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Abstract

Di#erent aspects of the predictability problem in dynamical systems are reviewed. The deep relation
among Lyapunov exponents, Kolmogorov–Sinai entropy, Shannon entropy and algorithmic complexity is
discussed. In particular, we emphasize how a characterization of the unpredictability of a system gives
a measure of its complexity. Adopting this point of view, we review some developments in the charac-
terization of the predictability of systems showing di#erent kinds of complexity: from low-dimensional
systems to high-dimensional ones with spatio-temporal chaos and to fully developed turbulence. A special
attention is devoted to <nite-time and <nite-resolution e#ects on predictability, which can be accounted
with suitable generalization of the standard indicators. The problems involved in systems with intrinsic
randomness is discussed, with emphasis on the important problems of distinguishing chaos from noise
and of modeling the system. The characterization of irregular behavior in systems with discrete phase
space is also considered. c© 2002 Elsevier Science B.V. All rights reserved.

PACS: 05.45.−a; 89.75.Fb
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All the simple systems are simple in the same way, each complex system has its own
complexity

(freely inspired by Anna Karenina by Lev N. Tolstoy)

1. Introduction

The ability to predict the future state of a system, given the present one, stands at the
foundations of scienti<c knowledge with relevant implications from a conceptual and applicative
point of view. The knowledge of the evolution law of the system may induce one to conclude
that this aim has been attained. This is the classical deterministic point of view as clearly stated
by Laplace [134]: once the evolution laws of the system are known, the state at a certain
time t0 completely determines the subsequent states for every time t ¿ t0.1 However it is well
established now that this cannot be accomplished in practice.
One limitation occurs in systems with many degrees of freedom, namely the impossibility

to manage the huge amount of data required for a detailed description of a single state of a
macroscopic body. This aspect, which is not discussed in this review, has led to the development
of statistical mechanics.
Another source of diJculty, which arises even in low dimensional systems, is related to

the unavoidable uncertainty in the initial condition. As clearly stated by PoincarKe, this implies
that one can make long-time predictions only if the evolution law does not amplify the initial
uncertainty too rapidly. This aspect had a relevant role in the development of the theory of
dynamical chaos.
Therefore, from the point of view of predictability, we need to know how an error in the

initial state of the system grows in time. In deterministic chaotic systems, i.e., with sensitive
dependence on initial condition, one has an exponential growth of errors and, consequently,
a severe limitation on the ability to predict the future states. In addition, since the details of
the evolution laws are not completely known (or, at least, cannot be speci<ed with an arbitrary
accuracy) or some degrees of freedom cannot be resolved, one has another unavoidable source
of unpredictability. This is also true for systems with discrete states.
A branch of the theory of dynamical systems has been developed with the aim of formalizing

and quantitatively characterizing the sensitivity to initial conditions. The Lyapunov exponent and
the Kolmogorov–Sinai entropy are the two indicators for measuring the rate of error growth
and information produced by the dynamical system. A complementary approach has been devel-
oped in the context of information theory, data compression and algorithmic complexity theory.
Nowadays it is rather clear that the latter point of view is closely related to the dynamical
systems one. If a system is chaotic then the predictability is limited up to a time which is
related to the <rst Lyapunov exponent, and the time sequence generated from one of its chaotic
trajectories cannot be compressed by an arbitrary factor, i.e. is algorithmically complex. On
the contrary, a regular trajectory can be easily compressed (e.g., for a periodic trajectory it is
suJcient to have the sequence for a period) so it is “simple”.

1 In this review we shall always consider the usual setting where a system is studied by an external observer.
In this way one can avoid the problem of the self-prediction [192].
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In this review we will discuss how these points of view are related and how they complete
each other in giving a quantitative understanding of complexity arising in dynamical systems.
In particular, we shall consider the extension of this approach, nowadays well established in
the context of low dimensional systems and for asymptotic regimes, to high dimensional sys-
tems with attention to situations far from asymptotic (i.e. <nite time and <nite observational
resolution).
It is worth remarking that the approach to complexity here discussed is not able to cover the

many aspects of what in recent years has been indicated under this term [13]. Indeed complexity
has been considered in many di#erent <elds of science and its meaning has become (sometimes)
vague. A challenging problem in this direction is the de<nition of indicators which are able
to ful<ll the intuitive idea of complexity, namely one looks for quantities which give a low
complexity value both for pure random sequences and completely regular ones [96]. Even if
very interesting this last issue is not addressed here: from the point of view of predictability
both a chaotic system and a purely random one are highly complex, i.e. unpredictable.
The review is organized as follows. Section 2 is devoted to the introduction of the basic

concepts and ideas of dynamical systems, information theory and algorithmic complexity. In
particular, we discuss the relations among Lyapunov exponents, Kolmogorov–Sinai entropy and
algorithmic complexity and their relevance for predictability. All these quantities are properly
de<ned only in speci<c asymptotic limits, that are: very long times and arbitrary accuracy.
Since in realistic situations one has to deal with <nite accuracy and <nite time—as Keynes
said, “in the long run we shall all be dead”—it is appealing to treat the predictability problem
by taking into account these limitations. This is the subject of Section 3 where, relaxing the
request of in<nite time, we discuss the relevance of the <nite time 8uctuations of the “e#ective”
Lyapunov exponent. In addition, relaxing the limit of in<nitesimal perturbations, we introduce
suitable tools, such as the <nite size Lyapunov exponent (FSLE) and the j-entropy, for the
treatment of non-arbitrary high accuracy, i.e. non-in<nitesimal perturbations.
Sections 4 and 5 focus on high dimensional dynamical systems which deserve particular

attention. Indeed because of the many degrees of freedom, and its interest in applications
(e.g. in weather forecasting), it is necessary to consider the detailed behavior of perturba-
tions and not only the asymptotic features (i.e. long time and in<nitesimal amplitudes). Section 5
is devoted to fully developed turbulence (here introduced as an important prototype of high
dimensional system) and its <nite resolution properties in the inertial range.
In Section 6 we consider the e#ects of uncertainties on the evolution laws and we discuss

systems containing some randomness. In such a situation there are two ways to approach the
predictability: by considering either two trajectories generated with the same realization of ran-
domness, or two trajectories evolving with di#erent realizations. Both approaches are physically
relevant in di#erent contexts, and the results can be very di#erent in presence of strong inter-
mittency.
For the sake of completeness in Section 7 we discuss dynamical systems with discrete states,

e.g., Cellular Automata.
Section 8 is dedicated to a discussion on data analysis. In particular we discuss the use of

j-entropy and FSLE for a pragmatic classi<cation of signals.
Section 9 reports some concluding remarks. In the Appendices we discuss some more tech-

nical details.
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2. Two points of view

2.1. Dynamical systems approach

Two standard—tightly linked—indicators are largely used to quantify the behavior of a dy-
namical system with respect to the asymptotic evolution of an in<nitesimal uncertainty: the
largest Lyapunov exponent (LE) and the Kolmogorov–Sinai (or metric) entropy [74].

2.1.1. Characteristic Lyapunov exponents
The characteristic Lyapunov exponents are somehow an extension of the linear stability anal-

ysis to the case of aperiodic motions. Roughly speaking, they measure the typical rate of
exponential divergence of nearby trajectories. In this sense they give information on the rate of
growth of a very small error on the initial state of a system.
Consider a dynamical system with an evolution law given, in the case of continuous time,

by the di#erential equation
dx
dt
= F(x) ; (2.1)

or, in the case of discrete time, by the map

x(t + 1) =G(x(t)) : (2.2)

In both cases, for simplicity, we suppose that a vector x∈Rd uniquely speci<es one state of
the system. We also assume that F and G are di#erentiable functions, that the evolution is
well-de<ned for time intervals of arbitrary extension, and that the motion takes place in a
bounded region of the phase space. We intend to study the separation between two trajecto-
ries, x(t) and x′(t), starting from two close initial conditions, x(0) and x′(0) = x(0) + �x(0),
respectively.
As long as the di#erence between the trajectories, �x(t) = x′(t) − x(t), remains small

(in<nitesimal, strictly speaking), it can be regarded as a vector, z(t), in the tangent space.
The time evolution of z(t) is given by the linearized di#erential equations:

dzi(t)
dt

=
d∑

j=1

9Fi

9xj

∣∣∣∣
x(t)

zj(t) (2.3)

or, in the case of discrete time maps:

zi(t + 1) =
d∑

j=1

9Gi

9xj

∣∣∣∣
x(t)

zj(t) : (2.4)

Under rather general hypothesis, Oseledec [169] proved that for almost all initial conditions
x(0), there exists an orthonormal basis {ei} in the tangent space such that, for large times,

z(t) =
d∑

i=1

cieie�it ; (2.5)

where the coeJcients {ci} depends on z(0). The exponents �1¿�2¿ · · ·¿�d are called char-
acteristic Lyapunov exponents. If the dynamical system has an ergodic invariant measure, the
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spectrum of LEs {�i} does not depend on the initial condition, except for a set of measure zero
with respect to the natural invariant measure.
Loosely speaking, (2.5) tells us that in the phase space, where the motion evolves, a d-dimen-

sional sphere of small radius j centered in x(0) is deformed with time into an ellipsoid of
semi-axes ji(t) = j exp(�it), directed along the ei vectors. Furthermore, for a generic small
perturbation �x(0), the distance between a trajectory and the perturbed one behaves as

|�x(t)| ∼ |�x(0)| e�1t [1 +O(e−(�1−�2)t)] : (2.6)

If �1¿ 0 we have a rapid (exponential) ampli<cation of an error on the initial condition. In
such a case, the system is chaotic and, de facto, unpredictable on the long times. Indeed, if
we put �0 = |�x(0)| for the initial error, and we want to predict the states of the system with
a certain tolerance � (not too large), then the prediction is possible just up to a predictability
time given by

Tp ∼ 1
�1
ln
(

�
�0

)
: (2.7)

This equation shows that Tp is basically determined by the largest Lyapunov exponent, since its
dependence on �0 and � is very weak. Because of its preeminent role, very often one simply
refers to �1 as “the Lyapunov exponent”, and one indicates it with �.
Eq. (2.6) suggests how to numerically compute �1. We introduce the response, after a time

t, to a perturbation on x(�), de<ned as follows:

R�(t) ≡ |z(�+ t)|
|z(�)| =

|�x(�+ t)|
|�x(�)| ; (2.8)

where, again, |�x(�)| and |�x(�+ t)| are in<nitesimal. The LE �1 is obtained by averaging the
logarithm of the response over the initial conditions or along the trajectory:

�1 = lim
t→∞

1
t
〈ln R�(t)〉 ; (2.9)

where 〈·〉 denotes the time average limT→∞(1=T )
∫ �0+T
�0

(·) d�. The Oseledec’s theorem implies
that (1=t) ln R�(t), for large t, is a non-random quantity, i.e. for almost all the initial conditions
its value does not depend on the speci<c initial condition. Therefore, for large times, the average
in (2.9) can be neglected.
As the typical growth rate of a generic small segment in phase space is driven by the

largest LE, the sum of the <rst n (6d) Lyapunov exponents controls the variations of small
n-dimensional volumes in phase space. This gives us a way to compute the sub-leading
Lyapunov exponents. After the selection of n 6 d non-parallel tangent vectors [z(1)(0); : : : ;
z(n)(0)], one introduces the nth-order response R(n)� (t) [20]

R(n)� (t) ≡
|z1(t + �)× z2(t + �)× · · · × zn(t + �)|

|z1(�)× z2(�)× · · · × zn(�)| : (2.10)

Analogously to the LE, it can be shown that
n∑

i=1

�i = lim
t→∞

1
t
〈ln R(n)� (t)〉 : (2.11)
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Let us stress that the Lyapunov exponents give information on the typical behaviors along a
generic trajectory, followed for in<nite time and keeping the perturbation in<nitesimally small.
In this respect, they are global quantities characterizing <ne-grained properties of a system.

2.1.2. Kolmogorov–Sinai entropy
The LE, �, gives a <rst quantitative information on how rapidly we loose the ability of

predicting the evolution of a system. A state, initially determined with an error �x(0), after a
time enough larger than 1=�, may be found almost everywhere in the region of motion. In this
respect, the Kolmogorov–Sinai (KS) entropy, hKS, supplies a more re<ned information. The
error on the initial state is due to the maximal resolution we use for observing the system.
For simplicity, let us assume the same resolution j for each degree of freedom. We build a
partition of the phase space with cells of volume jd, so that the state of the system at t = t0
is found in a region of volume V0 = jd around x(t0). Now we consider the trajectories starting
from V0 at t0 and sampled at discrete times tj = j � (j = 1; 2; 3; : : : ; t); in the case of a map
one can put �= 1. Since we are considering motions that evolve in a bounded region, all the
trajectories visit a <nite number of di#erent cells, each one identi<ed by a symbol. In this way
a unique sequence of symbols {s(0); s(1); s(2); : : :} is associated with a given trajectory. In a
chaotic system, although each evolution x(t) is univocally determined by x(t0), a great number
of di#erent symbolic sequences originates by the same initial cell, because of the divergence of
nearby trajectories. The total number of the admissible symbolic sequences, Ñ (j; t), increases
exponentially with a rate given by the topological entropy

hT = limj→0
lim
t→∞

1
t
ln Ñ (j; t) : (2.12)

However, if we consider only the number of sequences Ne# (j; t)6Ñ (j; t) which appear with
very high probability in the long time limit—those that can be numerically or experimentally
detected and that are associated with the natural measure—we arrive at a more physical quantity
called the Kolmogorov–Sinai or metric entropy [74]:

hKS = limj→0
lim
t→∞

1
t
lnNe# (j; t)6 hT : (2.13)

hKS quanti<es the long time exponential rate of growth of the number of the e#ective coarse-
grained trajectories of a system. This suggests a link with information theory where the Shannon
entropy measures the mean asymptotic growth of the number of the typical sequences—the
ensemble of which has probability almost 1—emitted by a source. In the following we will
discuss in more detail the KS-entropy and its relation with the information theory. Here we
obtain, by means of a heuristic reasoning, the relation among hKS and Lyapunov exponents.
We may wonder what is the number of cells where, at a time t ¿ t0, the points that evolved

from V0 can be found, i.e. we wish to know how big is the coarse-grained volume V (j; t),
occupied by the states evolved from V0, if the minimum volume we can observe is jd. As
stated at the end of the preceding subsection, we have V (t) ∼ V0 exp(t

∑d
i=1 �i). However,

this is true only in the limit j → 0. In this (unrealistic) limit, V (t) = V0 for a conservative
system (where

∑d
i=1 �i = 0) and V (t)¡V0 for a dissipative system (where

∑d
i=1 �i ¡ 0). As

a consequence of limited resolution power, in the evolution of the volume V0 = jd the e#ect
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of the contracting directions (associated with the negative Lyapunov exponents) is completely
lost. We can experience only the e#ect of the expanding directions, associated with the positive
Lyapunov exponents. As a consequence, in the typical case, the coarse grained volume behaves
as

V (j; t) ∼ V0e
(
∑

�i¿0
�i)t ; (2.14)

when V0 is small enough. Since Ne# (j; t)˙ V (j; t)=V0, one has

hKS =
∑
�i¿0

�i : (2.15)

This argument can be made more rigorous with a proper mathematical de<nition of the metric
entropy. In this case one derives the Pesin relation [179,74]

hKS 6
∑
�i¿0

�i : (2.16)

Because of its relation with the Lyapunov exponents—or by the de<nition (2:13)—it is clear
that also hKS is a <ne-grained and global characterization of a dynamical system.
The metric entropy is an invariant characteristic quantity of a dynamical system [125,204],

i.e. given two systems with invariant measures, their KS-entropies exist and they are equal if
the systems are isomorphic [31]. This intrinsic quantity may be properly de<ned by means of
tools borrowed from the mathematical theory of communication.

2.2. Information theory approach

In experimental investigations of physical processes, we typically have access to the system
only through a measuring device which produces a time record of a certain observable, i.e.
a sequence of data. In this regard a system, whether or not chaotic, generates messages and
may be regarded as a source of information. This observation opens the possibility to study
dynamical systems from a very interesting point of view.
Information has found a proper characterization in the framework of the theory of communi-

cation to cope with the practical problem of transmitting a message in the cheapest way without
losing information. The characterization of the information contained in a sequence can be ap-
proached by two very di#erent points of view. The <rst one, that of information theory [201], is
a statistical approach, i.e., it does not consider the transmission of a speci<c message (sequence)
but refers to the statistical properties of all the messages emitted by the source. Information
theory approach characterizes the source of information, so that it gives us a powerful method
to characterize chaotic systems.
The second point of view considers the problem of characterizing a single sequence. This latter

has led to the theory of algorithmic complexity and algorithmic information theory [53,126,207].

2.2.1. Shannon entropy
At the end of 1940s, Shannon [201] introduced rather powerful concepts and techniques for a

systematic study of sources emitting sequences of discrete symbols (e.g. binary digit sequences).
Originally information theory was introduced in the practical context of electric communications;
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nevertheless in a few years it became an important branch of both pure and applied probability
theory with strong relations with other <elds as computer science, cryptography, biology and
physics [230].
For the sake of self-consistency we brie8y recall the basic concepts and ideas about the

Shannon entropy. Consider a source that can output m di#erent symbols; denote by s(t) the
symbol emitted by the source at time t and with P(CN ) the probability that a given word
CN = (s(1); s(2); : : : ; s(N )), of length N , is emitted:

P(CN ) = P(s(1); s(2); : : : ; s(N )) : (2.17)

We assume that the source is stationary, so that for the sequences {s(t)} the time translation
invariance holds: P(s(1); : : : ; s(N )) = P(s(t + 1); : : : ; s(t + N )).
Now we introduce the N -block entropies

HN =−
∑
{CN}

P(CN ) ln P(CN ) ; (2.18)

and the di#erences

hN =HN+1 −HN ; (2.19)

whose meaning is the average information supplied by the (N + 1)th symbol, provided the
N previous ones are known. One can also say that hN is the average uncertainty about the
(N + 1)th symbol, provided the N previous ones are given. For a stationary source the limits
in the following equations exist, are equal and de<ne the Shannon entropy hSh:

hSh = lim
N→∞

hN = lim
N→∞

HN

N
: (2.20)

The hN are non-increasing quantities: hN+1 6 hN ; that is: the knowledge of a longer past history
cannot increase the uncertainty on the next outcome. In the case of a kth-order Markov process
hN = hSh for all N ¿ k. This is because a kth-order Markov process has the property that the
conditional probability to have a given symbol only depends on the results of the last k times,
i.e.

P(s(t)|s(t − 1); s(t − 2); : : :) = P(s(t)|s(t − 1); s(t − 2); : : : ; s(t − k)) : (2.21)

The Shannon entropy is a measure of the “surprise” the source emitting the sequences can
reserve to us, since it quanti<es the richness (or “complexity”) of the source. This can be
precisely expressed by the <rst theorem of Shannon–McMillan [121] that applies to stationary
ergodic sources:
If N is large enough, the ensemble of N -long subsequences can be partitioned in two classes,

 1(N ) and  0(N ) such that all the words CN ∈ 1(N ) have the same probability P(CN ) ∼
exp(−NhSh) and∑

CN∈ 1(N )

P(CN )→ 1 for N → ∞ (2.22)

while ∑
CN∈ 0(N )

P(CN )→ 0 for N → ∞ : (2.23)
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The meaning of this theorem is the following. An m-states process admits in principle mN

possible sequences of length N , but the number of typical sequences Ne# (N ) (those ones in
 1(N )) e#ectively observable is

Ne# (N ) ∼ exp(NhSh) : (2.24)

Note that Ne#�mN if hSh¡ lnm. Moreover the entropy per symbol, hSh, is a property of the
source. Because of the ergodicity it can be obtained by analyzing just one single sequence in
the ensemble of the typical ones, and it can also be viewed as a property of each one of the
typical sequences. Therefore, as in the following, one may speak about the Shannon entropy of
a sequence.
The above theorem in the case of processes without memory is nothing but the law of large

numbers. Let us observe that (2.24) is somehow the equivalent in information theory of the
Boltzmann equation in statistical thermodynamics: S ˙ lnW , W being the number of possible
microscopic con<gurations and S the thermodynamic entropy. This justi<es the name “entropy”
for hSh. Under rather natural assumptions it is possible to prove that the Shannon entropy, apart
from a multiplicative factor, is the unique quantity which characterizes the “surprise” [121].
Let us now mention another important result about the Shannon entropy. It is not diJ-

cult to recognize that the quantity hSh sets the maximum compression rate of a sequence
{s(1); s(2); s(3); : : :}. Indeed a theorem of Shannon states that, if the length T of a sequence is
large enough, one cannot construct another sequence (always using m symbols), from which it
is possible to reconstruct the original one, whose length is smaller than (hSh=lnm)T [201]. In
other words hSh=lnm is the maximum allowed compression rate.
The relation between Shannon entropy and the data compression problem is well highlighted

by considering the Shannon–Fano code to map N objects (e.g. the N -words CN ) into se-
quences of binary digits (0; 1) [219]. The main goal in building a code is to de<ne the most
eJcient coding procedure, i.e. the one which generates the shortest possible (coded) sequence.
The Shannon–Fano code is as follows. At <rst one orders the N objects according to their
probabilities, in a decreasing way, p1; p2; : : : ; pN. Then the passage from the N objects to the
symbols (0; 1) is obtained by de<ning the coding E(r), of binary length ‘(E(r)), of the rth
object with the requirement that the expected total length,

∑
r pr‘r , be the minimal one. This

can be realized with the following choice:

−ln2 pr 6 ‘(E(r))¡ 1− ln2 pr : (2.25)

In this way highly probable objects are mapped into short code words while the low probability
ones are mapped to longer code words. So that the average code length is bounded by

HN

ln 2
6

∑
r

pr‘(E(r))6
HN + 1
ln 2

; (2.26)

and in the limit N → ∞ one has

lim
N→∞

〈‘N 〉
N

= lim
N→∞

∑
r pr‘(E(r))

N
=

hSh
ln 2

; (2.27)

i.e., in a good coding, the mean length of a N -word is equal to N times the Shannon entropy
(apart from a multiplicative factor, due to the fact that in the de<nition (2.20) of hSh we used
the natural logarithm and here we want to work with a two symbol code).
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An alternative coding method, based on variable length words, is due to Ziv and Lempel
[138]. Remarkably it is very eJcient for data compression and gives the same asymptotic
result of the Shannon–Fano code.

2.2.2. Again on the Kolmogorov–Sinai entropy
After the introduction of the Shannon entropy we can give a more precise de<nition of

the KS-entropy. Consider a trajectory, x(t), generated by a deterministic system, sampled at the
times tj=j �, with j=1; 2; 3; : : : : Perform a <nite partition A of the phase space. With the <nite
number of symbols {s}A enumerating the cells of the partition, the time-discretized trajectory
x(tj) determines a sequence {s(1); s(2); s(3); : : :}, whose meaning is clear: at the time tj the
trajectory is in the cell labeled by s(j). To each subsequence of length N · � one can associate
a word of length N : WN

j (A) = (s(j); s(j + 1); : : : ; s(j + (N − 1))). If the system is ergodic,
as we suppose, from the frequencies of the words one obtains the probabilities by which one
calculates the block entropies HN (A):

HN (A) =−
∑

{WN (A)}
P(WN (A)) ln P(WN (A)) : (2.28)

It is important to note that the probabilities P(WN (A)), computed by the frequencies of WN (A)
along a trajectory, are essentially dependent on the stationary measure selected by the trajectory.
This implies a dependence on this measure of all the quantities de<ned below, hKS included.
We shall always understand to consider the natural invariant measure and do not indicate this
kind of dependence. The entropy per unit time of the trajectory with respect to the partition A,
h(A), is de<ned as follows:

hN (A) =
1
�
[HN+1(A)−HN (A)] ; (2.29)

h(A) = lim
N→∞

hN (A) =
1
�
lim

N→∞
1
N

HN (A) : (2.30)

Notice that, for the deterministic systems we are considering, the entropy per unit time does
not depend on the sampling time � [31]. The KS-entropy, by de<nition, is the supremum of
h(A) over all possible partitions [31,74]

hKS = sup
A

h(A) : (2.31)

It is not simple at all to determine hKS according to this de<nition. A useful tool in this respect
would be the Kolmogorov–Sinai theorem, by means of which one is granted that hKS = h(G)
if G is a generating partition. A partition is said to be generating if every in<nite sequence
{s(n)}n=1; :::;∞ individuates a single initial point. However the diJculty now is that, with the
exception of very simple cases, we do not know how to construct a generating partition. We
only know that, according to the Krieger theorem [133], there exists a generating partition with
k elements such that ehKS ¡k 6 ehKS + 1. Then, a more tractable way to de<ne hKS is based
upon considering the partition Aj made up by a grid of cubic cells of edge j, from which one
has

hKS = limj→0
h(Aj) : (2.32)
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We expect that h(Aj) becomes independent of j when Aj is so <ne to be “contained” in a
generating partition.
For discrete time maps what has been exposed above is still valid, with � = 1 (however,

Krieger’s theorem only applies to invertible maps).
An important point to note is that, for a truly stochastic (i.e. non-deterministic) system, with

continuous states, h(Aj) is not bounded and hKS =∞.

2.2.3. Algorithmic complexity
We saw that the Shannon entropy puts a limit on how eJciently the ensemble of the mes-

sages emitted by a source can be coded. We may wonder about the compressibility properties
of a single sequence. This problem can be addressed by means of the notion of algorithmic
complexity, that is concerned with the diJculty in reproducing a given string of symbols.
Everybody agrees that the binary digits sequence

0111010001011001011010 : : : (2.33)

is, in some sense, more random than

1010101010101010101010 : : : (2.34)

The notion of algorithmic complexity, independently introduced by Kolmogorov [126], Chaitin
[53,56] and Solomonov [207], is a way to formalize the intuitive idea of randomness of a
sequence.
Consider a binary digit sequence (this does not constitute a limitation) of length N; (i1; i2; : : : ; iN ),

generated by a certain computer code on some machine M. One de<nes the algorithmic com-
plexity, or algorithmic information content, KM(N ) of a N -sequence as the bit length of the
shortest computer program able to give the N -sequence and to stop afterward. Of course, such
a length depends not only on the sequence but also on the machine. However, a result of
Kolmogorov [126] proves the existence of a universal computer, U, that is able to perform the
same computation a program p makes on M with a modi<cation of p that depends only on
M. This implies that for all <nite strings:

KU(N )6 KM(N ) + CM ; (2.35)

where KU(N ) is the complexity with respect to the universal computer and CM depends only
on the machine M. At this point we can consider the algorithmic complexity with respect to a
universal computer—and we can drop the machine dependence in the symbol for the algorithmic
complexity, K(N ). The reason is that we are interested in the limit of very long sequences,
N → ∞, for which one de<nes the algorithmic complexity per unit symbol:

C= lim
N→∞

K(N )
N

; (2.36)

that, because of (2.35), is an intrinsic quantity, i.e. independent of the machine.
Now coming back to the two N -sequences (2.33) and (2.34), it is obvious that the second

one can be obtained with a small-length minimal program, i.e.

“PRINT 10
N
2
TIMES” : (2.37)
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The bit length of the above program is O(lnN ) and therefore when taking the limit N → ∞ in
(2.36), one obtains C = 0. Of course, K(N ) cannot exceed N , since the sequence can always
be obtained with a trivial program (of bit length N )

“PRINT i1; i2; : : : ; iN” : (2.38)

Therefore, in the case of a very irregular sequence, e.g., (2.33) one expects K(N ) ˙ N , i.e.
C �= 0. In such a case one calls the sequence complex (i.e. of nonzero algorithmic complexity)
or random.
Algorithmic complexity cannot be computed. Since the algorithm which computes K(N ) can-

not have less than K(N ) binary digits and since in the case of random sequences K(N ) is
not bounded in the limit N → ∞ then it cannot be computed in the most interesting cases.
The un-computability of K(N ) may be understood in terms of GVodel’s incompleteness theorem
[54–56]. Beyond the problem of whether or not K(N ) is computable in a speci<c case, the
concept of algorithmic complexity brings an important improvement to clarify the vague and in-
tuitive notion of randomness. For a systematic treatment of algorithmic complexity, information
theory and data compression see [142].
There exists a relation between the Shannon entropy, hSh, and the algorithmic complexity C.

It is possible to show that

lim
N→∞

〈K(N )〉
HN

=
1
ln 2

; (2.39)

where 〈K(N )〉=∑
CN

P(CN )KCN (N ), being KCN (N ) the algorithmic complexity of the N -words.
Therefore the expected complexity 〈K(N )=N 〉 is asymptotically equal to the Shannon entropy
(apart the ln 2 factor).
Eq. (2.39) stems from the results of the Shannon–McMillan theorem about the two classes

of sequences (i.e.  1(N ) and  0(N )). Indeed in the limit of very large N , the probability
to observe a sequence in  1(N ) goes to 1, and the entropy of such a sequence as well as
its algorithmic complexity equals the Shannon entropy. Apart from the numerical coincidence
of the values of C and hSh=ln 2 there is a conceptual di#erence between the information the-
ory and the algorithmic complexity theory. The Shannon entropy essentially refers to the in-
formation content in a statistical sense, i.e. it refers to an ensemble of sequences generated
by a certain source. On the other hand, the algorithmic complexity de<nes the information
content of an individual sequence [96]. Of course, as noted above, the fact that it is pos-
sible to use probabilistic arguments on an individual sequence is a consequence of the er-
godicity of the system, which allows to assume good statistical properties of arbitrary long
N -words.
For a dynamical system one can de<ne the notion of algorithmic complexity of the trajectory

starting from the point x, C(x). This requires the introduction of <nite open coverings of the
phase space, the consideration of symbolic sequences thus generated, for the given trajectory,
sampled at constant time intervals, and the searching of the supremum of the algorithmic com-
plexity per symbol at varying the coverings [5]. Then it can be shown—Brudno’s and White’s
theorems [42,225]—that for almost all x (we always mean with respect to the natural invariant
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measure) one has

C(x) =
hKS
ln 2

; (2.40)

where, as before, the factor ln 2 is a conversion factor between natural logarithms and bits.
This result says that the KS-entropy quanti<es not only the richness, or surprise, of a dy-

namical system but also the diJculty of describing (almost) everyone of its typical sequences.

2.3. Algorithmic complexity and Lyapunov exponent

Summing up, the theorem of Pesin together with those of Brudno and White show that
a chaotic dynamical system may be seen as a source of messages that cannot be described
in a concise way, i.e. they are complex. We expose here two examples that may help in
understanding the previous conclusion and the relation between the Lyapunov exponent, the
KS-entropy and the algorithmic complexity.
Following Ford [79,80], let us consider the shift map

x(t + 1) = 2 x(t) mod 1 ; (2.41)

which has � = ln 2. If one writes an initial condition in binary representation, i.e., x(0) =∑∞
j=1 aj2−j, such that aj = 0 or 1, it is clearly seen that the action of the map (2.41) on x(0)

is just a shift of the binary coordinates:

x(1) =
∞∑
j=1

aj+12−j · · · x(t) =
∞∑
j=1

aj+t2−j : (2.42)

With this observation it is possible to verify that K(N ) � N for almost all the solutions of (2.41).
Let us consider x(t) with accuracy 2−k and x(0) with accuracy 2−l, of course l=t+k. This means
that, in order to obtain the k binary digits of the output solution of (2.41), we must use a program
of length no less than l=t+k. Basically one has to specify a1; a2; : : : ; al. Therefore we are faced
with the problem of the algorithmic complexity of the binary sequence (a1; a2; : : : ; a∞) which
determines the initial condition x(0). Martin-LVof [156] proved a remarkable theorem stating
that, with respect to the Lebesgue measure, almost all the binary sequences (a1; a2; : : : ; a∞),
which represent real numbers in [0; 1], have maximum complexity, i.e. K(N ) � N . In practice,
no human being will ever be able to distinguish the typical sequence (a1; a2; : : : ; a∞) from the
output of a fair coin toss.
Finally, let us consider a 1d chaotic map

x(t + 1) = f(x(t)) : (2.43)

If one wants to transmit to a friend on Mars the sequence {x(t); t=1; 2; : : : ; T} accepting only
errors smaller than a tolerance �, one can use the following strategy [174]:

(1) Transmit the rule (2.43): for this task one has to use a number of bits independent of the
length of the sequence T .

(2) Specify the initial condition x(0) with a precision �0 using a <nite number of bits which
is independent of T .
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(3) Let the system evolve till the <rst time �1 such that the distance between two trajectories,
that was initially �x(0)=�0, equals � and then specify again the new initial condition x(�1)
with precision �0.

(4) Let the system evolve and repeat the procedure (2) and (3), i.e. each time the error accep-
tance tolerance is reached specify the initial conditions, x(�1 + �2); x(�1 + �2 + �3) : : : ; with
precision �0. The times �1; �2; : : : are de<ned as follows: putting x′(�1) = x(�1) + �0, �2 is
given by the minimum time such that |x′(�1 + �2)− x(�1 + �2)|¿ � and so on.

By following the steps (1)–(4) the friend on Mars can reconstruct with a precision � the
sequence {x(t)} simply iterating on a computer the system (2.43) between 1 and �1−1, �1 and
�1 + �2 − 1, and so on.
Let us now compute the amount of bits necessary to implement the above transmission

(1)–(4). For simplicity of notation we introduce the quantities

+i =
1
�i
ln

�
�0

(2.44)

which can be considered as a sort of e5ective Lyapunov exponents (see Section 3.1). The LE
� can be written in terms of {+i} as follows:

�= 〈+i〉=
∑

i �i+i∑
i �i

=
1
W�
ln

�
�0

; (2.45)

where

W�=
1
N

∑
�i

is the average time after which we have to transmit the new initial condition (let us observe that
to obtain � from the +i’s one has to perform the average (2.45) because the transmission time,
�i, is not constant). If T is large enough the number of transmissions, N , is T= W� � �T=ln(�=�0).
Therefore, noting that in each transmission for the reduction of the error from � to �0 one
needs to use ln2(�=�0) bits, the total amount of bits used in the whole transmission is

T
W�
ln2

�
�0
=

�
ln 2

T : (2.46)

In other words the number of bits for unit time is proportional to �.
In more than one dimension, we have simply to replace � with hKS in (2.46). To intu-

itively understand this point one has to repeat the above transmission procedure in each of the
expanding directions.
In this section, we brie8y discussed how the limit of predictability, the fact that a sequence

cannot be arbitrarily compressed, and the information contained in a signal are deeply related.
In the following we will mainly discuss the dynamical system point of view, i.e., in terms of
Lyapunov exponents, Kolmogorov Sinai entropy and their generalizations for less ideal cases.

3. Limits of the Lyapunov exponent for predictability

We saw how a <rst obvious way for quantifying the predictability of a physical system is in
terms of the predictability time Tp, i.e. the time interval on which one can typically forecast
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the system. A simple argument previously suggested

Tp ∼ 1
�
ln
(

�
�0

)
: (3.1)

However, in any realistic system, relation (3.1) is too naive to be of actual relevance. Indeed,
it does not take into account some basic features of dynamical systems:

• The Lyapunov exponent (2.9) is a global quantity: it measures the average rate of diver-
gence of nearby trajectories. In general, there exist <nite-time 8uctuations and the probability
distribution functions (pdf) of these 8uctuations is important for the characterization of pre-
dictability. The generalized Lyapunov exponents have been introduced with the purpose to
take into account these 8uctuations [23,85].

• The Lyapunov exponent is de<ned for the linearized dynamics, i.e., by computing the rate
of separation of two in<nitesimally close trajectories. On the other hand, for measuring the
predictability time (3.1) one is interested in a <nite tolerance �, because the initial error
�0 is typically <nite. A recent generalization of the Lyapunov exponent to Bnite size errors
extends the study of the perturbation growth to the non-linear regime, i.e. both �0 and � are
not in<nitesimal [11,12].

3.1. Characterization of Bnite-time Cuctuations

Let us consider the linear response, at a delay t, to an in<nitesimal perturbation �x(0):

R(t) =
|�x(t)|
|�x(0)| ; (3.2)

from which the LE is computed according to (2.9). In order to take into account the <nite-time
8uctuations, we can compute the di#erent moments 〈R(t)q〉 and introduce the so-called gener-
alized Lyapunov exponents (of order q) [23,85]:

L(q) = lim
t→∞

1
t
ln〈R(t)q〉 ; (3.3)

where 〈: : :〉 indicates the time average along the trajectory (see Section 2). It is easy to show
that

�1 =
dL(q)
dq

∣∣∣∣
q=0

: (3.4)

In the absence of 8uctuations, �1 completely characterizes the error growth and we have L(q)=
�1q, while in the general case L(q) is concave in q [172]. Before discussing the properties of
the generalized Lyapunov exponents, let us consider a simple example with a nontrivial L(q).
The model is the one-dimensional map

x(t + 1) =




x(t)
a

for 06 x 6 a ;

1− x(t)
1− a

for a¡x 6 1 ;
(3.5)

which for a= 1
2 reduces to the tent map. For a �= 1

2 the system is characterized by two di#erent
growth rates. The presence of di#erent growth rates makes L(q) non-linear in q. Since the map
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(3.5) is piecewise linear and with a uniform invariant density, the explicit computation of L(q)
is very easy. The moments of the response after a time t are simply given by

〈R(t)q〉=
[
a
(
1
a

)q

+ (1− a)
(

1
1− a

)q]t

: (3.6)

From (3.3) and (3.6) we have

L(q) = ln[a1−q + (1− a)1−q] ; (3.7)

which recovers the non-intermittent limit L(q) = q ln 2 in the symmetric case a = 1=2. In the
general case, assuming 06 a¡ 1=2, we have that for q → +∞, L(q) is dominated by the less
probable, most unstable contributions and L(q)=q � −ln(a). In the opposite limit, q → −∞, we
obtain L(q)=q � −ln(1− a).
We now show how L(q) is related to the 8uctuations of R(t) at <nite time t. De<ne an

“e#ective” Lyapunov exponent +(t) at time t by

R(t) ∼ e+(t)t : (3.8)

In the limit t → ∞, the Oseledec theorem [169] assures that, for typical trajectories, +(t)=�1 =
−a ln a − (1 − a) ln(1 − a). Therefore, for large t, the probability density of +(t) is peaked at
the most probable value �1. Let us introduce the probability density Pt(+) of observing a given
+ on a trajectory of length t. Large deviation theory suggests

Pt(+) ∼ e−S(+)t ; (3.9)

where S(+) is the Cramer function [216]. The Oseledec theorem implies that limt→∞ Pt(+) =
�(+ − �1), this gives a constraint on the Cramer function, i.e. S(+ = �1) = 0 and S(+)¿ 0 for
+ �= �1.
The Cramer function S(+) is related to the generalized Lyapunov exponent L(q) through a

Legendre transform. Indeed, at large t, one has

〈R(t)q〉=
∫
d+ Pt(+)eq+t ∼ eL(q)t ; (3.10)

by a steepest descent estimation one obtains

L(q) = max
+
[q+− S(+)] : (3.11)

In other words, each value of q selects a particular +∗(q) given by
dS(+)
d+

∣∣∣∣
+∗
= q : (3.12)

We have already discussed that, for negligible 8uctuations of the “e#ective” Lyapunov expo-
nents, the LE completely characterizes the error growth and L(q) = �1q. In presence of 8uctu-
ations, the probability distribution for R(t) can be approximated by a log-normal distribution.
This can be understood assuming weak correlations in the response function so that (3.2) fac-
torizes in several independent contributions and the central limit theorem applies. We can thus
write

Pt(R) =
1

R
√
2./t

exp
(
−(ln R− �1t)2

2/t

)
; (3.13)



384 G. Bo5etta et al. / Physics Reports 356 (2002) 367–474

Fig. 1. Generalized Lyapunov exponent, L(q) for the map (3.5) with a= 0:3 (solid line) compared with the linear
non-intermittent approximation, �1q (dashed line), and with the log-normal one (Eq. (3.16), (dotted line)).

where �1 and / are given by

�1 = lim
t→∞

1
t
〈ln R(t)〉 ;

/= lim
t→∞

1
t
(〈ln R(t)2〉 − 〈ln R(t)〉2) : (3.14)

The log-normal distribution for R corresponds to a Gaussian distribution for +

S(+) =
(+− �1)2

2/
; (3.15)

and to a quadratic in q generalized Lyapunov exponent:

L(q) = �1q+ 1
2/q

2 : (3.16)

Let us remark that, in general, the log-normal distribution (3.13) is a good approximation
for non-extreme events, i.e. small 8uctuation of + around �1, so that the expression (3.16) is
correct only for small q (see Fig. 1). This is because the moments of the log-normal dis-
tribution grow too fast with q [168]. Indeed from (3.12) we have that the selected +∗(q) is
given by +∗(q) = �1 + /q and thus +∗(q) is not <nite for q → ∞. This is unphysical because
+∗(∞) is the fastest error growth rate in the system and, we may reasonably suppose that it is
<nite.
Let us consider again the map (3.5). In this case we have �1=L′(0)=−a ln(a)−(1−a) ln(1−a)

and /=L′′(0)=a(1−a)(ln(a)− ln(1−a))2, which are nothing but the coeJcients of the Taylor
expansion of (3.7) around q=0. For large q the log-normal approximation gives L(q)=q � q/=2
while the correct limit is the constant L(q)=q � −ln(a).
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Nevertheless, �1 and / are the two basic parameters for characterizing the intermittency of a
system. To be more speci<c, let us remark that, assuming (3.13), Pt(R) reaches its maximum for

Rmax(t) ∼= e(�1−/)t ; (3.17)

so that for t → ∞:
Rmax → ∞ if /=�1¡ 1 ;
Rmax → 0 if /=�1¿ 1 : (3.18)

Thus in the weak intermittency limit, /=�1¡ 1, the most probable response function Rmax(t)
follows the correct behavior (with the corrected exponent �1 − /). In the strong intermittent
limit, /=�1¿ 1, the most probable estimation breaks down because it predicts an asymptotic
stable phase Rmax(t)→ 0 instead of the chaotic exponential growth.
As in the case of the <rst LE, it is possible to introduce higher order generalized Lyapunov

exponents. Starting from the nth-order response function R(n)(t) (2.10), we de<ne

L(n)(q) = lim
t→∞

1
t
ln〈R(n)(t)q〉 ; (3.19)

where L(1)(q) = L(q). From (2.11) we have
n∑

i=1

�i =
dL(n)(q)
dq

∣∣∣∣
q=0

: (3.20)

The generalized L(n)(q) represents the 8uctuations of the exponential divergence of a n-dimen-
sional volume in phase space [172]. The properties of L(n)(q) are analogous to the properties
of L(q), i.e. L(n)(q) is a concave function of q for any n and for a non-intermittent behavior
they are linear in q.

3.2. Renyi entropies

In Section 2.1.2 we de<ned the Kolmogorov–Sinai entropy (2.13) and discussed its relation
with the Lyapunov exponents by means of the Pesin relation (2.16). Analogously to the gener-
alized LE, it is possible to introduce a generalization of the Kolmogorov–Sinai entropy in order
to take into account the intermittency.
Let us recall the de<nition of Kolmogorov–Sinai entropy

hKS =−lim
�→0

lim
j→0

lim
N→∞

1
N�

∑
{WN (Aj)}

P(WN (Aj)) ln P(WN (Aj)) (3.21)

where Aj is a partition of the phase space in cells of size j and WN (Aj) indicates a sequence
of length N in this partition. The generalized Renyi entropies [171,172], Kq, can be introduced
by observing that (3.21) is nothing but the average of −ln P(WN ) with the probability P(WN ):

Kq =−lim
�→0

lim
j→0

lim
N→∞

1
N�(q− 1) ln


 ∑

{WN (Aj)}
P(WN (Aj))q


 : (3.22)

As in (3.4) one has hKS=limq→1 Kq=K1; in addition from general results of probability theory,
one can show that Kq is monotonically decreasing with q.
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It will not be surprising that the generalized Renyi entropies are related to the generalized
Lyapunov exponents L(q). Introducing the number of non-negative Lyapunov exponents n∗ (i.e.
�n∗ ¿ 0, �n∗+1¡ 0), the Pesin relation (2.16) can be written as

hKS =
n∗∑
i=1

�i =
dL(n

∗)(q)
dq

∣∣∣∣
q=0

: (3.23)

Moreover, one has [171]

Kq+1 =
L(n

∗)(−q)
−q

: (3.24)

3.3. The e5ects of intermittency on predictability

We have seen that intermittency can be described, at least at a qualitative level, in terms
of �1 and /, which are the two parameters characterizing the log-normal approximation. We
discuss now the relevance of the log-normal approximation for the predictability time Tp.
The predictability time Tp is de<ned as the time it takes for the error of initial size �0 to

grow up to the tolerance �

Tp = min
[
t: R(t)¿

�
�0

]
: (3.25)

In the framework of the log-normal approximation, we can write

ln R(t) = �1t +
√
/w(t) ; (3.26)

where w(t) is a Wiener process with w(0) = 0, 〈w(t)〉= 0 and 〈w(t)w(t′)〉=min(t; t′). In this
case the computation of Tp is reduced to a <rst exit problem, which is well known in stochastic
process theory [45,78]. The solution gives the pdf of Tp [66]:

p(Tp) =
ln(�=�0)√
2./T 3p

exp
[
−(�1Tp − ln(�=�0))2

2/Tp

]
: (3.27)

Notice that the (3.27) is not normalized, since there is a <nite probability of “no exit”. Of
course, this is an artifact of the approximation in terms of the stochastic process (3.26). In
non-pathological chaotic systems one expects that p(Tp) is normalized.
In the limit of weak intermittency /=�1�1, p(Tp) is almost Gaussian and the mean value

〈Tp〉 is close to the most probable value of (3.27) corresponding to the naive estimation (3.1).
On the contrary, in the strong intermittent limit, /=�1�1, the pdf of Tp shows an asymmetric
“triangular shape” and the most probable value is

Tp =
1
3/
ln(�=�0)2 : (3.28)
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Fig. 2. Rescaled pdf, p(Tp)1, of the predictability time Tp for the Lorenz model (3.29): (a) with r = 28 (weak
intermittency) the average predictability time is 〈Tp〉=10:84 and its variance is 12=3:12 while �=0:90, /=0:06±0:01;
(b) with r = 166:3 (strong intermittency) and 〈Tp〉= 8:2385 and 12 = 19:75, while � = 1:18 and / = 3:9 ± 1. The
dashed line is the Gaussian distribution.

In order to see the e#ects of intermittency on the predictability time, let us consider as an
example the Lorenz system [145]:

dx
dt
= 1(y − x) ;

dy
dt
= x(r − z)− y ;

dz
dt
= xy − bz ; (3.29)

with the standard values 1 = 10 and b = 8
3. For r = 28, the Lorenz model is very weakly

intermittent, /=� � 7× 10−2, and the pdf of the predictability time is very close to a Gaussian
(Fig. 2). On the contrary, for r = 166:3 the Lorenz model becomes strongly intermittent [191],
/=� � 3:3 and the pdf of the predictability time displays a long exponential tail responsible for
the deviation from (3.1).
This qualitative behavior is typical of intermittent systems. In Section 5.3 we will see a more

complex example in the context of turbulence.

3.4. Growth of non-inBnitesimal perturbations

In realistic situations, the initial condition of a system is known with a limited accuracy. In
this case the Lyapunov exponent is of little relevance for the characterization of predictability
and new indicators are needed. To clarify the problem, let us consider the following coupled
map model:

x(t + 1) =Rx(t) + 4h(y(t)) ;
y(t + 1) =G(y(t)) ; (3.30)



388 G. Bo5etta et al. / Physics Reports 356 (2002) 367–474

where x ∈ R2, y ∈ R1, R is a rotation matrix of arbitrary angle 5, h is a vector function and
G is a chaotic map. For simplicity, we consider a linear coupling h(y)= (y; y) and the logistic
map G(y) = 4y(1− y).
For 4=0 we have two independent systems: a regular and a chaotic one. Thus the Lyapunov

exponent of the x subsystem is �x(4=0)=0, i.e., it is completely predictable. On the contrary,
the y subsystem is chaotic with �y = �1 = ln 2.
If we now switch on the (small) coupling (4¿ 0) we are confronted with a single three-

dimensional chaotic system with a positive global Lyapunov exponent

�= �y +O(4) : (3.31)

A direct application of (3.1) would give

T (x)p ∼ Tp ∼ 1
�y

; (3.32)

but this result is clearly unacceptable: the predictability time for x seems to be independent of
the value of the coupling 4. Let us underline that this is not due to an artifact of the chosen
example. Indeed, one can use the same argument in many physical situations [32]. A well-known
example is the gravitational three body problem with one body (asteroid) much smaller than
the other two (planets). If one neglects the gravitational feedback of the asteroid on the two
planets (restricted problem) one has a chaotic asteroid in the regular <eld of the planets. As
soon as the feedback is taken into account (i.e. 4¿ 0 in the example) one has a non-separable
three body system with a positive LE. Of course, intuition correctly suggests that it should be
possible to forecast the motion of the planets for very long times if the asteroid has a very
small mass (4 → 0).
The apparent paradox arises from the use of (3.1), which is valid only for the tangent vectors,

also in the non-in<nitesimal regime. As soon as the errors become large one has to take into
account the full nonlinear evolution. The e#ect is shown for the model (3.30) in Fig. 3. The
evolution of �x is given by

�x(t + 1) =R�x(t) + 4�h(y) ; (3.33)

where, with our choice, �h= (�y; �y). At the beginning, both |�x| and �y grow exponentially.
However, the available phase space for y is <nite and the uncertainty reaches the saturation
value �y ∼ O(1) in a time t ∼ 1=�1. At larger times the two realizations of the y variable are
completely uncorrelated and their di#erence �y in (3.33) acts as a noisy term. As a consequence,
the growth of the uncertainty on x becomes di#usive with a di#usion coeJcient proportional
to 42 [32]

|�x(t)| ∼ 4t1=2 (3.34)

so that

T (x)p ∼ 4−2 : (3.35)

This example shows that, even in simple systems, the Lyapunov exponent can be of little
relevance for the characterization of the predictability.
In more complex systems, in which di#erent scales are present, one is typically interested

in forecasting the large scale motion, while the LE is related to the small scale dynamics.
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Fig. 3. Growth of error |�x(t)| for the coupled map (3.30). The rotation angle is 5=0:82099, the coupling strength
4=10−5 and the initial error only on the y variable is �y= �0 = 10−10. Dashed line |�x(t)| ∼ e�1t where �1 = ln 2,
solid line |�x(t)| ∼ t1=2.

A familiar example is weather forecast: the LE of the atmosphere is indeed rather large due to
the small scale convective motion, but (large scale) weather prediction is possible for about 10
days [146,160]. It is thus natural to seek for a generalization of the LE to <nite perturbations
from which one can obtain a more realistic estimation for the predictability time. It is worth
underlining the important fact that <nite errors are not con<ned in the tangent space but are
governed by the complete non-linear dynamics. In this sense the extension of the LE to <nite
errors will give more information on the system.
Aiming to generalize the LE to non-in<nitesimal perturbations let us now de<ne the <nite size

Lyapunov exponent (FSLE) [11,12] (see Appendix A for the computational details). Consider
a reference trajectory, x(t), and a perturbed one, x′(t), such that |x′(0) − x(0)| = � (| : : : | is
the Euclidean norm but one can also consider other norms). One integrates the two trajectories
and computes the time �1(�; r) necessary for the separation |x′(t)− x(t)| to grow from � to r�.
At time t = �1(�; r) the distance between the trajectories is rescaled to � and the procedure is
repeated in order to compute �2(�; r); �3(�; r) : : : :
The threshold ratio r must be r¿ 1, but not too large in order to avoid contributions from

di#erent scales in �(�; r). A typical choice is r = 2 (for which �(�; r) is properly a “doubling”
time) or r=

√
2. In the same spirit of the discussion leading to Eqs. (2.44) and (2.45), we may

introduce an e#ective <nite size growth rate:

+i(�; r) =
1

�i(�; r)
ln r : (3.36)

After having performed N error-doubling experiments, we can de<ne the FSLE as

�(�) = 〈+(�; r)〉t =
〈

1
�(�; r)

〉
t
ln r =

1
〈�(�; r)〉e ln r ; (3.37)
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Fig. 4. �(�) as a function of � for the coupled map (3.30) with 4 = 10−5. The perturbation has been initialized as
in Fig. 3. For � → 0; �(�) 
 �1 (solid line). The dashed line shows the behavior �(�) ∼ �−2.

where 〈�(�; r)〉e is

〈�(�; r)〉e = 1
N

N∑
n=1

�n(�; r) : (3.38)

(see Appendix A and [12] for details). In the in<nitesimal limit, the FSLE reduces to the
Lyapunov exponent

lim
�→0

�(�) = �1 : (3.39)

In practice, this limit means that �(�) displays a constant plateau at �1 for suJciently small
� (Fig. 3). For <nite value of � the behavior of �(�) depends on the details of the non-linear
dynamics. For example, in the model (3.30) the di#usive behavior (3.34), by simple dimensional
arguments, corresponds to �(�) ∼ �−2. Since the FSLE measures the rate of divergence of
trajectories at <nite errors, one might wonder whether it is just another way to look at the
average response 〈ln(R(t))〉 (3.2) as a function of time. A moment of re8ection shows that
this is not the case. Indeed taking the average at <xed time is not the same as computing
the average doubling time at Bxed scale, as in (3.37). This is particularly clear in the case of
strongly intermittent system, in which R(t) can be very di#erent in each realization. In presence
of intermittency averaging over di#erent realizations at <xed times can produce a spurious
regime due to the superposition of exponential and di#usive contributions by di#erent samples
at the same time [10] (see Fig. 4).
The FSLE method can be easily applied for data analysis [35].
For other approaches to address the problem of non-in<nitesimal perturbations see [73,212,115].

3.5. The j-entropy

The Kolmogorov–Sinai entropy, hKS (2.13), of a system measures the amount of information
per unit time necessary to record without ambiguity a generic trajectory of a system. Since
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the computation of hKS involves the limit of arbitrary <ne resolution and in<nite times (see
Section 2.1.2), it turns out that, practically, for most systems it is not possible to compute
hKS. Nevertheless, in the same philosophy of the FSLE, by relaxing the strict requirement of
reproducing a trajectory with arbitrary accuracy, one can introduce the j-entropy which measures
the amount of information for reproducing a trajectory with accuracy j in phase-space. Roughly
speaking the j-entropy can be considered the counterpart, in information theory, of the FSLE
(as the KS-entropy is for the Lyapunov exponent). Such a quantity was originally introduced
by Shannon [201], and by Kolmogorov [124]. Recently, Gaspard and Wang [89] made use of
this concept to characterize a large variety of processes.
We start with a continuous (in time) variable x(t)∈Rd, which represents the state of a

d-dimensional system, we discretized the time by introducing an interval � and we consider the
new variable

X(m)(t) = (x(t);x(t + �); : : : ;x(t + (m− 1)�)) : (3.40)

Of course, X(m)(t) ∈ Rmd and it corresponds to the trajectory which lasts for a time T =m�.
In data analysis, the space where the state vectors of the system live is not known. Moreover,

usually only a scalar variable u(t) can be measured. In such a case, one considers vectors
(u(t); u(t+�); : : : ; u(t+m�−�)), that live in Rm and allow a reconstruction of the original phase
space, known as delay embedding in the literature [209,199] (see also [1,2,114,170]), and it is
a special case of (3.40).
Introduce now a partition of the phase space Rd, using cells of edge j in each of the d

directions. Since the region where a bounded motion evolves contains a <nite number of cells,
each X(m)(t) can be coded into a word of length m, out of a <nite alphabet:

X(m)(t)→ Wm(j; t) = (i(j; t); i(j; t + �); : : : ; i(j; t +m�− �)) ; (3.41)

where i(j; t+ j�) labels the cell in Rd containing x(t+ j�). From the time evolution of X(m)(t)
one obtains, under the hypothesis of ergodicity, the probabilities P(Wm(j)) of the admissible
words {Wm(j)}. We can now introduce the (j; �)-entropy per unit time, h(j; �) [201]:

hm(j; �) =
1
�
[Hm+1(j; �)−Hm(j; �)] ; (3.42)

h(j; �) = lim
m→∞hm(j; �) =

1
�
lim

m→∞
1
m
Hm(j; �) ; (3.43)

where Hm is the block entropy of block length m:

Hm(j; �) =−
∑

{Wm(j)}
P(Wm(j)) ln P(Wm(j)) : (3.44)

For the sake of simplicity, we ignored the dependence on details of the partition. To make
h(j; �) partition-independent one has to consider a generic partition of the phase space {A} and
to evaluate the Shannon entropy on this partition: hSh(A; �). The 4-entropy is thus de<ned as
the in<mum over all partitions for which the diameter of each cell is less than 4 [89]:

h(4; �) = inf
A:diam(A)64

hSh(A; �) : (3.45)
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Note that the time dependence in (3.45) is trivial for deterministic systems, and that in the limit
j→ 0 one recovers the Kolmogorov–Sinai entropy

hKS = limj→0
h(j; �) :

The above entropies Hm(j) have been introduced by using a partition and the usual Shannon
entropy; however it is possible to arrive at the same notion, starting from other entropy-like
quantities, that are numerically more convenient. For example, Cohen and Procaccia [61] pro-
posed to estimate Hm(j) as follows. Given a signal composed of N successive records and the
embedding variable X(m), let us introduce the quantities:

n(m)j =
1

N −m

∑
i 	=j

8(j− |X(m)(i�)−X(m)(j�)|) ; (3.46)

then the block entropy Hm(j) is given by

H (1)
m (j) =− 1

(N −m+ 1)

∑
j

ln n(m)j (j) : (3.47)

In practice, n(m)j (j) is an approximation of P(Wm(j)). From a numerical point of view, corre-
lation entropies [95,210] are sometimes more convenient, so that one studies

H (2)
m (j) =−ln


 1

N −m+ 1

∑
j

n(m)j (j)


6 H (1)

m (j) : (3.48)

This corresponds to approximate the Shannon by the Renyi entropy of order q= 2 [114].
The (j; �)-entropy h(j; �) is well de<ned also for stochastic processes. Actually the dependence

of h(j; �) on j can give some insight into the underlying stochastic process [89], for instance,
in the case of a stationary Gaussian process with spectrum S(!)˙ !−2 one has [124]

lim
�→0

h(j; �) ∼ 1
j2 : (3.49)

However, we have to stress that the behavior predicted by Eq. (3.49) may be diJcult to be
experimentally observed mainly due to problems related to the choice of � [51,3] (see also
Appendix C).

4. Predictability in extended systems

Here we consider extended dynamical systems, whose degrees of freedom depend on space
and time, and which can display unpredictable behaviors both in the time and space evolu-
tion, i.e. spatio-temporal chaos. The inadequacy of the Lyapunov exponents in characterizing
predictability becomes now well evident.
Following Hohenberg and Shraiman [104] (see also [68]) we give a more precise meaning

to the terms spatio-temporal chaos and extended systems. For a generic system of size L,
we can de<ne three characteristic lengths: ‘D, ‘E , ; respectively associated to the scales of
dissipation (i.e. the scale at which dissipation becomes e#ective, smaller scales can be considered
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as inactive), excitation (i.e. the scale at which energy is injected in the system) and correlation
(that we assume can be suitably de<ned). Now one has two limiting situations.
When all the characteristic lengths are of the same order (‘D; ‘E; ; ∼ O(L)) distant regions

of the system are strongly correlated. Because of the coherence, the spatial nature is not very
important and one speaks of temporal chaos, i.e. the system is basically low dimensional [195].
When L�;�‘D distant parts of the system are weakly correlated so that the number of

(active) degrees of freedom and consequently the number of positive Lyapunov exponents,
the Kolmogorov–Sinai entropy and the attractor dimension, DF , are extensive quantities, i.e.
they increase with the system size, L. Here, spatial aspects are crucial and one speaks of
spatio-temporal chaos, e.g., Rayleigh–BKernad convection for large aspect ratio [153].
The above picture is just an approximative scenario (see [104] for further details) but suf-

<ciently broad to include systems ranging from 8uid dynamics to biological and chemical
reactions [68,153]. In spite of the fact that turbulent 8ows <t in this broad de<nition we shall
discuss the predictability problem in turbulence in the next section.
For detailed discussions on di#erent physical and chemical systems which can be included

in the above de<nition see [68,38]. Here we discuss the predictability problem in a restricted
class of models, which are relatively simple from a computational and theoretical point of view
but, nevertheless, possess the essential phenomenology of spatio-temporal chaos.

4.1. SimpliBed models for extended systems and the thermodynamic limit

A great simpli<cation in the study of extended systems, usually described by partial di#er-
ential equations (PDE), can be achieved by considering discrete time and space models, and
introducing the coupled map lattices (CML) [108], i.e. maps de<ned on a discrete lattice. A
typical 1-dimensional CML (the extension to d-dimensions is straightforward) can be written
in the following way:

xi(t + 1) = (1− 40)fa[xi(t)] +
1
2

L=2∑
j=−L=2

4j(fa[xi+j(t)] + fa[xi−j(t)]) ; (4.1)

with 40 =
∑L=2

j=1 4j. L is the lattice size, i = −L=2; : : : ; L=2, x∈Rn is the state variable which
depends on the site and time, and fa ∈ Rn → Rn is a non-linear map, which drives the local
dynamics and depends on a control parameter a. Usually, periodic boundary conditions xi+L=xi
are assumed and, for scalar variables (n=1), one studies coupled logistic maps, fa(x)=ax(1−x)
or tent maps, fa(x) = a|12 − |x − 1

2 | |.
The parameters {4i} rule the strength and the form of the coupling and they are chosen

according to the physical system under investigation. For example, with 4j = 0 for j¿2, i.e.
nearest neighbor coupling, one can mimic PDEs describing reaction di#usion processes (indeed
formally the equation assumes the structure of a discrete Laplacian). However, it could be
misleading to consider CMLs simply as discrete approximation of PDEs. Indeed, since the local
map fa is usually chaotic, chaos in CML, di#erently from PDE, is the result of many interacting
chaotic sub-systems. Hence, the correspondence between the instability mechanisms in the two
type of models is not straightforward [68].
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Other kinds of coupling can be considered to mimic di#erent physical situations, e.g., asym-
metric CML (see Section 4.5) for studying convective instabilities [106,39,217], or mean <eld
(globally coupled maps) version of (4.1) (Section 4.3) for studying neural network or population
dynamics [118]. Further generalizations are quoted in Ref. [112].
Lyapunov exponents, attractor dimensions and entropies can be de<ned (and, at least the

Lyapunov exponents, numerically computed) also for extended systems. In particular, for L¡∞
the CMLs have <nite-dimensional phase space and the above quantities are well de<ned. In
PDEs some diJculties can rise due to the problem of the non-equivalence of the norms [127]:
Lyapunov exponents and consequently the characterization of the predictability may depend on
the chosen norm. We shall see in Section 4.8 that this is not just a subtle mathematical problem.
In order to build a statistical description of spatio-temporal chaos, as Ruelle pointed out [197],

one has to require the existence of a good thermodynamic limit for the Lyapunov spectrum
{�i(L)}i=1;L. This means the existence of the limit

lim
L→∞

�i(L) =<(x) ; (4.2)

where x = i=L is a continuous index in [0; 1], and <(x) is a non-increasing function. The
function <(x) can be viewed as a density of Lyapunov exponents. If such limit does not exist,
the possibility to build a statistical description of spatio-temporal chaos would be hopeless, i.e.,
the phenomenology of these systems would depend on L.
Once the existence of a Lyapunov density is proved, one can generalize some results of

low-dimensional systems [97,44], namely the Kaplan–Yorke conjecture [117] and the Pesin
relation (2.16). For instance, one can generalize (2.16) to

HKS = lim
L→∞

hKS
L
=

∫ 1

0
dx <(x)5(<(x)) (4.3)

5(x) being the step function. In the same way one can suppose the existence of a dimension
density DF , that is to say a density of active degrees of freedom, i.e. DF=limL→∞ DF=L which
by the Kaplan–Yorke [117] conjecture is given by [97]∫ DF

0
dx <(x) = 0 : (4.4)

The existence of a good thermodynamic limit is supported by numerical simulations [109,144]
and some exact results [205]. Recently, Eckmann and Collet [62] have proved the existence
of a density of degrees of freedom in the complex Ginzburg–Landau equation. See also
Refs. [97,44] and references therein for a discussion on such a problem.

4.2. Overview on the predictability problem in extended systems

In low-dimensional systems, no matter how the initial disturbance is chosen, after a—usually
short—relaxation time, TR, the eigendirection with the largest growth rate dominates for almost
all the initial conditions (this, e.g., helps in the numerical estimates of the Lyapunov exponents
[20]). On the contrary, in high-dimensional systems this may not be true [92,183,173,186].
Indeed, in systems with many degrees of freedom there is room for several choices of the
initial perturbation according to the speci<c problem under investigation (e.g., localized on
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certain degrees of freedom or homogeneous in all the degrees of freedom), and it is not obvious
that for all of them the time TR needed to align along the maximally expanding direction is
the same.
In general, the situation can be very complicated. For instance, it is known that, also con-

sidering initially homogeneous disturbances, the Lyapunov vectors can localize (permanently or
slowly wandering) on certain degrees of freedom [109,75,186]. Of course, this will severely
a#ect the prediction of the future evolution of the system. Indeed, regions of large predictability
time could coexist with regions of relatively short predictability time. In Ref. [109,112,186]
one <nds an abundance of examples displaying this phenomenology. A detailed analysis of this
problem is far from the aims of this review; we just mention that the behavior of the Lyapunov
vectors can range from a strongly localized regime (the origin of which can be understood
by the analogy with Anderson localization of the wave function in disordered potential [91])
to localized wandering structures. In particular, in the latter case there is strong numerical evi-
dence [185,186] that for a large class of (1-dimensional) systems the dynamics of the Lyapunov
vectors (actually the logarithm of them) falls into the universality class of the 1-dimensional
KPZ equation [120].
In these situations the main contribution to the predictability time comes from the time needed

for the perturbation to propagate through the system or to align along the maximally expanding
direction, which can be of the order of the system size [173,183,186]. As a consequence the
predictability time can be much longer than the rough estimation Tp ∼ 1=�.
Moreover, the LE can also be unsatisfactory if one is interested in perturbations with par-

ticular space–time shapes. Indeed, these features have led to the introduction of a number of
new indicators; for instance, the temporal (or speciBc) Lyapunov exponents [189,139], the spa-
tial Lyapunov exponents [91,139] (which characterize respectively perturbations exponentially
shaped in time and space) or the comoving Lyapunov exponents [71] for the characterization of
the spatio-temporal evolution of localized perturbation [109] and of the convective instabilities
[8,39].
Convectively unstable systems are rather interesting because, even if the LE (computed in

the stationary frame) is negative, some features of the motion can be highly unpredictable
(see Section 4.6). It is also worth mentioning the existence of systems with exponentially long
(in the system size) transients during which the dynamics is essentially unpredictable despite
the fact that the LE is negative [69]. This phenomenon, known under the name of stable chaos
[188], will be brie8y discussed in Section 7.3.
In high-dimensional systems one is also interested in predicting the behavior of some average

observable to achieve a macroscopic description of the system. The coarse grained (hydro-
dynamic like) dynamics may be non-trivial, and the largest LE, which is related to the <ne
grained dynamics, is not relevant for characterizing the predictability at a coarse grained level
(see Section 4.7).
We conclude this brief overview by mentioning another interesting feature: in spatially dis-

tributed systems coherent structures may appear. They move maintaining for rather long times
their shape. In di#erent contexts one can be interested in predicting the evolution of such
structures; e.g., cyclonic=anti-cyclonic structures in the atmosphere. A reasonable question could
be the prediction of the center and orientation of such structures: limiting to these aspects
one can indeed hope to have a rather long predictability time compared to the rough estimate
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Tp ∼ O(1=�). However, since usually such phenomena arise in <elds, whose evolution is ruled
by PDE, the non-equivalence of the norms makes a general approach to the problem unfeasible.
Therefore, one has to resort to ad hoc treatments, based on physical intuition to identify the
most suitable norm to be used for the particular needs (see Section 4.8).

4.3. ButterCy e5ect in coupled map lattices

In spatially extended systems it is important to understand the way an uncertainty initially
localized in some region will spread. Here we study in particular the time needed for a pertur-
bation, initially seeded in the central site of a lattice of coupled maps, to reach a preassigned
value at the border of the lattice [173] (see also [109,212,213] and Section 4.6). In other terms
we wonder about the “butter8y e#ect” starting from the center of the lattice and arriving up to
the boundary.
We shall discuss the properties of such time by varying the coupling range from local to

non local in the 1-dimensional CML (4.1) with periodic boundary conditions. We consider two
cases: local coupling, i.e. 4j = 0 if j ¿ 2, and non-local coupling, e.g.

41 = C1 and 4j =
C2
j=

for j ¿ 2 ; (4.5)

where = measures the strength of non-locality. The initial perturbation is on the central site, i.e.

|�xi(0)|= �0�i;0 : (4.6)

We look at the predictability time Tp needed for the perturbation to reach a certain threshold
�max on the boundary of the lattice, i.e. the maximum time, t, such that |�xL=2(t)|6 �max.
For nearest neighbor coupling, one has obviously that �xL=2(t) = 0 for t ¡L=2. Indeed, by a

numerical integration of (4.1) for the short range coupling one observes that �xL=2(t) = 0 for
times t ¡ t∗ ˙ L; while for t ¿ t∗ the perturbation, due to the (local) chaotic dynamics, grows as
�xL=2(t) ∼ �0 exp[�(t − t∗)]. Thus for local interactions, the predictability is mainly determined
by the waiting time t∗, necessary to have |�xL=2|¿�0, which is roughly proportional to the
system size L. This is con<rmed by Fig. 5, where it is shown that the average predictability
time 〈Tp〉 as a function of L goes as

〈Tp〉= t1 +GL ; (4.7)

where the time t1 ∼ �−1 is due to the exponential error growth after the waiting time and can
be neglected in large enough lattices. This agrees with the existence of a <nite speed for the
perturbation spreading [212]; indeed G is related to the propagation velocity (see Section 4.6).
The scenario changes for non-local interactions (4.5). Now, due to the long range coupling,

the perturbation (4.6) may propagate without any delay. The numerical results show that even
for weak non-locality (e.g. C2�C1 and rather large =-values), the waiting time t∗ does not
increase (or increases very slowly) with L, so that

〈Tp〉 ∼ t1 ∼ �−1 : (4.8)

As shown in Fig. 5, weakly non-local couplings, and mean <eld interactions (4j = C2=N ) have
the same qualitative behavior. Very accurate numerical computations have con<rmed that the
dependence on L is indeed very weak (only logarithmic), i.e. 〈Tp〉 ∼ t1 + = ln L=�1 [213].
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Fig. 5. Average predictability time 〈Tp〉 versus L for a CML of logistic maps fa(x) = ax(1 − x) with a= 4: local
coupling j0 = 0:3 (squares); non-local coupling (4.5) with C1 = 0:3, C2 = 0:01 ==2 (crosses) or ==3 (diamonds);
mean <eld coupling ji = C2=L with C2 = 0:3 (crosses squares). The initial perturbation is applied at the center of
the lattice (site i = 0) and has an amplitude 10−14; the maximum admitted error is �max = 0:1.

This example demonstrates that the predictability time is given by two contributions: the
waiting time t∗ and the characteristic time t1 ∼ �−1 associated with chaos. For non-local in-
teractions, the waiting time practically does not depend on the system size L, while for local
interactions it is proportional to L. Let us underline that in these results the non-linear terms in
the evolution of �x(t) are rather important. One numerically observes that the waiting time t∗
is not just the relaxation time TR of �x on the tangent eigenvector. Actually, TR is much larger
than t∗.

4.4. Comoving and speciBc Lyapunov exponents

A general feature of systems evolving in space and time is that a generic perturbation not
only grows in time but also propagates in space. Aiming at a quantitative description of such
phenomena, Deissler and Kaneko [71] introduced a generalization of the LE to a non-stationary
frame of reference: the comoving Lyapunov exponent. For the sake of simplicity, we consider
again the case of a 1-dimensional CML.
Let us consider an in<nitesimally small perturbation initially di#erent from zero only in one

site of the lattice (4.6). By looking at the perturbation evolution along the line, de<ned by
j(t) = 0 + [vt] (where [ · · · ] denotes the integer part), one expects

|�xj(t)| ≈ |�x0(0)|e�(v)t ; (4.9)

where �(v) is the largest comoving Lyapunov exponent, i.e.

�(v) = lim
t→∞ lim

L→∞
lim

|�x0(0)|→0

1
t
ln
( |�x[vt](t)|

|�x0(0)|
)

: (4.10)

In Eq. (4.10) the order of the limits is important to avoid boundary e#ects. For v=0 one recovers
the usual LE. Moreover, one has that �(v)=�(−v) (and the maximum value is obtained at v=0
[189]) when a privileged direction does not exist, otherwise �(v) can be asymmetric and the
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maximum can be attained at value v �= 0 (see Section 4.6). By writing the response function
(2.8) in the moving frame one can also introduce the generalized comoving Lyapunov exponents
Lq(v) for studying <nite time e#ects [76].
There are other two indicators related to the comoving LE: the local Lyapunov exponent

[183] and the speci<c (or temporal) Lyapunov exponents. Here we only brie8y discuss the
latter which is indeed nothing but the Legendre transform of �(v).
The speci<c Lyapunov exponent, <(/), has been introduced by Politi and Torcini [189] to

characterize the growth of exponentially shaped perturbations, i.e.

�xi(t) =?i(t)e−/|i|; i =−L
2
; : : : ;

L
2

; (4.11)

where ?i(t) gives the 8uctuation with respect to the pure exponential shape. One can see that
<(/) is connected through a Legendre transform to �(v) [189,212]. Indeed, Eq. (4.9) de<nes a
local exponential pro<le with /=d�(v)=dv, which means that in terms of the speci<c Lyapunov
exponents one expects the perturbation to grow according to

�xi(t) ∼ exp{<(/)t − /i}; i = [vt] : (4.12)

Note that for / = 0, <(/) reduces to the standard LE. Therefore, the comoving Lyapunov
exponent is given by

�(v) =<(/)− /
d<(/)
d/

: (4.13)

The last equation de<nes a Legendre transform from (�(v); v) to (<(/); /) [189]. By inverting
the transformation (4.13) one obtains v=−d<(/)=d/.
Working in tangent space by using standard algorithms [20], one computes the speci<c

Lyapunov spectrum <i(/) with i = 1; : : : ; L for each /. In the limit L→∞ a density of such
exponents exists and an interpretation of it is discussed in [139,140].

4.5. Convective chaos and spatial complexity

So far we have considered CMLs with symmetric spatial coupling; however there are many
physical systems in which a privileged direction exists, e.g., boundary layers, thermal convection
and wind-induced water waves. The term usually employed for denoting such a class of systems
is 8ow systems. See [8,9,39,106] for a discussion of 8ow systems in di#erent physical contexts.
In recent years it has received much attention a simpli<ed model for 8ow systems which is

able to capture the basic phenomenology [112,198,226]. A minimal model is a chain of maps
with unidirectional coupling [9,180,112,217,76]:

xn(t + 1) = (1− c)fa(xn(t)) + cfa(xn−1(t)) ; (4.14)

where t and n (=1; : : : ; L) are the discrete time and space respectively; the map fa(x) is usu-
ally chosen to be the logistic map. One can consider di#erent boundary conditions, x0(t). For
instance, x0(t) = x∗ with x∗ being an unstable <xed point of the map fa(x), or more generic
time-dependent boundary conditions where x0(t) is equal to a known function of time y(t),
which can be periodic, quasi-periodic or chaotic. Here, following Pikovsky [180–182], we con-
sider a quasi-periodic boundary condition x0(t)=0:5+0:4 sin(!t), with !=.(

√
5−1). However,
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Fig. 6. Sketch of the behavior of �(v) for (a) an absolutely and convectively stable 8ow, (b) absolutely stable but
convectively unstable 8ow, and (c) absolutely unstable 8ow.

the results we are going to discuss do not depend too much on the details of the boundary
conditions, i.e. on using x0(t) quasi-periodic or chaotic.
A central concept in the study of 8ow systems is the one of convective instability, i.e. when

a perturbation grows exponentially along the 8ow but vanishes locally.
We may give a description of the phenomenology of 8ow systems in terms of the largest

LE and of the comoving LE. The absolute stability is identi<ed by the condition �(v)¡ 0 for
all v ¿ 0; the convective instability corresponds to �1 = �(v = 0)¡ 0 and �(v)¿ 0 for some
velocities v¿ 0 and <nally standard chaos (absolute instability) is present when �1=�(v=0)¿ 0.
See Fig. 6 for a sketch of the possible behaviors.
The convective instability is conceptually very interesting, because even if the largest LE is

negative the behavior of the system may be very hard to predict, as Fig. 7 suggests.
For this kind of spatial “complexity” there is not a simple and systematic characterization.

A <rst explanation for these features may be found in the sensitivity of convective unstable
systems on small perturbations at the beginning of the chain (always present in physical system),
which grow exponentially while they are transmitted along the 8ow. This simple intuition can
be made more quantitative de<ning an indicator which measures the degree of sensitivity on the
boundary conditions [217,76]. We wonder how an uncertainty |�x0(t)| = �0 in the knowledge
of the boundary conditions will a#ect the system. We consider only the case of in<nitesimal
perturbations, i.e. �xn evolves according to the tangent space dynamics, and, for the moment
we do not consider intermittency (i.e. time 8uctuations of the comoving Lyapunov exponents).
The uncertainty �xn(t), on the determination of the variable at time t and site n, is given by

the superposition of the evolved �x0(t − �) with �= n=v:

�xn(t) ∼
∫

�x0(t − �)e�(v)� dv= �0
∫
e[�(v)=v]n dv : (4.15)



400 G. Bo5etta et al. / Physics Reports 356 (2002) 367–474

Fig. 7. Evolution of a state of the system (4.14) where fa(x) is the logistic maps, the boundary condition is
quasi-periodic, a= 3:85 and c= 0:7: in this case �1¡ 0 but the system is convectively unstable.

Since we are interested in the asymptotic spatial behavior, i.e. large n, we can write

�xn(t) ∼ �0e@n ; (4.16)

The quantity @ can be considered as a sort of spatial-complexity index, an operative de<nition
of which is the following:

@= lim
n→∞

1
n

〈
ln
|�xn|
�0

〉
; (4.17)

where the brackets mean a time average.
In the particular case of a non-intermittent system, a simple saddle-point estimate of

Eq. (4.15) gives

@=max
v

[
�(v)
v

]
: (4.18)

Eq. (4.18) is a link between the comoving and the “spatial” Lyapunov exponent @, i.e. a relation
between the convective instability of a system and its sensitivity to the boundary conditions.
Eq. (4.18) holds exactly only in absence of intermittency; in general the relation is more

complicated. One can introduce the e#ective comoving Lyapunov exponent, +̃t(v), that gives
the exponential changing rate of a perturbation, in the frame of reference moving with velocity
v, on a <nite time interval t. According to general arguments (see Section 3.1 and [172]) one
has 〈+̃t(v)〉= �(v). Then, instead of (4.15) one obtains

�xn(t) ∼ �0
∫
e[+̃t(v)=v]n dv ; (4.19)

and therefore

@= lim
n→∞

1
n

〈
ln
|�xn|
�0

〉
= lim

n→∞
1
n
ln
|�xtypicaln |

�0
=

〈
max

v

[
+̃t(v)
v

]〉
: (4.20)
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Fig. 8. @(+) and @∗ (©) vs. a at a <xed value of c (=0:7), for the system (4.14) of logistic maps with
quasi-periodic boundary conditions (the system is convectively unstable for all the considered values of the
parameters).

Therefore, because of the 8uctuations, it is not possible to write @ in terms of �(v), although
one can obtain a lower bound [217]:

@¿ max
v

[〈+̃t(v)〉
v

]
=max

v

[
�(v)
v

]
≡ @∗ : (4.21)

In Fig. 8 we show @ and @∗ vs. a for a <xed value of c. There is a large range of values of
the parameter a for which @ is rather far from @∗. This di#erence is only due to intermittency,
as investigations of the map fa(x) = axmod 1 or the computation of the generalized spatial
Lyapunov exponents Ls(q) [217] con<rm.
Concluding, we underline that the spatial complexity displayed by these systems indicates

that the unpredictability of a system cannot be completely reduced to the existence of at least
one positive LE.

4.6. Space–time evolution of localized perturbations

In Fig. 9 we show the evolution of a perturbation |�xi(t)| initialized as (4.6) as a function of
space and time (i; t), for a 1-dimensional lattice of locally coupled tent maps. The perturbation
grows in time and propagates linearly in space creating a sort of predictability “horizon”: this
de<nes a propagation velocity VF [109,189,212].
The velocity VF is de<ned in terms of the left and right edges of the disturbance i.e. the <rst

left (right) site for which at time t the perturbation reaches a preassigned arbitrary threshold.
Numerically, it has been found that VF is independent either of the amplitude of the initial
perturbation, �0, and of the threshold value, so that it is a well-de<ned quantity [109].
It is easy to realize that VF is nothing but the velocity of a moving frame of reference in

which the perturbation is seen neither to grow nor to decrease (i.e. the frame comoving with
the edges of the perturbation). Therefore, VF is given by [109]

�(VF) = 0 : (4.22)
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Fig. 9. (a) Space–time evolution of |�xi(t)| for an initially localized perturbation (4.6) with �0 = 10−8. We used a
CML of tent maps, fa(x)=a(1=2−|x−1=2|), with a=2; j=2=3 and L=1001. (b) �(v) for v¿ 0 for the CML of
(a). The straight line indicates the zero and the intersection between the curve �(v) and 0 indicates the perturbation
velocity VF ≈ 0:78.

The interesting point in Eq. (4.22) is that it gives not only a de<nite prescription to derive
the propagation velocity but also a link between the velocity and the stability properties of the
system. From this point of view it is instructive to look at the propagation velocity in another
way [212].
The perturbation at di#erent times resembles a propagating front, similar to those encountered

in reaction–di#usion processes. But while in the latter context the front usually separates two
stable phases or a stable from an unstable phase, here one phase is unstable and the other
chaotic [212]. Made this analogy one can ask if it is possible to obtain the propagation velocity
as in reaction–di#usion phenomena, where we know that the dynamics spontaneously selects
the minimum allowed velocity [128].
Torcini et al. [212] have shown that this is indeed the case. They studied the evolution of a

perturbation with an exponential pro<le (4.11) which, according to the de<nition of the speci<c
Lyapunov exponent, evolves as in Eq. (4.12), i.e. �xi(t) ∼ exp{<(/)t − /i}. This last relation
tells us that the velocity of a front with shape given by / is V (/) = <(/)=/. According to
the analogy with reaction–di#usion systems, one expects that a generic localized perturbation
develops an exponential decaying shape (at the edges) with a de<nite exponent /0 (selected by
the dynamics) [212]. This means that the propagation velocity VF is determined by the relation
VF = V (/0). Now the problem is to compute /0.
From Eq. (4.13), which relates <(/) and �(v) through a Legendre transformation, one obtains

dV
d/

=
1
/

(
d�
d/

− �
/

)
=−�(v)

/2
: (4.23)

Moreover, since �(VF) = 0 (4.22) one has that dV=d/ = 0 at /0 such that V (/0) = VF , i.e. /0
selects the minimal velocity. Indeed <(/) is convex (being a Legendre transform), so that the
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Fig. 10. max�[�(�; v)] (dashed line with points) versus v for the shift map f(x)= rxmod 1 with r=1:1 and j0 = 1
3 ,

compared with �(v) (continuous line). The two vertical lines indicates the velocity obtained by (4.22) which is
about 0:250 and the directly measured one VF ≈ 0:342. Note that max�[�(�; v)] approaches zero exactly at VF .

minimum is unique and

VF =
<(/0)
/0

=
d<(/)
d/

∣∣∣∣
/=/0

: (4.24)

Thus for an in<nitesimal perturbation, the selected velocity is the lowest possible one [212].
Summarizing, for short-range coupling the speed of propagation is <nite and fully determines

the spatio-temporal evolution of the perturbation. The situation becomes di#erent for long-range
coupling as (4.5). In this case the velocity of propagation is unbounded [173]. For the sake
of completeness, we mention that the long-range coupling case has been also investigated in
terms of a speci<c-like Lyapunov exponent which characterizes power law shaped perturbations
[213]. The result of this analysis shows that the perturbation propagates exponentially fast with
a rate given by the ratio of the largest LE and the power of the coupling.
We conclude this section by mentioning that there are cases in which the analysis in terms of

�(v) or, equivalently, <(/) fails to give the measured propagation velocity. Indeed, it has been
found that VF can be larger than the velocity for which �(v) = 0. A <nite propagation velocity
has been measured even in systems with �¡ 0 (the so-called stable chaos phenomenon, see
Section 7.3) for which the above analysis predicts VF = 0 [190].
This failure is related to the presence of strong non linearities. Recently, it has been proposed

to generalize (4.22) to the non-linear regime of the perturbation growth by the de<nition of
the <nite size comoving Lyapunov exponent [52], �(�; v). It measures the divergence rate of
perturbations of size � (not necessarily in<nitesimal) in a moving frame. The algorithm is a
generalization of the FSLE (Section 3.4), where now one follows an initially localized pertur-
bation along the line [vt]. In Fig. 10 we compare �(v) with �(�; v) for a CML of shift maps, i.e.
f(x) = rxmod 1. The latter goes to zero exactly at the directly measured propagation velocity
VF . Similar results hold for other maps [52]. These results suggest that a generalization of
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Eq. (4.22), which is able to take into account also possible non-linear e#ects, is

max
�
[�(�; VF)] = 0 :

The numerical evidences also suggest that the condition which should be accomplished in
order to have deviation from the linear prediction given by (4.22) and (4.24) is that �(�; v =
0)¿�(0; 0) = �, con<rming a conjecture done in [212]. However, even if interesting such a
behavior seems to be rather non-generic.

4.7. Macroscopic chaos in globally coupled maps

Recently the emergence of non-trivial collective behaviors in high-dimensional dynamical
systems has gathered much attention [58,110,111,184]. A limit case of macroscopic coherence
is the global synchronization of all the parts of the system. Beyond synchronization there exist
other interesting phenomena, among which we just mention: clustering [110,129,67] and col-
lective motion in globally coupled maps (GCM) [113,202,184]. The latter behavior, in the case
that we call macroscopic chaos [50,203] (see below), is the subject of this section.
Let us consider a globally coupled map (GCM) de<ned as follows:

xn(t + 1) = (1− 4)fa(xn(t)) +
4
N

N∑
i=1

fa(xi(t)) ; (4.25)

where N is the total number of elements.
The evolution of a macroscopic variable, e.g., the center of mass

m(t) =
1
N

N∑
i=1

xi(t) ; (4.26)

upon varying 4 and a in Eq. (4.25), displays di#erent behaviors [50]:

(a) Standard chaos: m(t) obeys a Gaussian statistics with a standard deviation 1N =√
〈m(t)2〉 − 〈m(t)〉2 ∼ N−1=2.
(b) Macroscopic periodicity: m(t) is a superposition of a periodic function and small 8uctu-

ations O(N−1=2).
(c) Macroscopic chaos: m(t) displays an irregular motion as it can be seen by looking at

the plot of m(t) vs. m(t − 1) that appears as a structured function (with thickness ∼ N−1=2),
and suggests a chaotic motion for m(t).

Phenomena (a) and (b) also appear in CML with local coupling in high enough dimensional
lattices [58], for the interesting case (c), as far as we know, there is not a direct evidence in
<nite-dimensional CMLs.
In the case of macroscopic chaos one can expect that the center of mass evolves with typical

times longer than the characteristic time of the full dynamics (i.e. the microscopic dynam-
ics); the order of magnitude of the latter time may be estimated as 1=�1. Indeed, conceptu-
ally, macroscopic chaos for GCM can be thought of as the analogous of the hydro-dynamical
chaos for molecular motion, where, in spite of a huge microscopic Lyapunov exponent
(�1∼ 1=�c ∼ 1011 s−1; �c being the collision time), one can have rather di#erent behaviors at
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a hydro-dynamical (coarse grained) level, i.e.: regular motion (�hydro60) or chaotic motion
(0¡�hydro��1). In principle, if one knows the hydrodynamic equations, it is possible to char-
acterize the macroscopic behavior by means of standard dynamical system techniques. However,
in generic CML there are no general systematic methods to build up the macroscopic equations,
apart from particular cases [113,184]. Therefore, here we discuss the macroscopic behavior of
the system relying upon the full microscopic level of description.
The microscopic Lyapunov exponent cannot give a characterization of the macroscopic mo-

tion. To this purpose, recently di#erent approaches have been proposed based on the evaluation
of the self-consistent Perron–Frobenius (PF) operator [113,178,184] and on the FSLE [50,203].
Despite the conceptual interest of the former (in some sense the self-consistent PF-operator plays
a role similar to that of the Boltzmann equation for gases [50]), here we shall only discuss the
latter which seems to us more appropriate to address the predictability problem.
We recall that for chaotic systems, in the limit of in<nitesimal perturbations � → 0, one has

�(�) → �1, i.e. �(�) displays a plateau at the value �1 for suJciently small �. However, for
non-in<nitesimal �, one can expect that the �-dependence of �(�) may give information on the
characteristic time-scales governing the system, and, hence, it could be able to characterize the
macroscopic motion. In particular, at large scales, i.e. ��1=

√
N , one expects the (fast) micro-

scopic components to saturate and �(�) ≈ �M , where �M can be fairly called the “macroscopic”
Lyapunov exponent.
The FSLE has been determined by looking at the evolution of |�m(t)|, which has been

initialized at the value �m(t) = �min by shifting all the elements of the unperturbed system
by the quantity �min (i.e. x′i(0) = xi(0) + �min), for each realization. The computation has been
performed by choosing the tent map as local map, but similar results can be obtained for other
maps [203,50].
Fig. 11a shows �(�) versus � in the case of macroscopic chaos. One has two plateaus: at

small values of � (� 6 �1), as expected from general considerations, �(�) = �1; for � ¿ �2

Fig. 11. �(�) versus � for the system (4.25) with a= 1:7; j= 0:3 for N = 104 (×); N = 105 ( ); N = 106() and
N=107 (�). The <rst plateaus corresponds to the microscopic Lyapunov exponent �micro ≈ 0:17 and the second one
to the macroscopic Lyapunov exponent �macro ≈ 0:007. The average is over 2×103 realizations for N=104; 105; 106
and 250 realizations for N = 107. (b) The same as (a) rescaling the �-axis with

√
N .
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one has another plateau, the “macroscopic” Lyapunov exponent, �(�) = �M . Moreover, �1 and
�2 decrease at increasing N : indeed, by looking at Fig. 11b one can see that �1; �2 ∼ 1=

√
N .

It is important to observe that the macroscopic plateau, being almost non-existent for N = 104,
becomes more and more resolved and extended on large values of �

√
N at increasing N up

to N = 107. Therefore we can argue that the macroscopic motion is well de<ned in the limit
N → ∞ and one can conjecture that in this limit the microscopic signature in the evolution
of �m(t) completely disappears in favor of the macroscopic behavior. In the case of standard
chaos (�M ¡ 0) one has only the microscopic plateau and then a fast decreasing of �(�) [50].

4.8. Predictability in presence of coherent structures

Here we discuss some problems which arise in characterizing the predictability in contin-
uous systems, described by PDE. In this case the norms are not equivalent [127] and the
computation of the LE can give di#erent results. Rather than discussing the problem in gen-
eral terms, we consider here two-dimensional turbulence as a speci<c example. The choice of
this example is due to several reasons. First of all, two-dimensional turbulence is a continu-
ous system of relevance in atmospheric physics, and it has been extensively investigated in
the last years [206,208,176,34]. The statistical theory for two-dimensional turbulence has been
developed by Kraichnan and Batchelor [132] on a similar basis to the Kolmogorov theory for
three-dimensional turbulence. The main di#erence is the existence of a second inviscid invari-
ant, the enstrophy (average square vorticity). As a consequence, in the limit of high Reynolds
numbers, the energy cannot be dissipated by viscosity and one expects a direct cascade of
enstrophy. With an input source at intermediate scales, the energy injected into the system is
transferred to large scales by an inverse cascade. A large numbers of numerical simulations
[206,34] and experiments [176] have demonstrated the universality of the inverse cascade with
spectral index very close to the predicted Kolmogorov exponents.
The situation is much less clear for what concerns the direct cascade. The predicted spectral

slope (Kraichnan–Batchelor spectrum) is seldom observed and even universality with respect
to the forcing or to the form of dissipation is questioned [159]. The freely decaying evolution
is characterized by the emergence of coherent structures [159] which eventually dominate the
dynamics. Coherent structures are weakly dissipative, rather regular regions of 8uids in the
turbulent background 8ow whose interactions can be approximately described by a conserva-
tive dynamics [135]. The spontaneous emergence of coherent structures makes two-dimensional
turbulence a prototype model for geophysical 8ows [141] and, most important for our purpose,
gives a natural example for illustrating the e#ects of choosing di#erent error norms.
The equation for describing two-dimensional turbulence is the Navier–Stokes equation written

for the scalar vorticity !=∇× v as [18,159]

9!
9t +

9( ; !)
9(x; y) = (−1)

p+1Cp �p ! (4.27)

where  is the stream function such that v=(9y ;−9x ) and � =−!. As customary in direct
numerical simulations, the dissipation is modi<ed by employing high order viscosity p¿ 1 in
order to achieve larger Reynolds numbers. The numerical results discussed below are obtained
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by integrating (4.27) by means of a standard pseudo-spectral code on a periodic computational
domain with resolution N × N .
The classical theory of predictability in turbulence [136,137] studies the evolution of a dif-

ference (or error) <eld, de<ned as

�!(x; t) =
1√
2
(!′(x; t)−!(x; t)) (4.28)

where ! and !′ are solutions of (4.27) started from slightly di#erent initial conditions. The
“error” is computed from �! and measured in terms of a given norm which is the subject of
our discussion. Indeed the method used for de<ning the distance between the reference and
perturbed <eld is a delicate point for continuous systems such as Navier–Stokes equations.
Classical norms are based on the invariants of (4.27) in the inviscid limit Cp=0, i.e. enstrophy
and energy norms [137,122]

Z�(t) =
1
2

∫
d2x |�!(x; t)|2 =

∫ ∞

0
dk Z�(k; t) ; (4.29)

E�(t) =
∫ ∞

0
dk k−2 Z�(k; t) =

∫ ∞

0
dk E�(k; t) ; (4.30)

where we have also introduced the enstrophy (Z�) and energy (E�) error spectra. It is also
natural to introduce the relative errors, de<ned as

r(t) =
E�(t)
E(t)

; z(t) =
Z�(t)
Z(t)

; (4.31)

where E(t) = 1
2

∫
v2(x) dx and Z = 1

2

∫
!2(x) dx, and the relative error spectrum

r(k; t) =
E�(k; t)
E(k; t)

=
Z�(k; t)
Z(k; t)

: (4.32)

This issue was already addressed in [122] where the in<nitesimal (linear) error growth was
computed using several “Eulerian norms” as (4.29), (4.30).
We will consider an initial error given by complete uncertainty at small scales, i.e. r(k; 0)=0

for k ¡k0 and r(k; 0) = 1 for k ¿k0. This assumption is physically justi<ed by the <nite reso-
lution of any measurement device and=or the numerical simulation scheme. For an in<nitesimal
perturbation, the error is expected to grow exponentially with the largest LE �1. Because we are
dealing with a dissipative system which ultimately collapses on the trivial <xed point !=0, �1
is formally negative. However, this is only a formal problem. Indeed in high Reynolds number
turbulence the dissipation time scale is much longer than the dynamical time and we can make
use of the e#ective LE +(t) (3.8). For t much smaller than the dissipation time, we can consider,
from any point of view, +(t) as the Lyapunov exponent of the decaying turbulence.
The exponential growth regime ends at times much smaller than the dissipative time, as soon

as the separation of the two <elds cannot be any more considered in<nitesimal and the <nite
error regime sets in. The predictability time is de<ned by means of the accepted tolerance � or,
which is equivalent, by a threshold for the relative errors (4.31). We will follow the classical
prescription for the predictability time r(Tp)= 1

4 [137]. In Fig. 12 we plot relative errors (4.31)
as functions of time for a 5122 resolution simulation [33]. For small times (t ¡ 250) we can
see an exponential growth for both r(t) and z(t) with e#ective LE + � 0:08. At larger times the
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Fig. 12. Relative energy (r) and enstrophy (z) error growth for a 5122 simulation. Tp indicate the predictability
time de<ned as r(Tp) = 1

4 . The dashed line represents the exponential regime r(t) ∼ exp(0:08t).

Fig. 13. Gray scale map of the vorticity <elds (obtained by a 2562 simulation) at time Tp =177. White corresponds
to positive vorticity regions, black to negative ones. (a) Reference <eld !(x), (b) the perturbed one !′(x), (c) the
error <led �!(x).

error curves bend and a predictability time estimation with energy norm gives Tp � 395. From
Fig. 12 we learn at least two lessons. First (but not surprisingly) about half of the predictability
time is governed by non-exponential error growth behavior. This is another demonstration of the
little relevance of LE for characterizing predictability in realistic complex systems. The second
observation is that the di#erent norms r(t) and z(t) give qualitatively similar results. Because
the error is initially con<ned to small scales k ¿k0, the vorticity-based norm is always larger
than the energy-based norm, but the predictability time is essentially independent of the norm
used. It is not diJcult to understand that any Eulerian norm would give comparable result.
Because the error propagates from small to large scales, a norm which emphasizes small-scale
features (as the enstrophy norm) saturates earlier than a large scale based norm (energy, in our
example), but the results remain essentially the same.
In Fig. 13 we plot the vorticity <eld of the reference !(x; Tp) and perturbed <eld !′(x; Tp) at

the predictability time Tp. Although the two <elds di#er, by de<nition, by 25% in energy and
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about 65% in enstrophy, they look still remarkably similar for what concerns the distribution
of vortices. Most of the large coherent structures are almost in the same positions.
In Fig. 13 we also plot the di#erence <eld �!(x; Tp). The typical bipolar con<guration, usually

observed in simulations [122,164], indicates that the error is concentrated in correspondence of
the vortices and that it is essentially due to the di#erent position of the vortex structures in the
two realizations.
This result suggests that a Lagrangian measure of the error, based on the vortex positions,

would be more suitable for the present system. For example, to emphasize the limits of the
Eulerian measure for the error (4.29), (4.30), consider the limiting case of singular point vor-
tices, where an in<nitesimal error in the coordinates gives error saturation and hence zero pre-
dictability time. In general, we expect that, in presence of vortices, an Eulerian-based measure
underestimates the predictability time.
This problem can be overcome by resorting to the natural distance among vortex centers.

We use a vortex tracking algorithm which recognizes and follows vortices during the dynam-
ics. First we need a de<nition of vortex, the one here adopted is: a connected region D= in
the computational domain with vorticity maximum z= larger (in absolute value) than a given
threshold and vorticity larger than a fraction (we used 0:2) of the vorticity peak. Given the
vortex domains D=, all the physical quantities are computed by integrating inside the domains.
For example, vortex circulation is de<ned as @= =

∫
D=
d2x !(x) and vortex center x= is the

center of mass computed from the vorticity <eld. Finally, vortex trajectories are reconstructed
by matching center positions at di#erent times.
A Lagrangian, vortex-based, measure of the error can, e.g., be de<ned as

d2(t) =
1∑

= |@=|
∑
=

|@=| |x′
= − x=|2 (4.33)

where x= and x′
= are the vortex positions respectively in the reference and perturbed <eld. In

Fig. 14 we plot d2 obtained from our simulation. We observe that at the classical predictability

Fig. 14. Mean vortex separation d(t) at resolution 5122. At the classical predictability time Tp, the mean vortex
separation is about one-tenth of the saturation level.
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time, the mean vortex separation is d(Tp) � 0:5, well below the saturation value (dmax ∼ L=2=.
in the periodic computational box). This result is a quantitative con<rmation of the observations
drawn from Fig. 13, i.e. the existence of an intermediate regime in which the (<nite) error is
ruled by the displacement of the strong coherent structures. If one is interested in predicting,
with some tolerance, positions and intensities of coherent structures, it is possible to have a
much larger predictability time.

5. Predictability in fully developed turbulence

5.1. Basic facts of turbulence

Perhaps, fully developed turbulence [161,84] is the most important instance of high-
dimensional chaotic system. To give an example, let us consider a classical experiment in
8uid dynamics: in a wind tunnel, an air mass conveyed by a large fan impinges some obsta-
cles, which perturb signi<cantly the velocity of 8uid particles. Big and small whirls appear, and
the 8ow evolves irregularly in time. One could wonder whether the features of the 8ow depend
crucially on the physical properties of the 8uid, the size and shape of the obstacle, the mean
wind velocity, and so on. It is easy to understand that, with a given geometry the only relevant
parameter which characterizes the 8ow is the Reynolds number Re=UL=C, where U is the mean
wind velocity, L is the typical size of the obstacle and C is the kinematic viscosity of the 8uid.
When Re is very large, i.e., of the order of a thousand or more [19] turbulence is called fully
developed. The fundamental physical interest in this regime is motivated by the existence of
universal properties with respect to the details of the experimental setup [19,161]. If a velocity
probe is placed at some distance past the obstacle, it is possible to record a temporal series that
gives us statistical information. If one sits far enough from the obstacle, there the small-scale
properties of the 8ow do not depend sensitively on the precise site and orientation of the probe,
that is the turbulence is approximately homogeneous and isotropic. Since the 8ow is swept
across the probe at a mean velocity U , that largely exceeds the magnitude of the 8uctuations,
one can expect that the time record essentially amounts to a one-dimensional spatial section of
the velocity <eld. Thus time-scales and length-scales are interchangeable, this is the essence of
the Taylor hypothesis [161]. Assuming the above hypothesis, we can safely reinterpret temporal
variations of the velocity, on an interval �, in a <xed-point of the space as spatial increments
on scale ‘=U�, at a <xed time.
The <rst important result about the expected universality is the behavior of the velocity

power spectrum which closely follows a power law decay E(k) ˙ k−5=3 on a given range of
wave numbers [123,161]. At larger wave number the spectrum falls o# with an exponential-like
behavior, whereas the form at small k (i.e. large scales) depends on the mechanism of forcing
and=or boundary conditions. For k → 0 one often observes a self-similar energy spectrum
E(k) ∼ ks with scaling exponent s¿ 0. In incompressible decaying turbulence, there are some
arguments indicating that asymptotically s 6 4 where the limiting value s = 4 is observed if
initially the spectrum has s¿ 4 [19]. A typical turbulence spectrum is shown in Fig. 15.
The two crossovers unveil the presence of two characteristic scales: a large excitation scale

L ∼ k−1L , associated with the energy containing eddies, and a small dissipation scale ‘D ∼ k−1D ,
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Fig. 15. Typical turbulent energy spectrum, k−1L is the energy containing integral scale and k−1D the dissipative
Kolmogorov scale.

related to the smallest active eddies. The appearance of a power law in between these two
extremes unveils that no other characteristic scale is involved.
A simple and elegant explanation of these experimental <ndings is due to A.N. Kolmogorov

[16]: in a nutshell, it is assumed the existence of a range of scales where the energy—injected
at the scale L—8ows down (with a cascade process, as remarked by Richardson [194]) to the
dissipative scale ‘D, where it is dissipated by molecular viscosity. Since, practically, neither
injection nor dissipation takes place in this interval, it is called the inertial range. In this range
the only relevant quantity is the average energy transfer rate Wj: dimensional counting imposes
then a power spectrum E(k) ˙ Wj2=3k−5=3 in agreement with the experimental observations
discussed above. The scaling for the spectrum is equivalent to a power law dependence for the
second-order structure function (SF)

S2(‘) = 〈�v2‘〉= 〈(v(x + ‘)− v(x))2〉 ∼ ‘2=3 : (5.1)

The original Kolmogorov theory (K41) assumes self-similarity of the turbulent 8ow. As a
consequence, the scaling behavior of higher-order structure functions Sp(‘)=〈|v(x+‘)−v(x)|p〉 ∼
‘Fp is described by a single scaling exponent. The value of the exponent is determined by the
so-called “4=5 law”, an exact relation derived by Kolmogorov from the Navier–Stokes equations
[123,84], which, under the assumption of stationarity, homogeneity and isotropy states

〈�v3‖(‘)〉=−4
5
Wj‘ ; (5.2)

where �v‖(‘) is the longitudinal velocity di#erence between two points at distance ‘, and Wj
is the average rate of energy transfer. The structure function exponent Fp is thus predicted by
Kolmogorov similarity theory to be Fp = p=3.
Several experimental investigations [7,84] have shown that the Kolmogorov scaling is not

exact and Fp is a non-linear function (with F3=1 as a consequence of the “4=5 law”). This means
a breakdown of the self-similarity in the turbulent cascade. Larger and larger excursions from
mean values are observed as one samples smaller and smaller scales. This phenomenon goes
under the name of intermittency [84]. A complete theoretical understanding of intermittency in
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Navier–Stokes turbulence is still lacking. Nevertheless, there are approaches, as the multifractal
model [177], which are able to characterize at a phenomenological level the intermittency.
In brief, the basic idea of the multifractal model [177,172,84] consists in assuming a local

scale-invariance for the velocity 8uctuations, i.e. one has �v‘ ∼ ‘h, with a continuous spectrum
of (HVolder) exponents h, each belonging to a given fractal set. In other words, in the inertial
range one has

�v‘(x) ∼ ‘h ; (5.3)

if x ∈ Sh, and Sh is a fractal set with dimension D(h) and h∈ (hmin; hmax). The probability to
observe a given scaling exponent h at the scale ‘ is thus P‘(h) ∼ ‘3−D(h). In this language the
Kolmogorov similarity theory [123,84] corresponds to the case of only one singularity exponent
h= 1

3 with D(h= 1
3) = 3, see also Appendix B.

5.2. Reduced model of turbulence

In numerical simulations of the Navier–Stokes equations in the regime of fully developed
turbulence, one has to discretize the original PDE to obtain a set of approximate ODE which
must be integrated numerically. This is the direct numerical simulation approach which, in its
simplest form, is implemented on a regular 3D grid of N 3 points. Since the dissipative scale
(Kolmogorov scale) is related to the Reynolds number as ‘D ∼ LRe−3=4, an estimate of the
number N of active spatial degrees of freedom leads to

N ∼ (L=‘D)3 ∼ Re9=4 : (5.4)

An obvious consequence of the fast growth of N with the Reynolds number is the unfeasibility
of a complete turbulent simulations at high Re. The maximum limit of present computers is
about N=103 which corresponds to Re � 104. An alternative approach has been introduced with
the so-called shell models by the works of Obukhov, Gledzer and Desnyansky and Novikov
(see [38] for a detailed discussion). The basic idea, originally motivated in the context of
closure theory, is to implement a dynamical cascade with a set of variables un (n = 1; : : : ; N )
each representing the typical magnitude of the velocity 8uctuation in a shell of wave-numbers
kn ¡ |k|¡kn+1. The representative wave-numbers are spaced geometrically, kn = k02n, in this
way, assuming locality in the cascade, interactions are con<ned to neighboring shells only.
We will discuss a speci<c model, known as GOY model (see [38] for a review), which

makes use of complex velocity variables un and for which the equations of motion are(
d
dt
+ Ck2n

)
un = ikn(un+1un+2 − 1

4un−1un+1 − 1
8un−2un−1)∗ + fn ; (5.5)

where C is the viscosity and fn is a forcing term (typically restricted on the <rst shells). The
coeJcients in the nonlinear term (which has the same structure of Navier–Stokes equations)
are chosen to conserve energy E ≡ 1=2 ∑

n |un|2 in the unforced, inviscid limit.
Without entering in the details, we recall that shell model (5.5) displays energy cascade Za la

Kolmogorov from the large scales of forcing to the dissipative scales (n ∼ N ) with a statistical
constant energy 8ux Wj. On these inertial range scales, the moments of velocity show power law
scaling 〈|un|p〉 ∼ k−Fp

n with exponents close to those experimentally observed for fully developed
turbulence.
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The number of shells N necessary to mimic the cascade mechanism of fully developed
turbulence is rather small, due to the geometrical progression in kn one has N ∼ log2 Re. We
have thus a chaotic dynamical system with a reasonably small number of degrees of freedom
where standard methods of deterministic chaos can be used in order to relate the “turbulent”
statistical description in terms of structure functions and intermittency, and dynamical properties,
such as the spectrum of Lyapunov exponents. The absence of any stochastic term in (5.5) makes
the shell model a natural model for investigating the predictability problem in turbulence.

5.3. E5ects of intermittency on predictability of inBnitesimal perturbations

The sensitive dependence on initial conditions makes the long term forecasting in turbulent
8ow practically impossible. For instance, Ruelle [196] remarked that thermal 8uctuations in the
atmosphere produces observable changes on a scale of centimeters after only few minutes. As a
consequence after one or two weeks, the large-scale atmospheric circulation would be completely
unpredictable, even if the exact evolution equations were known. This is the so-called butterCy
e5ect, in the words of Lorenz: A butterCy moving its wings in Brazil might cause the formation
of a tornado over Texas. To support this argument, one can observe that the largest LE of
fully developed turbulence is roughly proportional to the inverse of the smallest characteristic
time of the system, the turn-over time �D of eddies of the size of the Kolmogorov length ‘D.
From ‘D ∼ LRe−3=4 one obtains

�D ∼ ‘D=�vD ∼ �LRe−1=2 ; (5.6)

where �L ≈ L=U is the eddy turn-over time of the energy containing scales. As a consequence,
as <rst pointed out by Ruelle [196], the largest LE scales with Re like � ∼ 1=�D ∼ Re1=2=�L.
Thus fully developed turbulence is characterized by a Lyapunov exponent diverging with Re.
Nevertheless, a large value of the LE does not prevent the possibility of long term prediction,

at least if one is interested in predicting the large scales behavior (which is related to <nite
errors), see Section 5.4.
Remaining in the framework of in<nitesimal perturbations, we discuss the e#ects of intermit-

tency on the predictability time. The multifractal model [177] predicts a spectrum of viscous
cut-o#s: each singularity exponent h selects a di#erent damping scale, ‘D(h) ∼ LRe−1=(1+h), and
hence a spectrum of (dissipative) turn-over times, �D(h), such that (5.6) becomes

�D(h) ∼ ‘D(h)=�vD ∼ �LRe−(1−h)=(1+h) ; (5.7)

(see Appendix B for details). To obtain the largest Lyapunov exponent now we have to integrate
�D(h)−1, at the scale ‘= ‘D(h), over the h-distribution P‘(h) ∼ ‘3−D(h):

� ∼
∫

�(h)−1P‘(h) dh ∼ 1
�L

∫ (
‘D

L

)h−D(h)+2

dh : (5.8)

Since the viscous cut-o# vanishes in the limit Re → ∞, the integral can be estimated by the
saddle-point method, i.e.

� ∼ 1
�L

Re= with ==max
h

[
D(h)− 2− h

1 + h

]
: (5.9)
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Fig. 16. Lyapunov exponent � ( ) and variance / (×) as a function of the Reynolds number Re for the shell model
(5.5) with N =27 shells. The dashed line is the multifractal prediction � ∼ Re= with ==0:459, with function D(h)
obtained by the random beta model <t of the Fp exponents. The full line represents / ∼ Rew with w = 0:8.

The value of = depends on the shape of D(h). By using the function D(h) obtained by <tting
the exponents Fq with the random G-model [22] one <nds = = 0:459 : : : ; slightly smaller than
the Ruelle prediction = = 0:5. This result is con<rmed by numerical simulations on the shell
model (5.5) (see Fig. 16).
We remind that the 8uctuations of the e#ective Lyapunov exponent +(t) can be characterized

by the ratio of /=� (Section 3.1). The variance / is

/= lim
t→∞ t[〈+(t)2〉 − 〈+(t)〉2] ∼ tc〈(+− �)2〉 ; (5.10)

where in the last expression we have introduced the integral correlation time tc =
∫
C(t) dt of

the e#ective Lyapunov exponent [66,38], where C(t) is the normalized correlation function of
the 8uctuation of +(t) (i.e. +(t)− �).
The quantity 〈(+− �)2〉 can be computed by repeating the argument for �:

〈+2〉 ∼ 〈�−2〉 ∼ 1
�2L

Rey : (5.11)

An explicit calculation [66] gives y = 1 independently of intermittency. Assuming that the
correlation time tc vanishes as a power of Re

tc ∼ �LRe−z (5.12)

one ends with the prediction

/ ∼ 1
�L

Rew with w = 1− z : (5.13)

Numerical simulations on the shell model (5.5) give w � 0:8 (see Fig. 16). Because w¿=
we obtain that /=� diverges with Re. From Fig. 16 we see that the strong intermittency regime
begins, for the shell model, at Re ∼ 106. Let us stress that in the absence of intermittency one
would expect that tc ∼ �−1 and thus z= 1

2 and /=� constant. The fact that z ∼ 0:2 indicates that
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Fig. 17. Rescaled probability distribution functions of the predictability time Tp for the shell model (5.5) for
(a) Re = 106 and (b) Re = 2 × 109. The respective average values are 〈Tp〉 = 84:0 and 6:32 and the standard
deviations are 1(Tp) = 22:2 and 3:16. The line is the Gaussian.

the presence of quiescent periods in the turbulent activity is much more relevant for the decay
rate of time correlations than for the Lyapunov exponent.
We have seen in Section 3.3 that the 8uctuations of the e#ective LE a#ect the distribution

of predictability time, and thus we expect a similar e#ect in fully developed turbulence. In the
shell model one can estimate the predictability time by computing the time Tp at which the
di#erence �um(t) (where m corresponds to the integral scale) among two realizations of the
model becomes larger that the tolerance �. The initial di#erence �0 is restricted to the shell un∗

on the Kolmogorov scale and m�n∗. The predictability time distribution function is computed
at two di#erent Reynolds number. At Re = 106 we are at the border of the weak intermittent
range: the observed PDF (Fig. 17) is indeed close to a Gaussian with mean value

〈Tp〉 � 1
�
ln
(

�
�0

)
: (5.14)

On the contrary, at Re = 2 × 109, the PDF exhibits the asymmetric triangular shape and the
mean value is ruled by / according to (3.28).

5.4. Growth of non-inBnitesimal perturbations

The classical theory of predictability in turbulence has been developed by Lorenz [146]
(see also [143]) using physical arguments, and by Leith and Kraichnan [137] on the basis
of closure approximations. The fundamental ingredients of the Lorenz approach stem from
dimensional arguments on the time evolution of a perturbation in an energy cascade picture. In
this framework, it is rather natural to assume that the time �‘ for a perturbation at scale ‘=2 to
induce a complete uncertainty on the velocity <eld on the scale ‘, is proportional to the typical
eddy turn-over time at scale ‘: �‘ ∼ ‘=�v‘ where �v‘ is the typical velocity di#erence at scale
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‘. Kolmogorov scaling (5.1) gives

�‘ ∼ ‘2=3 : (5.15)

Because of the geometric progression (5.15), the predictability time to propagate an uncertainty
O(�vD) from the Kolmogorov scale ‘D up to the scale of the energy containing eddies L, is
dominated by the longest time

Tp ∼ �‘d + �2‘d + · · ·+ �L ∼ �L ∼ L
�vL

: (5.16)

Closure approximations, where one still uses dimensional arguments, con<rm this result [137,143].
It is important to stress that, in the Lorenz approach, the predictability time is independent of

the Reynolds number. This is only in apparent contradiction with the increase of the Lyapunov
exponent with Re (5.9). From the point of view of an observer interested in forecasting the large
scales (i.e. not in<nitesimal perturbations) the Lyapunov exponent is not physically relevant.
Large-scale predictability in turbulence is hence another example where a large LE coexists
with a long predictability time. We will see that a coherent description that includes these two
features of predictability is given by the <nite size Lyapunov exponent (3.37).
It is easy to estimate the scaling behavior of �(�) when the perturbation is in the inertial

range �vD 6 � 6 �vL. Following the phenomenological ideas of Lorenz, the doubling time of
an error of magnitude � can be identi<ed with the turn-over time �‘ of an eddy with typical
velocity di#erence �v‘ ∼ �. Using the scaling (5.1) one has �‘ ∼ �L(‘=L)2=3 ∼ �L(�v‘=�vL)−2. In
conclusion we obtain [11]

�(�) ∼ �−2 : (5.17)

In the dissipative range �¡�vD, the error can be considered in<nitesimal, implying �(�) = �.
Accounting for intermittency, in the framework of the multifractal approach, one has

�(�) ∼ �−1L

∫
dh(�=�vL)[3−D(h)]=h(�=�vL)1−1=h : (5.18)

From the basic inequality of the multifractal model D(h)6 3h+2 (see Appendix B), we have
2 + h−D(h)

h
¿ −2 for all h : (5.19)

As a result of the constancy of the energy 8ux in the inertial range, W4 = v3(‘)=‘, the equality
holds for h=h∗(3), and gives 3h∗(3)+3−D(h∗(3))=1. Therefore a saddle-point estimation of
(5.18) gives again (5.17). The dimensional scaling of the FSLE in fully developed turbulence
�(�) ∼ �−2 is thus not a#ected by intermittency corrections. This is a direct consequence of the
exact result (5.2).
These <ndings have been numerically tested on the shell model (5.5) for the energy cascade.

Fig. 18 shows the scaling of 〈1=�(�v; r)〉t as a function of �v in the GOY model, where �(�v; r)
is the “doubling time”, i.e. the time necessary for a perturbation of size �v to increase by a
factor r (see Section 3.4 and Appendix A).
For comparison, we also plot the eddy turn-over times �−1‘ = 〈|�v‘|2〉1=2=‘. We see that below

the Kolmogorov scale, the doubling time displays a constant plateau corresponding to the Lya-
punov exponent (3.39). At larger errors we observe a good agreement with the prediction (5.17).
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Fig. 18. The inverse of the error doubling times versus �u (diamond) compared with shell turn-over times (plus).
Number N of simulated shells is 27, and Reynolds number Re = C−1 = 109, k0 = 0:05. The initial perturbation is
randomly uniform over all shells in the inertial range, with amplitude of order 10−6. The <rst threshold is �0=10−4
and the error growth rate parameter r is 21=2. The number of error doubling experiments is 400. The dashed line
has the slope −2.

Let us observe that, even at this high Reynolds number, the scaling range for the doubling time
is rather small.
It is interesting to look at the doubling time as a function of the Reynolds number. For small

thresholds the inverse of the doubling time scales as the Lyapunov exponent, i.e. roughly as
Re−1=2. We also observe that the bend away from the in<nitesimal growth rate occurs at smaller
scales for larger Reynolds numbers. This suggests the following scaling ansatz: times and errors
are scaled with the turn-over time and the typical scale of 8uctuations at the Kolmogorov scale,
that is by Re−1=2 and Re−1=4, respectively. In Fig. 19 we show the re-scaled data. The data
collapse is reasonable, allowing to conclude that small-scale predictability, with small error am-
plitudes, behaves (apart from intermittency corrections) as predicted by Ruelle [196], whereas
large-scale predictability, characterized by large error amplitudes, is well described by Lorenz
arguments.
To improve the data collapse, taking into account the multifractal correction as described in

Appendix B, one has to make a multiscaling collapse, i.e. to rescale ln〈1=�(�v; r)〉 and ln(�v=V0)
with ln(Re=Re0) where V0 and Re0 are two parameters to be <xed [12]. The result is shown in
Fig. 20. The data collapse is clearly improved.
Finite size predictability has been investigated also in two-dimensional turbulence, which

is relevant for atmospheric 8ows. As discussed in Section 4.8, two-dimensional turbulence in
the inverse energy cascade regime is characterized by a scaling Za la Kolmogorov [132] with
no intermittency [34]. As discussed above, the scaling exponent in (5.17) is not a#ected by
intermittency; however intermittency does reduce the scaling range because of the intermediate
dissipative range (see Appendix B). The absence of intermittency corrections in 2D turbulence
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Fig. 19. ln[〈1=�(�u; r)〉=Re1=2] versus ln[�u=Re−1=4] at di#erent Reynolds numbers Re=C−1. (�) N=24 and Re=108;
(+) N = 27 and Re= 109; ( )N = 32 and Re= 1010; (×) N = 35 and Re= 1011. The straight line has slope −2.

Fig. 20. ln〈1=�(�u; r)〉=ln(Re=Ro) versus ln(�u=Vo)=ln(Re=Ro); multiscaling data collapse at di#erent Reynolds num-
bers Re= C−1. The <tting parameters are Ro = 6× 106; Vo = 5× 10−2, and Re= C−1.

suggests that the dimensional scaling (5.17) is observable even in direct numerical simulations
at moderate Reynolds number.
Let us consider two realizations of the vorticity <eld in (4.27) starting from very close initial

conditions. The error � is de<ned, following (4.30), as �(t)=
√

E�(t). In Fig. 21 it is shown the
FSLE �(�). It is remarkable the rather wide scaling range for �(�) ∼ �−2 with respect to the
shell model simulations (Fig. 18) obtained at much larger Re. As a consequence of the absence
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Fig. 21. Finite size Lyapunov exponent �(�) as a function of velocity uncertainty � in a direct numerical simulations
with 10242 grid points of 2D turbulence in the inverse cascade regime. The asymptotic constant value for � → 0
is the largest Lyapunov exponent of the turbulent 8ow. The dashed line has slope −2. In the inset we show the
compensated plot �(�)�2= Wj.

of intermittency, also the crossover from the in<nitesimal regime �(�) = � to the inertial range
regime (5.17) is sharp.
From a general point of view, it is interesting to observe that even in the absence of inter-

mittency, <xed scale analysis based on the FSLE overpasses <xed time analysis in the charac-
terization of predictability. Dimensional considerations and closure approximations [137] predict
a linear growth of the error in the inverse energy cascade as

E�(t) =G W4t ; (5.20)

where G is an adimensional constant. It is easy to realize that (5.20) is equivalent to (5.17),
�(�) having the dimension of an inverse time and � =

√
E�. The result obtained in numerical

simulations is shown in Fig. 22, which has to be compared with Fig. 21. The scaling law
(5.20) in Fig. 22 is barely visible, making the determination of G diJcult. On the contrary,
inverting (5.17) to (5.20) one can measure G directly from Fig. 21. The result obtained is in
close agreement with closure computations [37].

5.5. j-entropy for turbulent Cows

A complementary way to look at the predictability of turbulent 8ows is in terms of its entropy
(see Sections 2:1:2 and 3:5).
Unfortunately, a direct measurement of the Kolmogorov–Sinai entropy is practically infeasible.

Indeed for Re → ∞ due to the huge number of active degrees of freedom, the KS-entropy
diverges, so that one needs velocity measurements with an extremely high resolution and lasting
for extremely long times, far beyond the actual experimental possibilities. Nevertheless, limiting
the analysis to not very high resolution, one can hope to extract some interesting piece of
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Fig. 22. Average energy error 〈E�(t)〉 growth. Dashed line represents linear closure prediction, dotted line is the
saturation value E. The initial exponential growth is emphasized by the lin-log plot in the inset.

information by investigating the behavior of the j-entropy, h(j). As far as the j-entropy of
turbulence is concerned, two questions can be raised.

(i) Since a direct measurement of the full 3-dimensional velocity <eld is infeasible, one has
usually access just to a time signal measured in one spatial point: which kind of information
can we extract from the j-entropy per unit time of such a signal?

(ii) Taking into account (i), can we say something about the j-entropy of the full 3-dimensional
velocity <eld?

In (ii) we are referring to the j-entropy, hST(j), per unit time and volume (the symbol ST
means space–time). In other words, we are assuming that the total entropy of a turbulent 8ow
observed for a (very long) time T on a (very large) volume V of the 3-dimensional space has
the form H (V; T; j) ≈ VThST(j). See Ref. [89] for an introduction of this concept.
Both in (i) and (ii), as we will see, a crucial role is played by the sweeping of the large

scales of the 8ow on the small ones, i.e. the Taylor hypothesis (see Section 5.1).

5.5.1. j-entropy for a time signal of turbulence
In order to estimate the j-entropy of a given signal one has to compute the Shannon entropy

of the symbolic sequence obtained by making an (j; �) grid in phase-space (Section 3.5).
Unfortunately, this method is rather ineJcient for signals in which many scales are excited
[3,4,51], e.g., as in turbulence. Therefore, here we resort to a recently proposed method [3]
based on the exit-time analysis.
In a few words, the idea consists in looking at a sequence of data not at <xed sampling

times but at <xed 8uctuation (see Appendix C), i.e. when the 8uctuation of the signal exceeds
a given threshold, j. In practice, we code the signal v(t) of total duration T in a symbolic
sequence  M (j) = {ti(j); ki(j)}Mi=1, where ti(j) is the <rst time such that |v(t0 +

∑i−1
k=1 tk(j) +

ti(j)) − v(t0 +
∑i−1

k=1 tk(j))| ¿ j=2 (being t0 a reference time) and ki = ±1 tells us in which
direction (up or down with respect to v(t0+

∑i−1
k=1 tk(j))) the 8uctuation has been realized. M is
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the total number of exit events, i.e.
∑M

i=1 ti(j)= T . Note that  M (j) is a faithful coding of the
signal within the required accuracy j. Now the evaluation of the entropy goes as usual through
the evaluation of the Shannon entropy, h (j), of the sequence  M (j). Finally, the j-entropy
per unit time is given by [3]

h(j) ≈ h (j; �r)
〈t(j)〉 ; (5.21)

where a coarse-graining of the possible values assumed by t(j) with a resolution time �r has
been considered, and 〈t(j)〉 is the average exit time, i.e. 〈t(j)〉= (1=M)∑i=1;M ti(j). Formula
(5.22) is exact in the limit �r → 0 (in Appendix C one <nds the derivation of (5.21) and the
details of the method).
This procedure allows a noticeable improvement of the computational possibility to measure

the j-entropy. In particular, if one is interested in the leading scaling behavior of h(j) with j,
one only needs to estimate the scaling of 〈t(j)〉. Indeed, the correction induced by h (j; �r) can
be shown to be sub-leading (in particular, logarithmic).
Now, we estimate the average exit time for the velocity signal v(t). This can be done assuming

the Taylor hypothesis and the multifractal model (see Appendix B). In this framework we can
assume that, for t corresponding to scales R = Ut in the inertial range, the following relation
holds |�tv|= |v(t0 + t)− v(t)| ∼ th and each h is picked with probability P(h) ∼ t3−D(h). Since
we are interested in the statistics of the <rst times necessary to observe a 8uctuation |�tv| ∼ j,
one can “invert” the above relation [30]:

t(j) ∼ j1=h with P(h) ∼ j(3−D(h))=h : (5.22)

The exit-time moments [30], also called inverse structure functions [107], can be estimated in
the multifractal framework as follows

Ttq(j)U ∼
∫
dh j(q+3−D(h))=h ∼ jI(q) ; (5.23)

where I(q) may be obtained with a saddle-point estimate in the limit of small j:

I(q) = min
h

[
q+ 3−D(h)

h

]
: (5.24)

The average 〈[ : : : ]〉, obtained by counting the number of exit-time events M , and the average
T[ : : : ]U, computed with the uniform time sampling are connected by the relation

Ttq(j)U= lim
M→∞

M∑
i=1

tqi
ti∑M
j=1 tj

=
〈tq+1(j)〉
〈t(j)〉 ; (5.25)

where the term ti=
∑M

j=1 tj takes into account the non-uniformity of the exit-time statistics. There-
fore the quantity we are looking for, i.e. the mean exit-time, is given by 〈t(j)〉=Tt−1(j)U−1 ∼
(j)−I(−1). By noting that

−1 + 3−D(h)
h

=
2−D(h)

h
¿ −3 for all h ; (5.26)

which is nothing but Eq. (5.19), i.e. the 4
5 law of turbulence, we <nally obtain

h(j) ∼ j−3 : (5.27)
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Fig. 23. Numerically computed lower bound ( ) and upper bound (◦), with �= 0:1〈t(j)〉 for the (j; �)-entropy in
the case of a multiaJne signal with F(3)= 1. The signal has been obtained with the method of Ref. [29] (see also
Appendix D) using a D(h) which <ts experimental data at large Reynolds number. The two straight lines show the
theoretical scaling j−3.

In Fig. 23 we report the evaluation of the upper and lower bounds (see Appendix C) of h(j)
for a synthetic signal, v(t), constructed in such a way as to reproduce the statistical properties
of turbulence [29].
Let us now compare the above results with a previous study of the j-entropy in turbulence

[224], where it was argued that

h(j) ∼ j−2 ; (5.28)

a behavior that di#ers from the prediction (5.27). The behavior (5.28) has been obtained by
assuming that h(j), at scale j, is proportional to the inverse of the typical eddy turnover time
at that scale: since the typical eddy turnover time for velocity 8uctuations of order �v ∼ j is
�(j) ∼ j2, Eq. (5.28) follows. Indeed this is the argument used to derive (5.17) for the FSLE.
The di#erence between (5.28) and (5.27) can be understood by considering that even if �(�)
and h(j) are two complementary concepts (the fact that for both the estimate of the scaling
behavior reduces to the “4=5 law” is not a coincidence), in the latter case one has to consider
the sweeping induced by the large scales. On the contrary, since the former is related to the
distance of two realizations which di#er in the small scales (¡�) but not on the large scales
(¿�), the sweeping of the large scales is not e#ective.

5.5.2. j-entropy of turbulence and the Taylor hypothesis
Now we study the j-entropy per unit time and volume for the velocity <eld of turbulent

8ows in 3 + 1 dimensions, hST(j). We will show that, by assuming the usually accepted
Taylor hypothesis, one has a spatial correlation which can be quantitatively characterized by an
“entropy” dimension D = 8

3. As already remarked, h
ST(j) cannot be directly measured so we

will discuss its estimation in a theoretical framework by introducing a multi-aJne <eld. For the
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sake of simplicity, we neglect intermittency by assuming a pure self-aJne <eld with a unique
HVolder exponent h= 1

3.
Let us <rst introduce a multi-aJne <eld with the proper spatial and temporal scaling [4].

The idea consists in de<ning the signal as a dyadic 3-dimensional superposition of wavelet-like
functions ’((x − xn;k(t))=‘n) whose centers move due to the sweeping. The coeJcients of the
decomposition an;k(t) are stochastic functions chosen with suitable self-aJne scaling properties
both in time and in space. A <eld with spatial HVolder exponent h in d-dimensions is (see
Appendix D)

v(x; t) =
M∑
n=1

2d(n−1)∑
k=1

an;k(t)’
(
x − xn;k(t)

‘n

)
; (5.29)

where xn;k is the center of the kth wavelets at the level n, i.e. for eddies with size ‘n ∼ 2−n.
According to the Richardson–Kolmogorov cascade picture, one assumes that sweeping is present,
i.e., xn+1; k = xn;k′ + rn+1; k where (n; k ′) labels the “mother” of the (n+ 1; k)-eddy and rn+1; k is
a stochastic vector which depends on rn;k′ and evolves with characteristic time �n ˙ (‘n)1−h.
If the coeJcients {an;k} and {rn;k} have characteristic time �n ∼ (‘n)1−h and {an;k} ∼

(‘n)h, it is possible to show (see Appendix D for details) that the <eld (5.29) has the cor-
rect spatio-temporal statistics, i.e.

|v(x+R; t0)− v(x; t0)| ∼ |R|h ; (5.30)

|v(x; t0 + t)− v(x; t0)| ∼ th : (5.31)

In addition the proper Lagrangian sweeping is satis<ed. Now we are ready for the j-entropy
analysis of the <eld (5.29). If one wants to look at the <eld v with a resolution j, one has to
take n in (5.29) up to N given by

(‘N )h ∼ j ; (5.32)

in this way one is sure to consider velocity 8uctuations of order j. Then the number of terms
contributing to (5.29) is

#(j) ∼ (2d)N ∼ j−d=h : (5.33)

By using a result of Shannon [201] one estimates the j-entropy of the single process an;k(t)
(and also of rn; j) as

hn(j) ∼ 1
�n
ln
(
1
j

)
; (5.34)

where the above relation is rigorous if the processes an;k(t) are Gaussian and with a power
spectrum di#erent from zero on a band of frequency ∼ 1=�n. The terms which give the main
contribution are those with n ∼ N with �N ∼ (‘N )1−h ∼ j((1−h)=h). Their number is given by
(5.33) so that, collecting the above results, one <nds

hST(j) ∼ #(j)
�N

∼ j−(d−h+1)=h : (5.35)

For the physical case d= 3, h= 1
3, one obtains

hST(j) ∼ j−11 : (5.36)
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By denoting with vK the typical velocity at the Kolmogorov scale K, one has that Eq. (5.36)
holds in the inertial range, i.e., j¿ vK ∼ Re−1=4, while for j6 vK, hST(j) = constant ∼ Re11=4.
Let us now consider an alternative way to compute the j-entropy of the <eld v(x; t): divide

the d-volume in boxes of edge length ‘(j) ∼ j1=h and look at the signals v(x=; t), where the x=
are the centers of the boxes. Denoting with h(=)(j) the j-entropy of the temporal sequence of
the velocity <eld measured in x=, we have

h(=)(j) ∼ j−1=h (5.37)

because of the scaling (5.31). Therefore, hST(j) is obtained summing up all the “independent”
contributions (5.37), i.e.

hST(j) ∼ N(j)h(=)(j) ∼ N(j)j−1=h ; (5.38)

where N(j) is the number of independent cells. It is easy to understand that the simplest
assumption N(j) ∼ l(j)d ∼ jd=h gives a wrong result, indeed one obtains

hST(j) ∼ j−(d+1)=h ; (5.39)

which is not in agreement with (5.35). In order to obtain the correct result (5.36) it is necessary
to assume

N(j) ∼ l(j)D ; (5.40)

with D=d−h. In other words, one has that the sweeping implies a non-trivial spatial correlation,
quantitatively measured by the exponent D, which can be considered as a sort of “entropy”
dimension. Incidentally, we note that D has the same numerical value of the fractal dimensions
of the velocity iso-surfaces [154,218]. From this observation, at <rst glance, one could conclude
that the above result is somehow trivial since it is simply related to a geometrical fact. However,
a closer inspection reveals that this is not true. Indeed, one can construct a self-aJne <eld with
spatial scaling h and thus with the fractal dimension of the velocity iso-surfaces given by d−h
for geometrical reasons, while D = d. Such a process can be simply obtained by eliminating
the sweeping, i.e.,

v(x; t) =
M∑
n=1

2d(n−1)∑
k=1

an;k(t)’
(
x − xn;k

‘n

)
; (5.41)

where now the xn;k are <xed and no longer time-dependent, while an;k ∼ (‘n)h but �n ∼ ‘n.
We conclude by noting that it is possible to obtain (see [89]) the scaling (5.35) using

Eq. (5.41), i.e. ignoring the sweeping, assuming �n ∼ (‘n)1−h and an;k ∼ (‘n)h; this corresponds
to take separately the proper temporal and spatial spectra. However, this is not satisfactory since
one has not the proper scaling in one <xed point (see Eq. (5.37) the only way to obtain this
is through the sweeping).

6. Uncertainty in the evolution equations

The study of a large class of problems in science (physics, chemistry, biology, etc.) is re-
duced to the investigation of evolution laws, which describe some aspects of the system. The
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assumption that natural processes can be described by mathematical models is at the founda-
tion of this approach [220,70]. The purpose of this section is to discuss how the unavoidable
uncertainty in the equation of motion puts limits on the long time forecasting.
To be more concrete, let us consider a system described by a di#erential equation

d
dt

x(t) = f(x; t); x; f ∈ Rn : (6.1)

As a matter of fact, we do not know exactly the equations, so we have to devise a model which
is di#erent from the true dynamics. In practice, this means that we study

d
dt

x(t) = fj(x; t) where fj(x; t) = f(x; t) + j�f(x; t) : (6.2)

Therefore, it is natural to wonder about the relation between the true evolution (reference or
true trajectory xT(t)) given by (6.1) and the one e#ectively computed (perturbed or model
trajectory xM(t)) given by (6.2). A typical example is the relation between the true dynamics
of the physical system and the one obtained by a computer simulation. This issue is of particular
relevance for the study of weather forecast where it is referred to as predictability of the second
kind [175].
In this context it is particularly relevant the shadowing lemma [41] which implies that, for

Anosov systems, a computer may not calculate the true orbit but what it does <nd is nevertheless
an approximation of the true one. As a consequence, the statistical properties are well reproduced
by an accurate numerical integration [96].
A central point in the discussion of the second kind predictability problem is the issue of

structural stability [99]: since the evolution laws are known only with <nite precision it is
highly desirable that at least certain properties were not too sensitive to the details of the
equations of motion. For example, in a system with a strange attractor, small generic changes
in the evolution laws should not change drastically the statistical properties of the dynamics
[74,105].
In order to see that a non-generic perturbation, although very “small” in some sense, can

produce dramatic changes in the statistical properties of the dynamics, following Refs. [28,105],
we consider the 1-dimensional chaotic map x(t + 1) = f(x(t)) with f(x) = 4xmod 1, and a
perturbed version of it:

fj(x) =




8x − 9
2
; x ∈

[
5
8
;
247
384

]
;

1
2
x +

1
3
; x ∈

[
247
384

;
265
384

]
;

8x − 29
6
; x ∈

[
265
384

;
17
24

]
;

4xmod 1; otherwise :

(6.3)

The perturbed map is identical to the original outside the interval [ 58 ;
17
24 ], and the perturbation

is small in L2 norm. Nevertheless, the <xed point x = 2=3, which is unstable in the original
dynamics, becomes stable in the perturbed one, and it is a global attractor for fj(x), i.e. almost
every point in [0; 1] asymptotically approaches x = 2=3 (see Fig. 24).
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Fig. 24. The map fj of Eq. (6.3) (solid line) and the original chaotic map f (dashed line).

If one compares the trajectories obtained iterating f(x) or fj(x) it is not diJcult to understand
that they may remain identical for a certain time but unavoidably di#er utterly in the long time
behavior. The transient chaotic behavior of the perturbed orbits can be rendered arbitrarily long
by reducing the interval in which the two dynamics di#er [28].
As for the problem of predictability with respect to perturbations on the initial conditions,

the problem of second kind predictability in the limit of in<nitesimal perturbations is essentially
understood in terms of the Lyapunov exponents. Indeed, it is possible to show (see below) that
a small uncertainty on the evolution laws of chaotic systems has the same e#ects of an error
of the same order of magnitude on the initial conditions. However, also in the case of second
kind predictability one has often to deal with errors which are far from being in<nitesimal.
Moreover, in real systems the size of an uncertainty on the evolution equations is determinable
only a posteriori, based on the ability of the model to reproduce some of the features of
the phenomenon. Typical examples are systems described by partial di#erential equations (e.g.
turbulence, atmospheric 8ows). The numerical study of these systems is performed by using
a model with unavoidable severe approximations, the most relevant due to the necessity to
cut some degrees of freedom o# (i.e. the small scale variables). A relevant problem in this
case is to quantify the e#ect of the unresolved scales on the predictability of the resolved
ones.
From a general point of view, in the second kind predictability problem we can distinguish

three main cases depending on the original dynamics. In particular, Eq. (6.1) may display:

(i) trivial attractors: asymptotically stable <xed points or attracting periodic orbits;
(ii) marginally stable <xed points or periodic=quasi-periodic orbits as in integrable Hamilto-

nian systems;
(iii) chaotic behavior.

In case (i) small changes in the equations of motion do not modify the qualitative features
of the dynamics. Case (ii) is not generic and the outcome strongly depends on the speci<c
perturbation �f , i.e. it is not structurally stable (see [64] for a discussion on this point). In the
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Fig. 25. Finite size Lyapunov exponents �TT(�)(+) and �TM(�)(×) versus � for the Lorenz model (3:29) with
1 = c = 10; b = 83; r = 45 and j = 0:001. The dashed line represents the largest Lyapunov exponent for the
unperturbed system (�T ≈ 1:2). The statistics is over 104 realizations.

chaotic case (iii) one expects that the perturbed dynamics is still chaotic. In the following we
will consider only this latter case.
In chaotic systems, the e#ects of a small uncertainty on the evolution law is, for many

aspects, similar to those due to imperfect knowledge of initial conditions. As an example let
us consider the Lorenz system (3.29). In order to mimic an indetermination in the evolution
law we assume a small error j on the parameter r : r → r + j. Let us consider the di#erence
�x(t) = xM(t) − xT(t), for simplicity, �x(0) = 0, i.e. we assume a perfect knowledge of the
initial condition. For small j one has, with obvious notation:

d�x
dt

= fj(xM)− f(xT) � 9f
9x �x+

9fj
9r j : (6.4)

Since at time t = 0 one has |�x(0)|= 0, |�x(t)| initially grows under the e#ect of the second
term in (6.4). At later times, when |�x(t)| ≈ O(j) the <rst term becomes the leading one, and
we recover the <rst kind predictability for an initial uncertainty �0 ∼ j. Therefore, apart from an
initial growth, which depends on the speci<c perturbation, for small enough j the evolution of
〈ln(|�x(t)|)〉 follows the usual linear growth with the slope given by the largest LE. Typically
the value of the LE computed by using the model dynamics di#ers from the true one by a
small amount of order j, i.e. �M = �T +O(j) [64].
A picture of the error growth, valid also for <nite errors, can be obtained by considering the

<nite size Lyapunov exponent. In addition to the FSLE of the model, �MM(�), we introduce
the FSLE for the true dynamics (6.1) �TT(�) (which cannot be measured in real situations)
and �TM(�), the FSLE computed following the distance between one true trajectory and one
model trajectory starting at the same point. In the case of a perfect model �MM(�)=�TT(�). The
results of the computation for the Lorenz model (3.29) are shown in Fig. 25. �TT(�) displays the
chaotic plateau with � � 1:2. As discussed above, for �¿ j the second term in (6.4) becomes
negligible and we observe �TM(�) � �TT(�) � �. In this range of errors the model system
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recovers the intrinsic predictability of the true system. For very small errors, �TM is dominated
by the second term in (6.4) and deviates from �TT.

6.1. Uncertainty introduced by numerical computations

In numerical computations, an unavoidable source of errors is due to the representation of
numbers on the computer, as computers work with integers. This has two main consequences:
the phase space of the simulated system is necessarily discrete (and <nite); and the computation
introduces a sort of noise due to the round-o#.
A direct consequence of the discreteness in phase space is that any numerical trajectory is

periodic. At <rst sight, this seems a very serious problem, especially when integrating chaotic
systems which have non-periodic behavior. However, as discussed in [64], apart from cases in
which one uses very low precision, and very low dimensional systems, the period is usually
extremely large and one works with an e#ective continuous phase space dynamical system
(see Section 7.1).
The round-o# produces on (6.1) and (6.2) a perturbation �f(x; t) of order j ∼ 10−= (==number

of digits in 8oating point representation) which depends on f and on the software [131]. In
general, the round-o# error is very small and may have a positive role in selecting the physical
probability measure, the so-called natural measure, from the set of the admissible invariant
ones [74].
In order to show the e#ect of the numerical precision on the predictability, let us consider

again the Lorenz model (3.29). At variance with the previous Section, here we assume to have
a perfect knowledge of the model (i.e. of the parameter r), and the error is introduced only
by the numerical integration, e.g. by di#erent time step \t. The most precise integration with
smallest \t is taken as the reference trajectory and the other is the perturbed one. The result is
shown in Fig. 26 for two di#erent values of \t for the perturbed integration. In both cases, for
small values of the error, the exponential growth rate is given by the largest LE �. The same
behavior is observed by introducing the numerical error in other ways, e.g. by using di#erent
precision (single or double) or di#erent integration algorithms [64].

6.2. Finite resolution e5ects and parameterization of unresolved scales

Let us now consider more complex situations, in which many interacting degrees of freedom
and di#erent characteristic times are involved [36]. We will consider the particular examples of
an extremely simpli<ed model of global circulation [147,148] and the shell model (Section 5.2).
For systems with many di#erent scales usually one is able to represent only the large scale

variables. A typical situation is the discretization of partial di#erential equations. The small scale
modes, below the computational grid, are unresolved and are typically parameterized according
to some phenomenological prescription (e.g. the eddy viscosity parameterization of the small
scales [141,84]). So we consider systems of the following form

dx
dt
= f(x; y);

dy
dt
= g(x; y) ; (6.5)

where x∈Rn represent the large (and typically slow) variables while y∈Rm represent the small
(and fast) ones. As explained above, in many practical situations the small variables cannot
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Fig. 26. 〈ln |�x(t)〉| versus t, where |�x(t)| is the Euclidean distance between two trajectories of the Lorenz model
(3.29) for r=28. Curve (a) refers to the comparison between trajectories obtained using a fourth-order Runge–Kutta
algorithm with \t=4× 10−3 and \t=4× 10−5. Curve (b) shows the same quantity obtained with \t=4× 10−4
and \t = 4× 10−5. The dotted line with slope � ≈ 0:9 is shown for comparison.

be explicitly resolved. In this framework, a natural question is: how must we parameterize the
unresolved modes in order to predict the resolved ones? In this respect, the optimal param-
eterization is that one for which the predictability on the resolved modes is not worse than
the intrinsic predictability of the same variables in the complete system, i.e. in our notation
�TM = �TT.
An example in which it is relatively simple to develop a model for the small-scale modes is

represented by skew systems, i.e., g depends only on the fast variables y. In this case, simply
neglecting the fast variables or parameterizing them with a suitable stochastic process does not
drastically a#ect the prediction of the slow variables [32].
On the other hand, in typical cases y feels some feedback from x, and, therefore, we cannot

simply neglect the unresolved modes (see Ref. [36] for details). In practice, one has to construct
an e#ective equation for the resolved variables:

dx
dt
= fM(x; y(x)) ; (6.6)

where the functional form of y(x) and fM is built by phenomenological arguments and=or by
numerical studies of the full dynamics (if available).
Let us now discuss a simpli<ed model for atmosphere circulation [147,148] which includes

large scales xk (synoptic scales) and small scales yj;k (convective scales):

dxk
dt

=−xk−1(xk−2 − xk+1)− Cxk + F −
J∑

j=1

yj;k ;

dyj;k

dt
=−cbyj+1; k(yj+2; k − yj−1; k)− cCyj;k + xk ; (6.7)

where k = 1; : : : ; K and j = 1; : : : ; J . As in [147] we assume periodic boundary conditions on k
(xK+k=xk , yj;K+k=yj;k) while for j we impose yJ+j; k=yj;k+1. The variables xk represent some
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Fig. 27. Finite size Lyapunov exponents for the Lorenz model (6.7) �TT(�) (solid line) and �TM(�) versus �
obtained by dropping the fast modes (+) and with eddy viscosity parameterization (×). The parameters are
F=10; K=36; J =10; C=1 and c=b=10, implying that the typical y variable is 10 times faster and smaller than
the x variabe. The value of the parameter Ce = 4 is chosen after a numerical integration of the complete equations
as discussed in Ref. [36]. The statistics is over 104 realizations.

large scale atmospheric quantities in K sectors extending on a latitude circle, while the yj;k
represent quantities on smaller scales in J ·K sectors. The parameter c is the ratio between fast
and slow characteristic times and b measures the relative amplitude (both larger than unity).
Model (6.7), even if rather crude, contains some nontrivial aspects of the general circulation
problem, namely the coupling among variables with very di#erent characteristic times.
Being interested in forecasting the large scale behavior of the atmosphere by using only the

slow variables, a natural choice for the model equations is:

dxk
dt

=−xk−1(xk−2 − xk+1)− Cxk + F −Gk(x) ; (6.8)

where Gk(x) represents the parameterization of the fast components in (6.7). Following the
approach discussed in Ref. [36], a physical reasonable parameterization is

Gk(x) = Cexk ; (6.9)

where Ce is a numerically determined parameter.
In Fig. 27 we plot �TM(�) obtained from di#erent choices of Gk . The simplest possibility is to

neglect the fast variable, i.e. Gk=0. Also for large errors we have �TM(�)¿�TT(�) because this
crude approximation is not able to capture the intrinsic predictability of the original system. More
re<ned parameterizations in terms of stochastic processes with the correct probability distribution
function and correlation time do not improve the forecasting ability. On the contrary, Eq. (6.9)
gives the result shown in Fig. 27. At small scales we still observe deviations from �TT but, at
variance with the previous case, we recover intrinsic predictability for error of the size of the
resolved scale.
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Fig. 28. The FSLE for the eddy-viscosity shell model (6.11), (6.12) �MM(�) at various resolutions NM =
9(+); 15(×); 20(∗). For comparison it is drawn �TT(�) (continuous line). Here M= 0:4; k0 = 0:05.

As a more complex example, let us consider a version of the shell model discussed in
Section 5.2, more precisely we study [151]

dun

dt
= i(kn+1u∗n+1un+2 − 1

2knu
∗
n−1un+1 + 1

2kn−1un−2un−1)− Ck2nun + fn ; (6.10)

with n= 1; : : : ; N .
At variance with the previous example, here we have a set of scales ‘n � 1=kn with charac-

teristic times �n ∼ k−2=3n (see Section 5.4). In order to simulate a <nite resolution in the model,
we consider a model of (6.10) in terms of an eddy viscosity [24]:

dun

dt
= i(kn+1u∗n+1un+2 − 1

2knu
∗
n−1un+1 + 1

2kn−1un−2un−1)− C(e)n k2nun + fn ; (6.11)

where now n= 1; : : : ; NM¡N and the eddy viscosity, restricted to the last two shells, has the
form

C(e)n = M
|un|
kn
(�n;NM−1 + �n;NM) ; (6.12)

where M is a constant of order 1 [24]. In the model equation NM¡N the molecular viscosity
term is much smaller than the eddy viscosity term and can be simply neglected. Model equations
(6.11) and (6.12) are essentially the large eddy simulation for the shell model. Thus, although
shell models are not realistic models for large-scale geophysical 8ows (being nevertheless a
good model for small scale turbulent 8uctuations), the study of the e#ect of truncation in term
of eddy viscosity is of general interest.
In Fig. 28 we show �MM(�), i.e. the FSLE computed for the model equations (6.11) with

N =24 at di#erent resolutions NM =9; 15; 20. A plateau is detected for small amplitudes of the
error �, corresponding to the LE, which increases with the resolution according to � ∼ k2=3NM . At
larger �, the curves collapse onto the �TT(�), showing that large-scale statistics of the model is
not a#ected by small-scales resolution.
The ability of the model to predict satisfactorily the features of the “true” dynamics is not

anyway determined by �MM(�) but by �TM(�), which is shown in Fig. 29. Increasing the
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Fig. 29. The FSLE between the eddy-viscosity shell model and the full shell model �TM(�), at various resolutions
NM = 9(+); 15(×); 20(∗). For comparison it is drawn �TT(�) (continuous line). The total number of shell for the
complete model is N = 24, with k0 = 0:05; C= 10−7.

resolution NM = 9; 15; 20 towards the fully resolved case N =24 the model improves, in agree-
ment with the expectation that �TM approaches �TT for a perfect model. At large � the curves
practically coincide, showing that the predictability time for large error sizes (associated with
large scales) is independent of the details of small-scale modeling.

6.3. Lyapunov exponents and complexity in dynamical systems with noise

We saw how in deterministic dynamical systems there exist well established ways to de<ne
the complexity of a temporal evolution, either in terms of the Lyapunov exponents and the
Kolmogorov–Sinai entropy, or by means of their generalization to non-in<nitesimal perturba-
tions, like FSLE and j-entropy. The situation is much more ambiguous with random perturba-
tions, which are always present in physical systems as a consequence of thermal 8uctuations or
hidden changes of control parameters, and, in numerical experiments, because of the roundo#
errors [162].
The combined e#ect of the noise and the deterministic part of the evolution law can produce

highly non-trivial behaviors [43,59,73,102,103,157]. Let us mention stochastic resonance, where
there is a synchronization of the jumps between two stable points [25,26,163] (for a recent re-
view see [87]), and the phenomena of the so-called noise-induced order [157] and noise-induced
instability [43,59].
When facing systems with noise, the simplest possibility is to treat the random term as

a time-dependent term, that is to consider the separation of two close trajectories with the
same realization of noise. In this way one computes the largest LE, �1, associated with the
separation rate of two nearby trajectories with the same realization of the stochastic term
(where 1 indicates the noise strength). Although �1 is a well de<ned quantity, i.e. the
Oseledec theorem [169] holds, it is not the most useful characterization of complexity.
In addition, a moment of re8ection shows that it is practically impossible to extract �1 from
experimental data.
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We will show how, for noisy and random systems, a more natural indicator of complexity can
be obtained by computing the separation rate of nearby trajectories evolving with di#erent noise
realizations. This measure of complexity, de<ned in [174,149], and inspired by the contributions
of Shannon [201] and Kolmogorov [126], is related to the mean number of bits per unit time
necessary to specify the sequence generated by a random evolution law.

6.3.1. The naive approach: noise treated as a standard function of time
The approach in which one treats the random term as an usual time-dependent external force

can lead to misleading results, as illustrated in the following example.
Let us consider a one-dimensional Langevin equation

dx
dt
=−9V (x)9x +

√
21K ; (6.13)

where K(t) is a white noise and V (x) diverges for | x| → ∞, like, e.g., the usual double-well
potential V =−x2=2 + x4=4.
The Lyapunov exponent �1, associated with the separation rate of two nearby trajectories

with the same realization of K(t), is de<ned as

�1 = lim
t→∞

1
t
ln |z(t)| ; (6.14)

where the evolution of the tangent vector is given by

dz
dt
=−9

2V (x(t))
9x2 z(t) : (6.15)

Since the system is ergodic with invariant probability distribution P(x) = Ce−V (x)=1, one has

�1= lim
t→∞

1
t
ln |z(t)|=− lim

t→∞
1
t

∫ t

0
92xxV (x(t′)) dt′

=−C
∫
92xxV (x)e−V (x)=1 dx =−C

1

∫
(9xV (x))2e−V (x)=1 dx¡ 0 : (6.16)

This result has a rather intuitive meaning: the trajectory x(t) spends most of the time in one of
the “valleys” where −92xxV (x)¡ 0 and only short intervals on the “hills” where −92xxV (x)¿ 0,
so that the distance between two trajectories evolving with the same noise realization decreases
on average. Notice that in Ref. [215], supported by a wrong argument, an opposite conclusion
has been claimed.
A negative value of �1 implies a fully predictable process only if the realization of the

noise is known. In the case of two initially close trajectories evolving under two di#erent noise
realizations, after a certain time T1, the two trajectories can be very distant, because they can be
in two di#erent valleys. For 1 → 0, due to the Kramers formula [57], one has T1 ∼ exp\V=1,
where \V is the di#erence between the values of V on the top of the hill and at the bottom
of the valley. The result obtained for the one dimensional Langevin equation can easily be
generalized to any dimension for gradient systems if the noise is small enough [149].
Another example showing the limitations of this approach is provided by the case of stochastic

resonance in chaotic systems. In this case, in fact, one can <nd the same qualitative behavior
both for a positive and a negative LE. We refer to [149] for more details.
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6.3.2. An information theory approach
The main diJculties in de<ning the notion of “complexity” of an evolution law with a

random perturbation already appears in 1D maps. The generalization to N -dimensional maps or
to ordinary di#erential equations is straightforward.
Therefore, we consider the model

x(t + 1) = f[x(t); t] + 1w(t) ; (6.17)

where t is an integer and w(t) is an uncorrelated random process, e.g. w are independent random
variables uniformly distributed in [− 1

2 ;
1
2 ]. For the largest LE �1, as de<ned in (6.14), now one

has to study the equation

z(t + 1) = f′[x(t); t] z(t) ; (6.18)

where f′ = df=dx.
Following the approach of Section 2.3, let x(t) be the trajectory starting at x(0) and x′(t)

be the trajectory starting from x′(0) = x(0) + �x(0). Let �0 ≡ |�x(0)| and indicate by �1 the
minimum time such that |x′(�1) − x(�1)| ¿ �. Then, we put x′(�1) = x(�1) + �x(0) and de<ne
�2 as the time such that |x′(�1 + �2)− x(�1 + �2)|¿� for the <rst time, and so on. In this way
the Lyapunov exponent can be de<ned as

�=
1
W�
ln
(

�
�0

)
(6.19)

where W�= (1=N )
∑

�i (see also Appendix A). If the above procedure is applied by considering
the same noise realization for both trajectories, � in (6.19) coincides with �1 (if �1 ¿ 0).
Di#erently, by considering two di#erent realizations of the noise for the two trajectories, we
have a new quantity

K1 =
1
W�
ln
(

�
�0

)
; (6.20)

which naturally arises in the framework of information theory [5] and algorithmic complexity
theory. The times �1; �2; : : : are nothing but the intervals at which it is necessary to repeat the
transmission of x(t), with a precision �0, and K1=ln 2 is the number of bits per unit time one
has to specify in order to transmit the sequence. If the 8uctuations of the e#ective Lyapunov
exponent +(t) are very small (i.e. weak intermittency) one has

K1 = �+O(1=�) : (6.21)

The interesting situation happens for strong intermittency when there are alternations of positive
and negative + during long time intervals: this induces a dramatic change for the value of K1.
This becomes particularly clear when we consider the limiting case of positive +(1) in an interval
T1�1=+(1) followed by a negative +(2) in an interval T2�1=|+(2)|, and again a positive e#ective
LE and so on. During the intervals with positive e#ective LE the transmission has to be repeated
rather often with � T1=(+(1) ln 2) bits at each time, while during the ones with negative e#ective
LE no information has to be sent. Nevertheless, at the end of the contracting intervals one
has |�x| = O(1), so that, at variance with the noiseless case, it is impossible to use them
to compensate the expanding ones. This implies that in the limit of very large Ti only the
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Fig. 30. K1 versus T with 1= 10−7 for the map (6.23). The parameters of the map are a= 2 and b= 2
3 (squares)

or b= 1
4 (circles). The dashed lines are the noiseless limit of K1.

expanding intervals contribute to the evolution of the error �x(t) and K1 is given by an average
of the positive e#ective Lyapunov exponents:

K1 � 〈+5(+)〉 : (6.22)

Note that it may happen that K1 ¿ 0 with �1 ¡ 0. We stress again that (6.22) holds only for
strong intermittency, while for uniformly expanding systems or rapid alternations of contracting
and expanding behaviors K1 � �1.
Note that K1 is a sort of j-entropy (see Section 3.5), indeed, the complexity we consider is

de<ned for �0 not too small (�0�1). If �0 and � are small enough, but still much larger than
1, K1 is essentially independent of their values.
The relation K1 � 〈+5(+)〉 is the time analogous of the Pesin relation (2.15) hKS 6

∑
i �i5(�i).

The latter relation expresses the fact that negative Lyapunov exponents do not decrease the value
of hKS, because the contraction along the corresponding directions cannot be observed for any
<nite space partition. In the same way the contracting time intervals, if long enough, do not
decrease K1. Another important remark is that in the usual treatment of the experimental data,
where noise is usually present, one practically computes K1 and the result can be completely
di#erent from �1.
Let us now brie8y discuss some numerical results obtained with two di#erent systems

(Figs. 30 and 31). The <rst example consists in a periodic alternation of two piecewise linear
maps of the interval [0; 1] into itself:

f[x; t] =

{
axmod 1 if (2n− 1)T 6 t ¡ 2nT ;

bxmod 1 if 2nT 6 t ¡ (2n+ 1)T ;
(6.23)

where a¿ 1 and b¡ 1. Note that in the limit of small T , K1 → max[�1; 0], because it is a
non-negative quantity as shown in Fig. 30.
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Fig. 31. �1 (squares) and K1 (crosses) versus 1 for the map (6.24).

The second example (Fig. 31), strongly intermittent without external forcing, is the Beluzov–
Zhabotinsky map [103,157], introduced for describing the famous chemical reaction:

f(x) =



[(1=8− x)1=3 + a]e−x + b if 06 x¡ 1=8 ;

[(x − 1=8)1=3 + a]e−x + b if 1=86 x¡ 3=10 ;

c(10xe−10x=3)19 + b if 3=106 x ;

(6.24)

with a=0:50607357; b=0:0232885279; c=0:121205692. The map exhibits a chaotic alternation of
expanding and contracting time intervals. In Fig. 31, one sees that while �1 passes from negative
to positive values at decreasing 1, K1 is not sensitive to this transition [157]. Considering the
system with a given realization of noise as the “true” evolution law, one has that �1 corresponds
to �TT while K1 corresponds to �TM.
The previous results show that the same system can be regarded either as regular (i.e.

�1 ¡ 0), when the same noise realization is considered for two nearby trajectories, or as chaotic
(i.e. K1 ¿ 0), when two di#erent noise realizations are considered.

6.4. Random dynamical systems

We discuss now dynamical systems where the randomness is not simply given by an additive
noise. This kind of systems has been the subject of interest in the last few years in relation
to the problems involving disorder [119], such as the characterization of the so-called on–o5
intermittency [187] and to model transport problems in turbulent 8ows [227,228,86]. In these
systems, in general, the random part represents an ensemble of hidden variables believed to
be implicated in the dynamics. Random maps exhibit very interesting features ranging from
stable or quasi-stable behaviors, to chaotic behaviors and intermittency. In particular, on–o5
intermittency is an aperiodic switching between static, or laminar, behavior and chaotic bursts
of oscillation. It can be generated by systems having an unstable invariant manifold, within



G. Bo5etta et al. / Physics Reports 356 (2002) 367–474 437

which it is possible to <nd a suitable attractor (i.e. a <xed point). For further details we refer
to [187].
A random map can be de<ned in the following way. Denoting with x(t) the state of the

system at discrete time t, the evolution law is given by

x(t + 1) = f(x(t); J (t)) ; (6.25)

where J (t) is a random variable.
As for the case of additive noise examined in the previous section, the simplest approach is

the introduction of the LE �J computed considering the separation of two nearby trajectories
evolving with the same realization of the random process J (t) = i1; i2; : : : ; it . The Lyapunov
exponent �J generalizes �1 of Section 6.3.1 and can be computed from the tangent vector
evolution:

�J = lim
N→∞

1
N
ln |z(N )| ; (6.26)

where

zm(t + 1) =
∑
n

9fm(x(t); it)
9xn

zn(t) : (6.27)

On the other hand, also for these systems, as in the case of additive noise, it is possible
to introduce a measure of complexity, K , which better accounts for their chaotic properties
[174,149]

K � hSh + �J5(�J ) ; (6.28)

where hSh is the Shannon entropy of the random sequence J (t). The meaning of K is rather clear:
K=ln 2 is the mean number of bits, for each iteration, necessary to specify the sequence x1; : : : ; xt
with a certain tolerance �. Note that there are two di#erent contributions to the complexity: (a)
one has to specify the sequence J (1); J (2); : : : ; J (t) which implies hSh=ln 2 bits per iteration; (b)
if �J is positive, one has to specify the initial condition x(0) with a precision \exp−�J T , where
T is the time length of the evolution. This requires �J =ln 2 bits per iteration; if �J is negative
the initial condition can be speci<ed using a number of bits independent of T .

6.4.1. A toy model: one-dimensional random maps
Let us discuss a random map which, in spite of its simplicity, captures some basic features

of this kind of systems [187,101]:

x(t + 1) = atx(t)(1− x(t)) ; (6.29)

where at is a random dichotomous variable given by

at =

{
4 with probability p ;

1=2 with probability 1− p :
(6.30)

For x(t) close to zero, we can neglect the non-linear term to obtain

x(t) =
t−1∏
j=0

ajx(0) ; (6.31)
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Fig. 32. x(t) versus t for the random map (6.29), (6.30), with p= 0:35.

from the law of large numbers one has that the typical behavior is

x(t) ∼ x(0)e〈ln a〉t : (6.32)

Since 〈 ln a〉= p ln 4 + (1 − p) ln 1=2 = (3p − 1) ln 2 one has that, for p¡pc = 1=3, x(t) → 0
for t → ∞. On the contrary for p¿pc after a certain time x(t) escapes from the <xed point
zero and the non-linear term becomes relevant. Fig. 32 shows a typical on–o5 intermittency
behavior for p slightly larger than pc. Note that, in spite of this irregular behavior, numerical
computations show that the LE �J is negative for p¡p̃c � 0:5: this is essentially due to the
non-linear terms.
By introducing a <nite threshold j, in order to discriminate laminar and intermittent phases,

we can de<ne a complexity K(j). We denote by lL and lJ the average lifetimes respectively
of the laminar and of the intermittent phases for p close to pc (lJ�lL). The mean number of
bits, per iteration, one has to specify in order to transmit the sequence is [150]

K(j)
ln 2

� lJ hSh
(lJ + lL) ln 2

� lJ
lL

hSh
ln 2

: (6.33)

To obtain (6.33) <rst notice that on an interval T one has approximatively T=(lJ+lL) intermittent
bursts and the same number of laminar phases. Then notice that, during a laminar phase, there is
not an exponential growth of the distance between two trajectories initially close and computed
with the same sequence of at . Since during a laminar phase one has to send a number of bits
which does not depend on its duration, one can send all the necessary information simply by
giving the sequence of at during the intermittent bursts. Eq. (6.33) has an intuitive interpretation:
in systems with a sort of “catastrophic” events, the most important feature is the mean time
between two subsequent events.

6.4.2. Sandpile models as random maps
Another example of a system which can be treated in the framework of random maps is

represented by the so-called sandpile models [15]. These models are a paradigmatic example
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of the self-organized criticality (SOC) [14]. This term refers to the tendency of some large
dynamical systems to evolve spontaneously toward a critical state characterized by spatial and
temporal self-similarity. The original sandpile models are probabilistic cellular automata inspired
to the dynamics of avalanches in a pile of sand. Dropping sand slowly, grain by grain on a
limited base, one reaches a situation where the pile is critical, i.e. it has a critical slope. This
means that a further addition of sand will produce sliding of sand (avalanches) that can be
small or cover the entire size of the system. In this case the critical state is characterized by
scale-invariant distributions for the size and the lifetime and it is reached without tuning of any
critical parameter.
We will refer in particular to the Zhang model [229], a continuous version of the original

sandpile model [15], de<ned on a d-dimensional lattice. The variable on each site xi (inter-
pretable as energy, sand, heat, mechanical stress, etc.) can vary continuously in the range [0; 1]
with the threshold <xed to xc = 1. The dynamics is the following:

(a) one chooses at random a site and adds to it an energy �e,
(b) if at a certain time t the energy in a site, say i, exceeds the threshold xc a relaxation

process is triggered de<ned as

xi+nn → xi+nn + xi=2d ;
xi → 0 ; (6.34)

where nn indicates the 2d nearest neighbors of the site i;
(c) one repeats point (b) until all the sites are relaxed;
(d) one goes back to point (a).

Let us now discuss the problem of predictability in sandpile models on the basis of the rigorous
results [46], which clarify the role of the LE for this class of systems.
In Ref. [46] it has been proved that the LE �J is negative. In fact the dynamics of a

little di#erence between two con<gurations follows the same rules (a)–(d), i.e., the “error” is
redistributed to the nearest neighbors site, so that one has

�J 6 −const
R2

; (6.35)

where R is the diameter of the system.
As for other examples already discussed, the existence of a negative LE does not mean a

perfect predictability. This can be understood by looking at the growth of the distance, �(t),
between two initially close trajectories computed with two di#erent realizations of randomness,
i.e., by adding sand in di#erent sites. Let us consider the case of the “minimal error”: in the
reference realization one adds sand on a site i chosen at random. In the perturbed realization,
instead, one adds a sand grain at one of the nearest sites of i. In such a case �(t) increases up to
a maximal distance in few avalanches [150]. Practically, one has the same kind of phenomenon,
already discussed, of the Langevin equation with two noise realizations.
Let us now estimate the complexity K of this system. An upper bound can be given by

using (6.28) K = hSh + �J5(�J ), where hSh is the entropy of the random sequence of addition
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Fig. 33. Schematic representation of the evolution of a deterministic rule with a <nite number of states: (a) with a
<xed point, (b) with a periodic cycle.

of energy. In sandpile models, since each site has the same probability to be selected, one has
hSh = ln V , where V is the number of sites of the system. Since the Lyapunov exponent is
negative, the complexity is just determined by hSh.

7. Irregular behavior in discrete dynamical systems

For the sake of completeness we include in this review a discussion on the characteriza-
tion of irregular behaviors in systems whose states are discrete. Such systems include Cellular
Automata (CA), which have been intensively studied both for their intrinsic interest [223] and
for applications as, e.g., to simulate hydrodynamic equations [82] or to study various forms of
chemical turbulence [166,167,40]. Other interesting systems with discrete states are the neural
networks used for modeling some brain functions [6]. It is also relevant to note that in every
simulation with a computer, because of the <nite number of digits it can use, one deals with a
system with discrete states (see Section 6.1). In addition, the general problem of dynamics of
systems with discrete states is important in the debated issue of quantum chaos. Indeed quantum
mechanics can be regarded as a discretized version of the classical one, acting on a suitable
lattice in phase space, where the number of the possible states is proportional to the inverse of
the Planck constant [81,49,60].
If a system consists of N elements and each element can assume an integer number k of

distinct values, N= kN is the number of states. When these states evolve with a deterministic
rule, the dynamics can be depicted in terms of oriented graphs: a set of points, representing the
states, are connected by arrows, indicating the time evolution. Of course, each point has one,
and only one, outgoing arrow; but di#erent arrows can end at the same point. For any <nite
system each initial condition evolves to a de<nite attractor, which can be either a <xed point
(as in Fig. 33a), or a periodic orbit (Fig. 33b).
In systems of this kind, obviously, it is not possible to use the previously introduced indica-

tors of chaos, e.g. the Lyapunov exponents or the Kolmogorov–Sinai entropy, whose de<nitions
rely on the continuous character of the system states. Moreover, the asymptotic periodic behav-
ior seems to force the conclusion that discrete states systems are trivial, from an entropic or
algorithmic complexity point of view.
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The above conclusions, although mathematically correct, are rather unsatisfactory from the
physical point of view, indeed from this side the following questions deserve some interest:

(1) What is the “typical” period, T, in a system with N elements, each assuming k distinct
values?

(2) When T is very large, how can we characterize the (possible) irregular behavior of the
trajectories, on times that are large enough but still much smaller than T?

(3) What does it happen in the transition from discrete to continuous states, i.e. in the limit
k → ∞?

In the next subsections we will deal with the above questions.

7.1. Dependence of the period on the number of the states

For deterministic discrete state systems the dependence of the period of the attractor on the
number of the states, may be addressed with a statistical approach in terms of random maps
[63]. We recall that this problem is important for computer simulations of chaotic systems (see
Section 6.1). If N = kN�1 is the number of states of the system, the basic result for the
average period, T, is

T(N) ∼
√
N : (7.1)

In the following we give a simple argument, by Coste and HKenon [63].
For simplicity of notation, we consider the case with k=2, so that the state of the system is

a string of N bits. A deterministic evolution of such a system is given by a map which is one
among the possible functions connecting the 2N states. Let us now assume that all the possible
functions can be extracted with the same probability. Denoting by I(t) the state of the system,
for a certain map we have a periodic attractor of period m if I(p+m) = I(p) and I(p+ j) �=
I(p), for j¡m. The probability, !(m), of this periodic orbit is obtained by specifying that the
(p+m−1)th <rst successive images of the map are distinct from all the previous ones and the
(p+m)th iterates coincides with the pth one. Since one has I(p+1) �= I(p+m), with probability
(1 − 1=N); I(p + 2) �= I(p + m), with probability (1 − 2=N); : : : ; I(p + m − 1) �= I(p + m),
with probability (1 − (m − 1)=N); and, <nally, I(p + m) = I(p) with probability (1=N), one
obtains

!(m) =
(
1− 1

N

)(
1− 2

N

)
· · ·

(
1− (m− 1)

N

)
1
N

: (7.2)

The average number, M (m), of cycles of period m is

M (m) =
N

m
!(m)

(N�1)≈ e−m2=2N

m
; (7.3)

from which one obtains T ∼ √
N for the average period.

It is here appropriate to comment on the relevance of Eq. (7.1) for computer-generated orbits
of chaotic dynamical systems. Because of the <nite number, n, of digits used in the 8oating
point representation, when one iterates a dynamical system, one basically deals with a discrete
system with a <nite number N of states. If d2 indicates the correlation dimension of the system
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[93,94], one can reasonably assume that N ∼ 10nd2 , so that, from Eq. (7.1) one has

T ∼ 10nd2=2 : (7.4)

This estimation gives an upper limit for the typical number of meaningful iterations of a map
on a computer. Note that this number, apart from the cases of 1 or 2-dimensional maps with
few digits, is very large for almost all practical purposes.

7.2. The transition from discrete to continuous states

Following the basic ideas of Ford [79,80], as discussed in Section 2.3, and the results of
Section 6—on the predictability in systems whose evolution law is not completely known—we
describe now a way to introduce a practical de<nition of chaos for systems with discrete states.
In addition, we deal with the problem of the transition from discrete to continuous states.
Given a system with N possible states, denoting by I(t) its state at time t we can write its

evolution law as

I(t + 1) = F[I(t)] : (7.5)

A single state I is a sequence of (at most) ln2N bits, and its time evolution for M steps can
be surely translated in a binary sequence O of length ‘O(M;N)6 M ln2N.
Relying one the de<nition of algorithmic complexity (Section 2.2.3) we can make the fol-

lowing classi<cation: we call regular (compressible) those sequences that can be encoded by a
computer program whose length ‘O(M;N) increases less than linearly in M , when M ranges
over a physically signi<cant interval, at <xed values of N. Otherwise the system will be called
chaotic or incompressible. Let us call ‘F the binary length of the algorithm for one step:
‘F 6 2N ln2N. The sequence O can be expressed by the record composed by the initial state
I(0) (speci<ed by ln2N bits), the number of steps M (speci<ed by ln2M bits) and the rule F
for one step (speci<ed by ‘F bits). Therefore

‘O(M;N)6 (2N+ 1) ln2N+ ln2M +O(1) : (7.6)

Let us note that from the above equation one has that – when M grows inde<nitely and N is
constant – ‘O is logarithmically bounded and hence the sequence appears to be compressible.
This is somewhat trivial since, because of the discrete nature of the states, the motion at
M ¿N (in practice M ¿T ∼ √

N) is periodic. Therefore it is interesting to consider only
1�M ¡T�N. Although the evolution law (7.5) can be carried out, in principle, in exact
arithmetic, in practice in real computations one has unavoidable errors due to truncations and
approximations. Let us now regard the evolution law (7.5) as a computer program with input
I(0) and a set C of parameters, with C components, needed to de<ne the algorithm F. If these
parameters are all known within precision O(2−q), the binary length of the coding of C is
O(qC).
Consider the following problem: given two identical initial conditions I(1)(0)= I(2)(0)= I(0),

and two di#erent realizations C(1) and C(2) of the set of coeJcients C (with di#erence O(2−q)),
what is the dependence on j=2−q of the <rst-error time M̃ (i.e. the <rst time for which I(1)(t) �=
I(2)(t))? Of course, the answer depends on the realizations of the components of C and on the
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initial conditions I(0). Let us consider C(2) as an j-perturbation of C(1), i.e. we pose, for each
component of the parameter vector:

C(2)i = C(1)i + ji ; (7.7)

where the random variables ji are uniformly distributed in [−2(−q−1); 2(−q−1)]. Let us note that
the coding length O(Cq) + ln2N is enough to de<ne the sequence O up to the <rst error time
M̃ . Performing an average on the ji and on the initial conditions I(0), one can compute an
average <rst-error time 〈M̃ (j)〉, and a typical <rst-error time M̃ typ(j) = exp〈ln M̃ (j)〉. For 〈M̃ 〉
and M̃ typ the dependence on j can be of the following type:

(a) 〈M̃ 〉 ∼ j−G ∼ 2qG,
(b) 〈M̃ 〉 ∼ ln2(1=j) ∼ q.

In the case (a) we say that the system is compressible, while if (b) holds one has a chaotic
(incompressible) case. The above classi<cation is rather obvious: in case (a) a trajectory of
length M̃ can be coded by a program of length O(ln2N)+O(ln M̃), while in case (b) one has
a length O(ln2N) +O(M̃). For a detailed discussion see Ref. [65].
Let us now discuss in an explicit example the previous approach and the problems in the

transition to the continuous state case. We consider a discretized standard map, as obtained by
considering lattice points in the torus [0; 2.]2 of the form (x; y) with x=2.Q=L and y=2.P=L,
where P and Q are integers between 1 and L. The action of the map is

Q(t + 1) =
[
Q(t) + =

L
2.
sin

(
P(t)

2.
L

)]
mod L ;

P(t + 1) = (P(t) +Q(t + 1))mod L ; (7.8)

where = is the control parameter and [ · ] means integer part. From the results of Section 7.1
one has that the typical period for the map (7.8) is TL ∼ L; so if L is large the periodic motion
will be seen only for suJciently large times. In the system (7.8) one has just one parameter,
i.e. the “kick strength” =. Numerical evidence supports the following picture: at <xed L, the
<rst-error time is roughly constant for large values of the error j, while it goes as j−1 for small
errors j. The transition between the two regimes occurs at a critical value jc(L) which scales
as jc ∼ 1=L. In formulae:

〈M̃ (j)〉 ∼
{

O(1) for j¿ jc(L) ;
1=j for j¡ jc(L) :

(7.9)

It is rather easy to give analytical estimates supporting the numerical evidence [65]

〈M̃ (j)〉=




(
.l
j

)
for j¡l ;

(
j
.l
(1− cos 5) + 1− 25

.
+

l
.j ln tan

(
5
2

))−1
for j¿l :

(7.10)

where the angle 5 is de<ned via sin 5= l=j, and l=2.=L. Numerical simulations show that the
behavior proposed in Eq. (7.9) holds. To have a comparison with the usual standard map, we
have computed the average time 〈M�(j)〉 required for two trajectories to reach lattice points
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farther than a <xed distance � in the discrete phase space of Eq. (7.8). We found

〈M�(j)〉 ∼
{
(1=�) ln(�=j) for j¿ jc(L) ;
1=j for j¡ jc(L) :

(7.11)

We remark that when j¡ jc(L), M�(j) is weakly dependent, i.e. logarithmically, on �. This is
just another veri<cation of the similarity of the e#ect of a small disturbance on the equations of
motion and of a small error in the initial conditions for a dynamical evolution (see Section 6).
These results unveil the nature of the dynamics of this discrete system: its trajectories are

incompressible and therefore chaotic only for large values of j, the cuto# value decreasing as
1=L. This helps us also to understand the extent to which the dynamics of the discrete standard
map Eq. (7.8) is equivalent to its continuum counterpart. When = is large, and j¿ jc, the two
systems possess chaotic trajectories. Simple calculations show that, to the leading order, M̃ ∼
log2(L). After this time, the discrete system appears “regular”, i.e. compressible and predictable.
Therefore, continuous and discrete systems are similar (as far as chaos is concerned) only over
logarithmically short times. It is important to stress that the system appears “regular” on time
scales much smaller than the typical period TL ∼Ld2=2 (d2 being the correlation dimension of
the attractor [93,94]).
Recently, Mantica [155] studied the algorithmic complexity in classical polygonal billiards

with L sides. The system, for any <nite value of L, is regular; on the other hand, as L → ∞,
it tends to a curved billiard, which can be chaotic. This system is very similar to the discrete
dynamical system (7.8) and may be used to study the transition from quantum to classical
mechanics and the principle of correspondence. The average complexity of symbolic trajectories
in the polygonal billiards has the same scaling behavior (as function of L and of the precision
j) of that one of the system (7.8), i.e. a compressible (regular) regime for j¡ jc ∼ 1=L and
an incompressible (chaotic) one for j¿ jc.
It is interesting to note that a similar feature is characteristic of quantum dynamics of systems

whose classical behavior is chaotic. Roughly speaking, a quantum system behaves as a system
with discrete states whose number is proportional to ˝−1. A semi-classical wave function follows
a dynamics which is approximately classical up to a time tc ∼ (1=�) ln(I=˝), where � is the
Lyapunov exponent of the classical motion, and I is a typical action of the motion. Over this
time, the quantum system has the same complexity of its classical counterpart, while for larger
times its quantal (quasi-periodic) nature appears [81,49,60].

7.3. Entropies and Lyapunov exponents in cellular automata

Cellular automata (CA) consist of discrete valued state variables, 1i(t), de<ned on a discrete
lattice, and updated synchronously at discrete time according to a local rule. They can be
de<ned in any dimensions and for any <nite number of possible values for 1i(t). For the sake
of simplicity we consider Boolean CA, i.e. 1i(t)={0; 1}, in a 1-dimensional lattice. An evolution
rule can be written as

1i(t + 1) = F[1i−r(t); : : : ; 1i(t); : : : ; 1i+r(t)]; i = 1; : : : ; N ; (7.12)

where r de<nes the range of the coupling, i.e. the variable in a site depends on the variables
in the 2r neighbor sites. If F in (7.12) only depends on the sum of the state variables, one
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Fig. 34. Typical behavior of (a) regular [Rule 52], (b) chaotic [Rule 22], (c) complex [Rule 20]. We used totalistic
r = 2 cellular automata. Time 8ows from below to above.

speaks of “totalistic” CA. Another usual requirement is to have symmetric rules. For further
details we refer to Ref. [223], where the standard scheme for the classi<cation of the possible
rules and a number of examples of CA-behavior are discussed.
In the following we refer to 1d Boolean cellular automata with local symmetric rules – as

those ones systematically studied by Wolfram [223].

7.3.1. ClassiBcation of Cellular Automata according to the transient times
For <nite lattices with N sites the number of possible states of CA is <nite and equal

to N = 2N . As already discussed, this means that, strictly speaking, from an entropic (or
algorithmic) point of view CA are trivial. Therefore the problem of the characterization of
irregular behaviors in CA has, in principle, some meaning only in the limit N → ∞. In more
physical terms, for <nite N one expects the characterization in terms of entropy to be possible
for times shorter than the typical period T(N ) or the typical transient time T̃(N ), provided
T(N ) and T̃(N ) are long enough.
Actually, cellular automata behaviors can be classi<ed according to the dependence of T(N )

and T̃(N ) on N . One has three possible classes of behavior.
Regular cellular automata (classes 1 and 2 in Wolfram’s classi<cation [223]) evolve either on

homogeneous states both in time and space (the analogous of <xed point in dynamical systems)
either to a set of simple stable periodic structures (analogous to limit cycles) which, in general,
depend on the initial con<guration (Fig. 34a). In these CA, T(N ) and T̃(N ) can range from
being almost independent of N to be, at maximum, proportional to N .
Chaotic cellular automata (class 3 in [223]) yield disordered patterns (Fig. 34b). For any

<nite N these CA reach periodic states, but there are rather clear numerical evidences that the
transient time T̃ increases exponentially with the system size:

T̃(N ) ∼ exp(cN ) : (7.13)

Moreover, also the cycle period shows in most of the cases a similar dependence on N , this is
a reminiscence of what we discussed in Section 7.1.
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Complex cellular automata (class 4 in [223], Fig. 34c) usually evolve toward complex lo-
calized structures (gliders) which interact in a complicate way. For these CA numerical simu-
lations [100] have shown that both the transient time and the cycle period display a non-trivial
N -dependence (i.e. the average, the typical values or the median depend in a di#erent way on
N ). The unpredictability of these system manifests itself in the distribution of these times. In
particular, the large variability of these times in dependence of the initial conditions and the
lattice size inhibits any forecasting of the duration of the transient.
In the following we limit the discussion to chaotic rules, i.e. class 3 in the Wolfram classi-

<cation. A detailed characterization of complex CA would require the introduction of concepts
and tools that are beyond the aim of this review, for further details see Refs. [13,96,100,223].

7.3.2. Sensitive dependence on initial conditions
A <rst intuitively reasonable characterization of irregular behaviors is in terms of sensitive

dependence on initial conditions, but in CA it is not possible to have arbitrary small distances
between two states. Nevertheless, for large N , when considering two states with only one
di#erent element, one can say that, in some sense (i.e. in an appropriate norm), the di#erence
is small. Denoting with Rt the number of di#erent elements at time t, we can de<ne the damage
propagation speed as [223]

v= lim
t→∞

Rt

2t
: (7.14)

It is not diJcult to see that v is, in a proper space, a Lyapunov exponent (i.e. it measures the
rate of divergence of two con<gurations) [214]. Consider two initial bi-in<nite con<gurations
�(0)=(: : : ; 1−2(0); 1−1(0); 11(0); 12(0); : : :) and �′(0)=(: : : ; 1′

−2(0); 1
′
−1(0); 1

′
1(0); 1

′
2(0); : : :), with

1i(0)=1′
i(0) for |i|¡N0, and their evolutions �(t) and �′(t). One can de<ne a distance, ‖��(t)‖,

between �(t) and �′(t), as follows:

‖��(t)‖=
∞∑
n=1

|�1n(t)|+ |�1−n(t)|
2n

(7.15)

where �1n=1′
n−1n. With the above norm two systems can be arbitrarily close: one only needs

N0�1. At this point it is possible to de<ne the Lyapunov exponent as

�= lim
t→∞ lim

‖��(0)‖→0

1
t
ln

‖��(t)‖
‖��(0)‖ : (7.16)

Note that in (7.16) it has been implicitly taken the limit N → ∞.
Noting that �1n(t) = 0 for |n − N0|¿Rt=2 � vt, while |�1n(t)|= 1 for |n − N0|¡Rt=2 � vt,

from the de<nition (7.15) one has

‖��(t)‖ ∼ 2−N0+vt ; (7.17)

and therefore

�= v ln 2 : (7.18)

In other words, the linear damage spreading in the physical space corresponds to an exponential
growth in the norm (7.15). Oono and Yeung [167] stressed a conceptual (and practical) diJculty
with the above approach. In systems with continuous states it is clear that by performing an
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in<nitesimal change on a typical con<guration one does not destroy the “typicality”, i.e. the
new initial condition will generate a trajectory belonging to the same attractor. On the contrary,
it is not obvious that for a, however large, system with discrete states in a typical con<guration
a change of only one element gives another typical state. For instance, this seemingly innocent
change can induce a jump among basins of attraction, so that the perturbed trajectory goes to a
di#erent attractor [223,16]. However, taking into account the above criticism, numerically one
<nds, for most the initial conditions, v¿ 0 for chaotic CA, and v= 0 for regular CA.
We conclude this subsection mentioning a proposal, by Bagnoli et al. [16], to introduce a

Lyapunov exponent for cellular automata, de<ning it in analogy with continuous states dynamical
systems.
In this approach, the equivalent of an in<nitesimal perturbation (as for the damage spreading

analysis) is the di#erence between the system and one of its replicas in which one site has been
8ipped at time t = 0. Then one formally introduces the Boolean derivatives, a sort of Jacobian
of the rule, F ′

i; j, the elements of which are 0 or 1. Here, for simplicity, we consider a generic
nearest neighbor (r = 1) rule so that F ′

i; j = 0 for |i − j|¿ 2 and

F ′
i; i−1 =

91i(t + 1)
91i−1(t)

≡ F[1i−1; 1i; 1i+1] XOR F[1i−1 XOR 1; 1i; 1i+1]

where the other non-zero terms are obtained by shifting the XOR operation to i and i + 1
(respectively). We recall that XOR is the Boolean exclusive operation (i.e. 0 XOR 0=0; 1 XOR 1=0,
0 XOR 1=1 and 1 XOR 0=1). Of course as time goes on the initial perturbation spreads, i.e. new
defects appear. As in continuous systems, one needs to maintain the perturbation “in<nitesimal”.
One introduces a vector N (whose components, Ni, take integer values) which plays the role
of the tangent vector. In order to mimic an in<nitesimal perturbation at the initial time one
assumes Ni(0) = �ij, i.e. only one defect on the site j. The dynamics of Ni is ruled by the
Boolean derivative, i.e.

Ni(t + 1) =
∑
j

F ′
ij(t)Nj(t) : (7.19)

Finally, putting |N(t)|=∑
j Nj(t), one can de<ne the “Lyapunov exponent”, �B, of the cellular

automaton as

�B = lim
T→∞

1
T
ln (|N(T )|) : (7.20)

Now, in analogy with continuous systems, �B ¡ 0 indicates an exponential decrease of the
perturbation, while for �B ¿ 0 the damage spreads. Just to give an example, if one considers
the rule 150 of Wolfram classi<cation, i.e. (F[0; 0; 1]=F[0; 1; 0]=F[1; 0; 0]=F[1; 1; 1]= 1 and
0 otherwise) it is easy to see that F ′

ij is a tridiagonal matrix with all the elements equal to 1 so
that �= ln (3). For a generic rule one has to compute a suitable average over a long trajectory
or on many initial con<gurations (see Fig. 35).
The Lyapunov exponent, �B, has been demonstrated to be relevant in the synchronization

problem [17] and allows for a qualitative characterization of the cellular automata in agreement
with the classi<cation proposed by Wolfram [16,17].



448 G. Bo5etta et al. / Physics Reports 356 (2002) 367–474

Fig. 35. Damage spreading analysis performed on a totalistic [Rule 10] r = 2 cellular automaton with N = 200. At
time t = 0 a replica is initialized by 8ipping the value at the center of the lattice.

7.3.3. Entropies
For cellular automata one can de<ne a spatial=temporal entropy density by looking at the

evolution of the elements in a subset LL, of size L, of the system. Denoting by C(L; T ) a
“word” of spatial size L and time length T appearing in the time evolution of the elements in
LL, one de<nes the entropy of the subset LL,

h(L) = lim
T→∞

− 1
T

∑
C(L;T )

P(C(L; T )) ln P(C(L; T )) ; (7.21)

and then the spatio-temporal entropy density as

hST = lim
L→∞

1
L
h(L) : (7.22)

This entropy cannot be practically computed. A more accessible quantity is the temporal entropy:

hT = h(1) = lim
T→∞

− 1
T

∑
C(1;T )

P(C(1; T )) ln P(C(1; T )) ; (7.23)

i.e. the Shannon entropy of the time sequence of one element (1n(0); 1n(1); : : :). In principle,
hT can depend on the site n and one can classify as non-trivial a system for which the majority
of the elements have hT¿ 0 [166]. An average measure of the “temporal disorder” is given
by the spatial average 〈hT〉. A systematic study of h(1); h(2); h(3); : : : – although very diJcult
in practice – could give, in principle, relevant information on the spatial=temporal behavior. A
characterization of the spatial properties can be obtained studying, at a given time t, the spatial
sequences. In practice, one studies C(L; 1) at increasing L:

hS = lim
L→∞

− 1
L

∑
C(L;1)

P(C(L; 1)) ln P(C(L; 1)) : (7.24)

One can associate to hS a sort of “e#ective” dimension d = hS=ln 2 [223]. In a completely
disordered cellular automaton con<guration one has d= 1, as expected, while a homogeneous
(or spatially periodic) con<guration gives d= 0.
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Fig. 36. Sketch of the dependence of temporal sequences on spatial ones.

Fig. 37. The values of the sites in black together with the speci<cation of the rule completely specify the values
of the sites in white.

From the de<nition of cellular automata (7.12) one easily sees that the value of 1i(t) depends
on sites at maximum distance r from i at the previous time step. This means that after T time
steps, the value 1i(t) can depend (at maximum) on sites at distance rT on both direction, so that
the maximum speed for information propagation is r (i.e. the range of interaction). However, for
many CA the actual velocity of information propagation, vp, is less than r, i.e. 1i(T ) depends
only on vpT ¡rT sites. By considering a simple construction (see Fig. 36) one can understand
that the spatial and temporal entropies are related to each other by the inequality [223]:

hT 6 2vphS ; (7.25)

where a good estimate of vp can be given in terms of the damage spreading velocity
(7.18) [223].
The possible scenario arising from (7.25) can be summarized as follows. One can have

“spatial chaos” (hS¿ 0) in absence of “temporal chaos” (hT = 0), while the existence of “tem-
poral chaos” requires not only a non-zero spatial entropy but also the existence of a <nite
propagation velocity. This con<rms somehow that the classi<cations of a CA as chaotic in
terms of damage spreading velocity and entropy are related to each others.
However, as stressed by Oono and Kohomoto [166], the seemingly natural assumption of

calling “turbulent” a cellular automaton for which one has hS¿ 0 and 〈hT〉¿ 0 is not correct
in general. This is particularly clear by considering a single direction shift imposed on a “frozen”
disordered background. Nevertheless, in spite if this speci<c counterexample, the attempts based
on entropic concepts, for the characterization of the irregular spatial and=or temporal behavior
of systems with discrete states, in our opinion, are the most promising ones. In this context
Casartelli and coworkers [47,48] introduced the concept of rational partitions in order to de<ne
a complexity measure for systems which can be reduced to 1d CA.
Let us conclude this section with a brief discussion and comparison between the unpredictabil-

ity which characterizes cellular automata evolution with respect to the one encountered in the
context of continuous states dynamics, e.g. in coupled map lattices (see Section 4). The latter
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indeed seems to be the natural candidate for such a comparison. We limit the discussion to
1-dimensional lattices with r = 1, i.e. CML and CA with nearest neighbor coupling.
Let us now ask the amount of information we have to specify for knowing all the LT sites of

spatial size L(¡N ) and temporal length T , as shown in Fig. 37. Since both CA and CML are
ruled by a local deterministic dynamics one needs to specify the rule of evolution and the values
of the L+ 2(T − 1) states at the border, in black in Fig. 37. Basically, one has to specify the
initial conditions on the L sites and the “boundaries” 11(t) and 1L(t) for 1¡t 6 T . But while
for CA this speci<cation unambiguously determines the LT values, for a chaotic CML this is not
enough. Indeed, one has to specify the precision, j, with which he wants to know the LT values.
Once speci<ed j, one knows the necessary initial precision, j0, on the L + 2(T − 1) sites in
black. A conservative estimate gives j0 ≈ j exp(−LTHKS), where HKS is the entropy density
de<ned in Eq. (4.3). This very simple argument suggests that the main di#erence between
CA and continuous systems is the absence of “local” production of information, i.e. in CA
the complexity only arises by the spatial propagation of information [97]. Nevertheless, there
exist counterexamples in which starting from simple initial con<guration complex pattern are
generated [222].
From this point of view it is interesting to consider the behavior of certain CMLs which, in

spite of their continuous nature, seem to be rather similar to “chaotic” cellular automata. Indeed,
it has been found that a class of stable (i.e. �¡ 0) CMLs [69,188] displays an unpredictable
dynamics on times exponentially large with the system size. So that in the limit of in<nite
lattices they are completely unpredictable. Moreover, these CMLs have a <nite velocity of
propagation for initially localized disturbances (provided that the value of the disturbance was
O(1)) [188,190]. Recalling the discussion of Section 4.6, we know that this cannot be predicted
in terms of the comoving Lyapunov exponents, it is a fully nonlinear phenomenon. The strong
analogies with “chaotic” CA have been furtherly explored in Ref. [188], where it has been
proposed to classify these CML as large memory cellular automata according to the behavior
of their spatial and temporal entropy.

8. The characterization of the complexity and system modeling

In the previous sections we discussed the characterization of dynamical behaviors when the
evolution laws are known either exactly or with an uncertainty. On the other hand, in exper-
imental investigations only time records of some observable are typically available, and the
equation of motions are not known. For the predictability problem, this latter case, at least
from a conceptual point of view, can be treated in the same framework of when the evolu-
tion laws are known. Indeed, in principle, with the embedding technique one can reconstruct
the phase space [209,1,2,114]. Nevertheless, there are rather severe limitations in high dimen-
sional systems [97] and even in low dimensional ones nontrivial features appear in presence of
noise [114].
In this section we show that an entropic analysis at di#erent resolution scales allows us for a

pragmatic classi<cation of a signal and gives suggestions for modeling of systems. In particular
we illustrate, using some examples, how quantities such as the j-entropy or the FSLE can
display a subtle transition from the large to the small scales. A negative consequence of this is
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the diJculty in distinguishing, only from data analysis, a genuine deterministic chaotic system
from one with intrinsic randomness [51]. On the other hand, the way the j-entropy or <nite size
Lyapunov exponent depends on the (resolution) scale, allows us for a pragmatic classi<cation
of the stochastic or chaotic character of the signal, and this gives some freedom in modeling
the system.

8.1. How random is a random number generator?

It is rather natural to wonder about the “true character” of the number sequence (x1; x2; : : :)
obtained with a (pseudo) random number generator (PRNG) on a computer. One would like to
have a sequence with a random character; on the other hand, one is forced to use deterministic
algorithms to generate (x1; x2; : : :). This subsection is mainly based on the paper [116]. A simple
and popular PRNG is the multiplicative congruent one [193]:

zn+1 =N1znmodN2
xn+1 = zn+1=N2 ; (8.1)

with an integer multiplier N1 and modulus N2. The {zn} are integer numbers and one hopes to
generate a sequence of random variables {xn}, which are uncorrelated and uniformly distributed
in the unit interval. A <rst problem one has to face is the periodic nature of (8.1), because of
its discrete character (see Section 7). In practice one wants to <x N1 and N2 in such a way to
maximize this period. Note that the rule (8.1) can be interpreted as a deterministic dynamical
system, i.e.

xn+1 = N1xnmod 1 ; (8.2)

which has a uniform invariant measure and a KS entropy hKS = �= lnN1. When imposing the
integer arithmetics of Eq. (8.1) onto this system, we are, in the language of dynamical systems,
considering an unstable periodic orbit of Eq. (8.2), with the particular constraint that, in order
to achieve the period N2 − 1 (i.e. all integers ¡N2 should belong to the orbit of Eq. (8.1)) it
has to contain all values k=N2, with k = 1; 2; : : : ; N2 − 1. Since the natural invariant measure of
Eq. (8.2) is uniform, such an orbit represents the measure of a chaotic solution in an optimal
way. Every sequence of a PRNG is characterized by two quantities: its period T and its positive
Lyapunov exponent �, which is identical to the entropy of a chaotic orbit of the equivalent
dynamical system. Of course a good random number generator has a very large period, and as
large as possible entropy.
It is natural to ask how this apparent randomness can be reconciled with the facts that (a)

the PRNG is a deterministic dynamical systems (b) it is a discrete state system.
If the period is long enough on shorter times one has to face only point (a). In the following

we discuss this point in terms of the behavior of the j-entropy, h(j) (see Section 3.5). It seems
rather reasonable to think that at a high resolution, i.e. j 6 1=N1, one should realize the true
deterministic chaotic nature of the system and, therefore, h(j) � hKS = lnN1. On the other
hand for j ¿ 1=N1 one expects to observe the “apparent random” behavior of the system, i.e.
h(j) ∼ ln (1=j).
When the spatial resolution is high enough so that every point of this periodic orbit is

characterized by its own symbol, then, for arbitrary block length m, one has a <nite number
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Fig. 38. The j-entropies, hm(j), at varying the embedding dimension m for the multiplicative congruential random
number generator, Eq. (8.1), for di#erent choices of N1 and N2. This <gure has been taken from Ref. [116].

of m-words whose probabilities are di#erent from 0. Therefore, the block entropy Hm (3.44) is
m-independent and hm = 0.
In Fig. 38 it is shown the behavior of hm(j), computed on sequences of length 60000 of the

PRNG with three di#erent pairs (N1; N2) chosen to be (75; 232), (2; 494539), and (107; 31771).
The <rst one is optimal and no deviation from the stochastic behavior is visible. The second
one has a small pseudo-entropy, and this is seen by the saturation of all hm(j) at lnN1 = ln 2,
and the last one has large entropy but a rather short period, so that all hm(j) drop to zero for
some jm, where jm becomes dramatically larger for increasing m (strong 8uctuations arise from
the fact that data are con<ned to a grid of spacing 1=31771).

8.2. High-dimensional systems

Now we discuss high-dimensional systems that show non-trivial behavior at varying the
resolution scales. Olbrich et al. [165] analyzed an open 8ow system described by unidirectionally
coupled map lattice:

xj(t + 1) = (1− 1)f(xj+1(t)) + 1xj(t) ; (8.3)

where j=1; : : : ; N denotes the site of a lattice of size N , t the discrete time and 1 the coupling
strength. A detailed numerical study (also supported by analytical arguments) of the j-entropy
hm(j) at di#erent j, in the limit of small coupling, gives the following scale-dependent scenario:
for 1 ¿ j ¿ 1 there is a plateau h(j) � �s where �s is the Lyapunov exponent of the single
map x(t + 1) =f(x(t)). For 1¿ j¿ 12 another plateau appears at h(j) � 2�s, and so on: for
1n−1 ¿ j¿ 1n one has h(j) � n�s (see Fig. 39).
Similar results hold for the correlation dimension which increases step by step as the resolution

increases, showing that the high-dimensionality of the system becomes evident only as j→ 0.
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Fig. 39. hm(j) for the system (8.3) where f(x)=2|1=2−|x−1=2‖ is the tent map and 1=0:01. The horizontal lines
indicate the entropy steps which appears at decreasing j. The j-entropy is computed with the Grassberger–Procaccia
method [92]. For further details see Ref. [165].

Therefore one understands that the dynamics at di#erent scales is basically ruled by a hierarchy
of low-dimensional systems whose “e#ective” dimension ne# (j) increases as j decreases [165]:

ne# (j) ∼
[
ln (1=j)
ln (1=1)

]
; (8.4)

where [ : : : ] indicates the integer part. In addition, for a given resolution j, it is possible to <nd
a suitable low-dimensional noisy system (depending on j) which is able to mimic x1(t) given
by Eq. (8.3). It is interesting to note that, on an extended range of values of j (j¿ 1N ), h(j)
can be roughly approximated as log-periodic 8uctuations around

h(j) ∼ ln 1j (8.5)

i.e. the typical behavior of a stochastic process. Of course, for j6 1N one has to realize that
the system is deterministic and h(j) =O(N�s).
Let us now brie8y reconsider the issue of the macroscopic chaos, discussed in Section 4.7.

The main result can be summarized as follows:

• at small j (�1=√N ), where N is the number of elements, one recovers the “microscopic”
Lyapunov exponent 2 , i.e. �(j) ≈ �micro

• at large j (�1=√N ) one observes another plateau �(j) ≈ �macro which can be much smaller
than the microscopic one.

2 From hereafter we use the same symbol j both for the FSLE and the j-entropy in order to make a direct
comparison between the two quantities.



454 G. Bo5etta et al. / Physics Reports 356 (2002) 367–474

The emerging scenario is that at a coarse-grained level, i.e. j�1=
√
N , the system can

be described by an “e#ective” hydro-dynamical equation (which in some cases can be low-
dimensional), while the “true” high-dimensional character appears only at very high resolution,
i.e.

j6 jc =O
(
1√
N

)
:

8.3. Di5usion in deterministic systems and Brownian motion

Consider the following map which generates a di#usive behavior on the large scales [200]:

xt+1 = [xt] + F(xt − [xt]) ; (8.6)

where [xt] indicates the integer part of xt and F(y) is given by:

F(y) =

{
(2 + =)y ify ∈ [0; 1=2] ;
(2 + =)y − (1 + =) ify ∈ [1=2; 1] : (8.7)

The largest Lyapunov exponent � can be obtained immediately: �=ln |F ′|, with F ′=dF=dy=2+=.
One expects the following scenario for h(j):

h(j) ≈ � for j¡ 1 ; (8.8)

h(j)˙ D
j2 for j¿ 1 ; (8.9)

where D is the di#usion coeJcient, i.e.

〈(xt − x0)2〉 ≈ 2Dt for large t : (8.10)

Consider now a stochastic system, namely a noisy map

xt+1 = [xt] +G(xt − [xt]) + 1Kt ; (8.11)

where G(y), as shown in Fig. 40, is a piecewise linear map which approximates the map F(y),
and Kt is a stochastic process uniformly distributed in the interval [−1; 1], and no correlation in
time. When |dG=dy|¡ 1, as is the case we consider, the map (8.11), in the absence of noise,
gives a non-chaotic time evolution.
Now we compare the <nite size Lyapunov exponent for the chaotic map (8.6) and for the

noisy one (8.11). In the latter the FSLE has been computed using two di#erent realizations of
the noise. In Fig. 41 we show �(j) versus j for the two cases. The two curves are practically
indistinguishable in the region j¿1. The di#erences appear only at very small scales j¡1
where one has a �(j) which grows with j for the noisy case, remaining at the same value for
the chaotic deterministic case.
Both the FSLE and the (j; �)-entropy analysis show that we can distinguish three di#erent

regimes observing the dynamics of (8.11) on di#erent length scales. On the large length scales
j¿ 1 we observe di#usive behavior in both models. On length scales 1¡ j¡ 1 both models
show chaotic deterministic behavior, because the entropy and the FSLE are independent of j



G. Bo5etta et al. / Physics Reports 356 (2002) 367–474 455

Fig. 40. The map F(x) (8.7) for ==0:4 is shown with superimposed the approximating (regular) map G(x) (8.11)
obtained by using 40 intervals of slope 0.

Fig. 41. �(j) versus j obtained with the map F(y) (8.7) with = = 0:4 (◦) and with the noisy (regular) map ( )
(8.11) with 10 000 intervals of slope 0.9 and 1=10−4. The straight lines indicates the Lyapunov exponent �=ln 2:4
and the di#usive behavior �(j) ∼ j−2.

and larger than zero. Finally, on the smallest length scales j¡1 we see stochastic behavior
for the system (8.11) while the system (8.6) still shows chaotic behavior.

8.4. On the distinction between chaos and noise

The above examples show that the distinction between chaos and noise can be a high
non-trivial task, which makes sense only in very peculiar cases, e.g., very low-dimensional
systems. Nevertheless, even in this case, the entropic analysis can be unable to recognize the
“true” character of the system due to the lack of resolution. Again, the comparison between the
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di#usive map (8.6) and the noisy map (8.11) is an example of these diJculties. For 16 j6 1
both the system (8.6) and (8.11), in spite of their “true” character, will be classi<ed as chaotic,
while for j¿ 1 both can be considered as stochastic.
In high-dimensional chaotic systems, with N degrees of freedom, one has typically h(j) =

hKS ∼ O(N ) for j 6 jc (where jc → 0 as N → ∞) while for j ¿ jc, h(j) decreases, often
with a power law [89]. Since also in some stochastic processes the j-entropy obeys a power
law, this can be a source of confusion.
These kind of problems are not abstract ones, as a recent debate on “microscopic chaos”

demonstrates [90,72,98]. The detection of microscopic chaos by data analysis has been recently
addressed in a work of Gaspard et al. [90]. These authors, from an entropic analysis of an
ingenious experiment on the position of a Brownian particle in a liquid, claim to give an
empirical evidence for microscopic chaos. In other words, they state that the di#usive behavior
observed for a Brownian particle is the consequence of chaos at a molecular level. Their work
can be brie8y summarized as follows: from a long (≈ 1:5×105 data) record of the position of a
Brownian particle they compute the j-entropy with the Cohen–Procaccia method [61] (Section 3)
from which they obtain

h(j) ∼ D
j2 ; (8.12)

where D is the di#usion coeJcient. Then, assuming that the system is deterministic, and making
use of the inequality h(j¿ 0)6 hKS, they conclude that the system is chaotic. However, their
result does not give a direct evidence that the system is deterministic and chaotic. Indeed, the
power law (8.12) can be produced with di#erent mechanisms:

(1) a genuine chaotic system with di#usive behavior, as the map (8.7);
(2) a nonchaotic system with some noise, as the map (8.11), or a genuine Brownian system;
(3) a deterministic linear non-chaotic system with many degrees of freedom (see for instance

[158]);
(4) a “complicated” non-chaotic system as the Ehrenfest wind-tree model where a particle

di#uses in a plane due to collisions with randomly placed, <xed oriented square scatters,
as discussed by Cohen et al. [72] in their comment to Ref. [90].

It seems to us that the weak points of the analysis in Ref. [90] are:

(a) the explicit assumption that the system is deterministic;
(b) the limited number of data points and therefore limitations in both resolution and block

length.

The point (a) is crucial, without this assumption (even with an enormous data set) it is not
possible to distinguish between (1) and (2). One has to say that in the cases (3) and (4) at
least in principle it is possible to understand that the systems are “trivial” (i.e. not chaotic) but
for this one has to use a huge number of data. For example, Cohen et al. [72] estimated that
in order to distinguish between (1) and (4) using realistic parameters of a typical liquid, the
number of data points required has to be at least ∼ 1034.
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Concluding, we have the apparently paradoxical result that “complexity” helps in the con-
struction of models. Basically, in the case in which one has a variety of behaviors at vary-
ing the scale resolution, there is a certain freedom on the choice of the model to adopt. In
Section 8.3 one can see that, for some systems, the behavior at large scales can be realized
both with chaotic deterministic models or suitable stochastic processes. From a pragmatic point
of view, the fact that in certain stochastic processes h(j) ∼ j−= can be indeed extremely use-
ful for modeling such high-dimensional systems. Perhaps, the most relevant case in which one
can use this freedom in modeling is the fully developed turbulence whose non-in<nitesimal
(the so-called inertial range) properties can be successfully mimicked in terms of multiaJne
stochastic process (see Refs. [29,4], Section 5.5 and Appendix D).

9. Concluding remarks

The guideline of this review has been how to interpret the di#erent aspects of the predictability
of a system as a way to characterize its complexity.
We have discussed the relation between the Kolmogorov–Sinai entropy and the algorithmic

complexity (Section 2). As clearly exposed in the seminal works of Alekseev and Yakobson [5]
and Ford [79,80], the time sequences generated by a system with sensitive dependence on initial
conditions have non-zero algorithmic complexity. A relation exists between the maximal com-
pression of a sequence and its KS-entropy. Therefore, one can give a de<nition of complexity,
without referring to a speci<c description, as an intrinsic property of the system.
In the presence of intrinsic randomness (Section 6.3), one can introduce two di#erent Lya-

punov exponents, �1 in the case of trajectories with the same realization of noise and K1
for di#erent realizations. In general, �1 and K1 do not coincide and characterize di#erent
aspects of the system. Both quantities have their own relevance, the comparison between �1
and K1 has shown to be useful in the understanding of apparently intricate phenomena, such as
noise-induced order and noise-induced instability.
As an example of system with many degrees of freedom and characteristic times scales, we

investigated fully developed turbulence (Section 5). In this case the Lyapunov exponent and
the KS-entropy are somehow of limited relevance because they only characterize small scales
properties. On the other hand, there exist suitable generalizations—the <nite size Lyapunov ex-
ponent, �(j), and j-entropy, h(j)—which characterize the predictability properties at di#erent
scales. The scaling of the predictability time with the resolution j, �(j) ∼ j−2, has an algo-
rithmic correspondence in the behavior of the j-entropy of the signal measured in one point,
h(j) ∼ j−3. In the words of Lorenz, one can say that the butter8y e#ect is not so terrible for
j-resolution in the inertial range.
Complexity in a system can also manifest in the spatial properties as, for example, in open

8ows with convective chaos but with negative Lyapunov exponents (Section 4). The presence
of convective chaos implies a sensitivity on the boundary conditions. An uncertainty, �x0, on
the boundary condition is exponentially ampli<ed with the distance, n, from the boundary as
�xn ∼ �x0e@n. The “spatial” Lyapunov exponent @ is related with the comoving Lyapunov
exponent and gives a characterization of the spatial “complexity”.
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The study of these di#erent aspects of predictability constitutes a useful method for a quan-
titative characterization of “complexity”, suggesting the following equivalences:

The above point of view, based on dynamical systems and information theory, quanti<es the
complexity of a sequence considering each symbol relevant but it does not capture the structural
level. Let us clarify this point with the following example. A binary sequence obtained with
a coin tossing is, from the point of view adopted in this review, complex since it cannot be
compressed (i.e. it is unpredictable). On the other hand such a sequence is somehow trivial, i.e.
with low “organizational” complexity. It would be important to introduce a quantitative measure
of this intuitive idea. The progresses of the research on this intriguing and diJcult issue are
still rather slow. We just mention some of the most promising proposals as the logical depth
[21] and the sophistication [130], see Ref. [13].
As a <nal question one can wonder what can one learn by the presented material for practical

prediction problems (e.g. weather forecast). The main lesson concerns the framework and lim-
itations about the possible well-posed questions in prediction and modeling. The <rst relevant
fact, now well established, is that in presence of deterministic chaos one cannot hope to reach
an arbitrary accuracy in prediction by merely re<ning the model. A less recognized aspect is
that the Lyapunov exponent is usually not suJcient to characterize the limits of predictability in
real situations. An appropriate generalization of the Lyapunov exponent is necessary to account
for the large-scale properties. Moreover in weather forecast the predictability time, which is
typically of 5 days, may be as little as 2 days or as much as 10 days [211]. Thus, simply
quoting an average value does not give a satisfactory answer. At a more conceptual level, one
has severe limitations in distinguish between deterministic or stochastic nature of systems dis-
playing complex behavior. This implies a certain freedom in the choice of the details of the
model, in particular whether to adopt a deterministic or a stochastic model.

Note added in proof

After completing this review, we became aware of Ref. [231] where a generalization of the
Lyapunov exponent and the intermittency are discussed.
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Appendix A. On the computation of the 1nite size Lyapunov exponent

This appendix is devoted to the methods for computing the <nite size Lyapunov exponent.
As we will see there are mainly three possible ways to compute the FSLE. Let us start with a
modi<cation of the standard technique for computing the largest Lyapunov exponent [20,221].
Suppose that one has to integrate the equations of motion of a system on a computer. Af-

ter a long integration time, in order for the motion to settle onto the attractor of the sys-
tem, we introduce a very small perturbation, i.e. we consider the “reference” trajectory x(0),
which is supposed to be on the attractor, and generate a “perturbed” trajectory starting from
x′(0)= x(0)+ �x(0). We need the perturbation to be initially very small in some chosen norm
�(t=0)=‖�x(t=0)‖=�min�1. Then, in order to study the perturbation growth through di#erent
scales, one de<nes a set of thresholds �n, e.g. �n = �0rn with 1��0��min and n= 0; : : : ; N . To
avoid saturation on the maximum allowed separation (i.e. the attractor size) one has to choose
�N ¡ 〈‖x−y‖〉/ with x; y generic points on the attractor. Note that r should be larger than 1 but
not too large in order to avoid interferences of di#erent length scales. Typically, one chooses
r = 2 or r =

√
2.

In order to measure the perturbation growth rate at scale �n, one lets the system to evolve
from �min up to the desired scale �n ensuring the perturbation to be on the attractor and aligned
along the maximally expanding direction. After �n is reached, one computes the <rst time,
�1(�n; r), to reach the following threshold, �n+1, and after that the perturbation is rescaled to �n,
keeping the direction x′ − x constant. This procedure is repeated N times for each thresholds
obtaining the set of the doubling times {�i(�n; r)} for i = 1; : : : ;N error-doubling experiments.
Now if we introduce the e#ective doubling rates

+i(�n; r) =
1

�i(�n; r)
ln r ; (A.1)

we can de<ne their time averages as the e#ective LEs on the scale �n. Therefore, we have

�(�n) = 〈+(�n; r)〉t = 1
T

∫ T

0
+ dt =

∑
i +i�i∑
i �i

=
1

〈�(�n; r)〉e ln r ; (A.2)

where 〈�(�n; r)〉e =
∑

�i=N and T =
∑

i �i.
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To obtain Eq. (A.2) we assumed the distance between the two trajectories to be continuous
in time. This is not true for maps or for discrete sampling in time and the method has to be
slightly modi<ed. In this case the doubling time, �(�n; r), is de<ned as the minimum time such
that �(�)¿ r�n. Because now �(�) is a 8uctuating quantity, from (A.2) we have

�(�n) =
1

〈�(�n; r)〉e

〈
ln
(
�(�(�n; r))

�n

)〉
e
: (A.3)

Let us stress some points.
The computation of the FSLE is not more expensive than the one of the Lyapunov exponent

by standard algorithm. One has simply to integrate two copies of the system (or two di#erent
systems for second kind predictability) and this can be done without particular problems.
At di#erence with �, �(�) may also depend on the norm one chooses. This fact, appar-

ently disturbing, is however physically reasonable: when one looks at the non-linear regime,
for instance, for the predictability problem the answer may depend on the observable con-
sidered. A similar problem appears in in<nite-dimensional system where the norms are not
equivalent [127].
A possible problem with the above-described method is that we have implicitly assumed that

the statistically stationary state of the system is homogeneous with respect to <nite perturbations.
Actually one may plausibly expect the attractor to be fractal, i.e., not at all equally dense at all
distances, this may cause an incorrect sampling of the doubling times at large �n.
A possible way to overcome such a problem is to compute the FSLE avoiding to rescale the

perturbation at <nite �n. This can be accomplished by the following modi<cation of the previous
method. One de<nes the thresholds {�n} and initializes the perturbation at �min��0 as before.
Then one lets the system to reach the <rst threshold, �0. Hence, one starts to measure the dou-
bling time �(�n; r) following the perturbation growth from �0 up to �N . In practice, one registers
the time �(�n; r) for going from �n to �n+1 for each value of n. The evolution of the error from
the initial value �min to the largest threshold �N carries out a single error-doubling experiment.
When the largest threshold, �N has been reached the “perturbed” trajectory is rescaled at the
initial distance, �min, with respect to the “reference” trajectory and one starts another experi-
ment measuring a second set of doubling times, {�2(�n; r)}. The procedure is then repeated N
times to have statistics. In this way one obtains the set of the doubling times {�i(�n; r)} for
i = 1; : : : ;N. The FSLE is <nally obtained by using Eq. (A.2) or (A.3), which are accurate
also in this case, according to the continuous time and discrete time nature of the system,
respectively. One understands that with this method, since <nite perturbations are realized by
the dynamics (i.e. the perturbed trajectory is on the attractor) and not imposed by hand, the
problems related to the attractor inhomogeneity are not present.
In any case, in most numerical experiments, one does not <nd signi<cant di#erences between

the two numerical methods.
A further possibility to compute the FSLE is to remove the threshold condition used for

de<ning �(�n; r) and simply compute the average error growth rate at every time step. In other
words, at every time step \t in the integration, the perturbed trajectory x′(t) is rescaled to the
original distance �, keeping the direction x − x′ constant. The FSLE is then obtained by the
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average of the one-step exponential divergence:

�(�) =
1
\t

〈
ln
(‖�x(t +\t)‖

‖�x(t)‖
)〉

t
; (A.4)

which, if non-negative, is equivalent to the de<nition (A.2). Let us note that the above procedure
is nothing but the <nite scale version of the usual algorithm of Benettin et al. [20] for the
LE. The one-step method (A.4) can be, in principle, generalized to compute the sub-leading
<nite-size Lyapunov exponent following the standard ortho-normalization method [20]. One
introduces k perturbed trajectories x(1); : : : ;x(k) each at distance � from x such that x(k)−x are
orthogonal to each others. At every time step, any di#erence x(k)−x is rescaled at the original
value and orthogonalized, while the corresponding <nite-size Lyapunov exponent is accumulated
according to (A.4).
Here we have again the problem of the implicitly assumed homogeneity of the attractor, and

also a problem of isotropy when we re-orthogonalize the perturbations. We note that this could
be a more serious problem.

Appendix B. The multifractal model of turbulence

The multifractal model of turbulence [177,172,84] assumes that the velocity has a local
scale-invariance, i.e. it does not have a unique scaling exponent h such that �v‘ ∼ ‘h, but a
continuous spectrum of exponents, each of which belonging to a given fractal set. In other
words, in the inertial range one has

�v‘(x) ∼ ‘h ; (B.1)

if x∈ Sh, and Sh is a fractal set with dimension D(h) and h ∈ (hmin; hmax). The probability to
observe a given scaling exponent h at the scale ‘ is thus P‘(h) ∼ ‘3−D(h), so the scaling of the
structure function assumes the form

Sp(‘) = 〈�vp‘ 〉 ∼
∫ hmax

hmin
‘hp‘3−D(h) dh ∼ ‘Fp ; (B.2)

where in the last equality, being ‘�1, a steepest descent estimation gives

Fp =min
h

{hp+ 3−D(h)}= h∗p+ 3−D(h∗) ; (B.3)

where h∗= h∗(p) is the solution of the equation D′(h∗(p))=p. The Kolmogorov “45” law [84]

S3(‘) =−4
5j‘ (B.4)

imposes F3 = 1 which implies that

3h+ 2−D(h)6 0 ; (B.5)

the equality is realized by h∗(3). The Kolmogorov similarity theory corresponds to the case of
only one singularity exponent h= 1

3 with D(h= 1
3) = 3.

A non-trivial consequence of the intermittency in the turbulent cascade is the 8uctuations of
the dissipative scale which implies the existence of an intermediate region between the inertial
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and dissipative range [83]. The local dissipative scale ‘D is determined by imposing the e#ective
Reynolds number to be of order unity:

Re(‘D) =
�vD‘D

C
∼ 1 ; (B.6)

therefore the dependence of ‘D on h is thus

‘D(h) ∼ LRe−1=(1+h) (B.7)

where Re = Re(L) is the large-scale Reynolds number. The 8uctuations of ‘D modi<es the
evaluation of the structure functions (B.2): for a given ‘, the saddle-point evaluation of (B.2)
remains unchanged if, for the selected exponent h∗(p), one has ‘D(h∗(p))¡‘. If, on the
contrary, the selected exponent is such that ‘D(h∗(p))¿‘ the saddle-point evaluation is not
consistent, because at scale ‘ the power-law scaling (B.1) is no longer valid. In this intermediate
dissipation range [83] the integral in (B.2) is dominated by the smallest acceptable scaling
exponent h(‘) given by inverting (B.7), and the structure function of order p a pseudo-algebraic
behavior, i.e. a power law with exponent ph(‘) + 3 − D(h(‘)) which depends on the scale ‘.
Taking into account the 8uctuations of the dissipative range, one has for the structure functions

Sp(‘) ∼
{

‘Fp if ‘D(h∗(p))¡‘ ;

‘h(‘)p+3−D(h(‘)) if ‘D(hmin)¡‘¡‘D(h∗(p)) :
(B.8)

A simple calculation [83,84] shows that it is possible to <nd a universal description valid both
in the inertial and in the intermediate dissipative ranges. Let us discuss this point for the energy
spectrum E(k). Introducing the rescaled variables

F(5) =
ln E(k)
ln Re

and 5=
ln k
ln Re

(B.9)

one obtains the following behavior:

F(5) =




−(1 + F2)5 for 5¡
1

1 + h∗(2)
;

−2− 25+ 5D(5 −1 − 1) for
1

1 + h∗(2)
¡5¡

1
1 + hmin

:
(B.10)

The prediction of the multifractal model is that ln E(k)=ln Re is an universal function of ln k=ln Re.
This is in contrast with the usual scaling hypothesis according which ln E(k) should be a
universal function of ln(k=kD). The multifractal universality has been tested by collapsing en-
ergy spectra obtained from turbulent 8ow in a wide range of Re [88], see also [30].

Appendix C. How to compute the �-entropy with exit times

The approach based on exit times di#ers from the usual one (see Section 3.5) in the procedure
to construct the coding sequence of the signal at a given level of accuracy [3]. Indeed an eJcient
coding procedure reduces the redundancy and improves the quality of the results. The method
here discussed is particularly suited for computing the j-entropy in processes in which many
scales are excited as, e.g., in turbulence [3,4].
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The coding of a signal, x(t), by the exit-time approach is the following. Given a reference
starting time t = t0, one measures the <rst exit time, t1, from a cell of size j, i.e. the <rst time
necessary to have |x(t0 + t1)− x(t0)|¿ j=2. Then one restarts from the time t = t0 + t1 to look
for the next exit time t2, i.e., the <rst time such that |x(t0+ t1+ t2)−x(t0+ t1)|¿ j=2 and so on.
Finally one obtains a sequence of exit times, {ti(j)}, and one also records the labels ki =±1,
which distinguish the direction of the exit (up or down out of a cell).
At the end of this construction, the trajectory is coded without ambiguity, with the required

accuracy j, by the sequence {(ti; ki); i = 1; : : : ; M}, where M is the total number of exit-time
events observed during the total time T . Now, performing a coarse-graining of the possible
values assumed by t(j) with a resolution time �r , we accomplish the goal of obtaining a
symbolic sequence. One now studies the “exit-time words”,  N

i , of various lengths n:  
N
i (j; �r)=

((Ki; ki); (Ki+1; ki+1); : : : ; (Ki+N−1; ki+N−1)), where Kj labels the cell (of width �r) containing the
exit time tj. From the probabilities of these words one evaluates the block entropies (2.18) at
the given time resolution, H 

N (j; �r), and then the exit time (j; �r)-entropies:

h (j; �r) = lim
N→∞

H 
N+1(j; �r)−H 

N (j; �r) : (C.1)

The limit of in<nite time-resolution gives us the j-entropy per exit, i.e.

h (j) = lim
�r→0

h (j; �r) : (C.2)

The link between h (j) and the j-entropy (3.45) can be obtained as follows. We note that there
is a one-to-one correspondence between the (exit-time)-histories and the (j; �)-histories (in the
limit � → 0) originating from a given j-cell. The Shannon–McMillan theorem [121] assures
that the number of the typical (j; �)-histories of length N , N(j; N ), is such that lnN(j; N ) �
h(j)N�=h(j)T . For the number of typical (exit-time)-histories of length M , M(j; M), we have
lnM(j; M) � h (j)M . If we consider T =M 〈t(j)〉, where 〈t(j)〉=1=M ∑M

i=1 ti, we must obtain
the same number of (very long) histories. Therefore, from the relation M = T=〈t(j)〉 we obtain
<nally for the j-entropy per unit time:

h(j) = Mh (j)
T

=
h (j)
〈t(j)〉 � h (j; �r)

〈t(j)〉 ; (C.3)

where the last equality is valid at least for small enough �r [3]. In most of the cases, the
leading j-contribution to h(j) in (C.3) is given by the mean exit time 〈t(j)〉 and not by
h (j; �r). Anyhow, the computation of h (j; �r) is compulsory in order to recover, e.g., a zero
entropy for regular (e.g. periodic) signals.
One can easily estimate an upper and a lower bound for h(j) which can be computed

in the exit-time scheme [3]. We use the following notation: for given j and �r , h (j; �r) ≡
h ({Ki; ki}), and we indicate with h ({ki}) and h ({Ki}) respectively the Shannon entropy of
the sequence {ki} and {Ki}. By applying standard results of information theory [201] one obtains
the inequalities (see [3,4] for more details):

h ({ki})6 h ({Ki; ki})6 h ({Ki}) + h ({ki}) : (C.4)

Moreover, h ({Ki})6H 
1 ({Ki}), where H 

1 ({Ki}) is the one-symbol entropy of {Ki} (i.e. the
entropy of the probability distribution of the exit times measured on the scale �r) which
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can be written as

H 
1 ({Ki}) = c(j) + ln

(〈t(j)〉
�r

)
;

where c(j)=− ∫
p(z) lnp(z) dz, and p(z) is the probability distribution function of the rescaled

exit time z(j) = t(j)=〈t(j)〉. Finally, using the previous relations, one obtains the following
bounds for the j-entropy:

h ({ki})
〈t(j)〉 6 h(j)6 h ({ki}) + c(j) + ln(〈t(j)〉=�r)

〈t(j)〉 : (C.5)

Note that such bounds are relatively easy to compute and give a good estimate of h(j). In
particular, as far as the scaling behavior of h(j) is concerned, the exit-time method allows
for very eJcient and good estimates of the scaling exponent. The reason is that at <xed j,
〈t(j)〉 automatically selects the typical time at that scale. Consequently, it is not necessary to
reach very large block sizes—at least if j is not too small. So that the leading contribution
is given by 〈t(j)〉, and h (j; �r) introduces, at worst, a sub-leading logarithmic contribution
h (j; �r) ∼ ln(〈t(j)〉=�r) (see Eq. (C.5)).
In Refs. [3,4] one can found the details of the derivation and some applications.

Appendix D. Synthetic signals for turbulence

In this appendix we recall some recently introduced methods for generating multi-aJne
stochastic signals [27,29], whose scaling properties are fully under control. The <rst step con-
sists in generating a 1-dimensional signal, and the second in decorating it such as to build the
most general (d + 1)-dimensional process, v(x; t), with given scaling properties in time and
in space.
For the 1-dimensional case there are at least two di#erent kind of algorithms. One is based on

a dyadic decomposition of the signal in a wavelet basis with a suitable assigned series of stochas-
tic coeJcients [27]. The second is based on a multiplication of sequential Langevin-processes
with a hierarchy of di#erent characteristic times [29].
The <rst procedure suits particularly appealing for modeling of spatial turbulent 8uctuations,

because of the natural identi<cation between wavelets and eddies in the physical space. The
second one looks more appropriate for mimicking the turbulent time evolution in a <xed point
of the space.

D.1. Reproducing the spatial properties or the temporal ones

A non-sequential algorithm for 1-dimensional multi-aJne signal in [0; 1], v(x), can be intro-
duced as [27]

v(x) =
N∑

n=1

2(n−1)∑
k=1

an;k’
(
x − xn;k

‘n

)
; (D.1)

where we have a set of reference scales ln=2−n and ’(x) is a wavelet-like function [77], i.e. of
zero mean and rapidly decaying in both real space and Fourier-space. The signal v(x) is built in
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terms of a superposition of 8uctuations, ’((x− xn;k)=ln) of characteristic width ln and centered
in di#erent points of [0; 1], xn;k = (2k + 1)=2n+1. In [29] it has been proved that provided the
coeJcients an;k are chosen by a random multiplicative process, i.e. the daughter is given in
terms of the mother by a random process, an+1; k′ = Xan;k with X a random number identical,
independent distributed for any {n; k}, then the result of the superposition is a multi-aJne
function with given scaling exponents, namely

T|v(x + R)− v(x)|pU ∼ R F(p) ;

with F(p)=−p=2− log2〈Xp〉 and lN 6 R6 1. In this appendix, 〈·〉 indicates the average over
the probability distribution of the multiplicative process.
Besides the rigorous proof, the rationale for the previous result is simply that due to the

hierarchical organization of the 8uctuations, one may easily see that the term dominating the
expression of a velocity 8uctuation at scale R, in (D.1) is given by the couple of indices {n; k}
such that n ∼ log2(R) and x ∼ xn;k , i.e. v(x + R) − v(x) ∼ an;k . The generalization (D.1) to
d-dimension is given by

v(x) =
N∑

n=1

2d(n−1)∑
k=1

an;k ’
(
x − xn;k

ln

)
;

where now the coeJcients {an;k} are given in terms of a d-dimensional dyadic multiplicative
process.
On the other hand, as previously said, sequential algorithms look more suitable for mim-

icking temporal 8uctuations. Let us now discuss how to construct these stochastic multi-aJne
<elds. With the application to time 8uctuations in mind, we will denote now the stochastic
1-dimensional functions with u(t). The signal u(t) is obtained by a superposition of functions
with di#erent characteristic times, representing eddies of various sizes [29]:

u(t) =
N∑

n=1

un(t) : (D.2)

The functions un(t) are de<ned by the multiplicative process

un(t) = gn(t)x1(t)x2(t) : : : xn(t) ; (D.3)

where the gn(t) are independent stationary random processes, whose correlation times are sup-
posed to be �n = (ln)=, where = = 1 − h (i.e. �n are the eddy-turn-over time at scale ln) in
the quasi-Lagrangian frame (Ref. [152]) and = = 1 if one considers u(t) as the time signal in
a given point, and 〈g2n〉 = (ln)2h, where h is the HVolder exponent. For a signal mimicking a
turbulent 8ow, ignoring intermittency, we would have h = 1

3. Scaling will appear for all time
delays larger than the UV cuto# �N and smaller than the IR cuto# �1. The xj(t) are inde-
pendent, positive de<ned, identical distributed random processes whose time correlation decays
with the characteristic time �j. The probability distribution of xj determines the intermittency
of the process.
The origin of (D.3) is fairly clear in the context of fully developed turbulence. Indeed we

can identify un with the velocity di#erence at scale ln and xj with (4j=4j−1)1=3, where 4j is the
energy dissipation at scale lj [29].
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The following arguments show that the process de<ned according to (D.2) and (D.3) is
multi-aJne. Because of the fast decrease of the correlation times �j = (lj)=, the characteristic
time of un(t) is of the order of the shortest one, i.e., �n=(ln)=. Therefore, the leading contribution
to the structure function S̃q(�) = T|u(t + �) − u(t)|qU with � ∼ �n stems from the nth term in
(D.2). This can be understood as that in u(t + �) − u(t) =

∑N
k=1 [uk(t + �) − uk(t)] the terms

with k 6 n are negligible because uk(t + �) � uk(t) and the terms with k ¿ n are sub-leading.
Thus one has

S̃q(�n) ∼ 〈|un|q〉 ∼ 〈|gn|q〉〈xq〉n ∼ �hq==−log2〈x
q〉==

n (D.4)

and therefore for the scaling exponents:

Fq =
hq
=

− log2〈xq〉
=

: (D.5)

The limit of an aJne function can be obtained when all the xj are equal to 1. A proper proof
of these result can be found in [29].
Let us notice at this stage that the previous “temporal” signal for ==1−h is a good candidate

for a velocity measurements in a Lagrangian, co-moving frame of Ref. [152]. Indeed, in such a
reference frame the temporal decorrelation properties at scale ln are given by the eddy-turn-over
times �n=(ln)1−h. On the other hand, in the laboratory reference frame the sweeping dominates
the time evolution in a <xed point of the space and we must use as characteristic times of the
processes xn(t) the sweeping times �(s)n = ln, i.e., == 1.

D.2. Reproducing both the spatial and the temporal properties

We have now all the ingredients to perform a merging of temporal and spatial properties of
a turbulent signal in order to de<ne stochastic processes able to reproduce in a realistic way
both spatial and temporal 8uctuations (5.30) and (5.31). We just have to merge in a proper
way the two previous algorithms.
For example, for a d-dimensional multi-aJne <eld such as, say, one of the three components

of a turbulent <eld in a Lagrangian reference frame we can use the following model:

vL(x; t) =
N∑

n=1

2d(n−1)∑
k=1

an;k(t)’
(
x − xn;k

ln

)
; (D.6)

where the temporal dependency of an;k(t) is chosen following the sequential algorithm while its
spatial part are given by the dyadic structure of the non-sequential algorithm. In (D.6) we have
used the notation vL(x; t) in order to stress the typical Lagrangian character of such a <eld.
We are now able to guess a good candidate for the same <eld measured in the laboratory-

reference frame, i.e. where the time properties are dominated by the sweeping of small scales
by large scales. Indeed, in order to reproduce the sweeping e#ects one needs that the centers
{xn;k} of the wavelets-like functions move according a swept dynamics.
To do so, let us de<ne the Eulerian model

vE(x; t) =
N∑

n=1

2d(n−1)∑
k=1

an;k(t)’
(
x − xn;k(t)

ln

)
; (D.7)
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where the di#erence with the previous de<nition is in the temporal dependency of the cen-
ters of the wavelets, xn;k(t). According to the Richardson–Kolmogorov cascade picture, one
assumes that sweeping is present, i.e., xn;k = xn−1; k′ + rn;k where (n; k ′) labels the “mother”
of the (n; k)-eddy and rn;k is a stochastic vector which depends on rn−1; k′ and evolves with
characteristic time �n ˙ (ln)1−h. Furthermore, its norm is O(ln): c1¡ |rn;k |=ln ¡c2 where c1
and c2 are constants of order 1.
We now see that if we measure in one <xed spatial point a 8uctuation over a time delay \t, is

like to measure a simultaneous 8uctuations at scale separation R=U\t, i.e. due to the sweeping
the main contribution to the sum will be given by the terms with scale-index n=log2(R=U\t)
while the temporal dependency of the coeJcients {an;k(t)} will be practically frozen on that time
scale. Therefore, one has the proper spatial and temporal statistics, see Ref. [4] for details. This
happens because in presence of sweeping the main contribution is given by the displacement
of the center at large scale, i.e. �r0 = |r0(t+\t)− r0(t)| ∼ U\t, and the eddy turnover time at
scale ln is O((ln)1−h) always large that the sweeping time O(ln) at the same scale.
In the previous discussion for the sake of simplicity we did not consider the incompressibility

condition. However one can take into account this constraint by the projection on the solenoidal
space.
In conclusion we have a way to build up a synthetic signal with the proper Eulerian

(laboratory) properties, i.e. with sweeping, and also with the proper Lagrangian properties.
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