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Relative dispersion in fully developed turbulence is investigated by means of direct numerical simu-
lations. Lagrangian statistics is found to be compatible with Richardson description although small
systematic deviations are found. The value of the Richardson constant is estimated as C, == 0.55, in a
close agreement with recent experimental findings [S. Ott and J. Mann, J. Fluid Mech. 422, 207 (2000)].
By means of exit-time statistics it is shown that the deviations from Richardson’s law are a consequence
of Eulerian intermittency. The measured Lagrangian scaling exponents require a set of Eulerian structure
function exponents £, which are remarkably close to standard ones known for fully developed turbulence.
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The statistics of two-particle dispersion is historically
one of the first issues which has been quantitatively ad-
dressed in the study of fully developed turbulence. This
was done by Richardson, in a pioneering work on the prop-
erties of dispersion in the atmosphere in 1926 [1], 15 years
before the theoretical development by Kolmogorov and
Obukhov [2]. Despite this fact, there are still relatively
few experimental studies on turbulent Lagrangian disper-
sion. This is essentially due to the difficulties to obtain
Lagrangian trajectories in fully developed turbulent flow.
The first studies were done in geophysical flows (see [2]
for a review) in which Lagrangian tracers are more easily
followed. Recently, the problem was approached in labo-
ratory experiments [3,4] but the results are still not conclu-
sive. Moreover, most of the numerical studies of relative
dispersion rely on kinematic simulations in synthetic flows
[5,6]. Direct numerical simulations have been done mostly
for two-dimensional turbulence [7,8].

The scope of this Letter is to contribute to the under-
standing of relative dispersion by means of direct numeri-
cal simulations of three-dimensional turbulence. In what
follows we show the qualitative validity of the Richard-
son’s description, and discuss its limitations as posed by
Lagrangian intermittency, whose properties will be inves-
tigated in detail.

Richardson’s original description of relative dispersion
is based on a diffusion equation for the probability den-
sity function (pdf) of pair separation p(r,#) which in the
isotropic case can be written as

J ot 1 o J ,t
p(r ) — __rZK(r) P(r )
ot r2 or or

The turbulent eddy diffusivity was empirically established
by Richardson to follow the “four-thirds law” K (r) o r*/3.
This law is a direct consequence of the small-scale velocity
statistics, as was first recognized by Obukhov [9]. Thus,
for r within the inertial range, the dimensional analysis
gives

ey

094501-1 0031-9007/02/88(9)/094501(4)$20.00

PACS numbers: 47.27.-1, 47.10.+¢g

K(r) = kos'3r*3, )

where ¢ is the mean energy dissipation and k¢ a dimen-
sionless constant. We note that (2) relies on the connection
between the energy dissipation and the velocity correlation
functions in a well-developed turbulence, and that the par-
ticle dispersion is, of course, observed also in pseudoturbu-
lent synthetic Gaussian velocity fields [5,6,10] for which
the concept of energy dissipation is meaningless. Using
(2), the solution of (1) for 6-distribution initial condition
has the well known form

A 9r2/3
1) = [
Pe D) = e exP( 4k081/3t>’

where A = 2187/22407>/? is a normalizing factor. The
most important feature of the Richardson distribution (3) is
non-Gaussianity with a very pronounced peak at the origin
and fat tails. In the past, alternative distributions have been
proposed [11,12]. In particular, Batchelor [11] suggested
a Gaussian distribution as a consequence of a diffusivity
which depends only on averaged quantities. Because the
available data are scarce, there is still no general consensus
on the real form of pair separation pdf. Recent experimen-
tal works [3,4] are in favor of (3).

As a consequence of (1) and (2), Eq. (3) proposes that
the dispersion process is self-similar in time; i.e., the scal-
ing exponents of the moments of the separation

R (1) = (r’"(1)) = Cpe"1* “)

3

have the values a,, = 3n/2, as follows from dimensional
analysis. All the dimensionless coefficients C, are given
in terms of ko from (3) and a single number such as the
Richardson constant C, (which can be readily measured)
is sufficient to parametrize turbulent dispersion. In what
follows we shall discuss to what extent this is the case.
The possibility to describe the dispersion process by
means of a diffusion equation is based on the physical as-
sumption that the velocity field is short correlated in time.

© 2002 The American Physical Society 094501-1



VOLUME 88, NUMBER 9

PHYSICAL REVIEW LETTERS

4 MARCH 2002

Indeed, in the limit of velocity field §-correlated in time
(the so-called Kraichnan model of turbulence) the diffusion
equation of the type of Eq. (1) becomes exact [13,14]. In
the general case of real turbulence with finite time correla-
tions, a theoretical derivation of the general properties of
p(r, 1) is still not available. This is because the Lagrangian
relative velocity correlation time grows with time, and thus
in absence of decorrelation, central limit theorem cannot
be applied [14]. The effects of finite correlation time have
been recently discussed in [8,15,16].

There is still a large uncertainty on the value of C,,
ranging from O(1072)-0(10~") for kinematic simulations
[5,6] to O(1) or more in the case of closure predictions
[2]. A recent experimental investigation gives the value
C, = 0.5 [4]. The hypothesis of self-similarity is rea-
sonable with a self-affine Eulerian velocity, such as in
the case of two-dimensional inverse cascade turbulence,
where the dimensional exponents a;, = 3n/2 have indeed
been found [8]. A recent analysis of a kinematic model
with synthetic velocity field has shown that Lagrangian
self-similarity is broken in the presence of Eulerian inter-
mittency. In this case the exponents «, have been found
in agreement with the prediction of a multifractal approach
for Lagrangian statistics. In particular, the second moment
of relative dispersion is not affected by intermittency, i.e.,
@, = 3 [10], essentially because it is proportional to &'.
We recall that Lagrangian intermittency has been observed
also in the case of the so-called strong anomalous diffusion
[17]. Although in that case the mechanism leading to in-
termittency is different (there is no scaling invariant flow),
the implication for Lagrangian description is identical; i.e.,
the process cannot be described by a Fokker-Planck equa-
tion like (1).

We now turn to our numerical procedure. The tur-
bulent velocity field is generated by direct integration of
Navier-Stokes equation in a periodic box of size L = 27r.
The integration is done on a Cray T3E parallel computer
by means of a pseudospectral code at resolution 256° with
Re, = 200. Energy is injected into the flow by keeping
the total energy in each of the two first wave number shells
constant [18] and is removed by a second-order hypervis-
cous dissipation.

Passive tracer trajectories are obtained by integrating
x(¢) = u(x(z), ) with the velocity at particle positions ob-
tained by linear interpolation from the nearest grid points.
A single run follows the evolution of separations of about
3 X 10° pairs starting from initial separation R(0) =
L /256 until they have all reached the integral scale. The
reported results are obtained after averaging over 10
independent runs.

In Fig. 1 we plot the second moment of relative disper-
sion R%(t). The Richardson 3 law (4) is clearly observable
although systematic deviations are detectable, in particu-
lar in the compensated plot. These deviations, observed
also in kinematic simulations [10] and in two-dimensional
turbulence [8], are due to finite size effects. Consider a
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FIG. 1. Relative dispersion R?(t) versus time ¢. The dashed

line is the Richardson #* law. In the inset we show the compen-
sated plot R?(¢)/et® which should give the Richardson constant
C,. Because of the strong oscillation, a precise estimation of
C, is difficult.

series of pair dispersion experiments, in each of which a
couple of particles is released at time ¢ = O at initial sepa-
ration R(0). At a fixed time ¢ one performs an average over
all realizations and computes R*(r). For ¢ small R%(t) is
dominated by the initial distance, so that the R?(¢) curve
flattens. For large times some pairs might have reached
a separation larger than the integral scale and thus show
normal (not Richardson) diffusion, so that the R*(¢) de-
pendence flattens again. Under these conditions, a precise
determination of the exponents and coefficients in (4), in
particular the Richardson constant Cs, is very difficult.
The distribution of relative separations is plotted in
Fig. 2 for three different times. The form of the pdf is
very close to the Richardson prediction (3) and excludes

FIG. 2. Probability distribution function of relative separations
at three different times. The continuous line is the Richardson
prediction (3), and the dashed line is the Gaussian distribution
proposed by Batchelor.
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other distributions. Our result is the first direct numerical
evidence of the substantial validity of Richardson’s
equation and gives support to recent experimental findings
[4]. A closer inspection of Fig. 2 reveals, however, that the
self-similar evolution predicted by (1) is not exact. Again,
the deviations from the distribution (3) are mostly due to
finite Reynolds effects: because of the fat tails, a large
fraction of particles exits the inertial range after a very
short time.

To overcome these difficulties in Lagrangian statistics,
an alternative approach based on exit time statistics has
been recently proposed [10,19]. Given a set of thresholds
R, = p"R(0) within the inertial range, one computes the
“doubling time” T, (R,,) defined as the time it takes for
the particle pair separation to grow from threshold R, to
the next one R, +;. Averages are then performed over many
dispersion experiments, i.e., particle pairs. The outstand-
ing advantage of averaging at fixed-scale separation, as op-
posite to a fixed time, is that it removes crossover effects
since all sampled particle pairs belong to the same scales.
In the simulations presented here, the value p = 1.2 is
used.

Let us first show how doubling-time analysis can be
used for estimating the Richardson constant C,. Neglect-
ing intermittency, the mean doubling time can be obtained
from the first-passage problem for the Richardson diffu-
sion equation (1) as [8]

92/3 -1 2/3
(T,(R)) = WR : 5
From (3) and (4) one has C, = %kg . Comparison with

(5) gives
_ 14—3 (p2/3 _ 1)3 R2
81 p? T,

In the inset of Fig. 3 we plot expression (6) which gives
directly the value of C,. Although the compensation is not
perfect, it is possible to estimate the Richardson constant
with much better accuracy than from the direct analysis of
Fig. 1. The resulting value, C, = 0.55, even if affected
by large uncertainty, is remarkably close to the recent ex-
perimental finding [4]. The imperfect compensation is the
consequence of intermittency.

Let us now discuss the issue of intermittency in more
detail and concentrate on the behavior of the moments
of inverse doubling times, {[1/7,(R)]?). We expect for
doubling-time statistics a power-law behavior

(7)) - ”

with exponents 3, connected to the exponents «, in (4)
[10]. Negative moments of doubling time are dominated
by pairs which separate fast; this corresponds to posi-
tive moments of relative separation. Kolmogorov scaling,
based on the dimensional analysis, gives ([1/7,(R)]’) ~
gPPR™21/3 5o that B, = —2p/3. Intermittency can be

Cy

(6)
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FIG. 3. First moments of the inverse doubling time

((1/T(R)]?) compensated with Kolmogorov scaling R~2"/3.

Deviations from dimensional compensation are evident, in par-
ticular for p = 4. In the inset we plot the compensated mean
doubling time according to (6) together with the estimate cor-
responding to C, = 0.55.

taken into account by using the simple dimensional esti-
mate for the doubling time, T(R) ~ R/Su(R), which gives

Bp =& —ps (3)
where [, are the scaling exponents of the longitudinal
structure functions. As a consequence of the Kolmogorov
“4/5” 1aw, {3 = 1[20] and the doubling-time exponent not
affected by intermittency is 83 = —2 [again, the quantity
not affected by intermittency in (7) depends on the first
power of €] [21].

In Fig. 3 we plot the first moments of inverse dou-
bling time (7) compensated with the Kolmogorov scaling
R™2P/3_ The quality of the scaling is remarkable, espe-
cially if compared with the standard statistics of Fig. 2.
This allows the detection of small deviations from dimen-
sional scaling. Indeed, a closer inspection of Fig. 3 reveals
that the compensation is not perfect, the deviation being
more evident for higher moments; this is an indication for
Lagrangian intermittency. A consequence of Lagrangian
intermittency is the deviation of exponents in (4) from
dimensional prediction and eventually the breakdown of
self-similarity. Although this cannot directly be measured
within the present numerical simulation, the effect of the
intermittency of doubling time on (4) was indeed observed
in synthetic simulations [10].

Figure 4 shows some moments of the inverse doubling
time, now compensated with best fit exponents 3,. The
improvement with respect to Fig. 3 demonstrates that the
exponents in (7) are corrected in comparison to dimen-
sional prediction. From the doubling time exponent 3, we
can obtain the Eulerian exponents ,, by inverting (8). The
result is shown in the inset of Fig. 3. For comparison with
(8) we also plot the set of Eulerian structure function expo-
nents ¢, obtained from our velocity field by using extended
self-similarity (ESS) technique [22]. The agreement is
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FIG. 4. First moments of the inverse doubling time

([1/T(R)]?) compensated with best fit exponent 3,. Observe
the improvement in the compensation with respect to Fig. 3. In
the inset we plot the structure function exponents estimated from
{, = p + B,. The dashed line represents the Eulerian expo-
nents obtained by ESS analysis.

remarkable even for high-order moments. We stress that, at
the present resolution, the scaling of the Eulerian structure
function is rather poor, so that only a precise determination
of relative exponents (as given by ESS) is possible. The
overall position of the ESS curve is given by 3 = 1.

Let us summarize our findings. We have performed di-
rect numerical simulations of a three-dimensional turbulent
flow and concentrated on the problem of particles’ disper-
sion. The overall dispersion behavior is well-described by
the Richardson’s pdf, although some deviations (mostly
caused by the finite-Reynolds nature of the simulations)
are evident. The use of fixed-scale statistics (doubling-time
distribution) instead of fixed-time ones removes to a large
extent these restrictions, and gives a possibility to evalu-
ate the Richardson’s constant very accurately. Its value is
C, = 0.55, in a close agreement with recent experimen-
tal findings. The discussion of the inverse moments of the
doubling-time distributions unveils the role of Lagrangian
intermittency in the two-particle dispersion. The values
of the Lagrangian scaling exponents are connected with
the Eulerian structure function exponents {,. The values
of {, obtained from the separation statistics are remark-
ably close to ones obtained by ESS analysis. A natural
question is how general is the picture arising from this pa-
per. A further support in favor of generality comes from
two-dimensional turbulence in the nonintermittent energy
cascade. In that case exit time statistics show no deviations
from dimensional predictions. In the future it will probably
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be possible to have experimental Lagrangian trajectories in
high Reynolds number flows [23]. It would be extremely
interesting to check our findings in real fluid turbulence.
We thank A. Celani and M. Cencini for useful comments
and discussions. We acknowledge the allocation of com-
puter resources from INFM Progetto Calcolo Parallelo.
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