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Mixing of a passive scalar in the peripheral region close to a wall is investigated by
means of accurate direct numerical simulations of both a three-dimensional Couette
channel flow at low Reynolds numbers and a two-dimensional synthetic flow. In both
cases, the resulting phenomenology can be understood in terms of the theory recently
developed by Lebedev & Turitsyn (Phys. Rev. E, vol. 69, 2004, 036301). Our results
prove the robustness of the identified mechanisms responsible for the persistency of
scalar concentration close to the wall with important consequences in completely
different fields ranging from microfluidic applications to environmental dispersion
modelling.

Mixing of passive tracer in a turbulent flow is a fundamental problem of great
technological interest which has undergone a significant theoretical progress in the last
years (see Shraiman & Siggia 2000; Falkovich, Gawȩdzki & Vergassola 2001). At low
diffusivity and small scales the viscous-convective Batchelor regime of mixing arises
for a large value of the Schmidt number Sc = ν/κ , where ν is the kinematic viscosity
and κ the molecular diffusivity (Batchelor 1959). In this regime the velocity field can
be considered smooth because of the exponential decay of the velocity spectrum. An
analogous situation is realized if the tracer is advected by a time-dependent chaotic
flow, i.e. a spatially smooth flow at all scales. Several theoretical predictions, including
the exponential decay in time of passive scalar fluctuations, given by Pierrehumbert
(1994), Balkovsky & Fouxon (1999), Son (1999) and Haynes & Vanneste (2005),
have been verified in experiments and numerical simulations by Williams, Marteau &
Gollub (1997) and Groisman & Steinberg (2001).

Recently, it has been shown that the presence of boundaries can alter significantly
the predictions based on an unbounded domain. No-slip boundary condition for the
velocity field reduces the efficiency of mixing close to the boundary – the peripheral
region – which becomes a source of passive scalar. This effect is of particular
importance in the case of boundary-dominated geometries, such as in microfluidics.
Indeed, it is well known that the lack of efficient mixing is one of the problems in
many microfluidic devices which operate at vanishing Reynolds number (see Squires
& Quake 2005). Several statistical predictions for the peripheral mixing have been
recently made by Chertkov & Lebedev (2003) and Lebedev & Turitsyn (2004) and
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Figure 1. Snapshot of passive tracer concentration close to a wall placed on the top. White
correspond to high concentration, black to low concentration. The initial condition is a step
function in the vertical direction. Tracers are advected according to (1) with a two-dimensional
synthetic velocity field.

checked with laboratory experiments in a chaotic microchannel by Simonnet &
Groisman (2005), in polymer solutions by Burghelea, Segre & Steinberg (2006) and
in kinematic simulations by Salman & Haynes (2007).

In this paper, we will discuss the problem of tracer mixing in presence of boundaries
by means of direct numerical simulation of a Couette flow at small Reynolds number
and in kinematic simulations of a chaotic flow. Before discussing quantitative results,
we can have a physical intuition from figure 1 which shows a snapshot of tracer
concentration advected by a two-dimensional chaotic flow. Because of the vanishing
velocity, the tracer persists for very long time close to the boundary from which it is
only intermittently transported into the bulk in the form of elongated filaments.

A passive scalar θ advected by an incompressible velocity field u obeys the equation

∂θ

∂t
+ u · ∇θ = κ∇2θ, (1)

where κ is the molecular diffusivity, and appropriate initial and boundary conditions
are set for θ . In general u is subject to its own set of equations, the typical case being
Navier–Stokes equations, together with boundary conditions and stirring mechanism
which therefore determine the precise form of u close to the boundary. However,
some general predictions on the evolution of θ can be made on the basis of the
no-slip conditions and incompressibility only, assuming the flow to have a short
correlation time with respect to the typical mixing time. To simplify the notation, but
without loss of generality, we assume the flow to be two-dimensional, with (x, y) the
coordinates parallel and normal to the wall (y = 0 corresponding to the wall) and
(u, v) the associated velocity components.

As a consequence of no slip (u(x, y =0) = 0) and incompressibility (∇ · u = 0)
conditions, there is a region close to the wall, characterized by the scaling 〈u2(y)〉 ∼ y2
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and 〈v2(y)〉 ∼ y4 (where by 〈·〉 we indicate the double average with respect to the
coordinates parallel to the wall and velocity realizations). The velocities in the bulk
of the container or duct are therefore much more intense with respect to the ones in
the layers close to the wall, and the passive scalar evolution becomes faster and faster
as one moves away from the wall. Starting from these considerations, it is possible to
describe the evolution of a passive tracer initially concentrated in a layer of thickness
δ close to the wall in terms of a turbulent diffusivity. Averaging (1), the equation for
the y-evolution of the scalar profile is

∂t〈θ〉 = μ∂y[y
4∂y〈θ〉] + κ∂2

y 〈θ〉. (2)

The first term on the right-hand side of (2) describes the role of chaotic advection in
terms of an eddy diffusivity D =

∫ ∞
0

〈v(y, 0)v(y, t)〉dt , whose leading behaviour close

to the wall defines μ as D = μy4. Comparison with the second term on the right-hand
side of (2) suggests that the evolution of the profile is dominated by advection as
long as δ � rbl = (κ/μ)1/4, the thickness of the diffusive boundary layer. Under this
condition, the diffusive contribution can be neglected and (2) becomes

∂t〈θ〉 = μ∂yy
4∂y〈θ〉. (3)

Taking as initial condition for the scalar a distribution concentrated at the wall
with θ(x, 0; 0) = 1 and limy→∞ θ(x, y; t) = 0, the asymptotic solution of (3) for large
times according to Lebedev & Turitsyn (2004) is

〈θ(y, t)〉 =

[
erf

(
δ

2y

)
− δ√

πy
exp

(
− δ2

4y2

)]
, (4)

i.e. the profile has a universal form, independently on the details of the initial
distribution. The thickness δ = (μt)−1/2 is the only characteristic scale and decreases
in time, as the layer occupied by the scalar contracts in the evolution. It is important
to remark that the specific form of the profile (4) gives a practically constant
concentration for y � δ/4, making the boundary conditions for the scalar irrelevant
in the advective stage. We remark that although (1) obviously conserves the average
scalar 〈θ〉, from (4) one has that

∫
〈θ(y, t)〉dy = δ(t)/

√
π 
 t−1/2 is time dependent. The

reason is that in deriving (4) the bulk is considered as an infinite reservoir for the
scalar which has therefore zero average.

Neglecting diffusion, the advection equation (1) holds for any local function of θ

too and therefore its average is governed by a generalization of (3). In particular
the moments of scalar concentration 〈θn〉 are expected to follow the same profile (4)
independently of n. This is the mathematical consequence of the intermittent nature
of scalar advection shown in figure 1 in which 〈θn〉 is dominated by the white regions
in which θ = 1. In Lebedev & Turitsyn (2004) an expression for the probability density
function (PDF) valid for any time and distance from the wall was also derived

P (θ, y, t) =
1

yy0|θ ′
0(y0)|

[
(1 − 2μtyy0)g

(
1

y
− 1

y0

)
+ (1 + 2μtyy0)g

(
1

y
+

1

y0

)]
,

(5)

where g(x) is a Gaussian distribution with zero mean and variance 2μt and the
dependence on θ is defined implicitly through the monotonic homogeneous along
the wall initial profile: θ0(y0) = θ (note that large θ correspond to small y0). At
variance with (4), which is valid only asymptotically in time, the prediction for the
PDF is valid for any times as it depends on the details of the initial distribution. It is
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interesting to observe that (5) predicts that P (θ =1, y, t) = 0 for any y > 0: in the
absence of diffusion it takes an infinite time for the scalar to be transported away
from the wall.

We have tested the above theoretical predictions by means of numerical simulations
of a three-dimensional Couette flow and a synthetic two-dimensional flow. For
the first case, the Navier–Stokes equations have been numerically integrated in a
three-dimensional slab geometry of dimension Lx × 2Ly × Lz with no-slip boundary
conditions on the two planes y = 0 and y = 2Ly , and periodic boundary conditions
on the streamwise and spanwise directions x and z. The flow is forced by the
relative motion of the two opposed walls with opposite velocity ±U0, from which a
large-scale Reynolds number is defined as Re = U0Ly/ν. Direct numerical simulations
are performed by means of a standard pseudo-spectral Fourier–Chebyshev code (see
Canuto et al. 1988; De Lillo & Eckhardt 2007) at resolution 128×65×128 for a domain
of size Lx ×2Ly ×Lz =8×2×8. We use a moderate Reynolds number Re 
 600, which
is sufficiently large to sustain a turbulent-like motion for long time (Malerud, Måløy
& Goldburg 1995) but still small in order to have a well-developed viscous layer where
scaling imposed by boundaries is observed. The average wall shear rescaled with mean
shear is s0/(U0/Ly) 
 3.3, the rescaled friction velocity u∗/U0 =

√
νs0/U0 
 0.074 and

the friction Reynolds number Re∗ 
 44. Scales and times are made dimensionless with
the half-channel height Ly and large scale time T = Ly/U0.

In order to avoid the effects of diffusivity and increase the available observation
range, the simulation of the tracer advection (1) was carried out with a Lagrangian
method: trajectories of N = 107 particles, representing the concentration of tracer,
are integrated according to the equation ẋ(t) = u(x, t). The initial condition for the
particles is a uniform distribution in the x- and z-directions in a layer close to the
wall y � 0.04Ly . Continuous tracer distribution θ(x, t) is reconstructed at every time
proportional to local tracer density on the grid. The advantage of the present method
is the possibility to perform the simulation at Schmidt number virtually infinite
(although a small numerical diffusion is always present), at the price of some noise
in the reconstruction of small scales due to the discreteness of the tracer.

In figure 2 we plot the mean profile 〈θ(y, t)〉 at different times compared with
the theoretical curve (4). The value of the thickness δ at different time is obtained
from the fit of the profiles with (4) and its dependence on t is compatible with the
prediction δ =(μt)−1/2, from which μ 
 3.2 is estimated.

Figure 2 shows that scalar profiles in the bulk deviate from the theoretical
curve at large y. This is because, even if the value of Re is small, the y4 scaling
characteristic of the viscous layer, can be observed only up to a distance y ∼ 0.1Ly

from the wall. Therefore, in order to extend the range of scaling, we performed
an additional set of simulations based on a kinematic model for the velocity field.
We define a two-dimensional velocity field in terms of a synthetic stream function
Ψ (x, y) = Φ(x, y)G(y), where Φ = sin(kxx + ϕx(t)) sin(kyy + ϕy(t)) represents a time-
dependent cellular flow while G(y) is tailored to reproduce the correct scaling at the
wall. If G ∼ y2 for y close to the wall, the scaling of both components of the velocity
is ensured. We chose G(y) 
 [1 − cos(ksy))] close to each wall, with ks = π/(2Ls) and
the position Ls of the inflection point defining the width of the scaling region for
the velocity y � Ls which is the region of interest. In the bulk, a matching function
connects the profiles. The phases of the cellular flow ϕx and ϕy are given by a random
process with a finite correlation time. The velocity field generated by Φ is placed on a
grid of size Lx = π and 2Ly = 4π at resolution 512 × 2048 where the evolution of (1)
is integrated by means of a pseudo-spectral code, with periodic boundary conditions.
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Figure 2. Profile of the scalar density θ at different times (t = 40, 60, 80 and 100) in the
Couette channel rescaled with respect to δ(t) and compared with the theoretical prediction (4)
(continuous line). The inset shows the fitted values of δ at different times and the prediction
δ 
 t−1/2.
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Figure 3. Average profile of the scalar density θ at different times rescaled with respect to δ
and the bulk average b (see text) and compared with (4) (continuous line). In the inset, the
thickness of the profile is shown together with the prediction t−1/2 dependence.

This numerical approach is similar to that used by Salman & Haynes (2007) and
Chernykh & Lebedev (2008). Scaling regions extend approximately to Ls = 4. The
time unit is chosen so that the correlation time of the velocity field is T = 1. In these
units we have μ 
 2.66 and κ = 3.42 × 10−6 and therefore the width of the diffusive
boundary layer is rbl 
 0.034Ly . As initial condition, we choose a distribution null in
the bulk and concentrated at the walls in two smoothed-step functions of size Ly/4.
The results are based on ensemble average over 100 realizations of the random noise
driving the kinematic velocity field.

In figure 3 the profile 〈θ(y, t)〉 is compared, at different times, with the theoretical
curve. In order to accurately resolve the region close to the wall, the extension of
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Figure 4. Average profiles of moments of scalar density 〈θn〉 for n= 1 (+), n= 2 (×), n= 4
(∗) and n= 6 (�) at time t =18T in the two-dimensional kinematic simulation.

the domain in the bulk is not large enough for the approximation of an infinite bulk
to be valid. Therefore, because of the conservation of 〈θ〉, after a short transient
a relevant amount of scalar accumulates in the central region of the domain, thus
affecting the overall shape of the profile. In order to compare the numerical results
with the theoretical prediction based on an infinite basin, we computed the profile
of the auxiliary field θ̃ =(θ − b)/(1 − b), where b(t) is the time-dependent value of
θ in the bulk (averaged over x). Figure 3 shows the remarkable agreement obtained
between theory and numerics, indicating that the profile (4) can be easily extended
to the general case of advection in a finite vessel. From the fitting procedure we get
the values of the parameter δ, which is found to follow accurately the prediction
δ(t) = (μt)−1/2 with μ 
 2.13 (see inset of figure 3).

Figure 4 shows the profiles of different moments of scalar concentration 〈θn(y, t)〉
computed at an intermediate time. All the moments collapse on the prediction (4),
confirming the fact that in this stage diffusion is negligible and mixing of the scalar
is dominated by eddy diffusivity according to (3).

We have also computed the PDF P (θ, t, y) of the passive scalar. The results,
at a distance y = Ly/4 from the wall, corresponding to the thickness of the initial
distribution, are shown in figure 5 for two different times. At very short time the PDF
is peaked around the initial condition ϑ0/2. Observe that the distribution is much
more narrow than the one theoretically predicted by (5), because the eddy diffusivity
approximation (2) is not justified at short times.

At longer time the PDF forms two pronounced peaks at the extreme values which
are responsible for the saturation of the moments of θ , since the peak in θ = 1 gives a
dominant contribution to any 〈θn〉. Physically the presence of the two peaks is related
to long tongues protruding from the wall region into the bulk. Advection stretches
such structures, while preserving the value of θ , the smoothing effect of molecular
diffusivity becoming effective only on longer times.

In conclusion, our results for both the three-dimensional channel flow and the
two-dimensional synthetic flow are accurately explained by the theoretical description
developed by Lebedev & Turitsyn (2004). Our results emphasize the importance of
a correct description of the close-to-the-wall region where a scalar field tends to
persist. The incorrect reproduction of near-wall scaling behaviour u(y) ∝ y and v(y)
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Figure 5. PDFs of the scalar density in the kinematic simulation at y = Ly/4, corresponding
to the thickness of the initial distribution at times t =0.02 (+) and t = 3.0 (×). Lines show
theoretical predictions.

∝ y2 necessarily destroys the above mechanism. This might be a serious problem in
applications of environmental dispersion modelling under strong stability conditions
where the viscous layer can reach values of orders of metres thus affecting the realm
of human activities. A poor (in term of resolution) description of this region would
result in a dangerous underestimation of the level of pollutants concentration close
to the ground.
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