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Lagrangian motion in a quasi-two-dimensional, time-dependent, convective flow is studied at
different Rayleigh numbers. The particle tracking velocimetry technique is used to reconstruct
Lagrangian trajectories of passive tracers. Dispersion properties are investigated by means of the
recently introduced finite size Lyapunov exponent analysis. Lagrangian motion is found to be
chaotic with a Lyapunov exponent which depends on the Rayleigh number'&s Fhe power law

scaling is explained in terms of a dimensional analysis on the equation of motion. A comparative
study shows that the fixed scale method makes more physical sense than the traditional way of
looking at the relative dispersion at fixed times. ZD00 American Institute of Physics.
[S1070-663(100)00112-4

I. INTRODUCTION As a consequence, particle trajectories can display Hamil-
1tonian chao¥ and, therefore, strong sensitivity to initial con-

ditions. The interest in studying the chaotic properties of
Lagrangian trajectories is in the characterization of the mix-

The understanding of transport and mixing properties o
passive impurities in fluid flows is of great practical impor-
tance in several fields of earth sciences and engineéiiimg. . ) : a8l
spite of its relevance, a general theory for the dynamics of'd Properties of the passive pa_rncﬁa%.* _ o
passive impurities in a given flow is still lacking due to the ~ Previous experimental studies of chaotic advection in
well-known difficulties in connecting Eulerian and Lagrang- convective flows have limited the parameter variability to a
ian statistic< small range in order to keep the flow two dimensiohéi.

Traditionally, the study of passive transport can be di-the present work we use a configuration in which the fluid
vided into two broad classes: transport in laminar and ifmotion is forced to be essentially two-dimensiofete Ref.
turbulent flows. Usually, the transition between the two dif-12). The convection is generated in a rectangular tank by a
ferent flow regimes can occur by changing some control palinear heat source positioned in the symmetry plane of the
rameters, e.g., Rayleigh number Ra in convective flows. Apottom surface of it. In this configuration, the Eulerian fea-
small Ra the fluid is motionless and the transport is entirelyfures of the flow are controlled by three nondimensional
due to molecular diffusion. In the limit of very large Ra parameters® the Rayleigh number Ra(gBQH?)/(av«),
turbulence is completely developed and diffusive propertieshe Prandtl number Prv/«, and the aspect ratid=H/L,
can be phenomenologically described by the introduction ofvhereg is the gravitational acceleratiog, the thermal ex-
an “eddy” diffusion coefficient pansion coefficient of the fluidy the thermal conductivityy

In this paper we are interested in an intermediate regiméhe kinematic viscosityx the thermal diffusivity Q the heat
in which we observe a two-dimensional, almost time-flux per unit length of the linear sourck, the height of the
periodic Eulerian flow. In this regime it is now well known tank, andL its width. In the range of the parameters of our
that the Lagrangian motion of passive particles can be vergxperiments the flow consists of two main counter-rotating
complex due to chaotic advectin®see also Refs. 7-9. The rolls divided by an ascending thermal plume above the heat
equations of motion for a fluid particle in two-dimensional, source’* The upper end of the plume oscillates horizontally
incompressible, time-dependent flows formally constitute almost periodically with a frequency depending on the Ray-
nonautonomous one degree of freedom Hamiltonian systeneigh number.
where the stream function plays the role of the Hamiltonian.  Lagrangian trajectories are identified on a vertical plane
by the particle tracking velocimetry techniq(RTV).*® Cha-
dAlso at: Istituto Nazionale Fisica della Materia, UndaTorino. otic features of the Lagrangian motion are directly investi-
DAlso at: Istituto Nazionale Fisica della Materia, UnidaRoma. gated by looking at the separation growth of initially close
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trajectories. In particular, we compute the finite size Lya-neutrally-buoyant pine pollen particles. The vertical plane, in
punov exponentFSLE) recently introduced in Ref. 16. This the middle of the tank and orthogonal to the heat source, is
indicator gives a characterization of the spreading mechatluminated by a 0.3-cm-thick light sheet generated by a 750
nisms acting on different length scales recovering at smallhnw argon-ion laser through a cylindrical lens. A standard
scales the Lagrangian Lyapunov expon€rn order to ex-  charge coupled device video camera, orthogonal to the light
plore possible links between Eulerian and Lagrangian ProPsheet, takes a series of single-exposure images of the test
erties, we also study the dependence of the Lagrangian st@action. The images are recorded on a S-VHS tape and digi-
tistics on the Rayleigh number. tized at a 8.33 Hz rate with a 75576 pixel resolution.

th The papertlsl or?anlzeg t?]s follows. .Seit'oﬂ I_I descI:anes The PTV technique allows us to detect, position, and
€ expermental Setup and the measuring technique. In &g, i 4jyiqual particle images over a set of the acquired
[l we summarize the finite size Lyapunov exponent analysis

. : . rames and thus to reconstruct a continuous velocity field
Section IV presents the experimental evaluation of the FSL .
and the dependence on the Rayleigh number. Section V co rom the sparse vectors. The procedure used to detect particle

tains some conclusions. In the Appendix we produce Som@cations oyelr.the digitized frame consists of three steps.
detail on the finite size Lyapunov exponent analysis. First, the digitized frames are segmented by means of a
threshold operator that discerns pixels belonging to the par-
ticle images or to the background: The image is reduced to a
Boolean representation in which the nonzero values identify
the particle images whereas the null ones are associated with
The experiment is performed in the rectangular tankthe background. Second, the Boolean image is labeled to
filled with water sketched in Fig. 1. The tank ik identify each set of connected nonzero pixétey are the
=15.0 cm wide, 10.4 cm deep, aht=6.0 cm height. The  candidate particle imagesFinally the area of these sets is
upper and lower surfaces are 0.8 cm thick made of alumimatched against a maximum and a minimum admissible
num plates, kept at a constant temperature by means of tWeyjye in order to accept them as representative of particles
counterflow heat exchangers consisting of square-shapeg their positions are computed and stored together with

pipes where water flows at constant temperature. The Sid@ 5614 information for the succeeding trajectory recogni-
walls are made of 1.0-cm-thick perspex and can be c0n5|q~Ion

ered adiabatic. S . Trajectories are thus identified as time ordered series of
The convection is generated by a linear heat source, a_ .. . o .
. . S . . ' particle locations that meet two criteria corresponding, re-
circular cylinder 0.8 cm in diameter, located in the midline : . . .
spectively, to the assumption of maximum velocity and

of the tank 0.4 cm above the lower surface. The cylinder is

heated by an internal electrical resistance connected to a stgraximum acceleration in the flow field. These tracking pa-

bilized power supply that controls the heat flux furnished to"@Meters have been chosen according to the kinematic char-

the system with a precision of 2%. The mean temperature qicteristics of each investigated field. This last procedure im-
the fluid is probed by a thermocouple in order to evaluate it$li€s an interpolation of data over a regular grid and a
global physical properties, such as kinematic viscosity, therconsequent replacement of erroneous vectors with values
mal diffusivity, and thermal expansion coefficient. computed starting from the neighboring vectors. Eulerian in-
Lagrangian description of the fluid motion is carried out stantaneous velocity fields can then be obtained. Although
by means of the PTV technique. To this aim, the fluid isPTV allows for the evaluation of velocity vectors with high
seeded with a large number of smél0 um in diametey, local accuracy and assures a statistical independence of data,
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FIG. 2. An example of trajectories recognized by the PTV technique for the
run at Ra=2.39x 10°. The trajectories are followed during 100 frames of 01
their evolution. The circle on the bottom represents the linear heat source. : J'L L

spectral amplitude (a.u.)

0 0.2 0.4 0.6 0.8 1
this procedure of interpolation should be carefully carried f(Hz)

out in order to avoid errorEB. i . . FIG. 4. Power spectrum of the horizontal velocity time series of Fig. 3. The
In Fig. 2 we show an example of trajectories recognize€tnain peak at frequenc§=0.175 Hz corresponds to the thermal plume
during 100 frames. From the above figure it is possible to seescillations.
the two main counter-rotating vortices separated by the os-
cillating plume.
The Eulerian features of the flow have been investigated . . . . L
in details in a previous study.In Fig. 3 we plot the hori- pearnng in smoqth, Iar_mnar,_ Eult_erlan flow. By defm!tp_n,
chaotic Lagrangian trajectories display sensitivity to initial

zontal component of the velocity obtained by an interpola- diti e th tion bet 0 I traiectori
tion of PTV measurements in the middle of the cell. TheSONAtoNS, 1.€., the separation between wo close trajectories

time periodicity corresponding to the oscillation of the ther- d:cv?;]ges extpone.ntlal!y n tllr)ne.t'rl;z(imeasuremofl_the chaoticity
mal plume is easily observed. In Fig. 4 we plot the power0 € motion 1S given by agrangian Lyapunov

spectrum, which confirms the existence of a dominant peri_exponenﬁ which represents the average rate of exponential

: . N divergence of two nearby trajectories.
odic component in the velocity field. _
In each run, the heat exchangers on the horizontal sur- Suppose tha, (t) andx,(t) =Xy (t) +R(t) are two tra-

faces and the electrical resistance of the heater are activat e%ct(r);lr?s_asr;ca[u;g ér‘]to:?a atogéentq'ss’tggfri‘ézg R(0)|. The
abou 3 h before the beginning of acquisition to avoid tran- grangt yapunov exp ! ! y

sient regimes. Acquisitions last for 2700 s, during this period 1 R(t)
22500 frames are digitized. Typically 900 particles are si- A=Ilim lim ?Inm, 1)
multaneously tracked for each frame. Experiments have been t= R(0)—0

performed for six different values of the heat flux supplied
through the linear source. The values of the physical para
eters for the runs are reported in Table I.

where the inner limit is necessary in order to keep the sepa-
Mation R(t) infinitesimal.
However, in practicalnumerical or, even worse, experi-
menta) computation of(1) one cannot attain the two limits.
IIl. FINITE SIZE LAGRANGIAN LYAPUNOV ANALYSIS In numerical computation, the first limit{ ) is replaced
The importance of chaotic advection in the transport ofty a sufficiently long integration at which one observes the
Lagrangian impurities is now well recognizeédrhis term  convergence of the Lyapunov exponent. The second limit
refers to complexturbulent-like Lagrangian trajectories ap- [R(0)—0] can be handled by periodically rescaling the
separation vectoR(t) in order to keep its modulus very
small. Of course, if the first procedure can be very difficult,
the latter is impossible in the case of experimental data. It is
worth mentioning the rather powerful method to compute the
05 Lyapunov exponent from time series introduced Wl 2°
Recently, a generalization of the Lyapunov exponent to
finite separations has been proposed, called the finite size
Lyapunov exponentt The physical idea stems from the con-
sideration that the separatiéhbetween the trajectories rep-
resents the scale at which one observes the system. The limit
R—0 in (1) physically means that is related to the smallest
structures present in the flow. Otherwise, by keepifqite
- - - . . and by means of the FSLE(R) one is able to quantify the
0 20 40 60 80 100 dispersion properties of the flow at different length scales.
time (s) The FSLE analysis has been demonstrated to be very useful
FIG. 3. Time series of Eulerian horizontal velocity obtained by interpolation both in numerical SImUIathnS of dispersion ,m, fully deve,l-
of PTV velocities. The velocity is computed in a point above the heating®P€d turbulence and the drifters’ data analysis in the Medi-
element at a distance of B8from the bottom. terranean basiff.

u (cm/s)
o

-05 F
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TABLE |. Parameters related to the analyzed ru@ss the heat flux injected into the systemthe kinematic
viscosity, x the thermal diffusivity, andr the thermal dilatation factor.

Q(W/m) v(10°7 m?/s) x(1077 m?/s) a(107* m3/K) Ra Pr

1.00 8.850 1.441 2.593 6.87.0° 6.14

3.50 8.870 1.440 2.583 2.390° 6.16

8.25 8.720 1.444 2.652 5.96L0° 6.04

12.20 9.440 1.429 2.329 7.200° 6.61

22.4 8.380 1.452 2.815 1.740° 5.77

29.20 8.560 1.447 2.729 2.x710° 5.92

The FSLE computation is based on the concept of sepa- 1 Ry R
ration doubling time, i.e., the tim&(R) it takes for the sepa- AMR)= wT R 5)

ration to grow fromR to p R, p being a constant larger than
1. The term “doubling time” refers properly only to the case \yhere 7, is the characteristic time of relaxation to the

p=2 (see the Appendix for a detailed description of the,qymptotic uniform distributiorisee the Appendix for more
method. By performing a large number of doubling-time details.

experiments, one defines the FSLE(ase Ref. 16 For the convective flow studied in this paper, the Eule-

rian characteristic scalg is of the same order of the vessel
TR, Inr, (2 dimension. Therefore, the diffusive regin® has no room

to develop and we expect for the FLSE only the cha@jc
where(())g is the average over many doubling-time experi-and the saturatio(s) regimes. The crossover between these
ments. The FSLE analysis looks very natural for the La-egimes occurs at scales of the order of the Eulerian charac-
grangian data of the present experiment. By means of th@yristic length scale associated with the convective pattern.
particle tracking algorithm one selects, frame by frame.,symmarizing, from the finite size Lyapunov exponent analy-
nearby particles, say at separati@nand follows them mea-  sjs we can extract much information on the dispersion pro-
SUring the t|meT(R) it takes for the Separation to grOWth Up cesses: the Lagrangian Lyapunov exponéqmantifying
topR. mixing time scale at small scalethe relaxation timerg for

The finite size Lyapunov exponent at differéRtgives  reaching uniform distribution at large scale, and an estima-

information concerning the different mechanisms of thetion of the Eulerian characteristic scale from Lagrangian
spreading at different scaléSLet us clarify this point. f we  measurements.
assume to compute the FSLE for passive particles in @ et us conclude this section by observing that the FSLE
bounded domairte.g., the vessel in our experimgwf typi-  analysis is an alternative to the relative dispersion analysis.
cal sizelLp advected by a flow of characteristic Eulerian Relative dispersion, i.e., the evolution of the separation of a
scale le<Lp, we expect for\(R) the following scale- couple of particles, is driven by the local velocity difference
dependent scenario. and thus gives information on the structure of the velocity

(i) For small separatiorR<lg, if the Lagrangian dy- field. The generic moment of relative dispersion is
namics is chaotic, we recover the standard Lagrangian Lya-

punov exponent. Indeed it is easy to sh(see Ref. 1that (R(H)PY=(|x(t) — x4 (1)[P), (6)
the following limit holds:

NR)=

lim A(R)=\. (3)  Where the average i; taken over a large number of pairs. In
R—0 the case of Lagrangian chaos one expects that for a small
value of separation the relative dispersion grows exponen-

one(g;r:frlelitl)_nDa'blm etlrs]gulr?wt: rtrr?: (:\I/i/i(t)e fr%ge%ToRk?eLgdvecttially with the Lyapunov exponentR(t))=R(0)expt)—
y L P Hiis behavior is strictly verified only in the absence of inter-
by almost uncorrelated velocities and, as a consequence, a

diffusive behavior is expected, i.dR%(t))~4Dt, whereD mittency and in the infinite time lim

is the diffusion coefficient. For the FSLE this means the At variance with _the_relatn_/e dispersion which computes
: ) the average separationfated time the FSLE analysis com-
scaling behavior

putes the average doubling timefated scale The general
advantage is that the separation scale may be of dynamical
MR)~ Q 4 relevance(i.e., one observes different diffusive properties at
a different scale as discussed previolsiyhile the standard
(iii ) At very large separatiolR=Lp, A(R) should goto average at fixed time may give rise to spurious contributions
zero because particles cannot separate more than the vesdak to the superposition of realizations which attain different
size. Let us denote bR,,,,,=O(Lp) the saturation value d®  scales at the same tinieee the examples in Ref. 17n the
at the boundary. It has been shdwthat in a large class of case of the present experimental data, we will see in Sec. IV
systems whemRR is close toR,.x, A(R) follows the universal that the analysis in terms of relative dispersi@ indeed
behavior gives little information.

Downloaded 03 Nov 2000 to 192.84.137.11. Redistribution subject to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



3164 Phys. Fluids, Vol. 12, No. 12, December 2000 Boffetta et al.

IV. DATA ANALYSIS

A. Finite size Lyapunov exponent from Lagrangian

data
The convective pattern realized in our experiment is es- =
sentially a two-dimensional, time-dependent flow even at T T
very high Rayleigh numbers. Therefore, as discussed in Sec§ §
1000 1000

|, we expect chaotic Lagrangian motiof.We used the
FSLE analysis for the experimental trajectories in order to
probe the separation growth at different scales from the Lya-
punov exponential regime up to the saturation regif®e . .
For all the results presented in the following we use as unit 0.1 1
length the height of the celH, and as unit time the diffusive R/H
timet,=H2%/ k=25x10" s. _ .

We report the resuls fo six runs al different Rayleigh™5, %, 1% N o2 & r St i wwesras %
numbers(see Table )l Each run consists of 22500 frames Lyapunov exponenk = 3100+ 2001, ; the curve is the saturation regime
with 900 trajectories on average. None of the trajectoriess) with 7z=8.0x10"*t, and Ry,=1.9H. (b) The same as ina) for
lasts for the whole run for two reasons. The first refers to dRa=5.96<10". Here A=5400+6001t,, 7x=5.0X10 “t,, and Ry
failure of the tracking algorithm in following particles very =18H.
close to boundaries and to the heat source because of light
reflections. The second refers to particles which are lost be- . ] ]
cause of the nonperfect two-dimensional nature of the flow!e=Lp, We do not expect to observe the intermediate diffu-

Nevertheless, we find a large number of trajectories that lastiVe "egime. , , _
for some circulation time. The fit of Fig. 5 with the saturation regini6) allows us

The FSLE analysis on the experimental data has beep_esti_mate the saturation scakx~1.9H and the relax-
y P ation time 7r=8.0x10"“t,.. We observe that both X/(an

done as follows. We fixed a set of thresholls=Ryp" (n o T
= Rop” ( estimation of the small scale mixing tilnand 7 are much

=0,...N), each timety; a new couple was considered e . .
whenever)two particleengt ot formingpa couplewere at a smaller than the diffusive timg,. This means that disper-
Y sion of Lagrangian tracers in the convective cell is domi-

distanceR(to)<R,. The separation growth between these, . by chaotic advection. In addition, we observe that the

partlclss is then followed for timets>t, and the dout_)lmg characteristic scalég and Ry, Seem to be independent of
times,” T,(R,), at scaleR,, are evaluated by measuring the the Rayleigh number.
time the 'separayon t_akes to_grow froR, up to R.““ Let us conclude this section by comparing the FSLE and
=pR,. Since tra]ectorles.are sampled at dlscrgte times, thﬁwe relative dispersion analysis. For the same trajectories of
average over for compu.tlng(F.{) is done following (A4), Fig. 5@ we have computed the moments of relative disper-
which extends2) to the time-discrete casgee the Appen- g (6). The result, plotted in Fig. 6, deserves some com-
dix). ) o ments. At small timegi.e., small separatioran exponential

In order to increase the statistics at large separafdns yegime is indeed observed, but with a slope which increases
we computed the FSLE for different values of the smallestyih the momenp. The reason for this behavior is that many
scale Ry (Ro=0.067H, 0.1H, 0.13H). The threshold pajrs remain very close while advected in the convective cell

ratep is set equal to 1.2 in each computation. for very long times before the exponential separation takes
Figure 5 shows the FSLE computed for two different

Rayleigh numbers (Ra2.39x 10° and Ra=5.96x 10°). We
observe the collapse af(R) to the plateau of the Lyapunov
exponent\ at small values oR. Since we find\>0, we
have direct evidence of Lagrangian chaos in the investigated
flow.2*

For larger separation (R) drops to smaller values, in-
dicating a slowing down in the separation growth. This is
qguantitatively well described by the saturation regifhe
The collapse of the curves at differeRg confirms that suf-
ficiently high statistics is reached even at large scales. Fluc-
tuation among differenR, curves can be taken as an estima-
tion of the error forA(R). 0.05 . . .

From the general discussion of Sec. Ill, we expect that 0 05102 1.010° 1510°
the crossover from the exponential regime gives an estima- t,
tion Of th? C.haraCte”StIC Eulerian scdle. We findte=0.5 ._FIG. 6. Rescaled relative dispersiéR(t)P)*Pfor p=1,2,4 (from bottom
H, which is indeed close to what one could expect from F|g'to top) in lin—log plot. The dependence of the slope on the omlés an
2. Because the Eulerian scale is close to the saturation valuiggication of the strong intermittency in the Lagrangian separation.
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FIG. 7. F’robablllty distribution function of pair Separations at time.5 FIG. 8. Lagrangian Lyapunov exponent as a function of Ra. The errors are

X10"*t, (full line), t=5.0x10"*, (dashed ling and t=1.0x10"°t,  estimated by the fluctuations at different initi}. The line is the best fit
(dotted ling in lin—log plot. A~ ReP5L

, . L - We observe a fairly good collapse at all the length scales, the
place. AS a c_:on_ﬂrm_atlon of t_h's picture, |r_1 F'g' 7 we plot t_he saturation regimg5) included, the fluctuations are of the
probability distribution function of the pair distance for dif- order of the error reported in Fig. 5.

ferent times: The tail of the distribution is representative of The conjecture thak (R)/Ra'2 is a Rayleigh indepen-

the particles which effectively separate. As is clearly showryet fynction can be supported by the following dimensional
in Fig. 7, the evolution of the distribution is not self-similar argument. The equations of motion in the Boussinesq ap-
in tim.e and most of the cqupléme peak of the distriputic)n roximation and made nondimensional by usigas the
remain close for a long time. Moreover, at large times ancEnit length, the diffusive time, as unit time, and rescaling

distances, a second problem appears. Indeed, for timgRe temperature fluctuations with the typical temperature dif-
longer than the circulation time, some of the separated PalranceAT are given b

ticles come close again, causing strong fluctuations in the
relative dispersior{see Fig. 6. As a consequence, the satu- 1
ration regime analogous ttb) is not observable with this Pr
kind of analysis.

Neither of these problems affect the FSLE analysis 5T JT  9°T
which performs the statistics only on the pairs which sepa-  —-TUg7—=——. 9
rate. The statistics are thus not affected by particles trapped B X
in the nonchaotic vortex core, a feature which is ge%%\rlallyt is easy to verify this performing the following rescaling:
observed in presence of vortices in two-dimensional fl6Wws. 1 2
The comparison of Figs. 5 and 6, obtained from the same set Ua— Ay, t=ATT Ra-ATRa, (10
of trajectories, is a convincing demonstration of the advanwhere A is an arbitrary factor, Eq¢8) and (9) remain un-
tage of fixed scale analysis with respect to the fixed time onechanged, if one disregards the diffusive terms. This means

that, neglecting the diffusive terms, the Boussinesq equations

B. Dependence of the Lagrangian quantities on the at fixed Pr(as in our experiment, see Tabledre invariant
Rayleigh number under the rescalingl0). As a further argument in favor of

In order to explore the dependence of the Lagrangian
statistics on the Eulerian characteristics, we have performed 1
the FSLE analysis for a Rayleigh number which varies over
more than one order of magnitu@eee Table). The depen-
dence of the Lagrangian Lyapunov exponent on Ra is shown

Ju u d J%u
at IXg X X2

—RaTz,, (8)

X
in Fig. 8. A clear scaling is observed, indicating a power law g“ é % § é § §
dependence o o § g é g
\~Ra 7 = ; ¥
i Ra=6.87 10, O B
with y=0.51+0.02. An analogous scaling has been ob- < Eg:g-gg}ga ° ° B
served for the Eulerian characteristic times in a similar Ra=7.20 102 ¥
flow.1* Ra=17410] ©
. . . _ Ra=2.1710° ¢ ,
On the basis of the above-mentioned result and taking 0.01

0.1 1

into account the independencel pfandR,,,,, Of the Rayleigh RH

number, we compensate(R) at different Ra with R¥%
according to the scaling7). The result is plotted in Fig. 9. FIG. 9. Data collapse of(R) at different Ra rescaled with K2
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|s_that Lagrangian trajectories are independent of_ the_ Ra_yAPPENDIX: COMPUTATION OF THE EINITE SIZE
leigh number. Therefore, the FSLE exponent, which is d"LYAPUNOV EXPONENT

mensionally an inverse time, scales as’/Ravhich is (7).

Of course, for the scaling invarian€&0) to be observ- Here we describe the method employed for the compu-
able, the stability of the flow is required. For large enoughtation of the finite size Lyapunov exponent. We also discuss
Ra (above the values investigated in this papse would a simple argument for the asymptotic formus), which
observe the transition to different Eulerian regimes and thuslescribes the behavior near saturation.

a deviation from the scaling relatidid). The practical method for the FSLE computation goes as
follows. One has to choose a norm to evaluate the distance
R(t) between two trajectories and to define a series of
thresholdsR,,=p"R, (n=1,... N). Then one measures the
“doubling times” T,(R,) that a separation of siZg, takes

The relative dispersion of Lagrangian tracers in a con0 grow up toR,. ;. The threshold ratp should not be fixed
vective flow confined in a vessel is studied at different Ray100 large in order to avoid the separation growth through
leigh numbers. The particle velocimetry tracking techniquedifferent scales before reaching the next threshold and the
is used to obtain a large number of Lagrangian trajectorie0ssible mixing of effects belonging to different scales. On
Dispersion properties have been quantified by using the rdhe other handp cannot be too close to one, otherwise
cently introduced finite size Lyapunov exponent, which mea-T,(R) tends to be of the order of the time st@mmerical
sures the dispersion growth rate at different scéles, at  integration or of the sampling time(experimental data
different distances between partiglels the limiting cases in ~ analysig. For simplicity we callT,, “doubling time” even if
which there is a large scale separation between the Eulerigh? 2.
characteristic length scale and the domain size, the FSLE For computing the doubling times, one has usually to
analysis and the usual way of looking at the relative disperfollow two trajectories starting at an initi&y,;,<R,, in or-
sion at fixed delay times give the same information. In ourder to permit the initial perturbation to align with the most
experiment, where the vessel size is not much larger than tHéhstable direction in the phase space. Moreover, one must
Eulerian length, the customary relative dispersion analysis igay attention to keejRy<Rmax, Rmax being the saturation
affected by problems due to the lack of an asymptotic redistance, so that all the thresholds can be attained.
gime. Therefore, the FSLE analysis turns out to be more The evolution of the separation from its initial value
suitable in investigating the dispersion properties. Rmin to the largest thresholRy carries out a single separa-

At small scale the FSLE gives the Lagrangian Lyapunowion growth experiment during which one measures a real-
exponent[\(R)=\], which is found to be positive. This ization of all the T,(R,). When the largest threshold is
means that small scale mixing is driven by chaotic advectionteached one considers a new couple of trajectories obtained
At large scale the FSLE behavior is well described by aby rescaling the separation to the initial distaritg, and
general law which takes into account the presence of boundtarts another experiment. In the case of experimental data,
aries. one searches at each time for close particles and follows their

We have also observed that the degree of chaoticity deseparation evolution.
pends on the Rayleigh number. In particular, the Lagrangian After A’ experiments, the expectation value of a quantity
Lyapunov exponent displays a power law dependence on th@ is evaluated as
Rayleigh number, i.eA~Ra"2. Moreover, the FSLE dis- 1N
plays the same RZ dependence also at large scales. Indeed  (A),=— E A, (A1)
after a suitable rescaling, the FSLE curves measured at dif- Ni=
ferent Rayleigh numbers collapse on the same curve. Thghere(()), indicates the average over many realizations of
power law behavior and the collapse of the FSLE curves ofhe pair's separation evolution, which is not the same as the
the whole range of scales are explained on the grounds of thne average because different separation growth experi-
scaling invariance of the Boussinesq equation. This invariments may take different times. The connection between the
ance requires one to neglect diffusive terms, meaning thaime average and the averagl) is given by
diffusion plays a marginal role for the Lagrangian dynamics,
as confirmed by the high value of the Lagrangian Lyapunov (A) =EITA(t)dt: ZiAiT] _ <AT>e.
exponent measured in units of diffusive time. “Tlo i1 (7e
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