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Statistics of two-particle dispersion in two-dimensional turbulence
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We investigate Lagrangian relative dispersion in direct numerical simulation of two-dimensional
inverse cascade turbulence. The analysis is performed by using both standard fixed time statistics
and an exit time approach. The latter allows a more precise determination of the Richardson
constant which is found to bg=4 with a possible weak finite-size dependence. Our results show
only small deviations with respect to the original Richardson’s description in terms of diffusion
equation. These deviations are associated with the long-range correlated nature of the particles’
relative motion. The correlation, or persistence, parameter is measured by means of a Lagrangian
“turning point” statistics. © 2002 American Institute of Physic§DOI: 10.1063/1.1498121

I. INTRODUCTION ers a qualitatively good description of the doubling-time-
distributions. The quantitative deviations found are attributed
Understanding the statistics of particle pairs dispersionyg the fact that the dispersion process is not purely diffusive
in turbulent velocity fields is of great interest for both theo- 53n is influenced by ballisti(persistent motion.
retical and practical implications. At variance with single The article is organized as follows: In Sec. Il we discuss
particle dispersion which depends mainly on the large scalghe Richardson’s approach to the two-particle dispersion, in
energy containing eddies, pair dispersion is driterleast at  gec. || the fixed-scale properties of dispersion pro¢essh
intermediate timgsby velocity fluctuations at scales compa- 45 doubling-time statisti¢sare considered. The numerical
rable with the pair separation. Since these small scale flugypproach and the results of simulations are discussed in Sec.
tuations have universal characteristics, independent on th&§/ section V is devoted to conclusions. The mathematical
details of the large scale flow, relative dispersion in fully getails of calculations of doubling-time statistics for the Ri-

developed turbulence is expected to show universainardson’s case are given in Appendices A and B.
behaviort? From an applicative point of view, a deep com-
prehenglon of relative dispersion mec_hamsms is of fundal—l. STATISTICS OF RELATIVE DISPERSION
mental importance for a correct modelization of small scale
diffusion and mixing properties. Relative dispersion in turbulence is often phenomeno-

Since the pioneering work by Richardsbmany efforts logically described in terms of a diffusion equation for the
have been done to confirm experimentally or numerically higprobability density function of pair separatiqdgr,t)

descriptiort*~1% Nevertheless, the main obstacle to a deep

investigation of relative dispersion in turbulence remains the p(r.) = i K. :(r,t) ap(r,t)) )
lack of sufficient statistics due to technical difficulties in at ari\ M gy )

laboratory experiments and to the moderate inertial rang@ith a space and time dependent diffusion coefficient
reached in direct numerical simulations. K; j(r,t)2. The original Richardson proposal, obtained from

In this paper we present a detailed investigation of thesxperimental data in the atmosphere, correspondé(tot)
statistics of relative dispersion from extensive direct numeri-=K (r)=k,e %3 where ¢ has the dimension of energy
cal simulations of particle pairs in two-dimensional Navier— dissipation(see belowandk, is a dimensionless constant. In
Stokes turbulence. We will see that the main ingredient of tthe d-dimensional isotropic case, this diffusion equation
original Richardson description, i.e., Richardson diffusiontgkes the form
equation, is sufficient for a rough description of relative dis-
persion in this flow. Nevertheless, our simulations show that, ~“P(":1)
at least at finite Reynolds numbers, two-particle statistics is at
rather sensible to finite size effects. This demands for a difns solution leads to the well-known non-Gaussian distribu-
ferent analysis based on doubling time statistics which hagg,
been recently introduced for the analysis of Lagrangian

d-1

1 9 ap(r,t)
STt KO )

. . . . . 2/3
dispersion'! Comparison of numerical results with ones o(r t)= exd — or 3
based on the Richardson’s equation shows that the last deliv- ' (kot)3e 4k )’
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whereA is a normalizing factor. The growth of pair separa- nitude constant. Let us consider the probability that the rela-
tion is described in terms of a single exponent as tive velocity of particle separation changes its direction
during time intervalt (i.e., the probability that the trajector
RE()=(r*"(1))=Cone"t™, ) of th(—:-g relative motion has a tuprning poisll"nt at the curjrent p};r-
and the so-called Richardson constangisC,= 22 g_ ticles’ positiong. Note that the corresponding probability
The Richardson’s conjecture was formulated based ofl€nsity has a dimension of inverse time, and may depend on
the scaling nature of the diffusion coefficient and in analogy'- According to the scaling assumption the only correspond-
with diffusion. No information about the nature of the pdf Ing form can bedp=dt/7(r). The growth of the magnitude
was available by that time. Any choice of the foi(r,t)  Of the interparticle separatiarft) in dtis dr= v (r)dt, thus
=48 a(r2(1))al2 [je. K(r,t)=r*2t3¢2] would give the the probability to change the direction of velocity withdin
same scaling laR?=ct3 but with different pdf's(see Refs. 1, IS, using(5) and(6)
2,12-14. dr ro dr 1 dr
The possibility to describe the dispersion process by dp=p(r)dr= = —=—. (7)
e 2 S . d(r)r(r) wvemg r Psr
means of a diffusion equation is based on essentially two
important physical assumptions which can be verifigabs-  The distribution of the position of turning points in the sepa-
teriori. The first one is that the dispersion process is selfration follows from(7).*® The conditional probability density
similar in time, which is a reasonable assumption in the casto find a next turning point at, provided a previous one was
of nonintermittent velocity field;the second one is that the atr;<r, is given by
velocity field is short correlated in tim&.Indeed, in the limit r\ ~UPs-1
of velocity field &-correlated in time the diffusion equation W(rylrqy) = —(—2) :
(1) becomes exacfl’ As we proceed to show, the Richard- Psriry
son’s conjecturg?), which is exact under small values of the Note that the dependence ®(r,|r,) only on the relative
persistence parameter of the flow:still delivers a qualita-  positions of the turning points, i.e., an/r,, is a clear con-
tively good approximation for realistic two-dimensiorfdD)  sequence of scale invariance.
turbulent flows, whose persistence parameter of the order of The tail of ¥'(r,|r,) decides about the existence of the
1. second moment of this distribution, i.e., on the fact whether
Richardson scaling in turbulence is a consequence ahe corresponding motion is short- or long-range correlated
Kolmogorov scaling for the velocity differencésUnder in space. Depending on the persistence paranfgethe
Kolmogorov scaling, the mean-square relative velocity andlispersion can be either diffusivd®6<1) or ballistic (Ps

®

the correlation time in the inertial range are given by >1) in nature. In what followg8) will be used as a defini-
o3 tion of Ps Note that the power-law tail of the distributions
<5u(r)2>:vS(L) ~g2/3:23 (5  make the problem extremely sensitive to the finite-size ef-
o fects, especially for larg®s when the weights of ballistic

events(Lévy-walks?) is considerable.

We note that the value d¥sis not a free parameter, but
is fixed for a given physical situation. The scaling nature of
turbulence supposes that this parameters is a constant, de-
pending only on general properties of the flow, e.g., on its 2D
whererg, 7o, andv, are some(large scalg characteristic oy 3D nature(in this last case also the overall geometry of
length, time, and velocity scale ard=v§/7, is the energy  the flow can be of importangeOn the other hand, since the
flux in the inertial range. The value of the dimenSionleSSnature of dispersion process depends Crucia”y on the value
combinationPs=v,7,/r, remains, however, unspecified by of ps the only way for getting quantitative information
scaling considerations. It is referred to as a persistence pahout the dispersion is through direct numerical simulations
rameter of the flow and plays a central role in describingor |aboratory experiments. The strong finite-size effects in

. . . . . o 8 . R R . . . R .
single particle diffusion and pair separatitii® The persis-  relative dispersion statistics call for the introduction of quan-
tence parametd?sintroduced here is related to a Kubo num- tities which are less sensitive to finite resolution.

ber of Ref. 19. Note however, that in our case this parameter
is scale-independent within the inertial range.

The persistence parameter gives the ratio of the velocity, exi1 TIME STATISTICS
correlation time to the Lagrangian characteristic time. In or-
der to see howPs influences Lagrangian dispersion, let us In general, statistical properties of fully developed turbu-
consider the following simple model, which has been used akence can be observed only in high-Reynolds number flows
a basis for building a stochastic model of turbulentin which the inertial range, where the scaling laws hold, is
dispersion'®> We take that the magnitude of the separationsufficiently wide. The needs for large Reynolds numbers is
velocity (i.e., the projection of the velocity difference on the particularly severe in the case of Richardson dispersion, as a
line connecting the particlgss a function ofr only so that consequence of the long tails in the distributi@. More-
dv(r)=uvo(r/ry)*®. The temporal changes of the flow can be over, the observation of time scaling laws @ requires
accounted for by letting the particle change its velocity di-sufficiently long times in order to forget the initial
rection from time to time, while keeping the velocity’s mag- separatiorf.

and

213
~g~ 1/3r 2/3, (6)

r
T(I’)ZTO(G
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For these reasons, the observation of Richardson scaling S : .
[i.e., (3) or (4)] is very difficult in direct numerical simula-
tions where the Reynolds number is limited by the resolu-
tion. The same kind of limitations arise in laboratory experi-
ments, as a consequence of the necessity to follow the 102
Lagrangian trajectories which limits again the Reynolds
number’®

To partially overcome these difficulties, an alternative
approach based oexit time statistics has been recently 107
proposed!! Given a set of thresholdR,=p"R(0) within
the inertial range, one computes the “doubling tin¥e(R,) 10
defined as the time it takes for the particle pair separation to
grow from thresholdr,, to the next on&R,,. ;. Averages are 10°°
then performed over many dispersion experiments, i.e., par-
ticle pairs, to get the mean doubling tini€,(R)). The out-
standing advantage of this kind of averaging at fixed scal&IG. 1. Energy spectrurE(k) of the inverse cascade simulations at reso-
separation, as opposite to a fixed time, is that it remove#ition N=2048 with random forcing around scale=0.0074. The dashed

. . . i i — 2/31,—5/3 |5 — H
crossover effects since all sampled particle pairs belong € is the Kolmogorov spectruii(k) =Ce**"*with C=6.0. In the inset
it is shown the compensated third-order longitudinal structure function

the same scales. o S Sy(r)/(er) with the prediction 3/Zdashed ling
The problem of doubling time statistics is a first-passage

problem for the corresponding transport process. For the Ri-

chardson case, in 2D it is given by the solution of the Rich- pD(t):exF(—0_253/<TP(R)>), (13
ardson’s diffusion equation, Eq&2), with initial condition
p(r,0)=&(r —R/p)/27 and absorbing boundary a&R [so
thatp(R,t) =0]. The pdf of doubling time can be obtained as
the time derivative of the probability that the particle is still IV. DIRECT NUMERICAL SIMULATIONS

E(k)

102 102 107

i L

1 10 100 1000
k

which is a parameterless, universal function.

within the threshold Pair dispersion statistics has been investigated by exten-
d sive direct numerical simulations of the inverse energy cas-
pp(t)=— &f p(r,t)dr. (9 cade in two-dimensional turbulenéeThere are several rea-
Ir|<R sons for considering 2D turbulence. First of all, the
Using (2) one obtains dimensionality of the problem makes feasible direct-

numerical simulations at high Reynolds numbers. Moreover,
(10) the observed absence of intermitteffcynakes the 2D in-
verse energy cascade an ideal framework for the study of

. . . . ... . Richardson scaling in Kolmogorov turbulence.
The solution using the eigenfunction decomposition is given 4 2p Navier—Stokes equation for the vorticity=V
in Appendix A and shows that the long-time asymptotic °f><v: —Ayis

pp(t) is exponential
Pp(t)=exp(— kkoe *R™2R), (11)

2OP(r,t)

__ 13, R/
Po(t) =~ 2ms R

r=R

dwt+Iw,h)=vAw—aw+ ¢, (19

where iy is the stream function and denotes the Jacobian.
wherex~2.93 is a number factor. This exponential nature ofThe friction linear term— aw extracts energy from the sys-
the tail of pp(t)-distribution will be confirmed by direct {em to avoid Bose—Einstein condensation at the gravest
simulations in Sec. IV. _ _ modes?® The forcing¢ is active only on a typical small scale
Note that the combination™*R?* has a dimension of | and is scorrelated in time to ensure the control of the
time and is proportional to the average doubling timeenergy injection rate. The viscous term has the role of re-
(T,(R)). This time can be obtained by a simple argumentyqying enstrophy at scales smaller thaand, as customary,
reported in Appendix B. In the two-dimensional case oney js numerically more convenient to substitute it by a hyper-

obtains viscous term(of order eight in our simulations Numerical
3 p23-1 R23 integration of(14) is performed by a standard pseudospectral
(T,(R)= 15 0 (120  method on a doubly periodic square domain of $ize2 7 at

resolutions ranging fronN=128 up toN=2048. All the
Prediction (12) contains the parametdt, which, as results presented are obtained in conditions of stationary tur-

shown in Sec. Il, is dependent on the Richardson congtant bulence.
As a consequence, the computation of average doubling time In Fig. 1 we plot the typical energy spectrum, which
can be used for an alternativand more robust, as we will displays Kolmogorov scalinde(k) =Ce?3 5" over about
seg estimation ofg. It is convenient to rewrite the doubling two decades with Kolmogorov consta@t=6.0. In the inset
time pdf(11) in terms of the average doubling ting&,,(R)). we plot the third-order longitudinal structure functi®g(r)
Making use of(12) one obtains in 2D the asymptotic expres- =(dv(r)®) compensated with the theoretical prediction
sion S;(r)=3/2er. The observation of the plateau confirms the
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FIG. 3. Probability distribution function of relative separations at time
=0.031(*) andt=0.77(X) rescaled wittR(t) =(r?(t))*2 The continuous
line is the Richardson predictiof3), the dashed line is the Gaussian distri-
bution.

FIG. 2. Relative dispersioR?(t) with R(0)= 8x/2 (+) andR(0)= 6x (X)
and the Richardson la®?(t) = get® with g=3.8. In the inset the compen-
sated plotR?(t)/(et®) is displayed.

existence of an inverse energy cascade and indicates the qé’plotted in Fig. 3 for theR(0)= 8x/2 run. At short timet
tension of the inertial range. Previous numerical investiga- ' '

tion has sh that velocity diff tatistics in the | =0.015, in the beginning of the range in Fig. 2, we found

'on has s O(\an. a tveﬁOC'tyd Ib er_e?ces_tf atistics in ﬁg "Mthat the Richardson pdB) fits pretty well our data, although
Verse cascade IS not afiected by Intermittency COITECtions. 4, e jeyiations can be detected. Of course, at time compa-
In this case we may expect the Lagrangian statistics to b

if-simil ith Richard iy Fable with the integral timeé=0.77, particle separations are
sefi-simiar wi ichardson scaling. . . of the order of the integral scale and we observe Gaussian
Lagrangian statistics is obtained by integrating the tra

actor ¢ t0 6400 el irs in the turb distribution. The crossover between these two regimes is ex-
Jlectonels O't r‘r;_«':lrllc)j(u_p.tp” ? parl 'C;. E"’?‘t')rst'f(‘j (_a:[hur U tremely broad: Deviations from Richardson pdf are clearly
ent velocity ield, inftially uniformly distriouted with con- gy already for the times well within the Richardsari's
stant separatioR(0).

The Lagrangian data reported below are in dimensionrange' To observe better this transition, in Fig. 4 we plot, in
o ) : . . log—log plot, the right tail of-In(p(r,t)/p(0,t)). The far tails
less units in which separations are rescaled with the box si g-ogp g (P(r,t/p(0.)

z& : : : .
. ; S s p(r,t) represent pairs at large separation which are first
L and time with the large scale tind&=(1.%/)™ affected by finite-size effects. As a consequence, the slope of

the tail can be fitted with an exponeatwhich change con-
tinuously in time, from 2/3 to the Gaussian valugs2e the

In Fig. 2 we plot the relative dispersioR?(t) in the inset of Fig. 4. Thus self similarity, if it exists, is reduced to
highest resolution simulations for two different initial sepa-the very short time at the beginning of dispersion. Moreover,
ration, R(0)= 6x/2 andR(0)= 6x (whereéx=2m/N is the the scaling region is strongly affected by the choice of initial
grid mesh andN=2048. The Richardson® law (4) is ob-  separation, as shown in Fig. 2.
served in a limited time interval, especially for the larger
R(0) run. Aymptotically,R?(t) is independent on the initial
separation but it is remarkable that the relative separation 4, , ,
law displays such a strong dependence on the initial condi- M
tions even in our high resolution runs. %@5

This dependence makes the determination of the Rich-
ardson constant particularly difficult. In the inset of Fig. 2 we
show the compensated pl&®(t)/t*> which, in the dimen-
sionless units, should directly give the constgntt is clear
that a precise determination gfis impossible; even the Ri-
chardson scalingd), when looked in a compensated plot, is
rather poor. Figure 2 suggests that starting with an interme- , , .
diate initial separation would give a wider scaling range. Of 0.1 ¢ o o3 o5 1
course, one would like to avoid this “fine tuning,” which is 5 .
probably impossible to implement in the case of experimen- 0.1 1 10
tal data. These effects are even more dramatic in the case c r/R(1)
low resolution simulationgsee Appendix € In the follow-

A. Relative dispersion analysis

i
* X %
xX %

-log(p(r,ty/p(0.1))

. . s - : : - FIG. 4. Right tail of —log(p(r,t)/p(0,t)) at timest=0.015(+), t=0.041
ing Section we will introduce a technique which avoids thIS(X)' {=0.067(*), andt=0.77(0)) in log—log plot. The two lines represent

problems. N o _ _ _ the Richardson slope 2/3 and the Gaussian slope 2. The inset shows the
The probability distribution function of pair separations exponent of the right tail of the pdf as a function of time.
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=2ql/l; (i.e., the extension of the inertial rangét is inter-
esting to observe that the estimated valug & significantly
smaller at low resolution simulation. In the limit of high
resolution the Richardson constant approaches the \@lue
=3.8, although a residual weak dependence on resolution
cannot be excluded.

It is interesting to compare our result with previous es-
timations ofg. The only experimental estimation gffor 2D
inverse cascadaives a value about seven times smaller, but
the Reynolds number in the experiment is even smaller than
in present simulations and thus finite size can have even
more dramatic effectgsee Appendix € Other estimations
of g are based on kinematic simulations with synthetic flows.
In all these casé$?*the reported values are even smaller. In

the case of kinematic simulations one has obvioustyO
and g is defined by means of the Kolmogorov const&nt
From this point of view, it is interesting to compare the 2D
and 3D cases. Kolmogorov scaling requigesC®? and us-
ing the ratioC,p/C3p=4.0?, one has thay,p/gzp=8.0.
Thus, from this very crude argumefnthich, for example, do
The same Lagrangian trajectories discussed in the previrot take into account the role of the dimensionalitpur
ous section have been used for computing exit time statisticéinding g,p=3.8 predictsg;p=0.48 which is indeed very
In Fig. 5 we plot the average doubling time for th¢  close to recent experimentaand numericdP results. It is
=2048 simulation together with the dimensional predictionalso interesting to observe that our numerical finding is not
(T(R))=R?®. The improvement in the scaling of Fig. 5 with far from the prediction of turbulence closure the&Hg®

respect to Fig. 2 is evident thus allowing for a more precise  From Fig. 5 we observe that at very small separations
determination of the constant. Let us also observe that, b 1073 the doubling time has a tendency to a constant

definition, exit time statistics is independent on the initial
separationR(0) (as far as is it sufficiently smallthus the
two realizations of Lagrangian trajectories shown in Fig. 2
give the same result.

In Fig. 6 we plot the quantity3y(p?°—1)%/p?](R?
1e(T)%) which from (4) and (12) gives the value of the Ri- .
chardson constant, for different resolutions. As expected, th§<Ponent A. Thell latter can be obtained as\
extension of the scaling regiofiie., the plateau in Fig.)6 = lIMr—oINpT(R))™ and givesh =110 (in dimensionless
increases with the resolution. In the inset we plot the sd/nits). The Lagrangian Lyapunov exponents a small scale
obtained value ofgy as a function of the forcing scally ~ duantity (i.e. depends on the Reynolds number of the simu-
lation), and thus has to be compared with a small scale char-
acteristic time. One can estimate the smallest characteristic
time 7, by the minimum value of K*E(k)) 1. We obtain

FIG. 5. Mean doubling tim&T(R)) as function of the separatioR The
ratio is p=1.2 and the average is obtained over about18° events. The
line represent the dimensional scaliRg®.

B. Doubling time data

value (T(R))=0.0016. On these scales we are below the
forcing scale(see Fig. 1, and the velocity field can be as-
sumed smooth. As a consequence of Lagrangian chaos we
expect on these scales an exponential amplification of
separatiors at a rate given by the Lagrangian Lyapunov

Loottduntosierigse N=0.23r,.
° s X X XX Xf‘gﬁ} In Fig. 7 we plot the doubling time pdip(T) compen-
. ° x © ", sated with the mean valug@ (R)) at different scales in the

inertial range 0.0083 R<0.046. First, we obtain a very nice
collapse of the different curves, indicating that relative dis-
o ' persion in two-dimensional turbulence, when looked in the
correct way, is a self similar process. Second, we observe the
exponential tail predicted in Sec. lll with a fitted coefficient

1 1

L

0.3 which is indeed not far from the theoretical prediction

200 400 600 (13) based on the Richardson’s picture. The difference be-
0.1 0.001 0.01 0.1 tween the predicted an_d measured values of the_prefactors is
R not large, but perceptible: It shows that the Richardson’s
equation gives a correct qualitative description of the disper-
FIG. 6. Mean doubling time compensated as (2W8J°-1)*  sjon process, but is not exact. The reasons for deviations

p21(R?(T)3) in order to give the Richardson constarfor different reso-
lutions: N=128, | ;=L/40 (+), N=256, |;=L/80 (x), N=512, ;= L/160

(*), N=1024,1;=L/320(J) andN=2048,1;=L/640(O). In the inset the
value ofg as a function of; is plotted.

from the diffusive picture proposed by Richardson are the
long-range correlations in the particles’ motion, as seen from
the analysis of the turning points of their relative trajectories.
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ity densityW (r,|r,) is well observed in our numerical simu-

% lations. This justifies, a posteriori, the use of models based
11 1 on W(r,|r;) for describing relative dispersidi.The nu-
+ merical value of the effective persistence parame®er
ﬁﬁ =0.87 is not so small, and can explain the observed devia-
E % tions from Richardson pdfwhich are, however, less pro-
5 01}% B 1 . . \ . :
A 0 nounced in a 2D flow than in a theoretical one-dimensional
v _ff%%‘ii‘ggin model®: The transport in a 2D turbulent flow is neither
B T :??f"?i_gg;m purely diffusive nor ballisti¢®
107 \~~.¢!52§%?gg!gg§§ﬁﬁé | In order to be more confident on the numerical value of
R ’*f-‘a@gggw* Psobtained through the turning-points statistics, let us show
- QT that it agrees with a simple estimates based on the values of
108 ) ‘ : : the Kolmogorov’s and the Richardson’s constants. According
2 4 6 8 10 to the Kolmogorov’s scaling, the mean squared relative ve-
Ti<T> locity of the pair is given by
FIG. 7. Pdf of doubling times at resolutioN=2048 for distancesR <5U2(r)>:C282/3r2/3, (15)
=0.003(+), R=0.075(x), R=0.02(*) andR=0.046(). The dashed line
is the exponential exp(0.3T/(T)). with C,=1322 If the particles separate ballistically with the
rms velocity
C. Turning points statistics and the persistence Su(r)=C5%"%, (16)
parameter the distance between them should grow as
A possible explanation for the deviations of our high- 23
resolution numerical data from the Richardson’s picture is Réaxz(_) C32et3, (17)
the not very small value of the persistence parameter. As 3

discussed in Sec. Il at large valuesRxthe contribution of o, the other hand, due to the unsteadiness of the separation

ballistic events may lead to non-Richardson distributions a”@elocity the distance between the particles grows slower
moreover makes the dispersion strongly sensible to finiteﬁame|y asR2=get?, so that the factor

size effects, cutting the longer trajectories.

We have computed the persistence parameter making use
of (8). We have recorded, for each pair, the set of turning
pointsr; at which the pair’s relative velocity changes sign. ) ) )
From the set of, we have then computed the pdf of the ratio S€TVeS as a measure of this unsteadinesstaisiconnected
r../r;, accumulating for all thé and all the pairs. The With the value of the persistence parameter. In our cée,
result, plotted in Fig. 8, give®s=0.87. The requirement ~(0.28. Within the stochastic model of Ref. ;8 this corre-
that bothr, andr, are in the inertial range, strongly limits SPONdS to a value dPs between 1.1 and 1.2, in reasonable

the statistics on turning points and the numerical result iggreement with the direct measurement from the turning-
affected by rather large uncertainty. Nevertheless, it is rePOINt statistics, and again corroborates the stochastic ap-

markable that the power law tail in the conditional probabil-Proach. o
We also note a possibility to “tune” thés value by

performing simulations in which the Lagrangian trajectories
are integrated according ®=\v(x,t). By changing the
value of parametex one effectively changes, and thusPs
In the extreme case— 0 the trajectories resemble those in a

time &-correlated velocity field. In the opposite limit>1

T we have dispersion in a quenched field. Of course, it is only
T for the standard value.=1 that Lagrangian trajectories

> 102 t . move consistently with velocity fieldi.e., for v=a=¢=0

E=RIR, = 59 (18)
max | 9 62521

FIG. 8. Probability density function of turning point ratib(r,/r,). The

10
I/t

exponent of the power ladashed ling gives the valueP,=0.87.

+ (14) conserves vorticity along the Lagrangian trajectories

For other values ofA such simulations suffer the typical
problem of advection in synthetic fielde., wrong reproduc-
tion of the sweeping effect, see Ref. 9 for a discussion
Simulations for several values af show that existence of
the power-law tails of¥(r,|r;) is a robust effect, as sup-
posed by the model of Refs. 15 and 18, and fsgrows
with \. As an example, in Fig. 9 we plot the probability
density W (r,|r,) obtained from a simulation witih=0.5.

All the Eulerian parameters are the same of Fig. 8. We again
observe a clear power law tail but now wihs=0.58.
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- APPENDIX A: THE PDF OF DOUBLING TIMES

N Let us discuss the probability densiby(t) of the time
107 1 W 1 when the a pair of particles initially at distanBép separates
' up to the distanc®, and obtain its asymptotic decay of this
1 10 100 -
probability fort large.

o/t Changing to a variablé= (koe %) ~2r 13 reduced?2) to
FIG. 9. The same of Fig. 8 but for=0.5. The persistence parameter is now a_rad'al part Of_ a sphencally 'Symmetr'c diffusion equation
P.~0.58. with constant diffusion coefficient. Ink2one has

p_ 1 4 9 AL
98 g agP -
V. CONCLUSIONS with the initial condition p(&,0)=8(&mn—&) With &

_ 1/3) —1/2, 1/3 ; P
We have investigated the Lagrangian relative dispersior&)((go’3 ?)—O(\I/?v/itpr? £ a_n(ios\f,/%rl 1,22?,3 boundary - condition
maxi:t) Y max— .

in direct numerical simulation of two-dimensional turbu-

lence. The inverse energy cascade of two-dimensional turbLb'e obtained by means of eigenfunction decomposition. As-

Iencg .dlsplays Kolmogorov scaling vylthouF Intermittency suming the variable separation we get the solution in the
and it is thus the natural framework for investigating possible 2t ) _
i (€), where ¢;(§) is an eigenfunc-

deviations from the classical Richardson picture. fprm p(f,t)zzie_

The analysis of the numerical data was performed by'on Of the equation
using both standard statistics at fixed time and exit time sta- 1 9 J
tistics at fixed scale. The latter is shown to be more robustin = gz5 &—ggsa—g b=\, (A2)
finite Reynolds situations. An application of exit time statis-
tics is developed for measuring the Richardson constant witgatisfying the boundary conditiogl(£m)=0. The corre-
good accuracy. The numerical result obtaimee3.8 is pos- sponding solution which is nonsingular in zero i
sibly still affected by weak finite-size effects, at is it shown =& 2J2(3\ié) (J is the Bessel functidi)). The fact thaty
by comparison with simulations at different resolutions. ~ vVanishes a€y gives &max=]2i, Wherejy; is thei-the

We have studied the distribution of particle pair separaf€al zero ofJ,(x). For example, the smallest eigenvalue is
tions in the spirit of Richardson's diffusion equation. The N =5 /9¢ma~2.9%e™R™?%. Since the projection of the
rather |arge deviationsNith respect to Richardson theOry initial condition onto the eigenfunction Corresponding to this
observed in the tails of the pdf at fixed times are mostlyeigenvalue does not vanish, the long-time asymptotic of the
related to crossover effects due to finite Reynolds numberdoubling-time distribution is exp{2.93%ye*R™%%).
and disappear when looking at exit time statistics. Thus, the
Richardson’s equation gives a good basis for qualitative deappeNDIX B: AVERAGE DOUBLING TIME
scription of the dispersion in turbulent flows.

Paying attention to the turning points of the relative tra-  1he mean doubling time can be obtained from a station-
jectories allows for estimating the effective persistence pa@ry solution of the Richardson diffusion equation. Imagine
rameter of the motion which is found to be of the order ofthat one particle per unit time is introducedrat R/p and
unity. Thus, the motion shows a relevant ballistic componenthere are, respectively, a reflecting and absorbing boundaries
and is not purely diffusive. Nevertheless, the correlations ar@tr =0 andr=R. The stationary solution @) in 2D with
not too strong to fully destroy the Richardson’s picture. Thisthe appropriate boundary conditions and continuity g
observation can be a starting point for further theoreticals

considerations. Clp**-1] for 0<r<R/p
We note that the methodology of analysis proposed here

The solution of a boundary-value problem f@1) can

based on the fixed-scale statistics and on the analysi p(r)= r) e ' (B1)
ysis of the C <_ —1| for RIp<r<R

relative trajectories can be also applied to the analysis of R

laboratory experiments. It would be extremely interesting toThe number of particle iIn<R is

see whether in this way one can reduce the disagreement

with the simulations and obtains a consistent picture of rela-  \— p(r)drszJRrp(r)dr (B2)

tive dispersion in two-dimensional turbulence. Ir|<R 0
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By using (B1) one obtains
N=27C(1-p 23R (B3)

The current at =R, i.e., the number of particle exiting

from the boundanR per unit time, is given, as ifil0), as é .
ap(r)| 8 5 O S -
r T .
3= —2me IR ST ool RIS (Ba) .
ar F_R 3 LT
The mean doubling time is the average time spent by a
particle atr <R. It is given by the ratidN/J and thus 0.01 ‘ .
23 0.01 0.1 1
_2 P 213 (B5) R
(To(R)= 7 il

FIG. 11. Mean doubling timéT(R)) as function of the separatiddfor the
same simulation of Fig. 10. The dashed line represent the exponential re-
gime, the dotted line the diffusive regin{@(R))=R?.

which is Eq.(12).

APPENDIX C: FINITE-SIZE EFFECTS
erwise, detailed numerical simulations performed with syn-

In this appendix we briefly discuss the effect of finite ihetic velocity field*! have shown that the broad crossover
resolution on the evaluation of relative dispersion. Let Usyom the exponential regime and to the diffusive regime can

consider an incompressible turbulent flow with inertial rangecompletely hide the intermediate inertial range regime.

defined on scalek<r<L. In the case of 2D turbulende

An example of this effect is given in Fig. 10 which

represents the forcing scale_ah_dihe_ integral scale, yvhile i shows the behavior oR2(t) for low resolution simulation
the 3D case they are the dissipative and the forcing scalegth | =1/10=0.63 for two different initial separations

respectively. The velocity field is thus assumed smdoéh,
(Sv(r)?)~r?] for r<I;, Kolmogorov-type[i.e., {5v(r)?)
~r?3] in the inertial range and saturate év(r)?)

R(0). Theapparent® regime is spurious, in the sense that it
is not related to Kolmogorov velocity scaling but it is simply
an artifact induced by the crossover from the exponential to

=2(v?)] at the integral scale. The separation between tWane giffusive regime. As a consequence, the value of the Ri-

particles placed at initial distand®(0)<l; grows exponen-

chardson constant computed from the compensated plot

tially as long as it remains below the inertial range. In thestrongly depends on the initial separatigrom g=0.3 tog

inertial range the Richardson scaliRj(t)~t* is expected.
For R(t)>L the behavior depends on the boundary condi-

=0.5 for R(0)=0.004. to R(0)=0.01].
In Fig. 11 the result of the computation of mean dou-

tions: In the present case of numerical simulations with pepjing time is presented. The two lines represent the exponen-
riodic boundary conditions standard diffusive behaviorijg| ang diffusive regimes and no RichardsBA® regime is

R?(t)=2Dt is expected.

observed(compare with Fig. 5 Thus, also in this case of

It is evident that a clear law can be observed only if exiremely low resolution, the advantage of doubling time
L>I¢, i.e., in the case of high-Reynolds number flows. Oth-giatistics for the interpretation of Lagrangian data is evident.

10
0.8
0.6
107 | 0.4
0.2
Nl‘:&
o
103 t
10 . .
0.01 0.1 1

FIG. 10. Relative dispersioR?(t) for the low resolution simulation with
I;=L/10 at initial separationR(0)=1;/10 andR(0)=1:/20. In the inset the
compensated pldR?(t)/(et%) is shown.
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