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A simple dynamical scheme for Attractor Neural Networks with non—monotonic three state effec-
tive neurons is discussed. For the unsupervised Hebb learning rule, we give some basic numerical
results which are interpreted in terms of a combinatorial task realized by the dynamical pro-
cess {dynamical selection of optimal subspaces). An analytical estimate of optimal performance
is given by resorting to two different simplified versions of the model. We show that replica
symmetry breaking is required since the replica symmetric solutions are unstable.

1. Introduction

The definition of relaxation dynamics is the central problem for the study of the associative
and computational capabilities in models of attractor neural networks. For spin models past
effort was concentrated in studying a variety of synaptic structures or learning algorithms.
More recently, biological models' try to give analytical control to neural networks which
present realistic dynamical features. The model® described in this paper can be placed midway
between spin models and biological models, and is far from being an attempt to propose a
realistic picture of neural networks. More simply, we give a brief discussion concerning the
possible computational and physical role played by local inhibitory interactions which lead
to an effective non-monotonic transfer function for the neurons. In the last few years others
models characterized by non-monotonic neurons have been proposed.3~3

For the Hebb learning rule we show, numerically, that the critical capacity increases with
respect to the Hopfield case and that such result can be interpreted in terms of a twofold
task realized by the dynamical process. By means of local inhibition, the system dynamically
selects a subspace (or subnetwork) of minimal static noise with respect to the recalled pattern;
at the same time, and in the selected subspace, the retrieval of the memorized pattern is
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performed. The dynamic behaviour of the network, for deterministic sequential updating,
range from fixed points to chaotic evolution, with the storage ratio as control parameter, the
transition appearing in correspondence to the collapse of the associative performance.

Resorting to two simplified versions of the model, we study their optimal performance
by the replica method; in particular the role of non-monotonic functions and of subspaces
dynamical selection are discussed.

Section 2 of the paper is devoted to illustrate the numerical study while Sec. 3 contains
the analytical results on optimal storage capacity.

2. The Model and its Performance

The attractor neural network under study is composed of N three state +1,0 formal neurons.
During the learning process only the +1 values are considered (the patterns are binary) and
the 0-state should be considered as a dynamical don’t care state, not belonging to the patterns
code. The system is fully connected and its evolution is governed by sequential updating of
the following equations

sgn(hi) of |k <7
S; = ) - 1
{ 0 if IRl >q 1)
N
hi=> JyS; i=1,...,N, (2)
Jj=1

where 7 is the threshold of the local inhibitory feedback, and the {J;;} are the couplings.
Defining the retrieval activity as the fraction of neurons which are not net in the zero
state

_ Ll
a_NXi:S“ (3)

the parameter that defines the retrieval quality is the scaled overlap

1
mt = = €S (4)

where the {¢ =41, i =1,N;u =1, P} are the memorized binary patterns. The scaled
overlap can be thought simply as the overlap computed in the subspace M of the active
neurons, M ={¢ / S; #0, i =1,N}.

Given a set of P random independent binary patterns {£!'}, the Hebb-Hopfield learning

: : 12 .
rule corresponds to fix the synaptic matrix J;; by the additive relation J;; = N E el (with
pu=1

Ji = 0)

The effect of the dynamical process defined by (1) and (2) is the selection of subspaces
M of active neurons in which the static noise is minimized (such subspaces will be hereafter
referred to as orthogonal subspaces). Before entering in the description of the results, it is
worthwhile to remember that, in Hopfield-like attractor neural networks, the mean of cross
correlation fluctuations produce in the local fields of the neurons a static noise, referred
to as cross-talk of the memories. Together with temporal correlations, the static noise is
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responsible of the phase transition of the neural networks from associative memory to spin-
glass. More precisely, when the Hopfield model is in a fixed point £ vlvhich belongs to the set
of memories, the local fields are given by ;£ = 1 + RY where R = v é: ; ERELETET is the
uto j#£i

static noise (Gaussian distribution with 0 mean and variance y/a). The well known critical
value of & = P/N at which the phase transition takes place is 0.14, as computed analytically
by the replica method® and confirmed numerically. If the patterns were exactly orthogonal
the fluctuations of the noise term R? would be zero and the critical capacity one.

The preliminary performance study of the model under discussion have revealed several

new basic features, in particular:

e the critical capacity, for the Hebb learning rule, results increased up to a, ~ 0.28;

e the mean cross correlation fluctuations computed in the selected subspaces is minimized
by the dynamical process in the region a < a.;

e in correspondence to the associative transition the system goes through a dynamic
transition from fixed points to chaotic trajectories.
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Fig.1-2. Mean overlap m (solid line) and cross correlation C (dashed line).
Critical capacity . (solid line) and retrieval activity a (dashed line) vs. threshold parameter .

The quantitative results concerning associative performance, are obtained by means of
extended simulations. A typical simulation takes the memorized patterns as initial configura-
tions and lets the system relax until it reaches a stationary point. The quantity describing the
performance of the network as an associative memory is the mean scaled overlap m between
the final stationary states and the memorized patterns, used as initial states. As the number
of memorized configurations grows, one observes a threshold at a = a, ~ 0.28 beyond which
the stored states become unstable. The numerical results are reported in Fig.1 for a network
of size N = 1000. We observe that since the recall of the patterns is performed with no errors
(up to a ~ 0.25), also the number of stored bits in the synaptic matrix results increased with
respect to the Hopfield case (the fractional size of subspaces (a &~ 0.8) times the capacity is
greater then 0.14).

As 1t is shown in Fig. 2 the size of subspaces and the network capacity are controlled by
the threshold parameter . It is straightforward to notice that an optimal value Yopt ~ 1.0
exists and that, for ¥ — oo, the Hopfield result (a. = 0.14) is recovered.
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In order to show the static noise reduction, in Fig.1 is also reported the mean fluctuation
of the cross correlations (or static noise) in the subspaces:

ZE(GNZ?‘&” ) =EX Y Gy rew) ©)

o up#o o u#o €M

where ¢/ = 1 if ¢ € M in pattern ¢ and zero otherwise, as a function of a. It is clear
from the figure that C' does not follow a statistical law but undergoes a minimization that
qualitatively explains the increase in the storage capacity. For a < a., once the system has
relaxed in a stationary subspace, the model becomes equivalent (in the subspace) to a Hopfield
network with a static noise term which is no longer random. The statistical mechanics of
the combinatorial task of minimizing the noise-energy term (5) can be studied analytically
by the replica method; the results are of general interest in that give an upper bound to the
performance of networks endowed with Hebb-like synaptic matrices and with the possibility
selecting optimal subnetworks for retrieval dynamics of the patterns.

As already stated, the behaviour of the neural network as a dynamical system is directly
related to its performance as an associative memory. The system shows an abrupt transition
in the dynamics, from fixed points to chaotic trajectories, in correspondence to the value of
the storage ratio at which the memorized configurations become unstable. The only (external)
control parameter of the model as a dynamical system is the storage ratio @« = P/N. Dynamic
complex behaviour appears as a clear signal of saturation of the attractor neural network and
does not depend on the symmetry of the couplings.

As a concluding remark of this section, we observe that the dynamic selection of subspaces
seems to take advantage of finite size effects allowing the storage of correlated patterns also
with the simple Hebb rule. Numerical tests on patterns generated according to the probability

1-% 1+5b
distribution P(§) = £-2—)6(§ -1)+ d+b)
for the bias: below such a value the critical capacity is retained constant (0.28) independently
on the size N (tests have been done for N = 200,400,800,1000). Analytical and numerical
work is in progress on this point, devoted to clarify the performance with spatially correlated

patterns’.

6(¢ + 1), indicate b = b, ~ 0.1 as a critical value

3. Optimal Storage Capacity

It is of basic interest to understand whether a dynamical scheme which allows for dynamic se-
lection of subnetworks provides a neural network model with enhanced optimal capacity with
respect to the classical spin models. Assuming that nothing is known about the couplings,
one can consider the J;; as dynamical variables and study the fractional volume in the space
of interactions that makes the patterns fixed points of the dynamics. Following Gardner and
Derrida®, we describe the problem in terms of a cost-energy function and study its statistical
mechanics: for a generic choice of the {J;;}, the cost function E; is defined to be the number
of patterns such that a given site 7 is wrong (with respect to (1))

N

Ei({Ji}, {f}) = Z e (O(RYEE +4) —O(RLEL) + (1 — eO(? —RED)] ,  (6)
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where O is the step function, the kY = Jij&f'e} are the local fields, v is the threshold

1
v
of the inhibitory feedback and with €' = {0,1} being the variables that identify the subspace
M (& =11if i € M and zero otherwise).

In order to estimate the optimal capacity, one should perform the replica theory on the
following partition function

Z=Trig/ ermany /Hd]ija( Y I - N)e-ﬁE.. E; (7)
i#] J(#1)
Since the latter task seems unmanageable, as a first step we resort to two simplified ver-
sion of the model which, separately, retain its main characteristics (subspaces and non-
monotonicity); in particular:
(i) we assume that the {€'} are quenched random variables, distributed according to
P(ef') = (1 — A)8(ef') + AS(e — 1), A € [0,1);
(i) we consider the case of a two-state (+:1) non-monotonic transfer function.

For lack of space, here we list only the final results for the critical storage capacity and for
the stability analysis in the replica symmetric (R.S) assumption, and give the critical capacity
value, for the second case, computed with one step in replica symmetry breaking.

The expressions of the R.S. critical capacity for the models are, respectively:

af*(i4) = {21-4) [ Doty —¢F + 544 [ Dey—cp} ®)

250)={ [P oec+ [Toct-er} Q

1

—e¢2
where D{ = 5 e"?LdC (for (9) see also Ref. 4). As Figs. 3 and 4 show, the values of critical
s

capacity one finds are much higher than the monotonic perceptron capacity (o, = 2).

Crifical capacity

n
"

R.S.
c

R.S.

Fig.3. Critical capacity « (8) vs. 7y, for several A. Fig.4. Critical capacity o ¢ 7 (9) vs. .

To check the reliability of such results, we have analyzed the transverse stability of the
symmetric saddle-point, finding the following stability conditions:
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o5 [A(S + H(y)) + (1 - A)(1 ~2H(3))] <1 (10)

o522 <1, (11)

The first condition is satisfied only in a region of the (4,4) plane where a. < 2, while the
second is never satisfied since (9) gives . > 2 for any 4. The R.S. solutions are thus unstable
and replica symmetry breaking is required.

The necessity of breaking the replica symmetry is not surprising since for non-monotonic
transfer functions the space of couplings is not connected, in analogy with multi-layered
networks. Such analogy is even stronger if one realizes that two-state non-monotonic model
is equivalent to a parity machine with three hidden units (with thresholds —v,0,v) which
have identical input synaptic vectors.

All the details concerning the computation with one step in replica symmetry breaking
of the critical capacity and stabilities distribution can be found in Ref. 9. Here we just
quote the final quantitative result concerning optimal capacity for the non-monotonic two-
state model: numerical evaluation of the saddle-point equations (for unbiased patterns) gives
a(7°Pt) ~ 4.6 with 4°P* ~ 1, the corresponding R.S. value from (9) being a5 ~ 10.5.
Since the number of allowed internal representation of the parity machine on which the non-
monotonic model can be mapped is 4, the value of critical capacity should be compared with
that of a two hidden units parity machine (a, = 4).

4. Conclusion

We have given a short discussion of some basic results concerning a dynamical scheme for
neural networks which performs a combinatorial task together with associative recall. A more
complete analysis of the computational capabilities and physical properties will be given in

Refs. 7 and 9.
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