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Abstract 

A method for characterizing the predictability of complex chaotic systems based on a gen- 
eralization of the Lyapunov exponent is introduced. The method is illustrated on a toy system 
with two time scales and on a model of fully developed turbulence where universal features are 
found. 
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1 INTRODUCTION 

Our possibility to forecast is based on the assumption of a deterministic world, assumption which is 
summarized by the well known Laplace statement: the knowledge of the equations of motion and of 
the initial conditions is sufficient, in principle, to predict the future state of the world at any time. 
From a practical point of view, Laplacian determinism is applicable only to systems with regular 
behavior. In this case, small unavoidable uncertainties in the equations or in the initial conditions 
do not affect our possibility to make long time predictions within a given accuracy. The situation 
is completely different in the case of chaotic systems which, even being deterministic, are strongly 
unpredictable in practice because of their unstable dynamics. Sufficiently complex systems display 
chaos which turn out to be the rule in the physical world. A very popular example is the atmosphere 
circulation whose chaotic dynamics makes long times weather predictions impossible. 

The topic of the present contribution is the investigation of the intrinsic predictability of many de- 
gree of freedom chaotic systems, using an hydrodynamic turbulence model as an example. Turbulence 
is characterized by a complex dynamics involving many spatial and temporal scales. Its ubiquity (for 
example in geophysical flows) and the existence of a well developed theoretical investigation make 
turbulence an ideal prototypical model for predictability study. 

The sources of the errors in a forecasting are in general due both to the uncertainty in the initial 
conditions (first kind predictability problem) and to the imperfections of the model (second kind 
predictability). In this contribution we consider only the former case and we will assume to  have 
a perfect model of the physical system. By definition, chaotic dynamical systems display sensitive 
dependence on initial conditions: two initially close trajectories will diverge exponentially in the 
phase space with a rate given by the leading Lyapunov exponent A,,, [I]. Because of the finite 
uncertainty 6 in the initial conditions, we can forecast the future state of the system at a tolerance 
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level A only up to a maximum predictability time which is estimated, in terms of the Lyapunov 
exponent, as 

It is important to observe that definition (1) implies a weak dependence on the precision of the 
initial condition and on the tolerance; therefore according to  this definition, the predictability time 
is an intrinsic quantity of the system which cannot be significantly improved by accepting larger 
tolerances. 

This definition for the predictability time holds only for infinitesimal perturbations (and in non 
intermittent systems 121); in the more physical situation of finite (and typically rather large) errors, 
the naive application of (1) leads to a series of paradoxes and subtle points which have been the 
object of studies in the last years [3, 41. A familiar example of this kind of problems is given by 
weather forecasting: although the Lyapunov exponent for the atmosphere (as a whole) is presumably 
rather large (due to the small scale turbulence), the large scale behavior of the system can be forecast 
with good accuracy for several days [5, 61. 

It should thus be clear that the knowledge of the (positive) leading Lyapunov exponent is not 
sufficient for a quantitative characterization of the predictability properties. The leading Lyapunov 
exponent is associated to  the fastest, smallest scales in the system which rule the initial exponential 
growth of infinitesimal errors. When the uncertainty is sufficiently large, the error in the small scales 
is saturated (i.e. is of the same size of the variable fluctuations) and do not play a role any more in 
the error growth law. Large errors will grow with the characteristic time of the large scales which is, 
in general, independent on the Lyapunov exponent. It is thus natural to introduce a generalization of 
the Lyapunov exponent to finite errors, from which one can compute a more realistic predictability 
time. The Finite Size Lyapunov Exponent is introduced to this scope in section 2 with an application 
to  a simple toy model. Section 3 is devoted to  illustrate the application of the FSLE to the more 
complex situation of a model of turbulent flows. Section 4 contains some conclusions. 

2 THE FINITE SIZE LYAPUNOV EXPONENT 

The standard algorithm for the computation of the Lyapunov exponent [7] evaluates the average 
exponential separation of to close trajectories in the phase space obtained by integrating two couples 
of the system with slightly different initial conditions. Periodic rescaling of trajectory separation is 
needed in order to avoid nonlinear effects. The Finite Size Lyapunov Exponent (FSLE) is introduced 
by a generalization of this algorithm which relaxes the request of small separations. In this way one 
is able to compute the average separation rate at finite scales. 

For computing the FSLE one has to integrate two trajectories x(t), z1(t) starting a t  small initial 
separation dm;, = Ixl(0) - x ( 0 ) ) .  Defined a set of thresholds 6, = rnSo one computes the "doubling 
times" T,(dn) that the error takes to grow from the threshold 6, up to  the next one Given 
many realizations of this experiment (ensemble average) the FSLE is defined, for any error level 6, 
as 

It is easy to  show that definition (2) recovers the leading Lyapunov exponent A,,, in the in- 
finitesimal limit S + 0 [8]. In the opposite limit of large 6, the FSLE goes to zero indicating error 
saturation and complete decorrelation of the two trajectories. The initial error must be dmin << So in 
order to  allow the initial perturbation to align along the most unstable direction. 

Definition (1) of the predictability time can now be generalized in terms of the FSLE. The average 
time that an initial error of size 6 takes to  grow up to  the tolerance A is 
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Observe that this definition reduces to (1) in the case of constant A. From general considerations, 
one expects that A(b) is a decreasing function of S and thus (4) gives longer predictability time than 
(1). We want to stress the fact that the computation of the FSLE is numerically no more expensive 
than the computation of the leading Lyapunov exponent. The FSLE tool seems promising also for 
the analysis of experimental data [9]. 

We now illustrate the application of the FSLE to a simple system which presents two characteristic 
times. The system is not indented to be a realistic model of any physical situation; it should be rather 
considered as a toy model of a situation presenting two well separated time scales. The example is 
obtained by coupling two Lorenz models [lo], the first (xiS') representing the slow dynamics and the 
second (xlf)) the fast dynamics 

The particular form of the coupling is not important for the following discussion. With the present 
choice the trajectory is constrained within a bounded region of the phase space [ll]. We fix the 
parameters at the standard values a = 10, b = 813 and c = 10, the latter giving the relative time 
scale between the fast and slow dynamics. The two Rayleigh numbers are taken different, r, = 28 
and rf = 45 for generality. With the present choice, both the uncoupled systems (i.e. c, = cf = 0) 
display chaotic dynamics with Lyapunov exponents A(f)  N 12.17 and A(') N 0.905 respectively. 

By switching on the couplings E ,  and cf we obtain a single dynamical system whose maximal 
Lyapunov exponent A,,, is close to the Lyapunov exponent of the faster decoupled system ( ~ ( f ) ) .  
In the following we will use tf = 10 and c, = lo-'. With this choice for the couplings, the leading 
global Lyapunov exponent is found to be A,,, .̂ 11.5 which is indeed close to A(f ) .  

With regard to predictability, one expects reasonably that for small coupling E, the slow com- 
ponent of the system x, remains predictable up to its own characteristic time. On the other hand, 
for any coupling t # 0 we obtain a single dynamical system in which the errors grow with the lead- 
ing Lyapunov exponent A,,, .̂ A(f). This apparent paradox shows that the Lyapunov exponent is 
unable to  characterize the predictability time in general. 

To clarify the situation, Figure 1 shows the average error growth for both the slow and fast 
variables. We observe that since in the beginning both the errors are very small, their growth rate is 
given by the leading Lyapunov exponent A,,,. For larger times ( t  > 2), the fast component of the 
error, Sxf, has reached the saturation, the trajectories separation evolves according to  the full non 
linear equations of motion and the growth rate for the slow component is strongly reduced. From 
Figure 1 one observes that the slow component error Sx, is still well below the saturation value, and 
grows with a rate close to its characteristic inverse time A(,). 

The application of the FSLE method to the slow component of the error, Sx,, is shown in Figure 
2. As expected, for very small S, the FSLE recovers the leading Lyapunov exponent A,,,, indicating 
that in small error predictability the fast component has indeed a dominant role. As soon as the 
error grows above the coupling E,, X(S) drops to  a value close to A(") and the characteristic time of 
small scale dynamics is no more relevant. 

In Figure 3 we plot the slow component predictability time (3) for fixed initial error Sx, = 
as a function of the tolerance A. We observe a strong enhancement of T, as soon as the accepted 
tolerance is larger than the coupling 6,.  Observe that the naive application of (1) would heavily 
underestimate the predictability time for large tolerances (dashed line). 
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Figure 1: Typical error growth for the fast component dxj (upper curve) and for the slow component 
Sx, in the coupled Lorenz models with S x f ( 0 )  = lo-' and Sx,(O) = lo-'', averaged over 500 samples. 
The dashed lines show the exponential growths with exponents A ( / )  and A('). 

Figure 2: FSLE for the two coupled Lorenz models computed from the slow variable error. The 
initial error is 60 = and the average is over 500 realizations. The two horizontal lines represent 
the uncoupled Lyapunov exponents X ( f )  and A('). 
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Figure 3: Predictability time for the slow component of the two coupled Lorenz models as a function 
of the tolerance A. The initial error is fixed a t  S = The dashed line represent the Lyapunov 
estimation T, - A;',, ln(A/S). 

3 FINITE SIZE PREDICTABILITY I N  TURBULENCE 

We now consider fully developed turbulence as a well known example of system with many character- 
istic scales. Because of the ubiquity of turbulence in nature, the example is also of physical relevance. 
Following the original picture of Kolmogorov, turbulence is characterized by an wide range of locally 
interacting scales (inertial range) in which the energy is simply transfer from large t o  small scale. 
The energy cascade is maintained stationary by an energy source a large scales (forcing) and an 
energy sink at small scales (viscous dissipation). The typical transfer time at scale C (eddy turnover 
time) is dimensionally given by 

n 

where ue = Ju(xl)  - u(x)l is the turbulent velocity difference at scale l = Ix' - xi. In stationary 
conditions the average energy transfer rate t in the inertial range must be scale independent and 
thus 

which leads to the well known Kolmogorov scaling 

As a consequence of (7), the eddy turnover time in the inertial range scales like T! N t-1/312/3. 
The inertial transfer of energy terminates at the scale l - p at  which the dissipation timescale 
becomes smaller than the transfer timescale. Dimensional considerations lead to the Kolmogorov 
scale 7 = L R ~ - ~ / ~  where Re is the integral Reynolds number expressed in term of the large scale 
velocity U at  scale L as Re = LU/v. The leading Lyapunov exponent in a turbulent flow can be 
estimated proportional to the inverse smallest characteristic time in the cascade [12, 21, i.e. 
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Because the Lyapunov exponent grows with the Reynolds number, the small scale predictability time 
(1) goes to zero in the limit of fully developed turbulence (Re -+ F). 

Let we now consider the growth of finite errors in a turbulent velocity field. We assume to 
have two realizations of the turbulent flow u(x, t )  and ul(x , t )  a t  a distance 6(t). Following the 
phenomenological ideas of Lorenz [ 5 ] ,  the growing rate for 6 can be identified with the inverse eddy 
turnover time re at the scale f! at which ue - 6. Indeed, at smaller scales l' for which up << 6 we can 
assume that the error is already saturated, as in the example of section 2; larger scales have longer 
characteristic time and thus are subleading in the error growth rate. Expressing the eddy turnover 
time (5) in terms of the velocity difference ue 6, we obtain through (7) the prediction for the FSLE 
in turbulence [8] 

4 6 )  Y ~6- '  (9) 

which is valid within the inertial range u, < 6 < U .  For 6 < u, (dissipative range) the FSLE is 
expected to recover the leading Lyapunov exponent (8). 

It is well known [13, 141 that fully developed turbulence is not completely self similar and the 
scaling exponents for statistical quantities deviate from the dimensional estimations recalled above. 
An easy way to  introduce intermittency in the energy cascade is to consider the moments of the 
energy dissipation t e  averaged over a domain of scale l. The hypothesis of constant energy cascade 
in the inertial range implies that ( E ~ )  = E = const but the other moments display a [-dependence 
as a consequence of a non uniform dissipation in the physical space. As a consequence, a generic 
statistical quantity which depends dimensionally on the energy dissipation as e" displays anomalous 
scaling unless a = 1 (as in the case of third-order structure functions, p = 3 in (7)). Because in 
(9) there appears the average energy dissipation e, we expect that the scaling exponent for X(6) 
is not affected by intermittency corrections and is thus a new universal exponent in the statistical 
description of energy cascade. The effect of intermittency is to modulate the crossover between the 
scaling regime (9) and the constant regime (8) as a consequence of the fluctuations of the dissipative 
scale (see [8] for a detailed discussion). 

Introducing now the scaling law (9) into (3) we obtain, as expected, that the predictability time 
for large errors is strongly dependent on the tolerance, T,(A) 2 A2, which has to  he compared with 

(1). 
Prediction (9) cannot be checked in DNS because of the limited inertial range achievable with 

nowadays computers. An alternative is to consider simplified dynamical models of turbulence, re- 
ferred to as shell models, with much less degrees of freedom. Without entering in the details (see 
[14] for a recent overview) in shell models the velocity fluctuations over a scale ln are collectively 
represented by a single complex variable u, (n = 1,2, ..., N). Because one is interested in power-law 
scaling, the scales are spaced geometrically as en = L2-,; this allows to reach huge Reynolds numbers 
with a relatively few variables. In the following we will consider the most popular shell model, called 
GOY model, which displays a Kolmogorov-like energy cascade with chaotic dynamics which leads to  
corrections in the scaling exponents very close to those observed in fluid experiments. To compute 
the FSLE in shell model turbulence, we integrate two realizations of the same system un(t) and uk(t) 
starting at very close initial conditions. For each experiment we compute the doubling times T,(S) 
for the error h2 = C, I u ~  - U, 1' until it reaches the largest threshold dm,,. The average over many 
error-doubling experiments gives the FSLE according to (2). 

In Figure 4 it is shown the FSLE computed for shell models a t  different Reynolds numbers. At 
small errors 6 X(6) displays a plateau a t  A,,,. The value of A,,, increases with the Reynolds number 
according to  (8). For larger errors, the inertial range scaling (9) is evident. Observe that in this range 
(large errors) the FSLE is independent on the Reynolds number: this fact explains why is possible 
to  perform finite-time forecasting even in the limit Re + m. 

To demonstrate more quantitatively the scaling of the FSLE with the Reynolds number, in Figure 
5 we plot the rescaled X/X,,, .U x / R ~ ' / ~  as a function of the rescaled error b/u, -- S/Re-'I4. We 
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In (6) 
Figure 4: FSLE for the Shell Model at different Reynolds numbers: Re = lo8, lo9, lo1', 10" from 
bottom to top. The initial error is S = and the number of experiments is 400. The dashed line, 
representing the theoretical prediction, has slope -2. 

see that the collapse is rather good. A better collapse can be obtained by taking into account 
intermittency corrections for A,,, and u, [8]. 

4 CONCLUSIONS 

We have shown that in systems with possess different characteristic time scales, the predictability time 
can be an independent quantity of the leading Lyapunov exponent. The latter is associated to the 
faster characteristic time and dominates the exponential growth of infinitesimal errors. Finite errors 
will evolve in general with large scale characteristic time which thus rules large scale predictability. 

We have discussed a generalization of the Lyapunov exponent which allows one to  compute the 
average exponential error growth at a given error size 6. The Finite Size Lyapunov Exponent is 
expected to converge to the leading Lyapunov exponent for very small errors. For larger errors, A(S) 
is decreasing with S and thus the FSLE analysis predicts an enhancement of the predictability time 
at  large tolerances. 

The method have been illustrated in a toy model with two timescales and in a Shell Model of 
turbulence where we have found an universal scaling law for the error growth rate. 
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In [ 6/ ~ e - ' ' ~  1 
Figure 5: 'I'he rescaled FSLE X/Rcll? versus the rescaled error size 6 / ~ e - ' / "  at the different Keyrlolds 
nurnbers as in the prcvious figure. The dashed line has slope -2. 
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