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The Eulerian description of dilute collisionless suspension
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Abstract – We analyze the statistical properties of a Eulerian fluid model describing the evolution
of a suspension of inertial particles in an incompressible flow. Regularity and compressibility of
the velocity field for the inertial phase are investigated in the limit of heavy particles by means
of numerical simulations in two- and three-dimensional flows. We show that in the small Stokes
number regime the Eulerian fluid model is able to capture fine details of the clustering dynamics,
and exhibits good agreement with fully Lagrangian simulations of inertial particle trajectories.
The fluid description breaks down due to collisions at Stokes numbers � 0.1, the actual value
depending on the carrier flow characteristics.
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The advection of small heavy impurities suspended in
incompressible flows is relevant for several engineering
and environmental applications, ranging from Diesel
engines [1] to the formation of rain droplets in warm
clouds [2,3], to the dispersion of dust in the environ-
ment [4]. From a theoretical point of view, inertial
particle dynamics is of general interest because of the
spontaneous clusterization that takes place even in a
perfect incompressible flow (the so-called preferential
concentration effect [5]). In the last years there has been
considerable progress in our understanding of inertial
particle dynamics, mainly on the basis of numerical [6,7]
and theoretical [3,8–10] results.
A natural description of inertial suspensions in turbu-

lent flows can be given in a mixed Eulerian-Lagrangian
framework. The fluid phase is described in terms of
a Eulerian field (the velocity field) while the particles,
assumed to be very dilute, are described in terms of
individual Lagrangian trajectories. A difficulty of this
approach is the lack of a rigorous way to incorporate the
particle feedback to the fluid governing equation in the
case of active particles, i.e. when the effects of the inertial
phase on the fluid phase cannot be neglected.
To address this issue, in the recent past several Eulerian

multiphasic approaches have been proposed [10–16]. The
particulate phase is here treated as a continuum, as well
as the carrier phase. This description provides a natural
framework for the theoretical and numerical study of

the feedback. As a counterpart this approach requires
the numerical solution of the additional equation for the
particulate phase, and hence is often computationally
more demanding than the Lagrangian one. Nevertheless,
a Eulerian description turns out to be convenient for a
detailed study of particle clustering, which requires a huge
number of particles in the Lagrangian approach to resolve
regions of low concentration.
In the present letter, we investigate the statistical

properties of a Eulerian model for suspensions of mono-
disperse inertial particles. We consider very dilute suspen-
sions, where both particle-to-particle interactions (e.g.
collisions) and feedback of the particles on the fluid are
neglected (passive limit). The dynamics of the fluid phase
is hence independent of the particle motion, and is given
by an additional equation of motion (e.g., Navier-Stokes).
The solid phase can be described as an ensemble of parti-
cles, characterized by the probability density function
(pdf) P (x, q, t) to find a particle at time t at position x
with velocity q.
A widely accepted model for describing the dynamics of

a single spherical inertial particle suspended in a fluid has
been proposed by Maxey and Riley in the limit of small
particle-based Reynolds number [17]. Two parameters
control the particle motions: the added-mass factor β =
3ρf/(ρf+2ρp), which discriminates between heavy (β < 1)
and light (β > 1) particles, and the Stokes response time
τs = a

2/(3βν). Here a is the particle radius, ρp and ρf are
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the particle and fluid density, respectively, and ν is the
kinematic viscosity of the fluid.
Neglecting the effects of gravity and the Faxen correc-

tion as well as the Basset-Boussinesq history force, the
Lagrangian equations for particle trajectory X(t) and
velocity V (t) = Ẋ(t) reduce to [17]




dX

dt
=W (t)+βu (X(t), t) ,

dW

dt
=
(1−β)u (X(t), t)−W (t)

τs
,

(1)

where u(x, t) is the incompressible fluid velocity field, and
W(t) =V(t)−βu(X(t), t) is the covelocity of the particle.
The Fokker-Planck equation for the pdf of the iner-

tial phase of a dilute suspension, P (x,v, t), is obtained
from (1) in a straightforward way when particle-to-particle
interactions are neglected (see [10] for a general discus-
sion of this procedure). In the following, we will consider
the simplest Eulerian model which is obtained by further
assuming that particle velocity is uniquely defined in every
point in space by a smooth field v(x, t), different from
the fluid velocity u(x, t). This is tantamount to factor-
ize the pdf of particles as P (x, q, t) = n(x, t)δ (q−v(x, t)),
where the field n(x, t) =

∫
P (x, q, t)dq represents the local

number density of particles. The resulting equations for
the density and covelocity fields w= v−βu are:



∂tn+∇ · ((w+βu)n) = 0,
∂tw+(w+βu) ·∇w= (1−β)u−w

τs
.

(2)

Let us remark that, for generic flows, the existence of
the velocity field v(x, t) is not guaranteed at all times.
Indeed, due to their inertia, particles can detach from
the fluid trajectories, and can simultaneously cross each
other with non-zero relative velocity (the so-called sling
effect [3,18]). This corresponds to the formation of a shock
in the particle velocity field, which becomes ill-defined, and
of caustics in the particle density [19]. This phenomenon
is driven by strong gradients of the fluid velocity field u,
while it is contrasted by the linear relaxation to u, which
reduces the probability of formation of shocks. The relative
strength of these competing effects is measured by the
nondimensional Stokes number St= λτs, where λ is the
(Lagrangian) Lyapunov exponent of the fluid flow [20].
We remark that an alternative definition of Stokes number
St= τs/τη based on Kolmogorov time τη is often used.
For a turbulent flow the two quantities are related by the
empirical formula λτη � 0.1 (see e.g., [21]).
In the simplified situation of random incompressible

flows, it has been shown that the probability of observing
the formation of shocks decreases exponentially in the
limit of vanishing inertia [19,22], thus one can expect that
the fluid model (2) reproduces with good accuracy the
Lagrangian dynamics of inertial particles in this limit.
For a numerical study of the fluid model, in the

following we specialize to the limit of heavy particles

ρp� ρf , for which β→ 0 and the covelocity reduces to
the particle velocity. In this limit, the velocity equation
in (2) simplifies to

∂v

∂t
+v ·∇v= u−v

τs
, (3)

formally an inviscid Burgers equation with linear relax-
ation to the fluid velocity u. In the absence of a pressure
term, which would preserve incompressibility, the solution
of (3) will in general present a compressible component
(i.e.∇· v �= 0). The fluid phase is governed by the incom-
pressible Navier-Stokes equation

∂u

∂t
+u ·∇u=−∇p+ ν∆u+f (4)

with ∇·u= 0.
Numerical simulations are performed by integrating

eqs. (3) and (4) by means of a fully dealiased pseudospec-
tral code in two and three dimensions at resolution N2 =
2562 and N3 = 643 with 2nd-order Runge-Kutta time-
stepping. In order to avoid complications induced by the
presence of material boundaries, we consider the case of
periodic boundary conditions. The flow is sustained by
a large-scale random forcing f. Kinematic viscosity ν is
chosen large enough to resolve in detail the viscous dissi-
pative regime, where clustering of inertial particles takes
place.
As a first test of the Eulerian model we consider the

spatial distribution of particles which move according to
the inertial velocity field v given by eq. (3),

dX̃

dt
= v(X̃, t) (5)

and compare it with the distribution of inertial particles
obtained by integration of the Lagrangian model (1).
The two sets of particles are seeded randomly in the
same two-dimensional turbulent flow u, with identical
spatial distributions at time t= 0. We remark that the two
dynamical systems (1) and (5) are formally very different
as the dimensionality of the former is double (the phase
space includes both position and velocity). Despite this
important difference, we find that the behavior of particles
in the two models is very similar for moderate values
of St.
Figure 1 shows two snapshots of inertial particle distri-

bution obtained by integrating the two models at St=
0.063. The qualitative agreement is remarkable. In both
cases we observe a highly inhomogeneous distribution
with large empty regions and strong concentration on
filamental structure. The variance of particle density
〈n2(x, t)〉− 〈n(x, t)〉2, shown in fig. 2 (left panel), confirms
that at small value of Stokes number the fluid model
recovers with considerable accuracy the fluctuations of
particle distribution.
These distributions are a consequence of the dissipa-

tive nature of the equation of motion. In the Lagrangian
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Fig. 1: Snapshots of the inertial particle concentrations obtained from the Lagrangian model (1) with β = 0 (left panel) and the
fluid model (3), (5) (right panel). Particles are suspended in a two-dimensional turbulent flow. Stokes number is St= 0.063.
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Fig. 2: Left panel: variance of particle density obtained from the fluid model (symbols) and from Lagrangian simulations
(lines) in the same 2D turbulent carrier flow. Particles are initially distributed randomly with uniform probability. Right panel:
compressibility C vs. St= λτs of the particle velocity field carried by Navier-Stokes fluid in 2D (∗) and 3D (+). The line
represents the St2 behavior at small St.

model, the contraction rate of phase space is −d/τs (in
d-dimensions) and the long-time behavior on inertial trac-
ers takes place on a multifractal set [9]. In the fluid model
inhomogeneity is originated by the compressible nature
of the velocity v. This effect can be quantified by a stan-
dard measure of compressibility given by the dimensionless
ratio C = 〈(∂ivi)2〉/〈(∂ivj)2〉 which takes values between
0 (incompressible flow) and 1 (potential flow). For small
values of St, by expanding (3) at first order in τs one
has v�u− τs (∂tu+u ·∇u) from which ∇ ·v� τs∇ ·
(u ·∇u) and thus one expects for small St the behavior
C ∝ St2. Figure 2 shows the average value of compressibil-
ity for 2D and 3D turbulent flows in stationary conditions
as a function of St. The St2 behavior is clearly observ-
able. Detailed investigations of the first-order expan-
sion, also termed equilibrium Eulerian approach, have
been performed by Balachandar and coworkers [15,16].
They showed that for small Stokes numbers it faithfully
reproduces the statistics obtained from exact Lagrangian

simulations. As shown in fig. 2 the average compressibility
of the inertial velocity field v obtained from the dynamical
model (3) is pretty well captured by its first-order approx-
imation. The complete solution of eq. (3) clearly extends
the Stokes-number range of validity of the Eulerian model,
and it is more accurate in recovering the details of the
spatial distribution of particle concentration, at the cost
of solving an additional equation of the same complexity
of the one for the fluid phase.
A quantitative measure of particle clustering observed

in fig. 1 can be given in terms of the fractal dimension of
the distribution. A convenient indicator is the Lyapunov
dimension [23] which is obtained from the spectrum of
Lyapunov exponents of the particle motion as dL = J −∑J
j=1 λj/λJ+1, where λj are the Lyapunov exponent in

non-increasing order and J is the largest integer for
which

∑
j�J λj � 0. The Lyapunov dimension for the (2d-

dimensional) dynamical system (1) has been used for
characterizing the fractal distribution of inertial particles
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Fig. 3: Left panel: Lyapunov dimension of the attractor for inertial particles following Lagrangian dynamics (1) (line) and fluid
model (3), (5) (symbols). A small dissipative term κ∆v with κ= 5 · 10−3 is added to (3) for St > 0.07 (asterisks). Right panel:
the same for 3D turbulent flow.
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Fig. 4: Left panel: energy spectra of particle velocity field (in the 2D case) for different values of Stokes number (from bottom to
top: St= 0.012, St= 0.044 and St= 0.31). We also show the energy spectrum of the carrier fluid (bottom, bold line). At small
Stokes numbers the spectra are steeper than the smooth limit k−3, represented by the straight line. At St= 0.31 the spectrum
is less steep than k−3, and the simulation is regularized by the dissipative term (κ> 0). Right panel: dependence of the particle
energy dissipation in the limit κ→ 0 on the Stokes number, for the case of 2D direct cascade flow. Values are obtained by a
linear extrapolation to κ= 0 of finite dissipation runs, as shown in the inset for St= 0.063 (+) and St= 0.125 (×).

in smooth [9] and turbulent [24] flows. The observed
asymptotic behavior in this case are dL = d for τs→ 0
(fluid particle limit) and dL = 2d for τs→∞ [9].
Figure 3 shows the result of the Lyapunov dimension

as a function of St for both the original Lagrangian
model (1) and the evolution law (5) with inertial velocity
given by (3). We remark that the actual behavior of
the Lyapunov dimension measured from the Lagrangian
trajectories in the 3D case is in strong agreement with the
theoretical results obtained in ref. [8] in the framework of
short-correlated flows. The predicted minimum Lyapunov
dimension dL � 2.65 is confirmed by our findings. The
increase of the dimensionality at large Stokes number is
due to folding in the phase space of particle attractor.
The consequence of such folding is that particle velocity
becomes multivalued at a given position. Of course this
effect cannot be observed in the d-dimensional fluid

model in which v(x, t) is single-valued by definition.
Therefore the fractal dimension of particle distribution
obtained from the fluid model monotonically decreases
at increasing the Stokes number, and the minimum of
dL cannot be recovered. Notice that for large Stokes
numbers the Eulerian approach overpredicts the degree
of clustering, as already observed in [15]. Nevertheless,
the quantitative agreement between the Lagrangian and
fluid model for small St� 0.1 is remarkable both in 2D
and 3D turbulent flows.
We remind that the fluid model here discussed relies on

the assumption that the inertial velocity can be described
by a single-valued field v. It is thus necessary that the
relaxation of the inertial velocity v toward the fluid
velocity u is fast enough to prevent the formation of
shocks. In turbulent flows it is not possible to define
a priori a critical Stokes number below which the absence

14001-p4



The Eulerian description of dilute collisionless suspension

of shocks is guaranteed. Still it is possible that in the small
Stokes number regime, the statistical weight of eventual
shocks is weak enough to allow to neglect them [22].
Shocks can form in a finite time in a velocity field if

it is Hölder continuous of order h, with 0<h< 1. This
corresponds to a power spectrum Ev ≡ (1/2)

∫ |v(x)|2dx
with a slope less steep than k−3. Conversely, in a smooth
velocity field, whose spectral slope is steeper than −3,
an infinite time would be necessary to form a shock.
In fig. 4 (left panel) we show the power spectra of
particle velocity field for different value of St. We also
show, for comparison, the energy spectrum of the two-
dimensional fluid velocity field u. For small values of
Stokes number the particle velocity field remains smooth,
and the corresponding spectra are steeper than k−3, thus
preventing the formation of shocks. At St� 0.07 the slope
of the spectrum becomes lower than −3, signaling the
presence of sharp fronts in the particle velocity field. In
this case a small dissipative term κ∆v is added to eq. (3)
to regularize the velocity fields at small scales.
The behavior of the “particle energy dissipation”
D(τs)≡ κ〈(∂ivj)2〉 in the limit κ→ 0 can be used to
detect the formation of shocks in the particle velocity
field. The limit κ→ 0 is obtained by linear extrapolation
of the values of D(τs) measured in a sets of simulations
with decreasing values of κ (see inset of fig. 4, right panel).
For small Stokes number, the dissipation D(τs) vanishes
in the limit κ→ 0 (see fig. 4 right panel), which indicates
the absence of significant singularity in the particle
velocity field. This confirms a posteriori the validity of
the fluid model in the small Stokes number regime.
In conclusion, we have introduced and numerically

investigated a Eulerian fluid model describing the dynam-
ical evolution of a suspension of heavy particles in two-
dimensional and three-dimensional incompressible flows.
We have shown that the Eulerian model is able to repro-
duce with high accuracy the detailed structure of particle
concentration as obtained from the reference Lagrangian
model up to moderate Stokes numbers. For larger St > 0.1,
where the sling effect becomes important, the Eulerian
model is unable to reproduce the observed reduction of
particle clustering. This failure can be interpreted as a
consequence of a substantial increase in the probability
of shock formation in the particle velocity field. This is
numerically confirmed by investigation of the spectra of
the inertial particle velocity field.
The crucial limitation of the Eulerian model is that

it does not allow to deal with the folding in phase
space associated to the formation of caustics. Its range
of validity is hence restricted to small Stokes numbers.
In this regime, where the statistical role of singularities is
negligible, it provides an effective tool for the investigation
of inertial particle dynamics. In particular it offers a
suitable framework for theoretical and numerical study
of the feedback of the particulate phase. The extension
of fluid models to the collision regime, along the lines
proposed in ref. [18] and exploiting recent results on the

collision rate presented in ref. [25], is one of the most
interesting challenges for the near future.

∗ ∗ ∗

The authors thank E. Meiburg for pointing out
the works by Balachandar et al. [15,16]. Part of the
simulations were done by FD while at INLN, supported
by the European network HPRN-CT-2002-00300.

REFERENCES

[1] Post S. and Abraham J., Int. J. Multiphase Flow, 28
(2002) 997.

[2] Pinsky M. and Khain A., J. Aerosol Science, 28 (1997)
1177.

[3] Falkovich G., Fouxon A. and Stepanov M. G.,
Nature (London), 419 (2002) 151.

[4] Seinfeld J., Atmospheric Chemistry and Physics of Air
Pollution (J. Wiley and Sons, New York) 1986.

[5] Squires K. D. and Eaton J. K., Phys. Fluids, 3 (1991)
1169.

[6] Reade W. C. and Collins L. R., J. Fluid Mech., 415
(2000) 45.

[7] Chun J., Koch D. L., Rani S., Ahluwalia A. and
Collins L. R., J. Fluid Mech., 536 (2005) 219.

[8] Duncan K., Mehlig B., Östlund S. and Wilkinson
M., Phys. Rev. Lett., 95 (2005) 240602.

[9] Bec J., Phys. Fluids, 15 (2003) L81.
[10] Jackson R., Chem. Eng. Sci., 52 (1997) 2457.
[11] Zhang D. R. and Prosperetti A., Phys. Fluids, 6

(1994) 2956.
[12] Zhang D. R. and Prosperetti A., Int. J. Multiphase

Flow, 23 (1997) 425.
[13] Druzhinin O. A. and Elghobashi S., Phys. Fluids, 10

(1998) 685.
[14] Druzhinin O. A. and Elghobashi S., Phys. Fluids, 11

(1999) 602.
[15] Rani S. L. and Balachandar S., Int. J. Multiphase

Flow, 29 (2003) 1793.
[16] Shotorban B. and Balachandar S., Phys. Fluids, 18

(2006) 065105.
[17] Maxey M. R. and Riley J. J., Phys Fluids, 26 (1983)

883.
[18] Falkovich G. and Pumir A., preprint nlin.CD/0605040

(2006).
[19] Wilkinson M. and Mehlig B., Europhys. Lett., 71

(2005) 186.
[20] Crisanti A., Falcioni M., Paladin G. and Vulpiani

A., Riv. Nuovo Cimento, 14, No. 12 (1991) 1.
[21] Bec J., Biferale L., Boffetta G., Cencini M.,

Musacchio S. and Toschi F., Phys. Fluids, 18 (2006)
091702.

[22] Derevyanko S., Falkovich G., Turitsyn K. and
Turitsyn S., preprint nlin.CD/0602006 (2006).

[23] Ott E., Chaos in Dynamical Systems (Cambridge
University Press, New York) 1993.

[24] Boffetta G., De Lillo F. andGamba A., Phys. Fluids,
16 (2004) L20.

[25] Wilkinson M., Mehlig B. and Bezuglyy V., Phys.
Rev. Lett., 97 (2006) 048501.

14001-p5


