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The irreversible turbulent energy cascade epitomizes strongly nonequilibrium systems.
At the level of single fluid particles, time irreversibility is revealed by the asymmetry of the
rate of kinetic energy change, the Lagrangian power, whose moments display a power-law
dependence on the Reynolds number, as recently shown by Xu et al. [H. Xu et al., Proc. Natl.
Acad. Sci. USA 111, 7558 (2014)]. Here Lagrangian power statistics are rationalized within
the multifractal model of turbulence, whose predictions are shown to agree with numerical
and empirical data. Multifractal predictions are also tested, for very large Reynolds numbers,
in dynamical models of the turbulent cascade, obtaining remarkably good agreement for
statistical quantities insensitive to the asymmetry and, remarkably, deviations for those
probing the asymmetry. These findings raise fundamental questions concerning time
irreversibility in the infinite-Reynolds-number limit of the Navier-Stokes equations.
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I. INTRODUCTION

In nature, the majority of the processes involving energy flow occur in nonequilibrium conditions
from the molecular scale of biology [1] to astrophysics [2]. Understanding such nonequilibrium
processes is of great interest at both fundamental and applied levels, from small-scale technology [3]
to climate dynamics [4]. A key aspect of nonequilibrium systems is the behavior of fluctuations that
markedly differ from equilibrium ones. As for the latter, detailed balance establishes equiprobability
of forward and backward transitions between any two states, a statistical manifestation of time
reversibility [5], while irreversibility of nonequilibrium processes breaks detailed balance. In three-
dimensional (3D) turbulence, a prototype of very far-from-equilibrium systems, detailed balance
breaks in a fundamental way [6]: It is more probable to transfer energy from large to small scales than
its reverse. Indeed, in statistically stationary turbulence, energy, supplied at scale L at rate ε (≈U 3

L/L,
UL being the root mean square single-point velocity), is transferred with a constant flux approxi-
mately equal to ε up to the scale η, where it is dissipated at the same rate ε, even for vanishing viscosity
(ν → 0) [7]. As a result, time reversibility, formally broken by the viscous term, is not restored for
ν → 0 [8]. Time irreversibility is unveiled by the asymmetry of two-point statistical observables. In
particular, the constancy of the energy flux directly implies, in the Eulerian frame, a nonvanishing
third moment of longitudinal velocity difference between two points at distance r (the 4

5 law [7]) and,
in the Lagrangian frame, a faster separation of particle pairs backward than forward in time [9,10].

Remarkably, time irreversibility has been recently discovered at the level of single-particle
statistics [11,12] that is not a priori sensitive to the existence of a nonzero energy flux. This
opens important challenges also at applied levels for stochastic modelization of single-particle
transport, e.g., in turbulent environmental flows [13]. Both experimental and numerical data revealed
that the temporal dynamics of Lagrangian kinetic energy E(t) = 1

2v2(t), where v(t) = u(x(t),t) is
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FIG. 1. Shown on the left is a three-dimensional rendering of the Lagrangian power spatial distribution in
the whole simulation volume. Red (blue) represents the isosurfaces p = ±6prms (prms = 〈p2〉1/2), which appear
clusterized in dipole structures. Shown on the right is the log-lin standardized PDF of p for Reλ ≈ 104. Notice
that the asymmetry of the distribution is very small, hence the difficulty to quantify and rationalize the physics
behind irreversible effects along a particle trajectory.

the Lagrangian velocity along a particle trajectory x(t), is characterized by events where E(t)
grows slower than it decreases. Such flight-crash events result in the asymmetry of distribution
of the Lagrangian power p(t) = Ė = v(t) · a(t) (a ≡ v̇ = ∂t u + u · ∇u being the fluid particle
acceleration). While in stationary conditions the mean power vanishes 〈p〉 = 0, the third moment is
increasingly negative with the Taylor scale Reynolds number Reλ ≈ (ULL/ν)1/2 ≈ TL/τη measuring
the ratio between the time scales of energy injection TL and dissipation τη, which easily exceeds
103 in the laboratory. In particular, it was found that 〈p3〉/ε3 ∼ −Re2

λ [11,12] and 〈p2〉/ε2 ∼ Re4/3
λ .

Interestingly, the Reλ dependence deviates from the dimensional prediction based on Kolmogorov
phenomenology [7] 〈pq〉/εq ∝ Req/2

λ , signaling that the Lagrangian power is strongly intermittent as
exemplified by its spatial distribution and the strong non-Gaussian tails of the probability distribution
function of p (Fig. 1).

From a theoretical point of view, the above scaling behavior of the power with Reλ implies that the
skewness of the probability density function (PDF) of p, S = 〈p3〉/〈p2〉3/2, is constant, suggesting
that time irreversibility is robust and persists even in the limit Reλ → ∞. It is important to stress that
one might use different dimensionless measures of the symmetry breaking, e.g., S̃ = 〈p3〉/〈|p|3〉,
which directly probes the ratio between the symmetric and asymmetric contributions to the PDF. In
the presence of anomalous scaling S and S̃ can have a different Reλ dependence, as highlighted for
the problem of statistical recovery of isotropy [14].

The aim of our work is twofold. First, we use direct numerical simulations (DNSs) of 3D
Navier-Stokes equations (NSEs) to quantify the degree of recovery of time reversibility along
single-particle trajectories using different definitions as discussed above. Second, we show that it is
possible to extend the multifractal formalism (MF) [15] to predict the scaling of the absolute value of
the Lagrangian power statistics. Moreover, in order to explore a wider range of Reynolds numbers,
we also investigate the equivalent of the Lagrangian power statistics in shell models [16,17].

The rest of the paper is organized as follows. Section II is devoted to a brief review of the multifrac-
tal formalism for fully developed turbulence and the predictions for the statistics of the Lagrangian
power. In Sec. III we compare these predictions with the results obtained from direct numerical sim-
ulations of the Navier-Stokes equations and from a shell model of turbulence. Section IV is devoted
to a summary and conclusions. The Appendix reports some details of the numerical simulations.

II. THEORETICAL PREDICTIONS BY THE MULTIFRACTAL MODEL

We start by recalling the MF for the Eulerian statistics [7,15]. The basic idea is to replace the
global scale invariance in the manner of Kolmogorov with a local scale invariance, by assuming
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that spatial velocity increments δru over a distance r 
 L are characterized by a range of scaling
exponents h ∈ I ≡ (hm,hM ), i.e., δru ∼ uL(r/L)h. Eulerian structure functions 〈(δru)q〉 are obtained
by integrating over h ∈ I and the large-scale velocity uL statistics P(uL), which can be assumed to
be independent of h. The MF assumes the exponent h to be realized on a fractal set of dimension
D(h), so the probability to observe a particular value of h, for r 
 L, isPh(r) ∼ (r/L)3−D(h). Hence,
we find 〈(δru)q〉 ∼ 〈uq

L〉 ∫
h∈I dh(r/L)hq+3−D(h) ∼ 〈uq

L〉(r/L)ζq , where a saddle-point approximation
for r 
 L gives

ζq = inf
h∈I

{hq + 3 − D(h)}. (1)

For the MF to be predictive, D(h) should be derived from the NSE, which is out of reach. One
can, however, use the measured exponents ζp and, by inverting (1), derive an empirical D(h). Here,
following [18], we use

D(h) = 3 − d0 − d(h)[ln(d(h)/d0) − 1], (2)

with d(h) = 3(1/9 − h)/ln β and d0 = 2/[3(1 − β)] corresponding, via (1), to ζq = q/9 +
(2/3)(1 − βq/3)/(1 − β), which, for β = 0.6, fits measured exponents fairly well [19].

The MF has been extended from Eulerian to Lagrangian velocity increments [20,21]. The idea
is that temporal velocity differences δτ v over a time lag τ , along fluid particle trajectories, can be
connected to equal time spatial velocity differences δru by assuming that the largest contribution to
δτ v comes from eddies at a scale r such that τ ∼ r/δru. This implies δτ v ∼ δru, with

τ ∼ TL(r/L)1−h, (3)

where TL = L/uL. By combining Eq. (3) and the D(h) obtained from Eulerian statistics, one
can derive a prediction for Lagrangian structure functions, which has been found to agree with
experimental and DNS data [19,21–23]. The MF can be used also for describing the statistics of the
acceleration a along fluid elements [20,23]. The acceleration can be estimated by assuming

a ∼ δτη
v/τη. (4)

According to the MF, the dissipative scale fluctuates as η ∼ (νLh/uL)1/(1+h) [24], which leads, via
(3), to

τη ∼ T (ν/LuL)(1−h)/(1+h). (5)

Substituting (5) in (4) yields the acceleration conditioned on given values of h and uL:

a ∼ ν(2h−1)/(1+h)u
3/(1+h)
L L−3h/(1+h). (6)

Equation (6) has been successfully used to predict the acceleration variance [20] and PDF [23].
We now use (6) to predict the scaling behavior of the Lagrangian power moments with Reλ.

These can be estimated as 〈pq〉 ∼ 〈(auL)q〉 ∼ ∫
duLP(uL)

∫
h∈I dhPh(τη)(auL)q , with Ph(τη) =

(τη/T )[3−D(h)]/(1−h). Using (5) with ν = ULL Re2
λ (with U 2

L = 〈u2
L〉), we have

〈pq〉
εq

∼
∫

dṽP(ṽ)
∫

h∈I
dh ṽ[4q+h−3+D(h)]/(1+h)Re2[(1−2h)q−3+D(h)]/(1+h)

λ , (7)

with ṽ = uL/UL [25]. In the limit Reλ → ∞, a saddle-point approximation of the integral (7) yields,
up to a multiplicative constant (depending on the large-scale statistics), 〈pq〉/εq ∼ Reα(q)

λ , with

α(q) = sup
h

{
2

(1 − 2h)q − 3 + D(h)

1 + h

}
. (8)
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FIG. 2. Scaling behavior of Lagrangian power moments (9) Sq (blue circles) and −Aq (orange squares) for
(a) q = 2 and (b) q = 3. Data refer to DNS1 (closed symbols) and DNS2 (open symbols) data sets, described
in the Appendix. Solid lines show the slopes (a) α(2) = 1.17 and (b) α(3) = 2.1 predicted by the MF via (8)
with (2) for β = 0.6. Errors bars have been obtained as standard errors over independent configurations of the
turbulent field. We used from 5 to 40 configurations spaced by approximately TL, depending on the resolution.

III. COMPARISON WITH NUMERICAL SIMULATIONS

To test the MF predictions (8) we use two sets of DNS of homogeneous isotropic turbulence
on cubic lattices of sizes from 1283 up to 20483, with Reλ up to 540, obtained with two different
forcings (see the Appendix for details). In particular, to probe both the symmetric and asymmetric
components of the Lagrangian power statistics, we study the nondimensional moments

Sq = 〈|p|q〉/εq, Aq = 〈p|p|q−1〉/εq, (9)

where the latter vanishes for a symmetric (time-reversible) PDF. In Fig. 2 we show the second-
and third-order moments of (9) as a function of Reλ. We observe that (i) the MF prediction (8)
is in excellent agreement with the scaling of Sq (see also Fig. 3) and (ii) the asymmetry probing
moments Aq are negative, confirming the existence of the time-symmetry breaking, and scale with
exponents compatible with those of Sq . This implies that time reversibility is not recovered even for
Reλ → ∞. Actually, irreversibility is independent of Reλ if measured in terms of the homogeneous
asymmetry ratio S̃ = Aq/Sq , while if quantified in terms of the standard skewness S, it grows
as Reχ

λ with χ = α(3) − (3/2)α(2) � 0.35 due to anomalous scaling. In the inset of Fig. 3 we
compare S with S̃. Evaluating (8) with D(h) given by (2), we obtain α(2) ≈ 1.17 and α(3) ≈ 2.10,
which are close to the 4/3 and 2 reported in [11]. We remark that the authors of [11] explained
the observed exponents by assuming that the dominating events are those for which the particle
travels a distance r ∼ ULτ in a frozenlike turbulent velocity field, so that δτη

v ∼ (ετηUL)1/3.

Hence, for the acceleration (4) one has a ∼ U
1/3
L ε1/3τ

−2/3
η , which, using the dimensional prediction

τη = (ν/ε)1/2, ends up in p ∼ ULa ∼ U
4/3
L ε2/3ν−1/3 ∼ ε Re2/3

λ . This argument provides only a
linear approximation 2q/3 for α(q), while the multifractal model is able to describe its nonlinear
dependence on q. In Fig. 3 we show the whole set of exponents for both Aq and Sq as observed in
DNS data and compare them with the prediction (8).

It is worth noticing that the MF provides an excellent prediction for the statistics of p also in
1D compressible turbulence, i.e., in the Burgers equation, studied in [26]. Here, out of a smooth
(h = 1) velocity field, the statistically dominant structures are shocks (h = 0). The velocity statistics
is thus bifractal with D(1) = 1 and D(0) = 0 [27]. Adapting (8) to one dimension and noticing that
Re ∝ Re2

λ, we have 〈pq〉 ∼ Reα1D(q) with α1D(q) = suph{[(1 − 2h)q − 1 + D(h)]/(1 + h)}, which
for Burgers means α1D(q) = q − 1, in agreement with the results of [26].

To further investigate the scaling behavior of the symmetric and asymmetric components of the
power statistics in a wider range of Reynolds numbers and with higher statistics, in the following
we study Lagrangian power within the framework of shell models of turbulence [16,17]. Shell
models are dynamical systems built to reproduce the basic phenomenology of the energy cascade
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FIG. 3. Scaling exponents of Lagrangian power moments α(q) from DNS data, obtained by fitting Sq (blue
circles) and −Aq (orange squares) as power of Reλ. Error bars have been obtained by varying the fitting region;
when they are not visible it is because they are of the order of or smaller than the symbol size. Notice that Aq is
positive for q < 1, zero for q = 1 (by stationarity), and negative for q > 1. We only show exponents for q � 2
because for 1 < q < 2 insufficient statistics leads to a poor scaling behavior. Solid and dashed curves correspond
to the MF (8) and Kolmogorov [α(q) = q/2] dimensional prediction, respectively. respectively. Black diamonds
show the exponents found in [11]. The inset shows the nondimensional measure of the asymmetry in terms
of the skewness S = 〈p3〉/〈p2〉3/2 (yellow circles) and of the statistically homogeneous asymmetry ratio
S̃ = 〈p3〉/〈|p|3〉 (red squares). The solid line shows the slope α(3) − (3/2)α(2) � 0.35 predicted by the MF
(see the text). Open and closed symbols are as in Fig. 2.

on a discrete set of scales rn = k−1
n = L2−n (n = 0, . . . ,N), which allow us to reach high Reynolds

numbers. For each scale rn, the velocity fluctuation is represented by a single complex variable un,
which evolves according to the differential equation [28]

u̇n = ikn

(
un+2u

∗
n+1 − 1

4un+1u
∗
n−1 + 1

8un−1un−2
) − νk2

nun + fn, (10)

whose structure is a cartoon of the 3D NSE in Fourier space but for the nonlinear term that restricts
the interactions to neighboring shells, as justified by the idea localness of the energy cascade [6].
Energy is injected with rate ε = 〈∑n Re{fnu

∗
n}〉. See the Appendix for details on forcing and

simulations. As shown in [28], this model displays anomalous scaling for the velocity structure
functions 〈|un|q〉 ∼ k

−ζq

n , with exponents remarkably close to those observed in turbulence and in
very good agreement with the MF prediction (1).

Following [21], we model the Lagrangian velocity along a fluid particle as the sum of the real part
of velocity fluctuations at all shells v(t) ≡ ∑N

n=1 Re{un}. Analogously, we define the Lagrangian
acceleration a ≡ ∑N

n=1 Re{u̇n} and power p(t) = v(t)a(t). In Figs. 4(a) and 4(b) we show the
moments Sq and Aq for q = 2,3 obtained from the shell model. The symmetric ones Sq perfectly
agree with the multifractal prediction obtained using the same D(h), i.e., (2) for β = 0.6, which
fits the Eulerian statistics. The asymmetry-sensitive moments Aq are negative (for q > 1), as in
Navier-Stokes turbulence, and display a power-law dependence on Reλ with a different scaling
respect to their symmetric analogs. In particular, as summarized in Fig. 4(c), we observe smaller
exponents with respect to the MF up to q = 4. Rephrased in terms of the skewness, these findings
mean that the time asymmetry becomes weaker and weaker with increasing Reynolds numbers if
measured in terms of S̃ [Fig. 4(c) inset], as distinct from what was observed for the NSE (Fig. 3
inset). The standard skewness S, on the other hand, is still an increasing function of Reλ, though with
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FIG. 4. Lagrangian power statistics in the shell model with N = 30 shells at varying ν. The Reλ dependence
of Sq and −Aq is shown for (a) q = 2 and (b) q = 3 compared with the MF prediction (8) (solid lines) and
the best fit of the asymmetry-sensitive observables (dashed lines) providing slopes (a) 0.93(1) and (b) 1.87(1).
Notice that −Aq is shifted upward to highlight the different scaling behavior. (c) Scaling exponents α(q)
obtained by fitting Sq (blue circles) and −Aq (orange squares) as power laws in Reλ, compared with (black
solid curve) the MF prediction (8) and (purple dashed curve) Kolmogorov dimensional scaling. Errors on the
fitted values have been obtained by varying the fitting region; they are of the order of or smaller than the symbol
size. The inset shows the nondimensional measure of the asymmetry in terms of the skewness S = 〈p3〉/〈p2〉3/2

(yellow circles) and of the statistically homogeneous asymmetry ratio S̃ = 〈p3〉/〈|p|3〉 (red squares). Notice
that the different scaling behavior of Sq and −Aq reflects on the Reλ dependence of the S that deviates from the
MF slope α(3) − (3/2)α(2) (solid line). Data in (a), (b), and the inset in (c) have been obtained by averaging
over ten realizations, each lasting 106TL; the standard error over the ten realization is of the order of or smaller
than the symbol size.

an exponent smaller than the MF prediction α(3) − (3/2)α(2), because A3 has a shallower slope
than the multifractal one.

IV. CONCLUSION

We have shown that the multifractal formalism predicts the scaling behavior of the Lagrangian
power moments, in excellent agreement with DNS data and with previous results on the Burgers
equation. In the range of explored Reλ, we have found that symmetric and antisymmetric moments
share the same scaling exponents and therefore the MF is able to reproduce both statistics. It is worth
stressing that the effectiveness of the MF in describing the scaling of Aq is not obvious as the MF, in
principle, bears no information on statistical asymmetries [29]. By analyzing the Lagrangian power
statistics in a shell model of turbulence, at Reynolds numbers much higher than those achievable in
DNS, we found that symmetric and antisymmetric moments possess two different sets of exponents.
While the former are still well described by the MF formalism, the latter, in the range of q explored,
are smaller. As a consequence, the ratios Aq/Sq in the shell model decrease with Reλ. However,
we observe that the mismatch between the two sets of scaling is compatible with the assumption
that Aq ∼ Sq〈sgn(p)〉, i.e., that the main effect is given by a cancellation exponent introduced by
the scaling of sgn(p). Our findings raise the question whether the apparent similar scaling among
symmetric and asymmetric components in the NSE is robust for large Reynolds numbers or a sort of
recovery of time symmetry would be observed also in Navier-Stokes turbulence as for shell models.
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TABLE I. Type of forcing, resolution N , Reynolds number Reλ = Uλ/ν [λ = (5E/Z)1/2 is the Taylor
microscale, ε the mean energy dissipation rate, E the kinetic energy, and Z the enstrophy], large-scale velocity
U = (2E/3)1/2, integral scale L = UE/ε, integral time TL = E/ε, dissipative scale η = (ν3/ε)1/4, Kolmogorov
time τη = (ν/ε)1/2, total time of integration T , and correlation time used in the forcing of DNS1 τf [see Eq. (A2)].
Because of the different forcing in the two sets of simulations, for DNS2 the contribution of the modes at wave
numbers k � 1 have been removed in the analysis.

Set N Reλ ε U L TL η τη T kf,min kf,max τf

DNS1 2048 544 1.43 1.62 4.51 2.77 0.0021 0.015 15 0.5 1 0.14
DNS1 512 176 1.68 1.74 4.70 2.70 0.0083 0.035 10 0.5 1 0.6
DNS1 256 115 1.19 1.50 4.26 2.84 0.019 0.066 48 0.5 1 0.6
DNS2 1024 171 0.1 0.529 2.22 4.19 0.005 0.063 27 0 1.5 n/a
DNS2 512 104 0.1 0.520 2.11 4.06 0.01 0.10 96 0 1.5 n/a
DNS2 256 65 0.1 0.513 2.05 3.98 0.02 0.16 165 0 1.5 n/a
DNS2 128 38.9 0.1 0.507 1.95 3.85 0.04 0.25 165 0 1.5 n/a

We conclude by mentioning another interesting open question. In [11,12] it was found that
the Lagrangian power statistics is asymmetric also in statistically stationary 2D turbulence in the
presence of an inverse cascade. Like in three dimensions, the third moment is negative and its
magnitude grows with the separation between the time scale of dissipation by friction (at large scale)
and of energy injection (at small scale), which is a measure of Reλ for the inverse cascade range.
Moreover, the scaling exponents are quantitatively close to the 3D ones. This raises the question on
the origin of the scaling in two dimensions that cannot be rationalized within the MF, since the inverse
cascade is not intermittent [30]. Likely, to answer the question one needs a better understanding of
the influence of the physics at and below the forcing scale on the 2D Lagrangian power.
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APPENDIX: DETAILS ON THE NUMERICAL SIMULATIONS

1. Direct numerical simulations

We performed two sets of DNSs at different resolutions and Reynolds numbers with two different
forcing schemes. The values of the parameters characterizing all the simulations are shown in Table I.
In all cases we integrated the Navier-Stokes equations

∂t u + u · ∇u ≡ a = −∇P + ν�u + f (A1)

for the incompressible velocity field u(x,t) with a fully parallel pseudospectral code, fully dealiased
with a 2/3 rule [31], in a cubic box of size L = 2π with periodic boundary conditions. In (A1) P

represents the pressure and ν is the kinematic viscosity of the fluid.
For the set of runs DNS1 we used a Sawford-type stochastic forcing, involving the solution of

the stochastic differential equations [32]

df̃i = ãi(t)dt,

dãi = −a1ãi(t)dt − a2f̃i(t)dt + a3dWi(t),
(A2)
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where a1 = 1/τf , a2 = (1/8)/τ 2
f , a3 = √

2a1a2, and dWi(t) = r
√

dt is an increment of a Wiener
process (r is a random Gaussian number with 〈r〉 = 0 and 〈r2〉 = 1). The forcing f (k,t) in Fourier
space is then

f (k,t) =
{
ik × [ik × (0.16k−4/3 f̃ )] for k ∈ [kf,min,kf,max]
0 for k /∈ [kf,min,kf,max].

(A3)

Time integration is performed by a second-order Adams-Basforth scheme with exact integration of
the linear dissipative term [33].

For the set of runs DNS2 we use a deterministic forcing acting on a spherical shell of wave
numbers in Fourier space 0 < |k| � kf , where kf = 1.5 with imposed energy input rate ε [34]. In
Fourier space the forcing reads

f (k,t) =
{
εu(k,t)/[2Ef (t)] for k ∈ [kf,min,kf,max]
0 for k /∈ [kf,min,kf,max], (A4)

where Ef (t) = ∑kf

k=0 E(k,t) and E(k,t) is the energy spectrum at time t . This forcing guarantees
the constancy of the energy injection rate. Notice that Eq. (A4) explicitly breaks the time-reversal
symmetry; however, owing to the universality properties of turbulence with respect to the forcing, we
expect this effect to be negligible as compared to the energy cascade. Time integration is performed
by a second-order Runge-Kutta midpoint method with exact integration of the linear dissipative term
[33,35]. Simulations have a resolution N sufficient to resolve the dissipative scale with kmaxη � 1.7
(kmax = N/3). We have checked in the simulations that the velocity field is statistically isotropic
with a probability density function (for each component) close to a Gaussian.

Simulations are performed for several large-scale eddy turnover times T , after an initial transient
to reach the turbulent state, in order to generate independent velocity fields in stationary conditions.
From the velocity fields the acceleration field is then computed by evaluating the right-hand side of
(A1) and the power field is obtained as p = u · a.

2. Simulations of the shell model

As for the shell model (10), simulations have been performed by fixing the number of shells
N = 30 and varying the viscosity ν in the range [3.16 × 10−4,3.16 × 10−8]. For each value of
ν we performed ten independent realizations lasting approximately 106TL each. Time integration
is performed using a fourth-order Runge-Kutta scheme with exact integration of the linear term.
Forcing is stochastic and acts only on the first shell fn = f δn,1. The stochastic forcing is obtained
by choosing f = F (f R + if I ) with F = 1 and

ḟ α = − 1

τf

f α +
√

2

τf

θα(t), (A5)

θ̇ α = − 1

τf

θα +
√

2

τf

ηα(t), (A6)

where ηα is a zero mean Gaussian variable with correlation 〈ηα(t)ηβ(t ′)〉 = δαβδ(t − t ′).
As a result, f α is a zero mean Gaussian variable with correlation 〈f α(t)f β(t ′)〉 =
δαβ

1
τf

exp(−|t − t ′|/τf )(|t − t ′| + τf ). In particular, we used τf = 1, which is of the order
of the large-eddy turnover time TL. Using a constant amplitude forcing, we obtained, within error
bars, indistinguishable exponents (not shown).
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