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ABSTRACT

The predictability problem for systems with different characteristic timescales is investigated. It is shown that
even in simple chaotic dynamical systems, the leading Lyapunov exponent is not sufficient to estimate the
predictability time. This fact is due to the saturation of the error on the fast components of the system, which
therefore do not contribute to the exponential growth of the uncertainty at large error levels. It is proposed to
adopt a generalization of the Lyapunov exponent that is based on the natural concept of error growing time at
fixed error size. The predictability time defined in terms of the finite size Lyapunov exponent displays a strong
dependence on the error magnitude, as already recognized by other authors.

The method is first illustrated on a simple numerical model obtained by coupling two Lorenz systems with
different timescales. As a more realistic example, the analysis is then applied to a ‘‘toy’’ model of the atmospheric
circulation recently introduced by Lorenz.

1. Introduction

The prediction of the future state of a system knowing
its initial conditions is a fundamental problem with ob-
vious applications in geophysical flows (Leith 1971,
1975; Leith and Kraichnan 1972; Leith 1978; Dalcher
and Kalnay 1987; Chen 1989; Farrell 1990). There are
many limitations to the ability of predicting the state of
a geophysical system, for example, the atmosphere; one
of the most important is the lack of knowledge, or the
difficulty of full implementation, of the equations of
motion. Still, even if one assumes a perfect knowledge
of the equation of motion and sufficiently large com-
puters, the predictability can be severely limited by the
dynamics itself, that is, the ‘‘intrinsic predictability’’ of
a system, which is the subject of our study.

A well known, and very popular, example of a low
predictable system is given by a chaotic system (Lorenz
1963). By definition, chaotic dynamical systems display
sensitive dependence on initial conditions: two initially
close trajectories will diverge exponentially in the phase
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space with a rate given by the leading Lyapunov ex-
ponent lmax (see Eckmann and Ruelle 1985). Because
the initial conditions can be measured only with a finite
uncertainty d, we can forecast the future state of the
system at a tolerance level, D, only up to a maximum
time,

1 D
T ; ln . (1)p 1 2l dmax

One important consequence of Eq. (1) is that the pre-
dictability time has a very weak dependence on the
accuracy of the initial condition and on the tolerance;
therefore the predictability time is an intrinsic quantity
of the system just as the Lyapunov exponent is.

The naive formula (1) for the predictability time holds
only for infinitesimal perturbations and in nonintermit-
tent systems; in the general case one has a series of
problems and subtle points that have been the object of
several studies in the last years (Crisanti et al. 1993a,b;
Aurell et al. 1996, 1997). One delicate issue is partic-
ularly relevant for our present study and essentially says
that, although the Lyapunov exponent for the atmo-
sphere (as a whole) is presumably rather large (due to
the small-scale turbulence), the large-scale behavior of
the system can be forecasted with good accuracy for
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several days (Lorenz 1969; Lorenz 1982; Simmons et
al. 1995).

The apparent paradox stems from the identification
of the predictability time with the inverse of the Lya-
punov exponent based on Eq. (1), which is actually of
little relevance even in few-degree-of-freedom dynam-
ical systems. Indeed, in the presence of different char-
acteristic timescales, as is the case in any realistic model
of geophysical flows, the Lyapunov exponent will be
roughly proportional to the inverse smallest character-
istic time. This time is associated to the smallest, low-
energy-containing scales that, as soon as their error
reaches the saturation, do not play a role any more in
the error growth law. Large errors will grow, in general,
with the characteristic time of the largest energy-con-
taining scales (Leith 1971; Leith and Kraichnan 1972).
Thus when the initial uncertainty is not very small, as
is often the case in a predictability experiment, the lead-
ing Lyapunov exponent may play no role at all (Toth
and Kalnay 1993).

To be more quantitative, in this paper we investigate
the predictability problem in systems with two time-
scales. We apply a recently introduced generalization of
the Lyapunov exponent to finite perturbations. We will
show that the ‘‘finite size Lyapunov exponent’’ (FSLE)
is more suitable for characterizing the predictability of
complex systems, in which the growth rate of large er-
rors is not ruled by the Lyapunov exponent.

The models considered here are crude approximations
of a realistic geophysical flow also because both the
subsystems (representing large-scale and small-scale
dynamics) have a single timescale. It would be inter-
esting to extend our investigation to more realistic sit-
uations and comparing the latter case with present re-
sults.

The remainder of the paper is organized as follows:
in section 2 we introduce the finite size Lyapunov ex-
ponent, which is applied to the system models in section
3. Section 4 is devoted to conclusions.

2. The finite size Lyapunov exponent

The notion of the Lyapunov exponent is based on the
average rate of exponential separation of two infinites-
imally close trajectories in the phase space:

1 dx(t)
l 5 lim lim ln , (2)max t dx(0)t→` dx(0)→0

where dx(t) is the distance between the trajectories with
a suitable norm and the two limits cannot be inter-
changed. The standard algorithm (Benettin et al. 1980)
for computing the Lyapunov exponent is based on (2),
with the trick of a periodical rescaling of the two tra-
jectories in order to keep their separation distance ‘‘in-
finitesimal.’’

As already discussed in the previous section, the sec-
ond limit in (2) is of dubious interest in the predictability
problem because the initial uncertainty of the system

variables is in general not infinitesimal. Therefore one
would like to relax the infinitesimal constraint, still
maintaining some well-defined mathematical properties.
Recently, a generalization of (2) that allows one to com-
pute the average exponential separation of two trajec-
tories at finite errors d has been introduced (Aurell et
al. 1997). The finite size Lyapunov exponent l(d) is
based on the concept of error growing time Tr(d), which
is the time it takes for a perturbation of initial size d to
grow by a factor, r. The ratio r should not be taken too
large, in order to avoid the growth through different
scales. The error growing time is a fluctuating quantity
and one has to take the average along the trajectory as in
(2). The finite size Lyapunov exponent is then defined as

1 1
l(d) 5 lnr 5 lnr, (3)7 8T (d) ^T (d)&r t r

where ^. . .&t denotes the natural measure along the tra-
jectory and ^. . .& is the average over many realizations.
The second equality comes from the definition of the
time average along a trajectory for a generic quantity,
A(t),

A tOT i i1 ^At&i^A& 5 A(t) dt 5 5 (4)t ET ^t&tO i0
i

in the particular case of A 5 1/t (Aurell et al. 1997).
In the limit of infinitesimal perturbations, d → 0,

definition (3) reduces to that of the leading Lyapunov
exponent (2). In practice, l(d) displays a plateau at the
value lmax for sufficiently small d.

To practically compute the FSLE, one has first to
define a series of thresholds, dn 5 rnd0, and to measure
the time Tr(dn) that a perturbation with size dn takes to
grow up to dn11. The time Tr(dn) is obtained by follow-
ing the evolution of the perturbation from its initial size
dmin up to the largest threshold dmax. This is done by
integrating two trajectories of the system that start at
an initial distance dmin. In general, one must take dmin

K d0, in order to allow the direction of the initial per-
turbation to align with the most unstable direction in
the phase space. The FSLE l(dn) is then computed by
averaging the error growing time over several realiza-
tions according to (3).

Note that the FSLE has conceptual similarities with
the e entropy. This latter measures the bandwidth that
is necessary for reproducing the trajectory of a system
within a finite accuracy d. The e-entropy approach has
already been applied to the analysis of simple systems
and experimental data (Gaspard and Wang 1993), giving
interesting results. The calculation of the e entropy is,
however, much more expensive from a computational
point of view and of little relevance for the predictability
problem.

The computation of the FSLE gives information on
the typical predictability time for a trajectory with initial
uncertainty d. To be more quantitative, we can introduce
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the average predictability time for an initial error d and
a given tolerance, D, as the average error growing time,
that is,

D d lnd9
T 5 , (5)p E l(d9)

d

which reduces to (1) in the case of constant l. From
general considerations, one expects that l(d) is a de-
creasing function of d and thus (5) gives longer pre-
dictability time than (1).

3. The models

We now discuss the application of the FSLE analysis
to two relatively simple dynamical systems presenting
different characteristic timescales. The proposed models
are of little physical relevance; they should rather be
considered as prototypical models for the predictability
problem in complex flows.

The first example is obtained by coupling two Lorenz
models (Lorenz 1963), the first representing the slow
dynamics and the second the fast dynamics:

(s)dx1 (s) (s)5 s(x 2 x )2 1dt
(s)dx2 (s) (s) (s) (s) ( f ) ( f )5 (2x x 1 r x 2 x ) 2 e x x1 3 s 1 2 s 1 2dt
(s)dx3 (s) (s) (s)5 x x 2 bx 1 2 3dt

 (6)
( f )dx1 ( f ) ( f )5 cs(x 2 x )2 1dt
( f )dx2 ( f ) ( f ) ( f ) ( f ) ( f ) (s)5 c(2x x 1 r x 2 x ) 1 e x x1 3 f 1 2 f 1 2dt
( f )dx3 ( f ) ( f ) ( f )5 c(x x 2 bx ).1 2 3dt

The choice of the form of the coupling is constrained
by the physical request that the solution remains in a
bounded region of the phase space. Since

( f ) 2 ( f ) 2 ( f ) 2d (x ) (x ) (x )1 2 3 ( f )e 1 1 2 (r 1 1)xs f 35 1 2dt 2s 2 2

(s) 2 (s) 2 (s) 2(x ) (x ) (x )1 2 3 (s)1 e 1 1 2 (r 1 1)x , 0,f s 31 262s 2 2

(7)

if the trajectory is far enough from the origin, it will
evolve in a bounded region of the phase space. The
parameters have the values s 5 10, b 5 8/3, and c 5
10, the latter giving the relative timescale between fast
and slow dynamics. The two Rayleigh numbers are
taken differently, rs 5 28 and rf 5 45 for generality.

With the present choice, the two uncoupled systems
(es 5 e f 5 0) display chaotic dynamics with Lyapunov

exponents l ( f ) . 12.17 and l (s) . 0.905, respectively,
and thus a relative intrinsic timescale of order 10.

By switching on the couplings es and e f we obtain a
single dynamical system whose maximal Lyapunov ex-
ponent lmax is close (for small couplings) to the Lya-
punov exponent of the faster decoupled system (l ( f )).
We will consider a single realization of the couplings,
with e f 5 10 and es 5 1022. The global Lyapunov
exponent is found to be in this case lmax . 11.5, which
is indeed close to l ( f ) in the uncoupled case. With the
present choice of the couplings, the fast dynamics is
driven by means of the effective Rayleigh number reff

5 rf 1 e f (t)/c and one can recognize in the time(s)x2

evolution the slow-varying component of the driver (see
Fig. 1).

With regard to predictability, one expects reasonably
that for small coupling es the slow component of the
system xs remains predictable up to its own character-
istic time. On the other hand, for any coupling e ± 0
we obtain a single dynamical system in which the errors
grow with the leading Lyapunov exponent lmax . l ( f ) .
The apparent paradox stems from saturation effects that
become apparent as soon as one is interested in non-
infinitesimal errors.

We have integrated two trajectories of (6) starting
from very close initial conditions. One trajectory rep-
resents the ‘‘true’’ (reference) trajectory x and the other
is the forecast (perturbed trajectory x9) subjected to an
initial error, dx(0). The error is computed here by means
of the Euclidean distance in the phase space

2 2 1/2dx(t) 5 (dx (t) 1 dx (t) )f s

1/23 3

( f ) ( f ) 2 (s) (s) 25 (x9 2 x ) 1 (x9 2 x ) . (8)O Oi i i i[ ]i51 i51

Figure 2 reports the results for the error growth, av-
eraged over 500 experiments, with dxf (0) 5 1028 and
dxs(0) 5 10212. We observe that the relative magnitude
of the initial errors is irrelevant for what concerns small
errors because the error direction in the phase space will
be rapidly aligned toward the most unstable direction.
For small times (t # 2), both the errors can be consid-
ered infinitesimal and the growth rate is thus given by
the global Lyapunov exponent lmax. This is the linear
regime for the error growth in which the Lyapunov ex-
ponent is the relevant parameter for the predictability.
For larger times, the fast component of the error, dxf ,
reaches the saturation; the trajectory separation evolves
now according to the full nonlinear equations of motion
and the growth rate for the slow component is strongly
reduced. From Fig. 2 one observes that the slow com-
ponent error dxs is still well below its saturation value
and grows with a rate close to its characteristic inverse
time l (s) .

We now apply the FSLE algorithm to the slow com-
ponent of the error, dxs (Fig. 3). We define a series of
m 5 25 thresholds starting from d0 5 1026 with ratio
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FIG. 1. Time series of the slow variable (lower curve) and of the fast variable (upper curve) on(s) ( f)x x2 3

the attractor.

FIG. 2. Typical error growth for the fast component dxf (upper curve) and for the slow component dxs

in the coupled Lorenz models with dxf (0) 5 1028 and dxs(0) 5 10212, averaged over 500 samples. In order
to detect the typical behavior we compute the average of the logarithm. The dashed lines show the
exponential growths with exponents l(f ) and l(s).
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FIG. 3. FSLE for the two coupled Lorenz models computed from the slow variables. The parameters
for the computation are d0 5 1026, m 5 25, r 5 2, and N 5 500. The two horizontal lines represent the
uncoupled Lyapunov exponents l(f ) and l(s).

r 5 2. The results presented (Fig. 3) are obtained after
averaging over N 5 500 realizations. For very small d,
the FSLE recovers the leading Lyapunov exponent lmax,
indicating that in small error predictability the fast com-
ponent has indeed a dominant role. As soon as the error
grows above the coupling es, l(s) drops to a value close
to l (s) and the characteristic time of the small-scale dy-
namics is no more relevant.

It is clear that the transition to the second regime
[l(d) . l (s)] is observable only if the coupling es with
the fast dynamics is smaller than the saturation value
of the slow-component error. For large values of es the
fast-scale dynamics dominates the slow-scale dynamics
and one observes a single predictability regime.

In Fig. 4 we plot the slow-component predictability
time (5) for a fixed initial uncertainty dxs 5 1026 as a
function of the tolerance D. We observe, as expected,
an enhancement of Tp as soon as one accepts a tolerance
larger than the typical fast component fluctuation in the
slow time series. Observe that the application of (1)
would heavily underestimate the predictability time for
large tolerances (dashed line).

We now consider the second example. It is a more
complex system recently introduced by Lorenz (Lorenz
1996) as a ‘‘toy’’ model for the atmosphere dynamics
that includes explicitly both large scales (synoptic
scales, slow component) and small scales (convective
scales, fast component). The apparent paradox described
above can be reformulated here by saying that an at-
mospheric model with fine spatial resolution (which is

able to capture the small-scale dynamics) would be less
predictable than one with less spatial resolution (which
resolves only large-scale motion) and thus the latter
should be preferred for numerical weather forecasting.
We will see that, also in this case, the effect of the small,
fast-evolving scales becomes irrelevant for the predict-
ability of large-scale motion if one considers large er-
rors.

The model introduces a set of large-scale, slow-evolv-
ing variables xk and small-scale, fast-evolving variables
yj,k with k 5 1, . . . , K and j 5 1, . . . , J. As in Lorenz
(1996) we assume periodic boundary conditions on k
(xK1k 5 xk, yj,K1k 5 yj,k), while for j we impose yJ1j,k 5
yj,k11. The equations of motion are

Jdxk
5 2x (x 2 x ) 2 x 1 F 2 y ,Ok21 k22 k11 k j, kdt j51

dyj,k 5 2cby (y 2 y ) 2 cy 1 x , (9)j21,k j22,k j21,k j, k kdt

in which c represents again the relative timescale be-
tween fast and slow dynamics and b is a parameter that
controls the relative amplitude.

Let us note that (9) has the same qualitative structure
of a finite mode truncation of Navier–Stokes equations,
with quadratic inertial terms and viscous dissipation.
The coupling (with unit strength) is chosen in order to
have the energy
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FIG. 4. Predictability time for the slow component of the two coupled Lorenz models as a function of
the tolerance D. The initial error is fixed at d 5 1026. The dashed line represents the Lyapunov estimation
Tp ; l21 ln(D/d ).

K K J1
2 2E 5 x 1 y , (10)O O Ok j, k1 22 k51 k51 j51

conserved in the inviscid, unforced limit. The forcing
term drives only the large scales and we will consider
the case F 5 10, which is sufficient for developing
chaos.

We have performed the computation of the FSLE for
the system (9) with parameters as in Lorenz (1996): K
5 36, J 5 10, c 5 b 5 10, which imply that the typical
y variable is 10 times faster and smaller than the x vari-
able. In this case we choose to adopt for measuring the
error the global Euclidean norm on both the slow and
fast variables (energy norm): this is to mimic a realistic
situation in which we are not able to recognize a priori
the slow component in the system.

The result of the FSLE computation is displayed in
Fig. 5 after the average over N 5 1000 realizations with
initial error dmin 5 1025. We set m 5 20 thresholds with
d0 5 1023 and ratio r 5 21/2. For very small errors we
observe the saturation of l(d) to the leading Lyapunov
exponent of the system lmax . 9.9. For errors larger
than the typical rms value of the fast variables (^y2&1/2

. 0.25) we observe a second plateau at l . 0.5, cor-
responding to the inverse characteristic time of large
scales. We observe that the relative timescale between
fast and slow motions as computed by the FSLE is
slightly larger than the value of the parameter c. We
think that this effect is due to coupling, which cannot
here be assumed small as in the previous example.

In Fig. 6 we plot the predictability time (5) for fixed
initial uncertainty d 5 1023 and different tolerances. As
in the previous example, we find an enhancement of the
predictability time for large tolerances D with respect
to the Lyapunov exponent estimation. For large initial
errors (as it is usually the case in numerical weather
forecasting) the predictability time is thus independent
of the Lyapunov exponent.

4. Conclusions

We have shown that in systems that possess different
characteristic timescales, the predictability time can be
independent of the leading Lyapunov exponent. The lat-
ter is usually associated with the faster characteristic
time and dominates the exponential growth of infini-
tesimal errors. Large errors will evolve, in general, with
the large-scale characteristic time, which thus governs
large error predictability.

We have introduced a generalization of the Lyapunov
exponent that allows one to compute the average ex-
ponential error growth at a given error size, d. The finite
size Lyapunov exponent (FSLE) is expected to converge
to the leading Lyapunov exponent for very small errors.
For larger errors, l(d) decreases with d and thus the
FSLE analysis predicts an enhancement of the predict-
ability time as observed in several numerical experi-
ments.

We have illustrated these concepts on two model ex-
amples that possess different characteristic timescales.
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FIG. 5. FSLE computed for the toy atmospheric model. The parameters for the computation are: d0 5
1023, m 5 20, r 5 21/2, and N 5 1000.

FIG. 6. Predictability time for the toy atmospheric model as a function of the tolerance D. The initial
error is d 5 1023. The dashed line represents the Lyapunov-based estimation.

The numerical computation of the FSLE confirms the
predictability enhancement with respect to the Lyapu-
nov analysis.

Our results have a general significance that exceeds

the proposed models. In particular, whenever one can
identify in the system different features with different
intrinsic timescales, one expects that slow varying quan-
tities (i.e., large-scale features) are predictable longer
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than fast-evolving quantities. Moreover, our results sug-
gest that the estimation of the large-scale predictability
time in a general circulation model should not be af-
fected too much by the particular small-scale parame-
terization.
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