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Chaotic advection and relative dispersion in an experimental
convective flow
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Lagrangian motion in a quasi-two-dimensional, time-dependent, convective flow is studied at
different Rayleigh numbers. The particle tracking velocimetry technique is used to reconstruct
Lagrangian trajectories of passive tracers. Dispersion properties are investigated by means of the
recently introduced finite size Lyapunov exponent analysis. Lagrangian motion is found to be
chaotic with a Lyapunov exponent which depends on the Rayleigh number as Ra1/2. The power law
scaling is explained in terms of a dimensional analysis on the equation of motion. A comparative
study shows that the fixed scale method makes more physical sense than the traditional way of
looking at the relative dispersion at fixed times. ©2000 American Institute of Physics.
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I. INTRODUCTION

The understanding of transport and mixing properties
passive impurities in fluid flows is of great practical impo
tance in several fields of earth sciences and engineering1 In
spite of its relevance, a general theory for the dynamics
passive impurities in a given flow is still lacking due to th
well-known difficulties in connecting Eulerian and Lagran
ian statistics.2

Traditionally, the study of passive transport can be
vided into two broad classes: transport in laminar and
turbulent flows. Usually, the transition between the two d
ferent flow regimes can occur by changing some control
rameters, e.g., Rayleigh number Ra in convective flows.
small Ra the fluid is motionless and the transport is entir
due to molecular diffusion. In the limit of very large R
turbulence is completely developed and diffusive proper
can be phenomenologically described by the introduction
an ‘‘eddy’’ diffusion coefficient.3

In this paper we are interested in an intermediate reg
in which we observe a two-dimensional, almost tim
periodic Eulerian flow. In this regime it is now well know
that the Lagrangian motion of passive particles can be v
complex due to chaotic advection,4–6 see also Refs. 7–9. Th
equations of motion for a fluid particle in two-dimensiona
incompressible, time-dependent flows formally constitut
nonautonomous one degree of freedom Hamiltonian sys
where the stream function plays the role of the Hamiltoni

a!Also at: Istituto Nazionale Fisica della Materia, Unita` di Torino.
b!Also at: Istituto Nazionale Fisica della Materia, Unita` di Roma.
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As a consequence, particle trajectories can display Ha
tonian chaos10 and, therefore, strong sensitivity to initial con
ditions. The interest in studying the chaotic properties
Lagrangian trajectories is in the characterization of the m
ing properties of the passive particles.5,6,8,11

Previous experimental studies of chaotic advection
convective flows have limited the parameter variability to
small range in order to keep the flow two dimensional.7 In
the present work we use a configuration in which the flu
motion is forced to be essentially two-dimensional~see Ref.
12!. The convection is generated in a rectangular tank b
linear heat source positioned in the symmetry plane of
bottom surface of it. In this configuration, the Eulerian fe
tures of the flow are controlled by three nondimensio
parameters:13 the Rayleigh number Ra5(gbQH3)/(ank),
the Prandtl number Pr5n/k, and the aspect ratioA5H/L,
whereg is the gravitational acceleration,b the thermal ex-
pansion coefficient of the fluid,a the thermal conductivity,n
the kinematic viscosity,k the thermal diffusivity,Q the heat
flux per unit length of the linear source,H the height of the
tank, andL its width. In the range of the parameters of o
experiments the flow consists of two main counter-rotat
rolls divided by an ascending thermal plume above the h
source.14 The upper end of the plume oscillates horizonta
almost periodically with a frequency depending on the R
leigh number.

Lagrangian trajectories are identified on a vertical pla
by the particle tracking velocimetry technique~PTV!.15 Cha-
otic features of the Lagrangian motion are directly inves
gated by looking at the separation growth of initially clo
0 © 2000 American Institute of Physics

o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



r

3161Phys. Fluids, Vol. 12, No. 12, December 2000 Chaotic advection in an experimental convective flow
FIG. 1. Experimental setup. The uppe
cooling system~not shown! is similar
to the lower one.
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trajectories. In particular, we compute the finite size Ly
punov exponent~FSLE! recently introduced in Ref. 16. Thi
indicator gives a characterization of the spreading mec
nisms acting on different length scales recovering at sm
scales the Lagrangian Lyapunov exponent.17 In order to ex-
plore possible links between Eulerian and Lagrangian pr
erties, we also study the dependence of the Lagrangian
tistics on the Rayleigh number.

The paper is organized as follows. Section II describ
the experimental setup and the measuring technique. In
III we summarize the finite size Lyapunov exponent analy
Section IV presents the experimental evaluation of the FS
and the dependence on the Rayleigh number. Section V
tains some conclusions. In the Appendix we produce so
detail on the finite size Lyapunov exponent analysis.

II. EXPERIMENTAL SETUP AND MEASURING
TECHNIQUE

The experiment is performed in the rectangular ta
filled with water sketched in Fig. 1. The tank isL
515.0 cm wide, 10.4 cm deep, andH56.0 cm height. The
upper and lower surfaces are 0.8 cm thick made of alu
num plates, kept at a constant temperature by means of
counterflow heat exchangers consisting of square-sha
pipes where water flows at constant temperature. The
walls are made of 1.0-cm-thick perspex and can be con
ered adiabatic.

The convection is generated by a linear heat sourc
circular cylinder 0.8 cm in diameter, located in the midli
of the tank 0.4 cm above the lower surface. The cylinde
heated by an internal electrical resistance connected to a
bilized power supply that controls the heat flux furnished
the system with a precision of 2%. The mean temperatur
the fluid is probed by a thermocouple in order to evaluate
global physical properties, such as kinematic viscosity, th
mal diffusivity, and thermal expansion coefficient.

Lagrangian description of the fluid motion is carried o
by means of the PTV technique. To this aim, the fluid
seeded with a large number of small~50 mm in diameter!,
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neutrally-buoyant pine pollen particles. The vertical plane
the middle of the tank and orthogonal to the heat source
illuminated by a 0.3-cm-thick light sheet generated by a 7
mW argon-ion laser through a cylindrical lens. A standa
charge coupled device video camera, orthogonal to the l
sheet, takes a series of single-exposure images of the
section. The images are recorded on a S-VHS tape and
tized at a 8.33 Hz rate with a 7523576 pixel resolution.

The PTV technique allows us to detect, position, a
track individual particle images over a set of the acquir
frames and thus to reconstruct a continuous velocity fi
from the sparse vectors. The procedure used to detect pa
locations over the digitized frame consists of three ste
First, the digitized frames are segmented by means o
threshold operator that discerns pixels belonging to the p
ticle images or to the background: The image is reduced
Boolean representation in which the nonzero values iden
the particle images whereas the null ones are associated
the background. Second, the Boolean image is labeled
identify each set of connected nonzero pixels~they are the
candidate particle images!. Finally the area of these sets
matched against a maximum and a minimum admiss
value in order to accept them as representative of parti
and their positions are computed and stored together w
temporal information for the succeeding trajectory recog
tion.

Trajectories are thus identified as time ordered serie
particle locations that meet two criteria corresponding,
spectively, to the assumption of maximum velocity a
maximum acceleration in the flow field. These tracking p
rameters have been chosen according to the kinematic c
acteristics of each investigated field. This last procedure
plies an interpolation of data over a regular grid and
consequent replacement of erroneous vectors with va
computed starting from the neighboring vectors. Eulerian
stantaneous velocity fields can then be obtained. Altho
PTV allows for the evaluation of velocity vectors with hig
local accuracy and assures a statistical independence of
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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3162 Phys. Fluids, Vol. 12, No. 12, December 2000 Boffetta et al.
this procedure of interpolation should be carefully carr
out in order to avoid errors.18

In Fig. 2 we show an example of trajectories recogniz
during 100 frames. From the above figure it is possible to
the two main counter-rotating vortices separated by the
cillating plume.

The Eulerian features of the flow have been investiga
in details in a previous study.14 In Fig. 3 we plot the hori-
zontal component of the velocity obtained by an interpo
tion of PTV measurements in the middle of the cell. T
time periodicity corresponding to the oscillation of the the
mal plume is easily observed. In Fig. 4 we plot the pow
spectrum, which confirms the existence of a dominant p
odic component in the velocity field.

In each run, the heat exchangers on the horizontal
faces and the electrical resistance of the heater are activ
about 3 h before the beginning of acquisition to avoid tra
sient regimes. Acquisitions last for 2700 s, during this per
22 500 frames are digitized. Typically 900 particles are
multaneously tracked for each frame. Experiments have b
performed for six different values of the heat flux suppli
through the linear source. The values of the physical par
eters for the runs are reported in Table I.

III. FINITE SIZE LAGRANGIAN LYAPUNOV ANALYSIS

The importance of chaotic advection in the transport
Lagrangian impurities is now well recognized.5 This term
refers to complex~turbulent-like! Lagrangian trajectories ap

FIG. 2. An example of trajectories recognized by the PTV technique for
run at Ra52.393108. The trajectories are followed during 100 frames
their evolution. The circle on the bottom represents the linear heat sou

FIG. 3. Time series of Eulerian horizontal velocity obtained by interpolat
of PTV velocities. The velocity is computed in a point above the heat
element at a distance of 0.8H from the bottom.
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pearing in smooth, laminar, Eulerian flow. By definitio
chaotic Lagrangian trajectories display sensitivity to init
conditions, i.e., the separation between two close trajecto
diverges exponentially in time. The measure of the chaotic
of the motion is given by the~Lagrangian! Lyapunov
exponent,6 which represents the average rate of exponen
divergence of two nearby trajectories.

Suppose thatx1(t) andx2(t)5x1(t)1R(t) are two tra-
jectories starting att50 at the distanceR05uR(0)u. The
Lagrangian Lyapunov exponent is defined by

l5 lim
t→`

lim
R~0!→0

1

t
ln

R~ t !

R~0!
, ~1!

where the inner limit is necessary in order to keep the se
ration R(t) infinitesimal.

However, in practical~numerical or, even worse, exper
mental! computation of~1! one cannot attain the two limits
In numerical computation, the first limit (t→`) is replaced
by a sufficiently long integration at which one observes
convergence of the Lyapunov exponent. The second li
@R(0)→0# can be handled19 by periodically rescaling the
separation vectorR(t) in order to keep its modulus ver
small. Of course, if the first procedure can be very difficu
the latter is impossible in the case of experimental data.
worth mentioning the rather powerful method to compute
Lyapunov exponent from time series introduced Wolfet al.20

Recently, a generalization of the Lyapunov exponent
finite separations has been proposed, called the finite
Lyapunov exponent.16 The physical idea stems from the co
sideration that the separationR between the trajectories rep
resents the scale at which one observes the system. The
R→0 in ~1! physically means thatl is related to the smalles
structures present in the flow. Otherwise, by keepingR finite
and by means of the FSLE,l(R) one is able to quantify the
dispersion properties of the flow at different length scal
The FSLE analysis has been demonstrated to be very us
both in numerical simulations of dispersion in fully deve
oped turbulence21 and the drifters’ data analysis in the Med
terranean basin.22

e

e.

g

FIG. 4. Power spectrum of the horizontal velocity time series of Fig. 3. T
main peak at frequencyf 50.175 Hz corresponds to the thermal plum
oscillations.
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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Downloaded 03
TABLE I. Parameters related to the analyzed runs.Q is the heat flux injected into the system,n the kinematic
viscosity,k the thermal diffusivity, anda the thermal dilatation factor.

Q~W/m! n(1027 m2/s) k(1027 m2/s) a(1024 m3/K) Ra Pr

1.00 8.850 1.441 2.593 6.873107 6.14
3.50 8.870 1.440 2.583 2.393108 6.16
8.25 8.720 1.444 2.652 5.963108 6.04

12.20 9.440 1.429 2.329 7.203108 6.61
22.4 8.380 1.452 2.815 1.743109 5.77
29.20 8.560 1.447 2.729 2.173109 5.92
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. IV
The FSLE computation is based on the concept of se
ration doubling time, i.e., the timeT(R) it takes for the sepa
ration to grow fromR to r R, r being a constant larger tha
1. The term ‘‘doubling time’’ refers properly only to the cas
r52 ~see the Appendix for a detailed description of t
method!. By performing a large number of doubling-tim
experiments, one defines the FSLE as~see Ref. 16!

l~R!5
1

^T~R!&e
ln r , ~2!

where^( )&E is the average over many doubling-time expe
ments. The FSLE analysis looks very natural for the L
grangian data of the present experiment. By means of
particle tracking algorithm one selects, frame by fram
nearby particles, say at separationR, and follows them mea-
suring the timeT(R) it takes for the separation to growth u
to r R.

The finite size Lyapunov exponent at differentR gives
information concerning the different mechanisms of t
spreading at different scales.17 Let us clarify this point. If we
assume to compute the FSLE for passive particles i
bounded domain~e.g., the vessel in our experiment! of typi-
cal size LD advected by a flow of characteristic Euleria
scale l E!LD , we expect forl(R) the following scale-
dependent scenario.

~i! For small separation,R! l E, if the Lagrangian dy-
namics is chaotic, we recover the standard Lagrangian L
punov exponent. Indeed it is easy to show~see Ref. 16! that
the following limit holds:

lim
R→0

l~R!5l. ~3!

~ii ! If l E!LD , in the intermediate regimel E,R,LD ,
one can reasonably assume the two particles to be adve
by almost uncorrelated velocities and, as a consequenc
diffusive behavior is expected, i.e.,^R2(t)&'4Dt, whereD
is the diffusion coefficient. For the FSLE this means t
scaling behavior

l~R!;
D

R2
. ~4!

~iii ! At very large separation,R.LD , l(R) should go to
zero because particles cannot separate more than the v
size. Let us denote byRmax5O(LD) the saturation value ofR
at the boundary. It has been shown17 that in a large class o
systems whenR is close toRmax, l(R) follows the universal
behavior
 Nov 2000  to 192.84.137.11.  Redistribution subject t
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l~R!.
1

tR

Rmax2R

R
, ~5!

where tR is the characteristic time of relaxation to th
asymptotic uniform distribution~see the Appendix for more
details!.

For the convective flow studied in this paper, the Eu
rian characteristic scalel E is of the same order of the vess
dimension. Therefore, the diffusive regime~4! has no room
to develop and we expect for the FLSE only the chaotic~3!
and the saturation~5! regimes. The crossover between the
regimes occurs at scales of the order of the Eulerian cha
teristic length scale associated with the convective patt
Summarizing, from the finite size Lyapunov exponent ana
sis we can extract much information on the dispersion p
cesses: the Lagrangian Lyapunov exponent~quantifying
mixing time scale at small scale!, the relaxation timetR for
reaching uniform distribution at large scale, and an estim
tion of the Eulerian characteristic scale from Lagrang
measurements.

Let us conclude this section by observing that the FS
analysis is an alternative to the relative dispersion analy
Relative dispersion, i.e., the evolution of the separation o
couple of particles, is driven by the local velocity differen
and thus gives information on the structure of the veloc
field. The generic moment of relative dispersion is

^R~ t !p&5^ux2~ t !2x1~ t !up&, ~6!

where the average is taken over a large number of pairs
the case of Lagrangian chaos one expects that for a s
value of separation the relative dispersion grows expon
tially with the Lyapunov exponent:̂R(t)&.R(0)exp(lt)—
this behavior is strictly verified only in the absence of inte
mittency and in the infinite time limit.23

At variance with the relative dispersion which comput
the average separation atfixed time, the FSLE analysis com
putes the average doubling time atfixed scale. The general
advantage is that the separation scale may be of dynam
relevance~i.e., one observes different diffusive properties
a different scale as discussed previously!, while the standard
average at fixed time may give rise to spurious contributio
due to the superposition of realizations which attain differ
scales at the same time~see the examples in Ref. 17!. In the
case of the present experimental data, we will see in Sec
that the analysis in terms of relative dispersion~6! indeed
gives little information.
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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IV. DATA ANALYSIS

A. Finite size Lyapunov exponent from Lagrangian
data

The convective pattern realized in our experiment is
sentially a two-dimensional, time-dependent flow even
very high Rayleigh numbers. Therefore, as discussed in
I, we expect chaotic Lagrangian motion.5,6 We used the
FSLE analysis for the experimental trajectories in order
probe the separation growth at different scales from the L
punov exponential regime up to the saturation regime~5!.
For all the results presented in the following we use as u
length the height of the cell,H, and as unit time the diffusive
time tk5H2/k.2.53104 s.

We report the results for six runs at different Raylei
numbers~see Table I!. Each run consists of 22 500 frame
with 900 trajectories on average. None of the trajector
lasts for the whole run for two reasons. The first refers t
failure of the tracking algorithm in following particles ver
close to boundaries and to the heat source because of
reflections. The second refers to particles which are lost
cause of the nonperfect two-dimensional nature of the fl
Nevertheless, we find a large number of trajectories that
for some circulation time.

The FSLE analysis on the experimental data has b
done as follows. We fixed a set of thresholdsRn5R0rn (n
50, . . . ,N), each time t0 a new couple was considere
whenever two particles~not yet forming a couple! were at a
distanceR(t0)<R0 . The separation growth between the
particles is then followed for timest.t0 and the ‘‘doubling
times,’’ Tr(Rn), at scaleRn are evaluated by measuring th
time the separation takes to grow fromRn up to Rn11

5rRn . Since trajectories are sampled at discrete times,
average over for computingl(R) is done following~A4!,
which extends~2! to the time-discrete case~see the Appen-
dix!.

In order to increase the statistics at large separationR,
we computed the FSLE for different values of the small
scale R0 (R050.067H , 0.1H , 0.13H ). The threshold
rater is set equal to 1.2 in each computation.

Figure 5 shows the FSLE computed for two differe
Rayleigh numbers (Ra52.393108 and Ra55.963108). We
observe the collapse ofl(R) to the plateau of the Lyapuno
exponentl at small values ofR. Since we findl.0, we
have direct evidence of Lagrangian chaos in the investiga
flow.24

For larger separationl(R) drops to smaller values, in
dicating a slowing down in the separation growth. This
quantitatively well described by the saturation regime~5!.
The collapse of the curves at differentR0 confirms that suf-
ficiently high statistics is reached even at large scales. F
tuation among differentR0 curves can be taken as an estim
tion of the error forl(R).

From the general discussion of Sec. III, we expect t
the crossover from the exponential regime gives an esti
tion of the characteristic Eulerian scalel E. We find ł E.0.5
H, which is indeed close to what one could expect from F
2. Because the Eulerian scale is close to the saturation v
Downloaded 03 Nov 2000  to 192.84.137.11.  Redistribution subject t
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ł E.LD , we do not expect to observe the intermediate dif
sive regime.

The fit of Fig. 5 with the saturation regime~5! allows us
to estimate the saturation scaleRmax.1.9H and the relax-
ation timetR.8.031024tk . We observe that both 1/l ~an
estimation of the small scale mixing time! andtR are much
smaller than the diffusive timetk . This means that disper
sion of Lagrangian tracers in the convective cell is dom
nated by chaotic advection. In addition, we observe that
characteristic scalesl E andRmax seem to be independent o
the Rayleigh number.

Let us conclude this section by comparing the FSLE a
the relative dispersion analysis. For the same trajectorie
Fig. 5~a! we have computed the moments of relative disp
sion ~6!. The result, plotted in Fig. 6, deserves some co
ments. At small times~i.e., small separation! an exponential
regime is indeed observed, but with a slope which increa
with the momentp. The reason for this behavior is that man
pairs remain very close while advected in the convective
for very long times before the exponential separation ta

FIG. 5. ~a! l(R) vs R for different initial thresholds R0

50.067 H , 0.1 H , 0.13 H at Ra52.393108. The horizontal line is the
Lyapunov exponentl5310062001/tk ; the curve is the saturation regim
~5! with tR58.031024 tk and Rmax51.9H. ~b! The same as in~a! for
Ra55.963108. Here l5540066001/tk , tR55.031024 tk , and Rmax

51.8 H.

FIG. 6. Rescaled relative dispersion^R(t)p& (1/p)for p51,2,4 ~from bottom
to top! in lin–log plot. The dependence of the slope on the orderp is an
indication of the strong intermittency in the Lagrangian separation.
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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place. As a confirmation of this picture, in Fig. 7 we plot t
probability distribution function of the pair distance for di
ferent times: The tail of the distribution is representative
the particles which effectively separate. As is clearly sho
in Fig. 7, the evolution of the distribution is not self-simila
in time and most of the couples~the peak of the distribution!
remain close for a long time. Moreover, at large times a
distances, a second problem appears. Indeed, for ti
longer than the circulation time, some of the separated
ticles come close again, causing strong fluctuations in
relative dispersion~see Fig. 6!. As a consequence, the sat
ration regime analogous to~5! is not observable with this
kind of analysis.

Neither of these problems affect the FSLE analy
which performs the statistics only on the pairs which se
rate. The statistics are thus not affected by particles trap
in the nonchaotic vortex core, a feature which is genera
observed in presence of vortices in two-dimensional flow25

The comparison of Figs. 5 and 6, obtained from the same
of trajectories, is a convincing demonstration of the adv
tage of fixed scale analysis with respect to the fixed time o

B. Dependence of the Lagrangian quantities on the
Rayleigh number

In order to explore the dependence of the Lagrang
statistics on the Eulerian characteristics, we have perform
the FSLE analysis for a Rayleigh number which varies o
more than one order of magnitude~see Table I!. The depen-
dence of the Lagrangian Lyapunov exponent on Ra is sh
in Fig. 8. A clear scaling is observed, indicating a power l
dependence

l;Rag ~7!

with g50.5160.02. An analogous scaling has been o
served for the Eulerian characteristic times in a sim
flow.14

On the basis of the above-mentioned result and tak
into account the independence ofl E andRmax of the Rayleigh
number, we compensatel(R) at different Ra with Ra1/2,
according to the scaling~7!. The result is plotted in Fig. 9

FIG. 7. Probability distribution function of pair separations at timest52.5
31024 tk ~full line!, t55.031024tk ~dashed line!, and t51.031023 tk

~dotted line! in lin–log plot.
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We observe a fairly good collapse at all the length scales,
saturation regime~5! included, the fluctuations are of th
order of the error reported in Fig. 5.

The conjecture thatl(R)/Ra1/2 is a Rayleigh indepen-
dent function can be supported by the following dimensio
argument. The equations of motion in the Boussinesq
proximation and made nondimensional by usingH as the
unit length, the diffusive timetk as unit time, and rescaling
the temperature fluctuations with the typical temperature
ferenceDT are given by13

1

PrF]ua

]t
1ub

]ua

]xb
1

]

]xa
pG5

]2ua

]x2
2RaTza , ~8!

]T

]t
1ub

]T

]xb
5

]2T

]x2
. ~9!

It is easy to verify this performing the following rescaling

ua→Lua , t→L21t, Ra→L2 Ra, ~10!

whereL is an arbitrary factor, Eqs.~8! and ~9! remain un-
changed, if one disregards the diffusive terms. This me
that, neglecting the diffusive terms, the Boussinesq equat
at fixed Pr~as in our experiment, see Table I! are invariant
under the rescaling~10!. As a further argument in favor o

FIG. 8. Lagrangian Lyapunov exponent as a function of Ra. The errors
estimated by the fluctuations at different initialR0 . The line is the best fit
l;Ra0.51.

FIG. 9. Data collapse ofl(R) at different Ra rescaled with Ra1/2.
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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neglecting the diffusive terms and thus in favor of the scal
invariance, let us observe that the large values of the L
punov exponent in units of diffusion time give a strong i
dication of Lagrangian dispersion ruled by chaotic advecti

The consequence of the Eulerian scaling invariance
the Lagrangian motion, given by

dx„t…

dt
5u~x„t…,t !, ~11!

is that Lagrangian trajectories are independent of the R
leigh number. Therefore, the FSLE exponent, which is
mensionally an inverse time, scales as Ra1/2, which is ~7!.

Of course, for the scaling invariance~10! to be observ-
able, the stability of the flow is required. For large enou
Ra ~above the values investigated in this paper! we would
observe the transition to different Eulerian regimes and t
a deviation from the scaling relation~7!.

V. CONCLUSIONS

The relative dispersion of Lagrangian tracers in a c
vective flow confined in a vessel is studied at different R
leigh numbers. The particle velocimetry tracking techniq
is used to obtain a large number of Lagrangian trajector
Dispersion properties have been quantified by using the
cently introduced finite size Lyapunov exponent, which m
sures the dispersion growth rate at different scales~i.e., at
different distances between particles!. In the limiting cases in
which there is a large scale separation between the Eule
characteristic length scale and the domain size, the FS
analysis and the usual way of looking at the relative disp
sion at fixed delay times give the same information. In o
experiment, where the vessel size is not much larger than
Eulerian length, the customary relative dispersion analys
affected by problems due to the lack of an asymptotic
gime. Therefore, the FSLE analysis turns out to be m
suitable in investigating the dispersion properties.

At small scale the FSLE gives the Lagrangian Lyapun
exponent@l(R)5l#, which is found to be positive. This
means that small scale mixing is driven by chaotic advect
At large scale the FSLE behavior is well described by
general law which takes into account the presence of bou
aries.

We have also observed that the degree of chaoticity
pends on the Rayleigh number. In particular, the Lagrang
Lyapunov exponent displays a power law dependence on
Rayleigh number, i.e.,l;Ra1/2. Moreover, the FSLE dis-
plays the same Ra1/2 dependence also at large scales. Inde
after a suitable rescaling, the FSLE curves measured at
ferent Rayleigh numbers collapse on the same curve.
power law behavior and the collapse of the FSLE curves
the whole range of scales are explained on the grounds o
scaling invariance of the Boussinesq equation. This inv
ance requires one to neglect diffusive terms, meaning
diffusion plays a marginal role for the Lagrangian dynami
as confirmed by the high value of the Lagrangian Lyapun
exponent measured in units of diffusive time.
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APPENDIX: COMPUTATION OF THE FINITE SIZE
LYAPUNOV EXPONENT

Here we describe the method employed for the com
tation of the finite size Lyapunov exponent. We also disc
a simple argument for the asymptotic formula~5!, which
describes the behavior near saturation.

The practical method for the FSLE computation goes
follows. One has to choose a norm to evaluate the dista
R(t) between two trajectories and to define a series
thresholdsRn5rnR0 (n51, . . . ,N). Then one measures th
‘‘doubling times’’ Tr(Rn) that a separation of sizeRn takes
to grow up toRn11 . The threshold rater should not be fixed
too large in order to avoid the separation growth throu
different scales before reaching the next threshold and
possible mixing of effects belonging to different scales. O
the other hand,r cannot be too close to one, otherwis
Tr(R) tends to be of the order of the time step~numerical
integration! or of the sampling time~experimental data
analysis!. For simplicity we callTr ‘‘doubling time’’ even if
rÞ2.

For computing the doubling times, one has usually
follow two trajectories starting at an initialRmin!R0, in or-
der to permit the initial perturbation to align with the mo
unstable direction in the phase space. Moreover, one m
pay attention to keepRN,Rmax, Rmax being the saturation
distance, so that all the thresholds can be attained.

The evolution of the separation from its initial valu
Rmin to the largest thresholdRN carries out a single separa
tion growth experiment during which one measures a re
ization of all the Tr(Rn). When the largest threshold i
reached one considers a new couple of trajectories obta
by rescaling the separation to the initial distanceRmin and
starts another experiment. In the case of experimental d
one searches at each time for close particles and follows t
separation evolution.

After N experiments, the expectation value of a quant
A is evaluated as

^A&e5
1

N (
i 51

N
Ai , ~A1!

where^( )&e indicates the average over many realizations
the pair’s separation evolution, which is not the same as
time average because different separation growth exp
ments may take different times. The connection between
time average and the average~A1! is given by

^A& t5
1

TE0

T

A~ t !dt5
( iAit i

( it i
5

^At&e

^t&e
. ~A2!
o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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To compute the Lyapunov exponent one has to evalu
^1/Tr(R)& t , i.e., the inverse of doubling time itself, there
fore, from Eq.~A2! with A51/Tr(Rn) one recovers Eq.~2!,
i.e.,

l~Rn!5
1

^Tr~Rn!&e
ln r. ~A3!

The above-described method needs the distance betw
the two trajectories to be continuous in time. This is not tr
for maps and for experimental data~i.e., discrete sampling in
time!. In these cases the method has to be slightly modifi
Now, Tr(Rn) is defined as the minimum time such th
R(Tr(Rn))>rRn , and R(Tr) becomes a fluctuating quan
tity, then from~A2! one has

l~Rn!5
1

^Tr~Rn!&e
K lnS R~Tr!

Rn
D L

e

. ~A4!

Now we discuss the derivation of Eq.~5!, i.e., the be-
havior of l(R) near the saturation. This behavior main
stems from the assumption that after large time intervals,
tracers tend to uniformly distribute in the domain~e.g., the
vessel! and that small deviations from the asymptotic u
form distribution relax exponentially to that. This assum
tion is usually satisfied in generic dynamical systems eve
it is difficult to prove. In the language of chaotic dynamic
systems, exponential relaxation to asymptotic distribut
means that the second eigenvaluea of the Perron–Frobeniu
operator is inside the unitary circle and the relaxation time
tR52 lnuau. 26

If the distribution relaxes exponentially to the unifor
one, the same is expected to hold also for the moments o
distribution. Therefore, for the large time evolution of th
separation one expects:

^R~ t !&s'Rmax2R̃e2t/tR, ~A5!

whereR̃ andtR depend on the system, and^@ #&s denotes the
spatial average on the probability distribution. Fort!tR or
equivalently for (Rmax2^R(t)&s)/^R(t)&s!1, we expect

d

dt
ln^R~ t !&s5l~R!5

1

tR

Rmax2R

R
, ~A6!

which is Eq. ~5!. For an exact computation of Eqs.~A5!–
~A6! in a particular system see the Appendix in Ref. 17.
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