r0=1.2�. Inset: the skewness of u� for the same
initial separation. The horizontal lines are the Gaussian values for the kur-
tosis and skewness.

FIG. 12. The normalized correlation function D�t ,�� /D�t ,0� vs � / t and � /��

�inset� for pairs with initial separation r0=1.2�. Curves �from left to right�

refer to travel times t=77��, t=63��, t=49��, t=35��, and t=21��.
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inertial range scales, with 	u�
 growing linearly for small r,
corresponding to the dissipation range and then growing
close to r1/3 for larger r, which corresponds to the inertial
range. Similar behavior was observed for �u��r��. However,
the very existence of a nonvanishing mean longitudinal rela-
tive velocity tells us that the two sets of statistics cannot be
identical. We consider these differences in more detail by
analyzing the PDFs of the exit velocities.

In Fig. 14 we plot the PDF of the longitudinal �exit�
velocity, P�u��, and in the inset we plot u�

4P�u��. In contrast
to the Eulerian PDF, the PDF is slightly positively skewed
initially, but as the separation threshold increases it becomes
more symmetric and tends toward a Gaussian distribution.
However, unlike the PDF of u��t� �see Fig. 9�, we do not see
an initial rapid increase in the positive tail of the PDF. At
fixed separations there is not the spread of contributions to
the velocity as there is at fixed times. The PDF of one com-
ponent of the transverse relative exit velocity, P�u�z�, is
shown in Fig. 15 for the same initial separation r0=1.2�. As
may be expected, this PDF is initially symmetric and re-
mains so for increasing separation threshold. The absence of

FIG. 13. The mean longitudinal exit velocity, 	u�
, as a function of the
separation and scaled by u��=� /��, for pairs with initial separations r0

=1.2�, r0=2.5�, r0=9.8�, and r0=19.6�. The thick solid line is propor-
tional to r and the dashed line is proportional to r1/3.

FIG. 14. The log-lin plot of the exit velocity PDF P�u�� calculated as a
function of r for pairs with r0=1.2�. The curves are for the following
thresholds: r=5.72�, r=21.8�, r=83.3�, and 130.1� �from outer to inner
curve�. The thick solid line is a Gaussian distribution. Inset: a lin-lin plot of

4
u� P�u��.
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a complete collapse of curves at different thresholds in both
PDFs indicates that the exit velocities are intermittent.

We examine the intermittency of the exit velocities by
considering their second- and fourth-order moments. Since
the exit velocity statistics resemble Eulerian velocity statis-
tics, we use the multifractal formalism for Eulerian velocity
structure functions to quantify the intermittency corrections.
In this way, we have a reasonable estimate to compare with.
The Eulerian structure functions scale according to 	�rv

��r /L0��E�p� �see, e.g., Ref. 25�. The She-Lévêque formula
for the scaling exponents, �E�p�, gives �E�2�=0.7 and �E�4�
=1.28. Figure 16 shows that the second-order moment of
both the longitudinal and transverse relative velocity compo-
nents scales according to the multifractal prediction. For the
fourth-order moment we find that the transverse component
scales well with the multifractal prediction but the longitudi-
nal component shows a small discrepancy.

V. CONCLUSION

We have considered the separation process of particle
pairs in homogeneous isotropic turbulence in considerable
detail. In addition to presenting such classical but important
statistics as the PDF of the separation distance and its

FIG. 15. The log-lin plot of the exit velocity PDF P�u�z� for r0=1.2�, at the
same thresholds as Fig. 14. The thick solid line is a Gaussian distribution.

FIG. 16. The second- and fourth-order exit velocities for the longitudinal u�

�� symbol� and transverse u�z �� symbol� relative velocities for r0=1.2�.
The dot-dashed lines are the multifractal prediction for the second- and

fourth-order moments.

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



115101-9 Lagrangian statistics of particle pairs Phys. Fluids 17, 115101 �2005�
second-order moment �which gives us Richardson’s con-
stant�, we also considered higher order moments of the sepa-
ration. Here, in agreement with Ref. 18, we found very high
levels of the kurtosis and skewness at small times for pairs
with small initial separation. A quantitative assessment of
this intermittency in the inertial subrange was made difficult
by the contamination of the inertial subrange by dissipation
range and integral scale effects. In order to get a clearer
separation between the dissipation range, inertial subrange,
and integral scales, we computed the statistics at fixed sepa-
rations, the exit time statistics. This provided us with an al-
ternative method for calculating Richardson’s constant, the
value of which agreed well with the “direct” method. More-
over, these statistics allowed us to estimate intermittency cor-
rections quantitatively in terms of the multifractal formalism.
In agreement with Boffetta and Sokolov,14 we found a small
but noticeable deviation from self-similar behavior for those
pairs that separate rapidly. The multifractal model—an iner-
tial subrange model—better captures the anomalous scaling
exhibited by these pairs.

We also calculated the longitudinal and transverse com-
ponents of the relative velocity as a function of both travel
time and the separation, that is, the exit velocities. Analogous
to the separation statistics, we found that dissipation range
and integral scale effects made a quantitative assessment of
intermittency corrections difficult in the inertial subrange for
the Lagrangian statistics computed as a function of time.
However, the fixed-scale approach showed a clear separation
of scales with the velocities scaling like the Eulerian velocity
structure functions �for moments up to order 4�. These sta-
tistics allowed us to quantify intermittency corrections in
terms of the multifractal model for Eulerian velocity struc-
ture functions. However, we also noted a small but signifi-
cant difference with the true Eulerian statistics for the case of
the longitudinal exit velocity.
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