
J. Fluid Mech. (2007), vol. 590, pp. 61–80. c© 2007 Cambridge University Press

doi:10.1017/S0022112007007859 Printed in the United Kingdom

61

Nonlinear dynamics of the viscoelastic
Kolmogorov flow

A. BISTAGNINO1, G. BOFFETTA1, A. CELANI2,
A. MAZZINO3, A. PULIAFITO2,3 AND M. VERGASSOLA4

1Dipartimento di Fisica Generale and INFN, Università di Torino,
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The weakly nonlinear dynamics of large-scale perturbations in a viscoelastic flow
is investigated both analytically, via asymptotic methods, and numerically. For
sufficiently small elasticities, dynamics is ruled by a Cahn–Hilliard equation with
a quartic potential. Physically, this amounts to saying that, for small elasticities,
polymers do not alter the purely hydrodynamical mechanisms responsible for the
nonlinear dynamics in the Newtonian case (i.e. without polymers). The approach to
the steady state is quantitatively similar to the Newtonian case as well, the dynamics
being ruled by the same kink–antikink interactions as in the Newtonian limit. The
above scenario does not extend to large elasticities. We found a critical value above
which polymers drastically affect the dynamics of large-scale perturbations. In this
latter case, a new dynamics not observed in the Newtonian case emerges. The most
evident fingerprint of the new dynamics is the slowing down of the annihilation
processes which lead to the steady states via weaker kink–antikink interactions. In
conclusion, polymers strongly affect the large-scale dynamics. This takes place via a
reduction of drag forces we were able to quantify from the asymptotic analysis. This
suggests a possible relation of this phenomenon with the dramatic drag-reduction
effect taking place in the far turbulent regime.

1. Introduction
A fundamental concept in many fields of science and technology is the coarse-

grained description of a system. According to such a concept, a particular system
can be described at different levels of detail and the question arising is what is the
interrelationship between these levels. Which level is interesting for the description
essentially depends on the typical space/time scales on which one wants to focus
attention, usually dictated by experimental requirements.

In many cases of interest, ranging from the study of the dynamics of celestial
bodies to climatology and biology (see e.g. Khouider, Majda & Katsoulakis 2003;
Karrttunen, Vattulainen & Lukkarinen 2004; Vattulainen & Karttunen 2006), the
coarse-grained dynamics is ruled by Cahn–Hilliard equations (see Bray 2002). In fluid



62 A. Bistagnino and others

mechanics, this class of equations emerges naturally in the study of the nonlinear
dynamics of large-scale perturbations. In a variety of situations, it turns out that the
evolution of large-scale perturbations is governed by a Cahn–Hilliard equation with a
fourth-order potential (see Nepomnyashchyi 1976; Sivashinsky 1985; Pedlosky 1987;
Manfroi & Young 1999). The structure of the potential controls the profile and the
interactions of the so-called kink–antikink structures observed in snapshots of the flow
(She 1987).

In the present paper, we focus our attention on a simple model of viscoelastic
flow, the so-called viscoelastic Kolmogorov flow. Its linear stability analysis has
been investigated by Boffetta et al. (2005a). Turbulent regimes and the long-standing
problem of drag reduction have been studied by Boffetta et al. (2005b). Here we
perform the intermediate step between the early stage of perturbation evolution
and the final turbulent regime. Our main aims are the understanding of the role of
polymers on the nonlinear evolution of large-scale perturbations and the possible link
between increased stability and drag reduction.

The starting point of our analysis will be results obtained by Boffetta et al. (2005a)
for the linearized stage. The main points are: (i) the most unstable perturbation is
of large-scale type and captured by asymptotic methods, at least up to moderate
elasticities of the flow; and (ii) the most unstable perturbation is transverse with
respect to the basic (Kolmogorov) flow. The same property occurs also in the
Newtonian limit.

Here we focus on the weakly nonlinear regime, which amounts to considering values
of the Reynolds number close to the marginal stability curve separating stable from
unstable regions of the phase-space. Asymptotic methods can be applied as in the
Newtonian case with the final result that polymer evolution is found to be ruled by a
one-dimensional Cahn–Hilliard equation. The crucial point here is that there exists a
critical value of the elasticity at which the order of the Cahn–Hilliard equation passes
from cubic to fifth-order. Owing to the one-dimensional character of the nonlinear
dynamics (Bray 2002), this transition has important consequences on the dynamics of
the large-scale perturbation. In particular, ‘hydrodynamic’ kink–antikink structures
which characterize the dynamics below the transition are replaced above the critical
elasticity by generalized kinks and antikinks, whose dynamics turns out to be slower
than that of ‘standard’ kinks and antikinks. Moreover, below the critical value of
the elasticity, the mechanism of instability occurs at the level of linear analysis. This
amounts to saying that nonlinear terms always tend to stabilize the exponential
growth from the linear stage. Above the critical value, we found a purely nonlinear
mechanism of instability, which enters into play provided that the initial amplitude
of the perturbation is sufficiently large. This instability seems to be akin to other
instability mechanisms found in viscoelastic flows in different geometries (Morozov &
van Saarloos 2005).

The paper is organized as follows. In § 2, we introduce the viscoelastic model
considered in the sequel and briefly review the results by Boffetta et al. (2005a).
In § 3, we use multiscale methods to derive the coarse-grained equations for the
perturbations. In § 4, we study the system around the triple critical point and work
out the evolution equations in its neighbourhood. In §§ 5 and 6, we reformulate the
asymptotic behaviour of the coarse-grained equations in terms of variational analysis
and present the numerical results that corroborate our analytical predictions. Finally,
in § 7, we address the problem of drag reduction and show that, even for the weakly
unstable regime considered here, the injection of polymers induces an enhancement
of the mean flow amplitude.
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2. Oldroyd-B Kolmogorov flow and linear stability
A popular model for describing the dynamics of polymer solutions is the Oldroyd-B

(Oldroyd 1950; Hinch 1977; Bird et al. 1987)

∂tv + (v · ∂)v = −∂p + νβ∂2v +
ν(1 − β)

τ
∂ · (σ − 1) + f , (2.1)

∂tσ + (v · ∂)σ = (∂v)T · σ + σ · (∂v) − 1

τ
(σ − 1), (2.2)

where v is the incompressible velocity field, σ is the symmetric conformation tensor
of polymers. The parameter τ is the (slowest) polymer relaxation time. The total
kinematic viscosity of the solution is ν, while νβ and ν(1 − β) are the separate
contributions by the solvent and the polymers, respectively. Their ratio (1 − β)/β is
proportional to polymer concentration and will be fixed at the value of 0.3 in the
rest of the paper. This corresponds to concentrations commonly used in laboratory
experiments.

A substantial simplification comes from the viscoelastic version of Squire’s
theorem (see Appendix A), stating that, for parallel flows, the most unstable
perturbations are two-dimensional. We shall therefore restrict ourselves to a two-
dimensional flow (ux, uz), without any lack of generality. The constant forcing f =
[F cos(z/L), 0] produces the well-known Kolmogorov flow (Arnold & Meshalkin
1960) v(0) = (V cos(z/L), 0), where V = F0 L2/ν. The corresponding conformation
tensor at equilibrium is:

σ (0) =

⎛
⎜⎜⎝

1 + 2τ 2 V 2

L2
sin2

( z

L

)
−τ

V

L
sin

( z

L

)

−τ
V

L
sin

( z

L

)
1

⎞
⎟⎟⎠ . (2.3)

The two relevant dimensionless numbers in the problem are the Reynolds number
Re = V L/ν and the Deborah number De = τV/L.

It has long been known that the Newtonian Kolmogorov flow becomes unstable for
Reynolds numbers Re >

√
2 (Meshalkin & Sinai 1961); the evolution of large-scale

perturbations is formally described by an effective diffusive dynamics, and instabilities
are associated to the loss of positive-definiteness of the eddy-viscosity tensor.

In the presence of polymers, performing a multiscale analysis (Bensoussan, Lions &
Papanicolau 1978; Bayly, Orszag & Herber 1988) on the linearized Oldroyd-B model,
we obtain an explicit expression for the eddy-viscosity tensor, valid for sufficiently
low elasticity (Boffetta et al. 2005a). The resulting stability curve in terms of the
Reynolds and the Deborah number is reported in figure 1. The phase-space (Re, De)
is divided into a linearly stable region (where the eddy-viscosity tensor is positive-
definite) and a region where there exists at least one unstable mode. The complete
diagram reveals two kinds of instabilities. When the Deborah number is sufficiently
low (as in figure 1), the flow experiences hydrodynamic-like large-scale transverse
instabilities. In this region, the critical Reynolds number grows with De, therefore
polymers stabilize the flow. This has been interpreted by Boffetta et al. (2005a), and
will be discussed in § 7, as a prelude to the drag-reduction effect observed in the
turbulent regime.

For high values of the Deborah number (not shown in figure 1), the multiscale
analysis predicts the flow to be unstable, even for very low Reynolds numbers.
However, numerical simulations show that the assumption of scale separation does not
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Figure 1. The linear stability diagram for β = 0.769. Stable and unstable regions are denoted
by S and U, respectively. The bullets represent the results obtained from a set of direct
numerical simulations of the complete Oldroyd-B system of equations, confirming theoretical
predictions for this window of parameters.

hold and multiscale techniques are not applicable. This region, possibly characterized
by purely elastic instabilities, will not be the concern of the present investigation
which focuses on 0 � De � 2.

3. Nonlinear dynamics: the Cahn–Hilliard equation
Linear stability analysis is unable, by definition, to capture the full-time dynamics

of unstable perturbations: as the perturbation grows in time, nonlinearities have to
be taken into account. We are interested here in studying the nonlinear dynamics of
the flow for Reynolds numbers slightly above the linear stability curve.

This problem has been extensively studied in the Newtonian case (Sivashinsky
1985; She 1987; Gama, Vergassola & Frisch 1994). Just above the threshold, large-
scale transverse modes become unstable and their dynamics is found to be governed
by a one-dimensional Cahn–Hilliard equation (Cahn & Hilliard 1958), a model
which emerges in a variety of hydrodynamic situations (see Nepomnyashchyi 1976;
Sivashinsky 1985; Pedlosky 1987; Manfroi & Young 1999). In the one-dimensional
case, its form reads (see Bray 2002):

∂w

∂t
= ∂2

x

δF

δw
, (3.1)

where w(x, t) is the large-scale field and F a suitable Landau free-energy functional:

F [w] =

∫
dx

[
1
2
λ|∇w|2 + I (w)

]
. (3.2)

The potential I (w) has a double-well structure whose minima correspond to two
equilibrium states and λ is some positive constant.

A dynamical description in terms of Cahn–Hilliard equations is expected also in
the viscoelastic case, at least for low Deborah numbers (i.e. close to the Newtonian
limit).

Our study of the nonlinear dynamics is based on multiscale analysis (Bensoussan
et al. 1978; Bayly et al. 1988). At the basis of the latter approach, it is fundamental to
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Figure 2. The parameters A, B and C appearing in the coarse-grained Cahn–Hilliard
equation, (3.4), as a function of the Deborah number (for β = 0.769).

choose the correct scaling between the slow and fast variables and the scaling of the
expansion parameter. Thanks to a global scaling factor, the slow space variable can
be defined as x̃ = εx. Space derivatives are then expanded as ∂i → ∂i + ε∂̃i . Assuming
a Cahn–Hilliard dynamics, in the vicinity of the critical line, i.e. ν = νc(1 − ε2), we
define a slow time as t̃ = ε4t and the dynamical fields are expanded as (Sivashinsky
1985):

v = v(0) + εw(1)(z, x̃, t̃) + ε2w(2)(z, x̃, t̃) + · · · , (3.3a)

p = p(0) + εq (1)(z, x̃, t̃) + ε2q (2)(z, x̃, t̃) + · · · , (3.3b)

σ = σ (0) + εζ (1)(z, x̃, t̃) + ε2ζ (2)(z, x̃, t̃) + · · · . (3.3c)

The next step for obtaining a coarse-grained equation for the large-scale dynamics
is to plug (3.3c) into the Oldroyd-B equations. Exploiting the chain rule, the definitions
of x̃ and t̃ and averaging along z, we obtain a set of equations involving solely the
large-scale fields. The equation for the large-scale transverse perturbation 〈w(1)

z 〉(x̃, t̃)
is obtained from the solvability condition at order ε5. The final equation has the
form of the ‘standard’ Cahn–Hilliard equation (for details on the Newtonian case see
Gama et al. 1994):

∂̃t

〈
w(1)

z

〉
= ∂̃x

[(
−A + B

〈
w(1)

z

〉2)
∂̃x

〈
w(1)

z

〉]
− C∂̃4

x

〈
w(1)

z

〉
. (3.4)

The parameters A, B, C are known functions of the parameters De and β , as shown
in figure 2. It is worth noting that A is non-negative as the system is supposed to
be slightly above the threshold of instability and we have explicitly incorporated a
negative sign in (3.4).

The saturation of the instability requires two conditions. First, C must be positive
to ensure that the instability be saturated at sufficiently high wavenumbers (still
much smaller than those of the basic flow, of order unity). Secondly, B ought to
be positive to ensure that, as 〈w(1)

z 〉 becomes O(
√

A/B), the nonlinear eddy-viscosity
−A + B〈w(1)

z 〉2 changes sign and the growth is again saturated. Both these conditions
are satisfied up to a critical value of the Deborah number, De∗ (see figure 2).

We conclude this section by stressing that all the fields up to order four are explicitly
expressed in terms of the fast variables and of the large-scale field 〈w(1)

z 〉.
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Figure 3. The phase-space around the critical point P ∗ where both the eddy-viscosity and
the coefficient of the third-order nonlinearity change sign. The region is divided into four
regions schematically sketched here by the two critical curves A = 0 and B = 0. The former
is found from the linear stability analysis in § 3. The latter is found locally, around the A = 0
curve, by solving (4.5), and is linearly extrapolated for graphical purposes as a dashed line.
For β = 0.769, the curve B = 0 is inclined at approximately 60◦ with respect to the De axis.

4. Generalized Cahn–Hilliard dynamics
Above the critical value of the Deborah number, De∗, the cubic nonlinear term

becomes negative. Therefore, the instability keeps growing until the next-order
nonlinearity becomes important.

The structure of this next term is dictated by the conservation of momentum and
the symmetries of the basic flow (as in Gama et al. 1994): ∂̃x(〈wz〉4∂̃x〈wz〉), with a
regular coefficient D in the neighbourhood of the critical point P ∗, where both the
eddy-viscosity and the coefficient of the third-order nonlinearity change sign.

Four regions can be identified around P ∗ (see figure 3). The eddy-viscosity A= 0
curve has been obtained by means of the linear stability analysis (§ 2). The linear
approximation of the curve B = 0 in the vicinity of P ∗ is obtained from the analytic
expression of B on the marginal curve and the marginal curve itself.

Zone I is linearly unstable (A> 0), has a third-order destabilizing term (B < 0)
and we can guess that a fifth-order term will enter into play to stabilize the growth.
Zone II is particularly interesting as it is linearly stable (A< 0), but has a third-
order destabilizing contribution (B < 0). Perturbing with a field of sufficiently strong
amplitude, the system jumps to the asymptotic steady state where the two nonlinear
terms (third- and fifth-order) balance each other. Zone III is completely stable
(A< 0, B > 0). In the last region, IV, as De approaches the critical value, the coefficient
B goes to zero and cannot saturate the exponential growth from the linear instability.
The fifth-order nonlinearity, which is negligible far from the critical point, must again
enter into play.

4.1. Zone I

When both the Reynolds and the Deborah numbers exceed their critical values,
previous considerations suggest the following structure for the coarse-grained
equation:

∂̃tw = −A∂̃2
xw − |B|∂̃x(w

2∂̃xw) − C∂̃4
xw + D∂̃x(w

4∂̃xw). (4.1)
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Confining the analysis to the surroundings of the critical point P ∗, we may represent
the position in phase space as:

ν = ν∗(1 − K1εν − K2ε
2
ν

)
, (4.2)

De = De∗(1 + εDe). (4.3)

Adequately choosing the K1 and K2 parameters, any point around P ∗ can be reached
as ε varies. The reason why we need to incorporate in (4.2) the additional contribution
of order ε2 will be clear shortly.

In the neighbourhood of P ∗, the coefficients A and B are expanded as:

A =
∂A

∂De
(De − De∗) +

∂A

∂ν
(ν − ν∗), (4.4)

B =
∂B

∂De
(De − De∗) +

∂B

∂ν
(ν − ν∗), (4.5)

where all derivatives are computed at P ∗.
The scaling in ε of the velocity field amplitude, εw , and the parameters εν , εDe is

found by requiring all terms in (4.1) to be of the same order in the scale-separation
small parameter ε.

The comparison between the last two terms in (4.1) fixes the relation between ε

and εw:

D ε2ε5
w ∼ C ε4εw ⇒ εw = ε1/2. (4.6)

The parameters εν and εDe are found by comparing the terms associated to A, B and
D in (4.1). Using (4.2)–(4.6), we obtain:

D ε2ε5/2 ∼
[

∂A

∂De
(εDeDe∗) − ∂A

∂ν
(K1ενν

∗)

]
ε2ε1/2, (4.7)

D ε2ε5/2 ∼
[

∂B

∂De
(εDeDe∗) − ∂B

∂ν
(K1ενν

∗)

]
ε2ε3/2. (4.8)

Choosing εν = εDe = ε and setting K1 to ensure [(∂A/∂De)De∗ − (∂A/∂ν)K1ν
∗] = 0,

both (4.7) and (4.8) are satisfied. Equation (4.7) is balanced by the second-order
term of the ν expansion, (4.2), dependent on K2. The scalings of time, pressure and
polymer conformation tensor perturbation, ε4, ε1/2 and ε1/2, respectively, are derived
as discussed in § 3.

Once the scalings have been determined, we can proceed to obtain the large-scale
equation for 〈w(1/2)

z 〉(̃t, x̃). The evolution equation emerges now from the solvability
condition at the order ε9/2:

∂̃t〈w(1/2)
z 〉 = ∂̃x

[(
− A + B

〈
w(1/2)

z

〉2
+ D

〈
w(1/2)

z

〉4)
∂̃x

〈
w(1/2)

z

〉]
− C∂̃4

x

〈
w(1/2)

z

〉
, (4.9)

where the coefficients are explicit functions of β . For β =0.769, they read:{
A = 0.5106 + 1.965K2, B = −8.979,

C = 0.9439, D = 23.11, K1 = 0.594.
(4.10)

Although (4.9) belongs to the class of the Cahn–Hilliard equations (3.1), the
emergence of the new sixth-order nonlinearity will be responsible for new dynamical
aspects, not present for De <De∗, which will be discussed in detail in § 5.
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4.2. Zone II

For Deborah numbers above the critical value, perturbations are nonlinearly unstable:
B < 0. This is true regardless of the sign of the linear term and strong enough
perturbations may then grow even if the system is linearly stable.

Let us then consider systems with ν > ν∗ and De> De∗. No major difference with
respect to case I is expected. At zeroth order, the coefficients A and B vanish and
equations (4.4)–(4.5) hold. Again, we define the position in phase-space via the two
parameters εν and εDe . As the viscosity is now larger than the critical value, a positive
sign appears in the expansion of the viscosity:

ν = ν∗(1 + K1εν − K2ε
2
ν

)
, (4.11)

while (4.3) holds. The parameter K2, as we shall point out later, can take any value
compatible with the condition A> 0.

The same calculations as discussed in the previous subsection can be carried out
to derive the coarse-grained equation for the transverse velocity. As we might expect,
its form is exactly the same as (4.9), a generalized Cahn–Hilliard equation. The only
difference is in the value of the parameters. For β = 0.769, they read:

A = −0.2202 + 1.965K2, B = −35.62,

C = 0.9439, D = 23.11, K1 = 0.5974.

}
(4.12)

Only A and B have changed with respect to (4.10), as expected since they are the
only parameters which depend on ε (and thus on Re and De) in physical coordinates.
Notice that there is an upper bound on the values we can choose for K2, reflecting
the linear stability requirement.

4.3. Zone IV

What happens when the Deborah number is barely smaller than the critical value
De∗? Sufficiently close to it, the third-order instability can be made subdominant with
respect to the fifth order and our aim here is to work out the scaling coefficients
corresponding to such a situation.

For this purpose, let us assume that the cubic nonlinearity is negligible. At leading
order, the terms associated to A, C and D must be of the same order. This means:

ε4εw ∼ ε2εw

[
∂A

∂De
(De − De∗) +

∂A

∂ν
(ν − ν∗)

]
, (4.13)

ε2ε5
w ∼ ε2εw

[
∂A

∂De
(De − De∗) +

∂A

∂ν
(ν − ν∗)

]
, (4.14)

and implies:

ν = ν∗(1 − K2ε
2), De = De∗(1 − ε2). (4.15)

Additionally, the velocity field scales as ε1/2, as the pressure and polymer fields do.
The time derivative scales as ε4.

To be consistent, we must check that the third-order nonlinearity is negligible.
Using the previous scalings and the ensuing fact that B ∼ O(ε2), we have to verify
that:

O(B∂2w3) � O(D∂2w5) ⇒ O
(
ε11/2

)
� O

(
ε9/2

)
, (4.16)
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which holds true. It is now possible to apply the strategy discussed in § 3 to derive
the large-scale equation and obtain (at order ε5):

∂̃t

〈
w(1/2)

z

〉
= ∂̃x

[(
− A + D

〈
w(1/2)

z

〉4)
∂̃x

〈
w(1/2)

z

〉]
− C∂̃4

x

〈
w(1/2)

z

〉
, (4.17)

where C and D have the same value as before, and A= 1.1740 + 1.965K2.

5. Variational formulation
It is well known that the Cahn–Hilliard equation admits a variational formulation

in terms of a Ginzburg–Landau potential (Cahn & Hilliard 1958). Equation (3.4),
after appropriate rescalings, w → (A/B)1/2w, t → A−1t, λ=C/A, is recast in the form
(3.1) with the Lyapunov functional:

F [w] =

∫ [
1
2
λ(∂xw)2 + I (w)

]
dx, I (w) = −w2

2
+

w4

12
. (5.1)

Note that mean fields only are considered, that is, w must be read as the rescaled
leading contribution 〈w(1)

z 〉(x̃, t̃).
The existence of a Lyapunov functional implies the existence of an asymptotic state

for w, if boundary conditions are periodic and stationary. Such a state corresponds
to a minimum of the Lyapunov functional and it is given by the solution of:

I ′(w) = λ∂2
xw ↔ ∂xI = 1

2
λ∂x(∂xw)2. (5.2)

The boundary conditions for this solution are given by requiring w = const which
gives, from I ′ = 0, w = ±

√
3. With these boundary conditions, the solutions of (5.2)

have the well-known kink and anti–kink structures:

w = ±
√

3 tanh

[√
1

2λ
x

]
. (5.3)

The issue now is whether or not a Lyapunov extremal formulation exists in the
generalized Cahn–Hilliard case, (4.1), as well, and how it relates to the standard
one. In particular, a Painlevé test (Ablowitz & Clarkson 1991) can be performed on
the equation to check its integrability. The calculation consists in checking that all
movable singularities (whose location depends on initial and/or boundary conditions)
are poles (see for details Ablowitz & Clarkson 1991). The test is based on a well-known
connection between the integrability property of a nonlinear differential equation and
its analytic structure for complex values of the independent variable (Kowalesvki
1889, 1890; Painlevé 1897). The explicit calculation is performed in Appendix B.
The generalized Cahn–Hilliard equation enjoys the Painlevé property and is thus
integrable.

Let us then write (4.1) after the rescalings w → (A/B)1/2w, t → A−1t, λ=C/A,

γ = AD/B2:

∂tw = −∂2
xw − 1

3
∂2

xw
3 − λ∂4

xw + 1
5
γ ∂2

xw
5. (5.4)

Integrability of this equation is related to the existence of the following Lyapunov
functional, similar to that of the standard case, yet with a sixth-order potential:

F [w] =

∫ [
1
2
λ(∂xw)2 + I (w)

]
dx, I (w) = −w2

2
− w4

12
+

γ

30
w6. (5.5)

All solutions tend to final steady states which minimize F . The approach to
the solution is, however, non-trivial and the structure is made of plateaux having
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Figure 4. The ‘generalized’ (solid) and ‘standard’ (dotted) kinks for λ= 1/2 and γ = 10/9.
The former has a manifestly shorter range. It is shown in the text that this entails longer time
scales for their annihilation with the corresponding antikinks.

velocity ±W0 (I ′(W0) = 0), separated by positive and negative kinks (see figure 4). The
amplitude of the velocity w in the plateaux is:

W 2
0 =

5 +
√

25 + 180γ

6γ
. (5.6)

Note that, at small γ , the asymptotic velocity W0 diverges as 1/
√

γ . This is intuitive:
the field amplitude equilibrating the third- and the fifth-order nonlinearities increases
as the coefficient of the fifth-order nonlinearity reduces.

The explicit expression of the profiles for kinks and antikinks is obtained from the
integration of (5.2) and (5.5). For example, when λ=1/2 and γ = 10/9, the profiles
read:

w = ±
√

15
e2

√
3x − 1√

5e4
√

3x + 26e2
√

3x + 5
. (5.7)

5.1. Dynamics of generalized kink/antikink annihilation and approach to equilibrium

Detailed calculations are performed following Legras & Villone (2003), who in turn
based theirs on Kawasaki & Ohta (1982). They are lengthy, yet simple in their basic
idea.

During metastable transitions, the kinks do not satisfy (5.2) exactly, owing to
the presence of other kinks and/or antikinks. The deviation of the amplitude in
the plateau is proportional to e−sΛ, where Λ = 4|x| and x denotes the distance to
the point where w =0. Here, s is the inverse of the typical length scale of this
deviation. The quantity s turns out to be crucial as neighbouring kinks and antikinks
attract proportionally to e−s	x , where 	x is the distance between neighbouring kinks
and antikinks (for details, see Appendices A and B of Legras & Villone 2003).

The behaviour of the kink size s is understood as follows. Consider a metastable
state of the Cahn–Hilliard equation. The potential felt by a kink w(x) close to the
plateau w = W0 is estimated by the Taylor expansion:

I (w − W0) � I (W0) + I ′(W0)(w − W0) + I ′′(W0)
(w − W0)

2

2
, (5.8)
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a

b

c
I (w)

w

Figure 5. The potentials associated to the different evolution equations. Curve a is related
to the standard Cahn–Hilliard equation (fourth-order potential); curve b represents the
generalized Cahn–Hilliard equation (sixth-order potential). Curve c is the characteristic
triple-well potential of the purely nonlinearly unstable case. The plots are in arbitrary units,
to ease the comparison between the curves.

where we know that I ′(W0) = 0. Note also that the dynamics of w does not change if
we add an arbitrary constant to the potential I , so that we can set I (W0) ≡ 0.

Let us now calculate the shape of the profile between w and W0. For a metastable
state, ∂t (w − W0) = 0, that implies:

λ

2
(∂x(w − W0))

2 +

[
I ′′(W0)

(w − W0)
2

2

]
= 0. (5.9)

Interpreting ∂x as the inverse of the typical length scale s for (w − W0), we easily
obtain s =

√
λ/I ′′(W0). The second-order derivative can be explicitly calculated using

(5.6):

I ′′(W0) = 4 + 2
3
W 2

0 . (5.10)

Qualitative properties of s are easy to grasp. At large γ , the size of the kinks tends
to a constant, independent of γ . At small γ , the kinks become steeper and steeper,
their size scaling as γ 1/2. This implies that the convergence to equilibrium will be
slower and slower as γ is reduced (recall that the kinks attract proportionally to
e−s	x).

For the same band of unstable modes, i.e. keeping λ fixed, it holds that the
convergence to equilibrium is slower for the generalized than for the standard Cahn–
Hilliard equation. Indeed, for the Cahn–Hilliard potential ICH = − w2/2 + w4/12,
the second-order derivative I ′′

CH (W0) = 2. As for (5.10), we can use the identity 1 +
W 2

0 /3 = γW 4
0 /5, following from the definition I ′(W0) = 0, to obtain I ′′(W0) > 2. This

implies that the interactions for the generalized kink–antikink structures have a
shorter range and their dynamics of annihilation is thus slower.

A special remark applies to the linearly stable case (zone II). In this case, the
equation is associated to an uncommon triple-well potential (figure 5). The typical
nonlinear kink–antikink dynamics appears only if the initial perturbation is energetic
enough to let the system ‘jump’ out of the central well and fall into one of the side
wells.
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Figure 6. Growth rates g of the transverse Fourier modes k for a simulation with De= 1.4 and
β =0.769. The simulations are performed in a rectangular domain with aspect ratio 1/64. The
distance from the critical line is Re= 1.28Rec . The solid line represents the linear prediction
(6.1). The circles representing the numerically computed growth rates have been obtained with
a DNS simulation by a linear fit of the logarithm of the energy for each mode versus time, in
the early stages of their exponential growth.

6. Numerical results
The analytical results presented in this work have been obtained by multiscale

techniques. Their basic assumption is the strong scale separation between the basic
flow and the most unstable perturbations. In this section, we shall present numerical
simulations performed to check the validity of this assumption. To this aim, we
have numerically integrated the complete Oldroyd-B model equations (2.1)–(2.2) on
a doubly periodic box of size Lx = 128π, Lz = 2π at resolution 256 × 32. The high
aspect ratio is fundamental as we have a small-scale primary flow along z and a
large-scale secondary flow along x. The integration was carried on by a standard
pseudo-spectral code and will be referred to as direct numerical simulations (DNS).
We have also integrated the one-dimensional Cahn–Hilliard (CH) equation, again
with a pseudo-spectral code at resolution 256 (CH simulations).

The first check of our results concerns the growth rates of the instability which,
in the linear regime, can be obtained by the Cahn–Hilliard equation. Neglecting
the nonlinear term, the dispersion relation for the transverse Fourier modes
k is:

g = A

(
Re

Rec

− 1

)
k2 − Ck4. (6.1)

In figure 6, we report the growth rates of the first modes for a (white-noise in space)
small initial perturbation. We are then able to observe also negative g (stable modes).
The comparison with the linear prediction is excellent, even for modes whose scale
separation is not very small.

Let us now consider the nonlinear stage of the perturbation growth. It is well known
that the time evolution of the Cahn–Hilliard equation shows a succession of long-
lasting metastable states characterized by a well-defined periodicity. For sufficiently
small initial perturbations, the wavenumber k associated to the maximum growth-rate
g will be the first to reach the balance between the destabilizing linear term A∂̃2〈wz〉
and the stabilizing nonlinear one B∂̃2〈wz〉3. When such equilibrium is reached, the
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Figure 7. The energy associated to the lowest wavenumber modes as a function of time,
resulting from a CH simulation. The quasi-stationary states can be clearly seen up to the
asymptotic one corresponding to the largest periodicity. In this simulation, De =1.4 and
Re/Rec − 1 = 0.28.
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Figure 8. Instantaneous transverse velocity field at different times. Parameters are the same
as figure 7. Transitions between two metastable states can be regarded as kink–antikink
annihilation. In this figure, a transition from a k = 2 to a k = 1 state is represented. Times
correspond to the evolution shown in figure 7.

energy associated to that mode is constant and the system is quasi-stable. In the
meanwhile, the other modes kmax − 1, kmax − 2, . . . keep growing. When the mode
kmax − 1 balances the two terms, the energy associated to the mode kmax drops. This
new state is again quasi-stationary and has a well-defined periodicity kmax − 1. The
process continues until a state with the box periodicity is reached (see figure 7); such
a state is stationary and corresponds to the asymptotic behaviour in § 5. Transition
between quasi-stationary states can be seen as a kink–antikink annihilation, yielding
a decrease in periodicity, as shown in figure 8.

In order to check the results obtained in § 3, we have performed a DNS simulation
for a particularly long lapse of time. The excellent agreement between the DNS and
the prediction of the Cahn–Hilliard equation is shown in figure 9.

The same comparison can be realized in the neighbourhood of the critical point
P ∗. This kind of simulation is more difficult than for the standard Cahn–Hilliard,
because it involves a precise knowledge of the position of the critical point, and there
is no easy way to obtain this from the simulations. Moreover, any system we simulate
will be at a finite distance from the critical point. The parameter that will mostly feel
this difference will be D, as we have chosen it to be approximately constant around
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Figure 9. The comparison between DNS simulations of the Oldroyd-B model and the
coarse-grained Cahn–Hilliard equation derived in the text. Thicker lines represent the evolution
of the lowest-energy modes in a DNS simulation, while the thinner lines are the result of a CH
simulation. Parameters have been set in the Cahn–Hillard regime, De = 1.4 <De∗, β =0.769
and Re= 1.14Rec .
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Figure 10. The generalized Cahn–Hilliard equation reproduces the dynamics of the Oldroyd-B
model around the critical point P ∗. Thicker lines represent DNS simulations while the thinner
ones are CH simulations. Parameters correspond to the generalized Cahn–Hillard regime,
De= 1.62 >De∗, Re= 2.516.

P ∗. We have been able to overcome this weakness via a limited tweaking of the D

parameter in the CH simulation. As shown in figure 10, excellent agreement between
the curves is again achieved.

7. Clues on drag reduction
One of the most striking properties of viscoelastic fluids is the drag-reduction

effect. In 1949, Toms found that the injection of minute amounts of polymers in
turbulent fluids flowing in a channel could reduce the turbulent drag up to 80%. Even
through this phenomenon has been known for over fifty years (Toms 1949; Lumley
1969; Virk 1975), a satisfactory understanding of its fundamental mechanisms is still
lacking.
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A large number of experiments have been performed to study this effect (see, e.g.
Virk 1975; Nadolink & Haigh 1995; Sreenivasan & White 2000), but a burst in its
theoretical analysis occurred after drag reduction was found in numerical simulations
of viscoelastic fluids (Sureshkumar, Beris & Handler 1997). The activity is being
spurred on both by fundamental interest and industrial applications (Larson 1992).

Drag reduction is commonly associated to channel flows and boundary effects. Still,
it is now clear that the phenomenon is present even in the absence of boundaries
(Boffetta et al. 2005b). What we show here is that, even at relatively small Reynolds
numbers, where the flow is non-turbulent, an increase in the Deborah number
produces an enhancement in the mean flow amplitude. Simply by looking at the
linear stability diagram (figure 1), we may already conclude that, as the polymer
elasticity grows, so does the critical Reynolds number and therefore the flow is
stabilized. Let us further investigate this effect analytically using the results of § 3.

The drag coefficient f can be defined in terms of the mean flow properties as
(Boffetta et al. 2005b):

f =
F0L

U 2
, (7.1)

and can be seen as the ratio between the energy input (through the forcing F0) and
the mean energy of the flow. As we are interested in mean effects only, we will average
U 2 over the basic flow periodicity. This will ensure that only mean effects will be
taken into account.

When the state is linearly stable (low Reynolds numbers) we have V = F0L
2/ν and

therefore f = Re−1.
In § 3, we have solved all the equations of motion up to the fourth order. We

can then write the primary flow as a sum of terms, the first of which is the basic
Kolmogorov flow, and the others are functions of the transverse perturbation field.
Upon averaging over all possible initial conditions, an equation for the primary flow
can be easily obtained:

Ux(z) =

⎛
⎝V + h(De, β)

〈
w

(1)
z

〉2

V

⎞
⎠ cos

( z

L

)
= Veff cos

( z

L

)
, (7.2)

where h is an explicit function of the Deborah number and the quantity 〈w(1)
z 〉2 follows

from the Cahn–Hilliard equation in the stationary state and is equal to
√

3ε2A/B .
Since the analytical expression of A and B is known, as well as how ε changes with

De for a fixed Reynolds number, the analytical expression for f is obtained:

f =
νFL

V 2
eff

=
V 2

ReV 2
eff

=
1

Re

(
1 + h

3A

BV 2

Re − Rec

Rec

)2
, (7.3)

where h, A, B and Rec are explicit functions of the Deborah number.
As we want to investigate how the polymer elasticity affects the flow, a meaningful

approach is to keep the Reynolds number fixed, while varying the Deborah number.
This allows us to study how the same flow reacts when different kinds of polymers
are injected. Once β and Re are chosen, it is possible to plot f versus De on the
basis of analytical results (figure 11). The drag coefficient is clearly decreasing with
the Deborah number. This permits us to conclude that, although the flow is barely in



76 A. Bistagnino and others

0

1

2

3

0.7 0.8 0.9 1.0

f

De

Re = 2

Figure 11. The drag coefficient f versus the Deborah number De at constant Re. As the
polymer elasticity grows, the drag coefficient diminishes. This implies that the mean flow grows
with De.

its nonlinear regime, and thus far from a turbulent regime, a seed of drag reduction
induced by polymer is already evident in the present stage.

8. Conclusions
The weakly nonlinear dynamics of a viscoelastic Kolmogorov flow has been studied

both analytically and numerically. The physical reason for considering this flow is that
it has several analogies with channel flows, despite the absence of material boundaries,
and it is one of the few known exact solutions of the Oldroyd-B model.

The weakly nonlinear regime amounts to considering values of the Reynolds
number close to the marginal stability curve separating stable from unstable regions
of the phase-space. In the general nonlinear case (i.e. for arbitrarily large distances
from the marginal curve), there is no way to solve the fully nonlinear equations.
Conversely, close to the marginal line, asymptotic perturbation techniques can be
employed to capture the weakly nonlinear dynamics.

We found that the weakly nonlinear dynamics is described by Cahn–Hilliard-like
equations, with coefficients dependent on the Deborah number. The behaviour of
these coefficients with respect to De reveals that there exists a critical value of
the Deborah number, where the system bifurcates to another regime. The resulting
nonlinear equation still has a Cahn–Hilliard form, but contains a novel fifth-order
nonlinearity. A system with a similar phenomenology is the stratified Kolmogorov
flow investigated by Balmforth & Young (2005), with the role of elasticity played by
stratification.

Above the critical De, the ‘hydrodynamic’ kink–antikink structures are replaced
by generalized structures. We have shown that their processes of annihilation are
slowed down with respect to the standard Cahn–Hilliard equation. We also found
a purely nonlinear, subcritical mechanism of instability, which occurs for sufficiently
large amplitudes of the initial perturbation.

Our results have been obtained both by exploiting the multiscale expansion and
via direct numerical simulations of the original equations and their coarse-grained
version. The agreement between the Cahn–Hilliard dynamics and the fully resolved
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simulations is excellent even at large times. Therefore the asymptotic analysis is able
to capture all the relevant features of the flow.

In the last part of the work, we have presented some conjectures on the relevance
of this problem for drag reduction. Although it is not common to consider this effect
in non-turbulent flows, we have shown that, even in the weakly nonlinear case, the
injection of polymers induces an increase of the mean flow and thus a reduction
in the drag coefficient. Using the results of the nonlinear analysis, we have been
able to give an analytical expression for the flow enhancement due to the polymers.
The main qualitative conclusion, which could be relevant also for the turbulent
regime, is that drag reduction appears to be a phenomenon coupling large and small
scales.

This work has been supported by the Italian MIUR COFIN 2005 project
2005027808 (G.B. and A.M.), by Fondazione CRT-Progetto Lagrange (A.B.), by
the European Networks ‘Stirring and Mixing’ HPRN-CT2002-00300 (A.C.) and
‘Non-ideal turbulence’ HPRN-CT-2000-00162 (M.V.), and by CINFAI consortium

(A.M.).

Appendix A. Squire’s theorem for Oldroyd-B
Consider a parallel flow U = (U (z), 0). To investigate its stability properties, we

write the linearized non-dimensional equations

∂tw + (u · ∇)w + (w · ∇)u = −∇q + βRe−1	w

+ (1 − β) Re−1 De−1 ∇ · ζ , (A 1)

∂tζ + (u · ∇)ζ + (w · ∇)σ = (∇u)T · ζ + (∇w)T · σ
+ ζ · (∇u) + σ · (∇w) − De−1ζ , (A 2)

where w is the perturbation of the basic profile u, and ζ is the perturbation of the
basic stress tensor σ .
We now perform a Fourier transform in the directions x and y, and in time,

wi(x, y, z, t) =

∫
dω dkx dky exp (−iωt + kxx + kyy) ŵi(kx, ky, ω, z), (A 3)

ζij (x, y, z, t) =

∫
dω dkx dky exp (−iωt + kxx + kyy) ζ̂ij (kx, ky, ω, z). (A 4)

Introducing the notation

k =

(
kx

ky

)
, u =

(
U (z)

0

)
, ŵ =

(
ŵx

ŵy

)
,

t̂ =

(
ζ̂xz

ζ̂yz

)
, ẑ =

(
ζ̂xx ζ̂xy

ζ̂yx ζ̂yy

)
, r =

(
σxz

σyz

)
, s =

(
σxx σxy

σyx σyy

)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 5)

the linearized equations in normal modes take the form

(−iω + i kT · u)ŵ + ŵz

du

dz
= −ikq̂ + βRe−1

(
− k2 +

d2

dz2

)
ŵ

+ (1 − β) Re−1 De−1

(
iẑ

T · k +
d

dz
t̂

)
, (A 6)
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(−iω + ikT · u)ŵz = −dq̂

dz
+ βRe−1(−k2 +

d2

dz2
)ŵz

+ (1 − β) Re−1 De−1

(
ikT · t̂ +

d

dz
ζ̂zz

)
, (A 7)

(−iω + ikT · u + De−1)ẑ + ŵz

d

dz
s = t̂ · du

dz

T

+
du

dz
· t̂T

+ i(s · k)ŵT
+ iŵ(kT · s) + r

d

dz
ŵ

T
+

dŵ

dz
rT , (A 8)

(−iω + ikT · u + De−1)t̂ + ŵz

d

dz
r = ζ̂zz

du

dz

+ i(s · k)ŵz + iŵ(rT · k) + r
d

dz
ŵz +

d

dz
ŵ, (A 9)

(−iω + ikT · u + De−1)ζ̂zz = 2i(rT · k)ŵz + 2
d

dz
ŵz. (A 10)

Consider the following transformation

kx = |k|, wx =
kT · ŵ

|k|, wz = ŵz, q =
|k|
kx

q̂,

Re =
kx

|k|Re, De =
kx

|k|De, ω =
|k|
kx

ω,

tx =
kx

|k|
kT · t̂
|k| , ζ xx =

kx

|k|
kT · ẑ · k

|k|2 , ζ zz =
kx

|k| ζ̂zz.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 11)

From (A 6)–(A 10), we can derive the equations for the variables withoverbars

[−iω + ikxU (z)]wx + wz

dU

dz
= −ikxq + βRe

−1
(

−k
2

x +
d2

dz2

)
wx

+ (1 − β) Re
−1

De
−1

(
ikxζ xx +

d

dz
tx

)
, (A 12)

[−iω + ikxU (z)]wz = −dq̂

dz
+ βRe

−1
(

−k
2

x +
d2

dz2

)
wz

+ (1 − β) Re
−1

De
−1

(
i kxtx +

d

dz
ζ zz

)
, (A 13)

[−iω + ikxU (z) + De
−1

]ζ xx + wz

dsxx

dz
= 2tx

dU

dz
+ 2ikxsxxwx + 2rx

dwx

dz
, (A 14)

[−iω + ikxU (z) + De
−1

]tx + wz

d

dz
rx = ζ zz

dU

dz
+ isxxkxwz + ikxwxrx

+rx

dwz

dz
+

dwx

dz
, (A 15)

[−iω + ikxU (z) + De
−1

]ζ zz = 2ikxrxwz + 2
dwz

dz
, (A 16)

where we introduced the quantities

sxx =
kT · s · k

|k|2 = 1 + De
2
[U ′(z)]2, rx =

kT · r
|k| = De

2
U ′(z). (A 17)
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Equations (A 12)–(A 16) are exactly the same as (A 6)–(A 10) but with ky =0, ŵy = 0,
ζxy = ζyy = ζyz =0. Therefore they describe a two-dimensional linear disturbance of
the basic flow at smaller Reynolds and Deborah numbers. If the three-dimensional
perturbation w, ζ is unstable at (Re, De), then the two-dimensional disturbance w, ζ

is unstable at (Re, De) and its rate of growth is larger (Im(ω) � Im(ω) > 0).

Appendix B. Painlevé analysis
We perform a Painlevé analysis to ascertain whether the fifth-order equation (4.1)

is integrable as the usual cubic Cahn–Hilliard equation (3.4).
After rescaling dependent and independent variables, the stationary equation takes

the form:

−u − u3

3
− λ∂2

xu +
γ

5
u5 = 0. (B 1)

The Painlevé test consists in checking whether the structure of the solution around
singularities in the complex plane has the form of a Laurent series. A simple balance
of the last two terms in the equation indicates that the singularity has order −1/2.
The putative Laurent series should then be sought as:

u(z) = z−1/2[u0 + u1z + u2z
2 + u3z

3 + · · ·], (B 2)

where z is the complex variable denoting the separation from the singularity z∗.
When the series (B 2) is inserted into equation (B 1), a hierarchy of equations of the
form akuk = bk is obtained. ak and bk can be calculated in terms of uk−1, . . . , u0. The
impossibility of an arbitrary equation having a Laurent series expansion is due to
resonances, i.e. values of k such that ak = 0. Integrability is equivalent to checking
that bk = 0 for the orders corresponding to resonances. In our case, it is easy to check
that

ak = −λ
(
k − 1

2

)(
k − 3

2

)
+ γ u4

0, u0 =

(
15λ

4γ

)1/4

�→ ak = −λ(k + 1)(k − 3). (B 3)

The resonance is therefore at the third order and we must perform the explicit
calculation up to that order to check whether or not b3 = 0. The algebra is elementary
and the coefficients are:

u1 =
u3

0

12λ
, u2 =

u0

λ

[
1

3
+

5

128γ

]
. (B 4)

Using these values, we can verify that

b3 = 2γ u2
0u

3
1 + 4γ u3

0u1u2 − u1 − u2
0u2 − u0u

2
1 (B 5)

vanishes and the Painlevé test is satisfied.
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