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We study the effects of dimensional confinement
on the evolution of incompressible Rayleigh–Taylor
mixing both in a bulk flow and in porous media
by means of numerical simulations of the transport
equations. In both cases, the confinement to two-
dimensional flow accelerates the mixing process and
increases the speed of the mixing layer. Dimensional
confinement also produces stronger correlations
between the density and the velocity fields affecting
the efficiency of the mass transfer, quantified by the
dependence of the Nusselt number on the Rayleigh
number.

This article is part of the theme issue ‘Scaling the
turbulence edifice (part 2)’.

1. Introduction
Space dimensionality affects many dynamical and
statistical properties of flows. Uriel Frisch pioneered
the studies of dimensional effects in fluid dynamics,
by investigating the phenomenology of turbulent flows
in fractal dimensions [1,2] and in infinite dimensions
[3]. In the case of turbulent flows at high Reynolds
number, the direction of the turbulent cascade of
kinetic energy depends on the dimension of the space.
In three dimensions, the energy is transferred from
large to small scales (direct cascade), while in two
dimensions the direction of the energy transfer is
inverted from small to large scales (inverse cascade)
[4–6]. Numerical [7,8] and experimental [9,10] studies of
turbulent flows confined in a thin layer have observed
the transition between the two-dimensional and three-
dimensional phenomenology, with an intermediate state
of coexistence of the two cascades. (for a recent review of
this subject, see [11]).

In this work, we investigate the role of the space
dimensionality in the Rayleigh–Taylor (RT) convection.
RT mixing is produced by a well-known instability
at the interface of two fluids with different density,
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initially at rest, in the presence of a relative acceleration. The instability eventually develops
in a nonlinear phase producing a mixing layer (ML), characterized by density and velocity
fluctuations, which grows in time [12,13].

The study of RT turbulence is motivated by a wide spectrum of applications, including
supernova explosion [14], plasma physics [15], laser-matter interaction [16] and inertial
confinement fusion [17]. In view of these applications, RT is usually studied in bulk fluids at
low viscosity, in which the velocity of the rising and falling plumes grows in time as t and the
width of the ML follows an accelerated growth as t2. Inside the ML, the density field is mixed by
the flow up to small scales, at which molecular diffusivity becomes dominant.

The RT mixing has also been extensively studied in porous media. In this case, the linear
instability [18] develops in a ML that grows dimensionally as t, as a consequence of the balance
between the gravity force and the viscous friction with the porous medium, which produces a
constant asymptotic velocity. Recently, experimental and numerical studies of porous RT mixing
have been done both in two dimensions [19,20] and in three dimensions [21,22]. The increasing
interest for the RT mixing in porous media is motivated by its applications in CO2 sequestration
in saline aquifers. Dissolution of carbon dioxide in the aqueous phase increases its density and
induces a buoyancy-driven instability that accelerates the process of CO2 sequestration into the
bulk of the aquifer [23,24].

The phenomenology of RT turbulence in bulk flow is strongly affected by the dimensionality
[13]. In three dimensions, the buoyancy force originates a direct cascade of kinetic energy
inside the ML with Kolmogorov–Obukhov scaling laws for the velocity and density fluctuations
[25,26]. In two dimensions, the balance between the inverse energy cascade and the buoyancy
produces the Bolgiano–Obukhov phenomenology [25,27,28]. In the case of RT in a thin layer,
the confining scale becomes the Bolgiano scale of the flow that separates the different scaling
regimes [28].

On the contrary, for the case of RT in porous media, there is no theoretical reason to expect
that the space dimensionality affects the scaling properties of the system, because the dynamics
is completely governed by the balance between gravity force and viscosity and the inertial
effects are absent. Indeed similar dimensional scaling laws have been observed both in two-
dimensional [19,20] and in three-dimensional [21,22] studies of porous RT mixing. Nonetheless,
recent numerical studies have revealed a significant quantitative difference between the RT
mixing in two dimensions and in three dimensions [22] with a sharp transition between the two
regimes as the lateral extension narrows [29].

The aim of this paper is to present in a systematic way the role of space dimensionality in RT
mixing, both in bulk flow and porous media. For this purpose, we present a direct comparison
of the results of numerical simulations in two dimensions and in three dimensions of the RT
system in bulk flow, accompanied by a review of recent numerical results of RT mixing in porous
media [22].

We focus on the global properties of the flow inside the ML, the temporal evolution of
the mean density profiles, the speed of the development of the ML, the efficiency of mixing
inside the ML and the transport of mass quantified by the Nusselt number. We show that, in
general, the ML in two-dimensional geometry grows faster and with larger fluctuations than in
three-dimensional, both for bulk and for porous flows. Also the transfer of heat is larger in two-
dimensional geometry, as a result of stronger correlations between the density fluctuations and
the vertical velocity.

2. Models and methods
We consider the RT configuration in a three-dimensional (x, y, z) or two-dimensional (x, z) domain
with gravity pointing downwards g = −gk̂. The density field is written as ρ(x, t) = ρ0(1 + θ (x, t))
with an initial unstable vertical density profile, θ (x, 0) = sgn(z)�θ/2 such that the Atwood number
is A = �θ/2.
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Table 1. Summary of the simulations. Nx , Ny and Nz are the resolutions in the three directions of sizes Lx , Ly and Lz . NR is the
number of independent realizations. NS refers to the simulations of (2.1)–(2.3), D to those of (2.2) and (2.3) in two-dimensional
and three-dimensional geometries.

Nx Ny Nz Lx Ly Lz NR
NS3D 1024 1024 2048 4π 4π 8π 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NS2D 1024 1 2048 4π 0 8π 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D3D 2048 2048 8192 2π 2π 8π 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D2D 2048 1 8192 2π 0 8π 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the limit of small A the Boussinesq approximation for an incompressible velocity field holds
and the dynamics for a bulk flow is governed by the (Boussinesq)–Navier–Stokes equations

ρ0(∂tu + u · ∇u) = −∇p + μ∇2u + gρ0θ , (2.1)

where μ is the viscosity.
In the case of a flow in a porous media, we will consider the (Boussinesq)–Darcy model,

which can be obtained from (2.1) by neglecting the acceleration terms on the lhs and by replacing
the Laplacian in the viscosity term with an (isotropic) permeability κ and the porosity φ of the
medium

u = κ

μφ
(−∇p + gρ0θ ). (2.2)

In both cases, the field of density fluctuations evolves according to the advection–diffusion
equation

∂tθ + u · ∇θ = D∇2θ , (2.3)

where D is the diffusion coefficient.
We performed direct numerical simulations of the systems (2.1)–(2.3), (2.2) and (2.3) by means

of a fully parallel, 2/3 dealiased, pseudo-spectral code in a triply periodic domain of sizes
Lx × Ly × Lz (Lx × Lz in two dimensions) with uniform grid at resolution Nx × Ny × Nz. Without
loss of generality, in the simulations the reference density is set to ρ0 = 1. The initial condition is
the unstable jump at z = 0 for the density field and vanishing initial velocity. In order to trigger
the instability, a small white noise perturbation is added to the initial density field around the
interface at z = 0. A zero-velocity mask is imposed at the stable density jump at z = ±Lz/2. In
order to improve the statistical accuracy, simulation results have been averaged over a set of
NR independent realizations of the initial random perturbations. While in three dimensions the
statistical convergence of the results benefits from the average over the horizontal (x, y) planes, in
two dimensions it is necessary to perform several independent realizations to achieve convergent
results. A summary of simulation parameters is given by table 1.

For the discussion of the results in the next section, we will use two different spatial
averages: the three-dimensional (or two-dimensional) average over the whole volume 〈· · · 〉 ≡
(1/LxLyLz)

∫∫∫ · · · dx dy dz (and the analogous in two dimensions) and the profile average over the
planes (lines) normal to gravity · · · ≡ (1/LxLy)

∫∫ · · · dx dy (and the analogous in two dimensions).
The average over the NR realizations is implied for all the results.

3. Results
The effects of the space dimensionality on the RT mixing, as well as the different dynamics of the
NS and Darcy systems, are already evident at a qualitative level by comparing the vertical sections
of the density fields obtained in the late stage of the simulations, shown in figure 1. In the case of
bulk flow, the convective turbulent structures (usually called ‘plumes’) are very different in two
dimensions and in three dimensions, reflecting the different scaling of the velocity and density
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Figure 1. From left to right: vertical sections of the density field for a three-dimensional NS simulation, a two-dimensional NS
simulation, both at time t = 25, and for a three-dimensional Darcy simulation and a two-dimensional Darcy simulation, both
at time t = 30. White (black) represents light (heavy) fluid and gravity is in the vertical direction. (Online version in colour.)

fields. In particular, the inverse cascade with Bolgiano scaling produces the large scale structures
observed in two dimensions. Nonetheless, both two-dimensional and three-dimensional density
fields develop plumes with large horizontal and vertical scales that grow proportionally to the
extension of the ML.

Conversely, the convective structures that appear in the Darcy convection are noticeably
elongated (and hence are called ‘fingers’) and their aspect is very similar in two dimensions and
in three dimensions. A common feature among the NS and Darcy cases is that the extension
of the two-dimensional structures (plumes or fingers) is wider than in the corresponding three-
dimensional case at the same time, as can be clearly appreciated in figure 1 for the Darcy
case. Moreover, the three-dimensional structures are more blurred than their two-dimensional
counterpart.

It is remarkable that despite the qualitative and quantitative difference between the convective
structures of NS and Darcy RT systems, the mean density profiles θ (z) are very similar. In both
cases, they develop a quasi-linear profile ρ(z) � γ (t)z in the ML, as shown in figure 2. Moreover,
the two-dimensional profiles are broader than in the three-dimensional case. This provides a first
indication that the mixing between the two reservoirs is faster in two dimensions than in three
dimensions both for NS and Darcy dynamics. The latter result is surprising, since the dynamics
of porous convection is not expected a priori to depend on the space dimensionality.

In order to better quantify this issue, we show in figure 3 the time evolution of the extension h
of the ML for the two-dimensional and three-dimensional simulations. In general, the extension
of the ML can be defined either in terms of global or local properties of the density profile. The
simplest measure, used in the following, is based on the threshold value h at which θ (z) reaches a
fraction r of the maximum value, i.e. θ (±h/2) = ±r�θ/2 [30]. Here, we use r = 0.9. In the NS cases,
after an initial transient time t0, we observe a quadratic growth of h(t) that is consistent with

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 J

an
ua

ry
 2

02
2 



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210084

...............................................................

–0.4

–0.3

–0.2

–0.1

 0

 0.1

 0.2

 0.3

 0.4

–0.50 –0.25 0 0.25 0.50
–0.4

–0.3

–0.2

–0.1

 0

 0.1

 0.2

 0.3

 0.4

–0.50 –0.25 0 0.25 0.50

z/
L

z

z/
L

z

q/Dq q/Dq

(a) (b)

Figure 2. Mean density profiles θ (z) for three-dimensional (red) and two-dimensional (black) NS simulations at time t = 25
(a) and for the Darcy simulations at time t = 30 (b), corresponding to the sections shown in figure 1. (Online version in colour.)
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Figure 3. Temporal growth of the ML h(t) for the three-dimensional (red) and the two-dimensional (black) flows for the NS
(a) and Darcy (b) simulations. Inset: compensated plots h/(Ag(t − t0)2) and h/(w0(t − t0)), which give the dimensionless
constantα. (Online version in colour.)

the dimensional prediction h(t) = αAg(t − t0)2 both in two dimensions and three dimensions [13].
Nonetheless, we find that this growth is faster for the two-dimensional geometry corresponding
to a dimensionless coefficient αNS2D � 0.055 larger than the coefficient αNS3D � 0.037 by about
57% (see the inset of figure 3, where we show the values of α obtained by compensating h(t) with
Ag(t − t0)2 with t0 fitting parameter). We remark that we stop our analysis at the time t = 35 when
the extension of the two-dimensional ML is still much smaller than the vertical extension Lz. This
is because the horizontal correlation scale in two dimensions grows in time (approximatively
proportional to h, as is evident from figure 1). Therefore, for large time the density field develops
structure on the size of the horizontal scale Lx and the evolution is affected by finite size effects
(we check the importance of these effects by comparing this case with simulations at Lx = 2π ). As
shown in figure 1, this limitation is less restrictive for the three-dimensional case, which develops
correlations at smaller horizontal scale.

In the Darcy case, after an initial acceleration due to gravity forces, the fingers are expected
to reach a constant velocity w0 = κgρ0�θ/μφ, determined by the balance between the gravity
and the friction with the porous medium. The width of the ML is therefore expected to grow as
h(t) ∼ t. The dimensional scaling is confirmed by our results. Both in the two-dimensional and
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Figure 4. Nusselt number as a function of the Rayleigh number for the three-dimensional (red) and the two-dimensional
(black) flows for the NS (a) and Darcy (b) simulations. The blue lines are the dimensional scaling Nu∼ Ra1/2 (a) and Nu∼ Ra
(b). (Online version in colour.)

three-dimensional cases, after an initial transient t0 we observe a linear growth of the ML h(t) =
αw0(t − t0) (figure 3a). As in the NS case, the growth is faster in the two-dimensional geometry,
with a coefficient αD2D � 0.67 larger than the coefficient αD3D � 0.43 by about 57% (see the inset of
figure 3). Surprisingly, the ratio between the coefficients αD2D and αD3D in the Darcy case is very
close to that of the NS coefficients.

The faster development of the ML in two-dimensional geometry is accompanied by an increase
of the mass flux. The latter is quantified by the Nusselt number Nu = 〈uzθ〉h/D�θ , which is
proportional to the correlation between the vertical velocity fields uz and density field θ . In the
absence of boundaries, the Nusselt number is expected to follow the dimensional scaling (the
so-called ‘ultimate state’) as a function of the Rayleigh number, which in the case of bulk RT is
defined as Ra = �θgh3/νD, (where ν = μ/ρ0 is the kinematic viscosity), while in the Darcy case is
Ra = �θgκh/νDφ = w0h/D. In the NS case, the dimensional prediction for the growth of turbulent
scales and velocities are h ∼ Agt2 and u ∼ Agt, which gives Nu ∼ t3 ∼ Ra1/2. In the Darcy case, one
has h ∼ w0t and u ∼ w0, which gives Nu ∼ t ∼ Ra. The results of our simulations are in agreement
with the dimensional scaling, and they show that the values of Nu at given Ra (and therefore
at fixed extension h of the ML) are always larger in two dimensions than in three dimensions
(see figure 4). This indicates that in two-dimensional geometry the mass flux is more intense and
correlation between the fields uz and θ is stronger.

Besides the process of mixing between the two reservoirs, it is also interesting to investigate
the effects of dimensionality on the mixing inside the mixing of the density fluctuations within
the ML. A suitable measure of this process is given by the variance of the density fluctuations,

defined as σ 2(t) = 〈θ2(z, t) − θ
2(z, t)〉z, where the average over the z direction is restricted to the

ML 〈· · · 〉z ≡ (1/h)
∫+h/2

−h/2 · · · dz. If the density field is completely mixed (as in the case of diffusive

mixing), θ is constant over horizontal planes, i.e. θ (x, y, z) = θ (z) and therefore σ 2 = 0. On the
contrary, for a fully unmixed density, which assumes only the values ±�θ/2, the variance attains
the maximum value σ 2

max = �θ2/4. The time evolution of the variance is shown in figure 5.
In the three-dimensional cases, at times t > 10 the variance reaches an almost constant value
(0.14 ± 0.01)σ 2

max (for the NS3D case) and (0.15 ± 0.01)σ 2
max (for the D3D case). In the NS2D case

an almost constant value (0.32 ± 0.01)σ 2
max is attained at times t > 10, while in the D2D case we

observe a monotonic increase from σ 2 = 0.24σ 2
max at time t = 10 to the final value σ 2 = 0.30σ 2

max at
time t = 55. Both in NS and Darcy simulations, the variance in two dimensions are always larger
than in three dimensions, indicating that the density fluctuations are less mixed within the ML.

In the case of RT turbulence, it is possible to explain the dependence of the mixing properties
on the dimensionality of the system in terms of the different scaling laws that are predicted in
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Figure 5. Temporal evolution of the variance of the density field for the three-dimensional (red) and the two-dimensional
(black) flows for the NS (a) and Darcy (b) simulations. (Online version in colour.)

the two-dimensional and three-dimensional cascades [25]. In both cases, the growth of the ML
h � Agt2 is produced by the conversion of the available potential energy P = −g〈zθ〉 into kinetic
energy E = 1

2 〈u2〉. During this process, a fraction of the kinetic energy is dissipated by viscosity
with a rate ε = ν〈(∇u)2〉 and the energy balance of the system reads

dE
dt

= g〈uzθ〉 − ε = −dP
dt

− Dg�θ − ε. (3.1)

We remark that the dissipation rate of the potential energy due to the diffusivity Dg�θ is almost
negligible.

We briefly recall the different phenomenology of two-dimensional and three-dimensional RT
turbulence (for further details see [13,25]). In three dimensions, the turbulent flow is driven
by the buoyancy forces at large scales, while small-scale density fluctuations become passively
transported at small scales. The scenario that emerges is a double direct cascade of both kinetic
energy and density fluctuations inside the ML with Kolmogorov–Obukhov scaling laws [25].
In particular, the velocity fluctuations follow the Kolmogorov scaling δu(�) � ε(t)1/3�1/3 with a
viscous dissipation rate ε(t) � (Ag)2t, while the density fluctuations follow the Obukhov scaling
δθ (�) � εθ (t)1/2ε(t)−1/6�1/3 with density dissipation rate εθ (t) � A2/t. Combining these scalings,
one gets that the kinetic energy grows as E ∼ (δu(h))2 � (Agt)2. Therefore, the growth rate of the
kinetic energy and the viscous dissipation rate follow the same temporal scaling dE/dt ∼ (Ag)2t �
ε. The local Richardson number, which is defined as the ratio between the buoyancy force gδθ (�)
and the inertial forces (δu(�))2/� at the scale �, scales as Ri(�) � (�/h)2/3 and therefore vanishes at
scales � � h, in agreement with the assumption that the buoyancy is negligible at small scales.

In two dimensions, the scenario is different because the turbulent flow induces an energy
transfer towards large scales. Given that Ri(�) grows with �, the density fluctuations cannot
be passively transported. In this case, the scale-by-scale balance between the buoyancy
forces and inertial forces gδθ (�) � (δu(�))2/�, accompanied by a direct cascade of density
fluctuations, produces the Bolgiano–Obukhov phenomenology [25,27,28]. The scaling for the
velocity fluctuations is δu(�) = g2/5εθ (t)1/5�3/5, while the density fluctuations scale as δu(�) =
g−1/5εθ (t)2/5�1/5 where εθ (t) ∼ A2/t is the flux of the turbulent cascade of density fluctuations. As
a consequence, in two dimensions the temporal scaling for the growth rate of the kinetic energy is
unchanged dE/dt ∼ (Ag)2t, but the viscous scale η (such that δu(η)η/ν = 1) grows in time as η(t) ∼
ν5/8(Ag)−1/4t1/8 and the viscous dissipation rate decreases as ε(t) ∼ ν(δu(η)/η)2 ∼ ν1/2Agt−1/2 [25].
At long times, in two dimensions the viscous dissipation is expected to become negligible, while
in three dimensions it remains proportional to dE/dt [28].

The temporal evolution of the kinetic energy growth rates and viscous dissipation rates
observed in our simulations are reported in figure 6a. In the three-dimensional case at long times,
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Reynolds number as a function of the Rayleigh number for the three-dimensional (red) and the two-dimensional (black) for
the NS simulations. The blue line represents the dimensional scaling Re∼ Ra1/2. (Online version in colour.)

almost 1/2 of the power supplied to the system contributes to the growth of the kinetic energy,
while a similar fraction is dissipated by viscosity. This can be seen as a sort of equipartition
between the two processes that occur in the ML: the growth of the kinetic energy of the plumes at
large scale, which causes the growth of the extension of the ML, and the increase of the turbulent
intensity at small scales, which causes the increase of the viscous dissipation as well as the
homogenization of density fluctuations within the ML. As a consequence, in three dimensions,
the two processes of mixing between the two reservoirs and between the plumes in the ML are
always balanced. Conversely, in two dimensions, we observe a decay of the viscous dissipation
(figure 6a), in agreement with the scaling predictions. The reduction of the intensity of small-
scale turbulence with respect to the three-dimensional case results in a weaker small-scale eddy
diffusivity, therefore the small-scale mixing is less efficient in two dimensions and the plumes
remain more coherent and less homogenized than in three dimensions. The counterpart of this
phenomenon is that, at long times, we find that in two dimensions almost all the potential energy
is converted into kinetic energy (figure 6a). This causes the faster rate of growth of the ML in
two dimensions (with respect to the three-dimensional case) at the expense of the reduced mixing
efficiency within the ML.

The effects of the dimensionality on the RT system in porous media are qualitatively similar,
but the physical mechanism which lies behind it is completely different. At variance with the
turbulent case, here the dynamics is ruled by Darcy’s Law and there are no differences in the
physics of two-dimensional and three-dimensional systems. As shown in figure 1, in both cases,
we observe the development of elongated fingers, which grows linearly in time in the vertical
direction. Moreover, they undergo a complex, diffusive-like process in the horizontal direction,
which is due to the broadening and merging of the fingers. This process is facilitated in three
dimensions, because there are two lateral directions in which it can occur. Conversely, the lateral
mixing is less efficient in a two-dimensional geometry. This explains why the fingers remains
more coherent in two dimensions than in three dimensions (figure 5). Even though this process
is completely different from that of the turbulent RT system, the outcome is similar. In three
dimensions, the potential energy initially available in the system contributes both to the growth
of the ML and the small-scale mixing. In two dimensions, the latter process is suppressed, while
the first is enhanced.

Finally, we discuss the evolution of the Reynolds number in the case of RT bulk turbulence.
This is defined in terms of the ML width h and the rms velocity u as Re = uh/ν. The expected
temporal scaling, both in two dimensions and in three dimensions, is Re ∼ t3 ∼ Ra1/2, as for the
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Nusselt number. Figure 6b shows that this scaling is well reproduced over several orders of
magnitude in both cases. At variance with the Nusselt number, which depends on the correlation
between velocity and density fields, the dependence of Re on Ra displays almost no dependence
on the dimensionality.

4. Conclusion
In this work, we investigate the dimensional effects in the case of two-dimensional and three-
dimensional RT mixing in bulk flow and in porous media. The study is performed by means
of numerical simulations of the transport equation for the density field, coupled within the
Boussinesq approximation with the equation for the velocity field. In bulk flow, the velocity obeys
the Navier–Stokes equation, while in porous media the dynamics is ruled by the Darcy equation.
This leads to a completely different evolution of the two systems. Despite this difference, we have
shown that the mixing properties of the NS and Darcy systems display a surprisingly similar
dependence on the dimensionality. In particular, we have found that the mixing between the
two reservoirs of the RT system is much faster (more than 50%) in two-dimensional geometry
than in three-dimensional. We have quantified this effect by comparing the growth of the width
h of the MLs in two dimensions and three dimensions. Moreover, at fixed extension h, the two-
dimensional system displays larger correlations between the density and velocity fields, which
results in a larger Nusselt number at the same Rayleigh number. The increased correlation
is responsible for the faster growth of the ML. The counterpart of this phenomenon is that
the density fluctuations within the ML are less homogenized in two dimensions than in three
dimensions. This is shown by the variance of the density fluctuations in two dimensions, which
is about 100% larger than in three dimensions. These effects are present both in the NS and
Darcy cases, and they are quantitatively similar. At a qualitative level, they are already visible
by comparing the convective structures of the two-dimensional and three-dimensional systems.
At fixed time, the structures have longer vertical size in two dimensions than in three dimensions,
and they are less blurred.

It is worth noting that our results are obtained in an ideal two-dimensional case, in which the
confinement is not due to the presence of side walls. The presence of boundaries is expected to
alter the dynamics of two-dimensional (or quasi-two-dimensional) systems, because the friction
with the side walls dissipates part of the kinetic energy. This effect should be less relevant in the
case of flows in porous media, in which the dynamics is dominated by the strong friction with the
medium.
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