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The nonlinear Schrédinger equation in Lagrangian coordinates (LNLS) is derived from the
Lagrangian form of the Korteweg—de Vries equation (LKdV) using a multiscale averaging
approach. The resultant LNLS equation describes fluid particle motions for a small-amplitude,
narrow-banded nonlinear wave field propagating in shallow water. Particle motion is discussed
for LNLS in the context of the inverse scattering transform (IST) for both infinite-line and
periodic boundary conditions and explicit expressions for the trajectories of fluid parcels are
derived. It is demonstrated that, even in the presence of nonlinear effects, a particle trajectory
can be orthogonally decomposed into nonlinear horizontal and vertical motions which, given
the initial conditions, evolve independently of each other. It is shown how the presence of a
long, slowly varying wave component, which is interpreted as radiation stress, influences the
motion of fluid particles. Finally it is also shown how these results may be used in an
experimental context for the study of data described approximately by the LNLS equation.

I. INTRODUCTION

During the last two decades a new area of mathematical
physics has evolved as a consequence of the discovery of the
soliton by Zabusky and Kruskal.' The approach, known as
the inverse scattering (spectral) transform (IST), was first
used to solve the KdV equation by Gardner ef al.? and has
subsequently led to the exact solutions of a number of other
physically interesting nonlinear wave equations including
the modified KdV, the nonlinear Schrédinger, and sine-Gor-
don equations.>® Nonlinear partial differential equations of
this type have been called “universal” because of their fun-
damental and ubiquitous occurrence in a wide variety of
physical systems.® Solutions to these and many other nonlin-
ear wave equations are now known for both infinite-line and
periodic boundary conditions; the total number of integrable
wave equations presently available is about 100.'® The IST
for these nonlinear systems provides the general solution and
may be viewed as a nonlinear generalization of the linear
Fourier transform solution to the classical Cauchy problem:
Given the amplitude of the wave motion at some initial time,
7(x, t =0), determine the evolution of the system for all
time thereafter, 7(x, 7). A major consequence of the IST
approach is the appearance of a wavenumber or frequency
spectrum whose temporal evolution is simple (constant non-
linear Fourier amplitudes and e ~ “’ phase variations), but
which nevertheless contains all the essential physics of the
nonlinear wave motion, which is formulated as a spectral
“inverse” problem.>®

Probably the most well-known example of a nonlinear,
integrable system is that given by the KdV equation which
describes wave motion in shallow water,

N+ Conx +ann, + B =0, (D)
where the constant coefficients are given by

co= (gh)V?, (2)

a = 3¢,/2h, (3)
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B=cyh?/6. (4)

Here 4 is the depth and g is the acceleration of gravity. Sub-
scripts refer to partial derivatives with respect to time ¢ and
space x. There are many other fluid mechanical applications
of the KdV equation including internal wave motions'! and
geophysical fluid dynamical (GFD) motions.'?"!” When in-
finite-line boundary conditions are appropriate [7(x,) -0
as |x| - oo for — o0 <x < o], the solution to (1) is given by
Gardner et al.? When periodic boundary conditions are ap-
plied [7(x,t) = n(x + L,t) on0<x < L, for L the period],
the solution is given by Dubrovin and Novikov,'® Flaschka
and McLaughlin,'® and McKean and Trubowitz? (see also
Ablowitz and Segur®).

The periodic IST solution for the KdV equation, which
can be viewed as a nonlinear Fourier series,?! solves for the
motion in terms of the interacting, nonlinear Fourier compo-
nents of the KdV equation (hyperelliptic functions), which
include sine waves, Stokes waves, cnoidal waves and soli-
tons.?!?> Thus while linear Fourier analysis consists of the
linear superposition of ordinary sine waves, nonlinear Four-
ier analysis consists of the linear superposition of the nonlin-
early interacting, nonlinear normal modes for the KdV
equation.

The shallow-water Eulerian nonlinear Schrédinger
equation is also known, e.g., take the shallow-water limit of
the NLS equation derived by Hasimoto and Ono,?* and find

W, + iC Y, + pihe + VIY[*P=0. (5)
The constant coefficients are given by

_ Odwy,

f = 3 = ¢, — 3pk3, (6)
0
1 32
”=?aTa:§°= — 3Bk, €))
v = 9¢y/16A *k,, (8)

where C, is the group velocity. The NLS equation (5) de-
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scribes small-amplitude, narrow-banded wave motion in
shallow water. The carrier frequency and wavenumber are
related by the shallow-water dispersion relation
@, = coko — Pk 3. A modulation envelope A4 (x,¢) and phase
& (x,t) are assumed to describe the dynamical motion. The
complex field ¢(x,?) is related to the envelope and phase by
P(x,t) = A(x,1)e“" T ¥ and the free surface elevation is
given by

34%(x,1)
n(x,t) = — W + A(x,t)cos 8(x,1)
34 % (x,t)
+ —:tk_éhTCOS 20(x,t) + ---, §))
where the phase 8 = 6(x,1) is
8 =kox — (wg + &' )t + P(x,1). (10)
The nonlinear frequency correction in (10) is
@' = 9¢cy A%/16koh*, (11)

where the overbar denotes spatial averaging. Note that (9)

in its unmodulated form is just the shallow-water Stokes

wave.The wave motions describable by KdV and NLS in
shallow water can be quite different because the KdV equa-
tion generally covers a much larger class of solutions than
that for small-amplitude, narrow-banded wave motion.
However, generally speaking, the relationship simplifies
when one also investigates small-amplitude, narrow-banded
solutions to the KdV equation. The study of the relationship
between these two nonlinear wave equations in Eulerian co-
ordinates is interesting in its own right, both physically and
spectrally, and is treated in detail elsewhere.?*?’

Until recently the integrable wave equations solvable by
IST have been exclusively studied in Eulerian coordinates,
where the evolution of the system is described as a function
of time at a particular fixed spatial location. An alternative
formulation is in terms of Lagrangian coordinates, where the
motions of individual particles of the fluid are followed. At
the present time the Boussinesq,”® the KdV, and the poten-
tial KdV?® equations are known to have Lagrangian forms.
The IST spectral solution to Lagrangian KdV (LKdV) has
also been discussed.?”® Here we show that the Lagrangian
form of NLS can be determined from LKdV using a multi-
scale averaging approach.*®*' Not only do we gain insight
into the behavior of certain nonlinear Schrédinger solutions
for Lagrangian motions, but we also gain valuable under-
standing about the deep connection between the LKAV and
the LNLS equations, both from the physical and spectral
points of view. The nonlinear spectral formulation for the
Eulerian case has been studied in some detail elsewhere.?>?’

il. LAGRANGIAN MOTION DESCRIBED BY THE KdV
EQUATION

Beginning with the work of Ursell,”® Osborne et al.*
developed a Lagrangian form for the KdV equation
(LKdV) and discussed several examples of particle motions
governed by this equation. We now give a terse discussion of
LKdV and some of its implications; these serve to establish
the notation and to set the stage for the derivation of NLS.
The governing LKdV equation of motion is

1201 Phys. Fluids A, Vol. 1, No. 7, July 1989

7: + co"la + anﬂa +n8??aaa =O! (12)

where subscripts refer to partial derivatives with respect to
the Lagrangian position coordinate g and time ¢. The con-
stant coefficients are the same as those appearing in (1).
Here the wave field amplitude %(a,?) is given by

. d[x(at) —a] - L 0X(a,t)
- da T a

where x{a,t) is the horizontal particle position whose deriv-
ative, with respect to the reference position a, is proportional
to the field 7 (a,?); the coordinate @ may be considered as a
label for the individual particles. For infinite-line boundary
conditions, a is the particle positionat t = — oo ; for periodic
boundary conditions, a is the average horizontal position of
the particle.
The vertical particle motion y(a,5,#) is governed by

n(a,t) = (h/b)[y(a,b,t) — b ]=(h/b)¥Y(a,b,t). (14)

Hence for infinite-line boundary conditions b is the vertical
position of the particle at t= — o, while for periodic
boundary conditions b is the average vertical position of the
particle. When the average vertical position lies in the free
surface b = h, Y(a,h,t) may be identified as the free surface
elevation of the fluid motion. From (13) and (14) the fol-
lowing constraint relation always holds: Y= — bJdX /da.
The fact that (13) and (14) give linear relations
between the particle motion coordinates [ X(a,t), Y(a,b,¢) ]
and the field amplitude 7(a,7) means that X, ¥ may be or-
thogonally decomposed, even if the motion is nonlinear.
First use (13) in (12) to get the governing equation of mo-
tion for the horizontal coordinate X(a,?) = x(a,t) — a,

X, +coX, — (ah /2)X2 +BX,., + C=0. (1%

This is the Lagrangian form for the potential KdV (pKdV)
equation, where

a a4 L
C= (———)f 2(a',t)d da'.
2LH/ Ja 7D

This last equation is valid for both infinite-line and periodic
boundary conditions. Specifically, in the infinite-line limit
L— o and C-0.%°

Finally use of (14) in (12) gives the KdV equation for
the vertical Y(a,b,t) = y(a,b,t) — b motion,

Y, +c0Ya + (ah/b)YYa +BYaaa =O'

ﬂ(a’t) = -

»  (13)

(16)

(17

When b = / this latter equation becomes the KdV equation
for the free surface; on the bottom b == 0 and no vertical
motion occurs.

As pointed out by Osborne et al.?® the motion of water
particles in shallow water described by LKdV is integrable
by IST. This is because the transformation from Eulerian
KdV (1) to Lagrangian KdV (12) is given by the following
simple form:

xX—a, t—l,

- _9lxan —aj _ _9X(@at)
n(x,t) =»7n(a,t) = ” P
(18)

Thus by reinterpreting the spatial variable x in terms of the
particle reference position a and using the last of (18) to
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connect the field 7(a,t) with the horizontal particle motion
X(a,t), one obtains the Lagrangian form of KdV. Therefore
IST, for either infinite-line or periodic boundary conditions,
may be used to solve LKAV by making a simple change of
variables.

I1Il. DERIVATION OF LAGRANGIAN NLS FROM
LAGRANGIAN KdV

It is well known that the Eulerian nonlinear Schro-
dinger equation may be derived from the Eulerian KdV
equation by application of the multiscale expansion tech-
nique.?>-?72%3! The approach is to restrict attention to a lim-
ited subclass of possible motions describable by the KdV
equation, i.e., to those in which a rapidly oscillating (nonlin-
ear) carrier wave is of small amplitude and modulated on
slow space and time scales. We now apply the multiscale
approach to the Lagrangian KdV equation and its associated
particle motion coordinates (12)-(14). We focus on analyt-
ic expressions for the particle coordinates X(a,t) and
Y(a,b,t). First consider the following Fourier series expan-
sions for the free surface amplitude 7 (a,t) and the particle
position coordinates X(a,?) and Y(a,b,t) in which the Four-
ier amplitudes u, (x,t), X, (a,t), and Y, (a,t) are allowed to
vary in space and time,

o

@)= Y u,(ae™”, (19)

X@n= 3 X,(anem, (20)

Yan= 3 Y,(aneme, Q1)
where the phase is given by

B(a,t) = kya — wyt (22)
and the shallow-water dispersion relation is

@y = coko — Pk 3. (23)

We further impose the conditions u* , =u,, X* , =X,
and Y* , =Y, on the coefficients of (19)-(21) to ensure
real solutions for the wave amplitude 7(a,t) and particle
coordinates X(a,t),Y(a,b,t). Now use (19) in (12), equate

equal coefficients of the ¢, and find for each »,

J . q . a .
(55— oo e+ eo G inko) + 5 {5+ ko)
3
ququu_q +B(—q—+ink0) u, =0. 24)
2 da

Introduce slow space and time scales (a',t ") into the co-
efficients u,, by

u,(at) = e Pu.(a't’), (25)

where
=2,

a(0) (26)

a(n) = |n|, |n|>1,
and

a’=e(a— aw"t):e[a+ (3Bk3 —cot) ], (27)
1202 Phys. Fluids A, Vol. 1, No. 7, July 1989

9%
t' ==t = — 6Bk, 28

e Bko (28)
Note that the first of (26) forces the low-frequency field u,
to occur at O(€?) [see (32) below]. Using (25) in (24) we

find

[ — 6BkeS 1 (3pkE — )L — ,-,,a,o] eatmy
ot da’'

[ d . ") s d .
+ co[eﬁ + znkO]G“‘ u, + %[65‘7 + mko]

n—m

(-
X E 6-at(m)+az(n—m)u:nur

m= - w

3
+ﬁ[6—a—+ inko] eyl =0. (29)
da’

It is clear that as € -0 the lowest-order terms in € must
balance in (29). Excluding the terms n =0and n = + 1,
this means that the following terms in (29) must balance: (i)
the term ( — inw,) in the first bracket, (ii) the term (icynk,)
in the second bracket, (iii) the term (iank,/2) term in the
third bracket, and (iv) the term B(ink,)* in the fourth
bracket. Thus we have the following expression valid for
n>2:

Bk3(1 —n*)e* ™y’

a o0
+= exm ratn=—mys i =0, 30
2 m=z_ 3 (30)
which we rewrite in the form
' 34 n>2, (31)

u, =——m——rm—— 'ul, u, _ s
k(z)(nz—-l)z m%n—m

m

where A = a/6f and the prime on the summation implies
that only the terms for which a(m) + a(n —m) = a(n)
are summed over m.

We now consider terms at dominant order in (29) and
obain, for n =0 (&%),

uy = — (a/3Bk2)|ui | + f,, (32)

where f; is an arbitrary constant of integration that physical-
ly corresponds to a vertical displacement of the mean surface
level. We shall make a physical choice for f, below. Forn = 1
(€*) in (29) we have

0% ou’ .
3Bko(z—aﬁ - 23—;') = —iaky(ubu; + usu’_ ),
(33)
and finally with n =2 (&%) in (29),
u, = (a/6Bk2)u}’ (34)

Notice that (33) describes the wave motion of the field u;
with nonlinear coupling on the right-hand side to the O(€?)
fields #} and u;. But (32) and (34) constrain the latter fields
to follow exactly the motion of u] ; thus we use (32) and (34)
in (33), together with the reality condition #* , = u, and
find

_Ou; 1 9% ( a )2 )2, a .,
T2 e k) MM = g i
(35)

In terms of the fast space-time variables (x,¢), together with
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¥ = 2eu}, g, = €*f,, we have
2 2
Wy i(Soe)2 y Y o) 7

l—..—.. — D ——

ot dky/0a 2\ 9k2 ] dd®
a? ) N
— ak.gw =0, 36)
+ (g o120 — koot <
where the constant coefficients are found by
a3 hk}
Cgs;;z =c0—3/3k3,=c0(1- °), (37)
1 3%, hk
T O = 3Bk, = —¢, 0, 38)
H=7 "oz b 2 (
v=a?/24Bky, = 9c,/ 16k *ky; (39)

C, is the group velocity. The transformation ¥ — e ~ it re-
duces (36) to the shallow-water Lagrangian nonlinear
Schrédinger equation in the “laboratory” coordinate frame,

oY ., % 2

'af“g a+'u8a2+vhm¢ (
where we take

oy = akego. (41)

In what follows we shall assume the following form for

Yla,n):

P(a,t) = A(a,t)e "'+ #@0, (42)
where

W' = o, + o. (43)
Here w, is given by

!, = —9c, A2/16ksh*, (44)
where the overbar denotes the average

A7 = irA Ya,t)da. (45)

Ll

Note that w; is still undefined since we have yet to select the
arbitrary constant g,. This will be done in the following sec-
tion. Note that 4(a,t) is the (real) envelope of the wave field
and ¢(a,t) is the (real) phase. The selection (42) marries
the mathematics of NLS with its associated periodic spectral
transform solution; we refer to the NLS spectrum as being
“empty” when A(a,t) and ¢(a,t) are constants, i.e.,, when
there is no modulation of the wave train. Another motiva-
tion for the choice (42) is that it allows an interpretation of
the free surface elevation 7(a,?) in terms of a modulated
Stokes field (see the discussion in the following section).
Note that (42) also provides an interpretation of the phase
in terms of a part that varies linearly in time, — &'t and
another part, ¢(a,t), which represents fluctuations about
— @'t. The frequency o' is the amplitude-dependent fre-
quency correction to the dispersion relation that normally
appears in the Stokes wave; it will be computed explicitly for
the present case in the following section.

The free surface elevation 7(a,#) (19), an approximate
solution to the KdV equation under the assumptions of smalt
amplitudes and narrow bandedness, may be written in terms
of the solution to NLS, ¥(a,t), by
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(@) = ugla,t) + [u,(a,1)e®="

+ u,(a,t)e??= fcc] + -

= —;—(wz UMY + (/UK (P2 (46)
+ ¥*22** — 2|¢91%) + go,
where
Z = !lkot — @) (47)

Notice that the constant g, serves only to determine the
mean level of the free surface elevation in the second half of
(46). We refer to the term with u, [O(€)] as the “first har-
monic,” u,[ O(€?) ] the “second harmonic,” and u,[ O(€?) ]
as the low-frequency contribution, which, as shown below, is
the slow mean sea level variation resulting from radiation
stress. By virtue of (32) and (34) the fields u, and u, are
related directly to u, (and hence ¢); u, is governed by the
NLS equation. Thus the second-order fields u, and u, are
“locked” to the first-order NLS field u,, which of course
dominates the wave motion energetically in the approxima-
tion considered here.

IV.PHYSICAL CONSEQUENCES OF NARROW-BANDED
WAVE MOTION DESCRIBED BY THE KdV EQUATION

Here we discuss some of the physical consequences of
the above derivation of the NLS equation from the KdV
equation. Among these are the predictions by the theory: (i)
that the free surface elevation is described by a modulated
Stokes field (Sec. IV A), (ii) that the Stokes field may be
asymptotically summed to all orders n for leading order in €
(Sec. 1V B), (iii) that there is a slow mean sea level variation
resulting from radiation stress, which is given as proportion-
al to —A4%(a,t) (Sec. IV C), and (iv) that phase locking
occurs between the carrier wave and the second- and higher-
order harmonics in the Fourier spectrum (Sec. IV D).

A. The Stokes field as an approximate solution of the
KdV equation

Now we elaborate on the fact that the free surface eleva-
tion, as given by (46), can be interpreted as a second-order
modulated Stokes wave (Stokes field). This is obtained by
using (42) in (46) to find the relationship between the wave
elevation and the [complex solution ¥(a,t) ] to NLS:

_ 3[A%(an) —A47]

) = + A(a,t)cos 8(a,t)
n(@ ak3h>
34%(a,t)
+ ———"cos 28(a,t) + **-, (48)
4k2h3

where the phase 8 = 8(a,?) is given by

0 = koa — (0o + @' )t + d(a,t). (49)
Here we have taken g, to give a zero mean for (48),
8o =3A%/4k}h>. (50)

With this choice for g, in (41) we find for the nonlinear
frequency correction in (49), as given by (43),

o' =9c, A2/16kh*. (51)
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Note that (48) reduces to an ordinary KdV Stokes wave
in the absence of modulation, i.e., when the envelope
A(a,t) = A, = const and the phase ¢(a,t) = const:

342
(a,t) = A, cos O(a,t) + ———=cos 260(a,t) + -,
K 0 JYEVE

0 =koa — (wy + @)t + g, (52)

@' = 9coA 5/16koh*.

This form for the Stokes wave of the KdV equation is dis-
cussed by Whitham (1974).3°

Hence the KdV equation and its dynamical description
of shallow-water wave motion for a small-amplitude, nar-
row-banded Fourier spectrum, may be reduced to that of the
dynamics of the NLS equation (40) whose solution
Y(a,t) = A(a,t)e "+ =" furnishes the nonlinear evolu-
tion of the complex envelope of a modulated second-order
Stokes field (48), (49), and (51). Thus either the KdV
equation (12) or NLS [ (40) plus its modulated second-or-
der Stokes field (48)] form equivalent descriptions of La-
grangian shallow-water wave dynamics in two dimensions
for small-amplitude waves with narrow-banded Fourier
spectra. Hence LKdV and LNLS give two ways of describ-
ing the same nonlinear physical system, but in terms of dif-
ferent physical variables, e.g., the free surface elevation
17(a,t) for the LKdV equation (12) and the complex enve-
lope ¥(a,t) = e~ “'*#*" for the LNLS equations [(46)
and (48)1].

B. Summing the modulated Stokes series

We now demonstrate that the Stokes fields, (19)—(21),
can be summed by selecting terms of leading order in € for
each n and then summing over all n. This surprising result
occurs because the recursion relations (31) can be evaluated
to give the following simple, but explicit, form:

/1 n—1
u, =n un’
[2ké] ‘

Thus all harmonics for #>2 are locked to the first harmonics

n>2. (53)

n=1  Recall that u,=1t/2=1(4/2)e", where
b= —w't+ ¢ hence
4y = Ak ) e
=1nd(a,)U"~'(a,)e™®, (54)
where the slowly varying Ursell number is
Ula,t) =34(a,t)/8kih>. (55)

These results, when substituted into (19) [after removing
the mean A7, as in (48)], gives the following free surface
displacement:
3[4%(a,r) — 47]

4k2h3

n(at) = —

+ A(a,t) i nU" '(a,t)cos né.
n=1

Thus the series solution to the KdV equation (19), to lead-
ing order in € for each n can be computed to all orders for
1<n< . This series can be “locally” summed by using the

(56)

1204 Phys. Fluids A, Vol. 1, No. 7, July 1989

fact that A(x,t) and U(x,?) are slowly varying in space and
time, and may therefore by treated as constants in (56). The
summation in the last equation is evaluated as follows:

2

4k -
S = /10 U(x,t) z nU" Y(x,t)cos nd

n=1

2
0

Ux,)) ¥ nU"~ Y(x,t)e™ + c.c.,

n=1

2k2 o
*x 2 nX" '+cec

n=1
25 x
A (1-X)?
where X = U(x,¢) €. Then (56) is found‘ to have the closed
form expression,
3[4%(at) —A?]
TETE
[1+ U?*(a,t)]cos O(a,t) —2U(a,t)
([1 + U?(a,t) — 2U(a,t)cos 9(a,t)]2)'
(58)

This simple compact form for the free surface amplitude is
an approximation to the cnoidal wave for a large range of the
modulus m (see Fig. 1 and the text below).

The forms for the particle coordinates follow from the
latter equation (58) and from (13) and (14),

S=

+c.c., 57)

+ A(a,?)

ﬂ(a,t) -

3 - A(a,t)
X(at) = f A%*(at) —A?*)da — 222
4k2h* a[ ] o
X( ! sin 8(a,t) )’ (59)
14+ U<(a,t) —2U(a,t)cos 6(a,t)
§ m=0.533
3
(1]
-3
-6
g ¢ m=0.956
o 2 \
B
2,
£
<, -]
8
m=0.997
1] ‘\\ _____
4

0 20 40 60 80 100 120 140 160 180
Phase 8 - deg

FIG. 1. Comparison of the approximate vertical particle motion Y(a,b,?)
(60) (solid line) with the cnoidal wave elliptic function solution (62) (dot-
ted line) of the KAV equation. The depth is # = 10 cm, wavelength L = 100
cm,a=0cm, and b = 10cm.
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3b[A%(at) —A47%] LZICE))
4k2h? h
( [1+ U%(a,t)]cos 8(a,t) — 2U(a,t) ) (60)
(14 U%(a,t) —2U(a,t)cos O(a,t) 12/

The integral in (59) has the limits ( — c0,a) on the infinite
lineand (0,a) (for 0<a<L) onthe periodic interval. Expres-
sions (59) and (60) are modulated nonlinear wave trains
with two sources of nonlinearity: (i) the carrier wave is a
nonlinear Stokes field and (ii) the envelope function is a
solution to the nonlinear Schrédinger equation. It is instruc-
tive to consider how closely X(a,?) in (59) and ¥(a,b,t) in
(60) (in their unmodulated forms) approximate the elliptic
function solutions to the pKdV (15) and KdV (17) equa-
tions. These exact particle motions are given by*’

_ 2kh? 0il(ka—w1)/2] gL
3 O,[(ka— wt)/2] h

Y(a,b,ty = (29.b /hycn*{K(m) (ka — o1)/m;m} — by/h,

(62)

where 6, is the Jacobi theta function.>? Here the elliptic func-
tion modulus m is related to the Ursell number of the wave
train by

mK*(m) = (377/2K *h*)n,.
The dispersion relation has the form
w = cok — Pk + cok (—~ n./h + (k*h*/677)
{7* — 4K (m)[3E(m) — 2K(m)1}),
where k = 277/L; the constant 7 is given by
7 =29, + (4k>h>/30%)K(m) [ E(m) — K(m)].

Advantages of the approximate theoretical formulation giv-
enby (59) and (60), over the exact solutions (61) and (62),
are (i) the simplicity of these equations compared to the
elliptic function solutions to KdV (61) and (62) and (ii) the

Y(a,n) =

X(a,t) = , (61)

m=0.533

2.5
2.0
1.5
1.0
0.5

m=0.956

Amplidude - cm

m=0.997

P

® = B oW bW
!
§

0 20 40 60 80 100 120 140 160 180
Phase 9 -deg

FIG. 2. Comparison of the approximate horizontal particle motion
X(a,b,t) (59) (solid line) with the cnoidal wave elliptic function solution
(61) (dotted line) of the potential KdV equation. The depth is # = 10 cm,
wavelength L = 100 cm, a =0 cm, and b = 10 cm.
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fact that the complex envelope function is an exact solution
of the NLS equation (which is exactly integrable in terms of
the inverse scattering transform). Figure 1 shows compari-
sons of the ¥(a,f) motions of an unmodulated wave train for
the exact (62) and approximate (60) equations, while in
Fig. 2 the X(a,b,t) motion for both exact (61) and approxi-
mate (59) forms is shown. The simple expressions for the
orthogonal decompositions of the X(a,) and ¥{(a,b,t) parti-
cle motions given by (59) and (60), together with an inte-
grable equation [NLS (40)] for the envelope function pro-
vide a simple, nonlinear theory for particle motions beneath
a modulated wave train. The agreement between the mo-
tions associated with a small-amplitude unmodulated (as-
ymptotically summed) carrier wave, (59) and (60), and the
exact unmodulated carrier, {61) and (62), is rather remark-
able in our opinion.

C. Radiation stress

We now note the connection between the modulated
Stokes field (58) and the associated particle motions (59)
and (60) and radiation stress.>> We consider the “running
average” as given by

1 a+ L

(n(a,t)) = ——f n(a,t)da'.
LJa

Applying the latter to (58) integrates out the rapidly oscil-

lating part [i.e., the term ( ) in (58)] to give

(na,n)) = —3[4%a,t) — A7]/4k2h>. (64)

This is the slow, mean free surface elevation associated with
radiation stress, as first determined by Longuet-Higgins and
Stewart™ in Eulerian coordinates for shallow water. Subse-
quent application of (63) to (59) and (60) gives the contri-
bution of radiation stress to the particle trajectories

(63)

3
(X(a,0) =4kgh4Ja[A2(“”) — A7]da, (65)
(Y(a,)) = —3b[A%a,rt) — A%]/4k2h* (66)

The limits on the integral in (65) are ( — «0,a) on the infi-
nite line and (0,a) on the periodic interval. The expression
(64) for radiation stress may be interpreted as slow varia-
tions in the mean sea level that are proportional to the
squared envelope 4 ?(a,) of a slowly modulated wave field.
Equations (65) and (66) give the influence of these slow
variations on the particle trajectories.

D. Phase speeds and phase locking

As a result of the fact that 7 (a,?) is a modulated Stokes
wave, one finds that the wave phase speed at the carrier fre-
quency and at the second and higher harmonic are ““phase

locked.” This arises because of the definition of phase speed,
o _ 30/ _ _920/9 _ .
k 36 /3a 320/3a )

Equations (58)~(60) [see also the Fourier series in (56)]
imply that the Fourier spectra of the Stokes field and asso-
ciated particle motions have peaks at the first harmonics, the

(67)
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second and higher harmonics, and at low frequency. These
results demonstrate that the Lagrangian KdV equation con-
tains phase locking to the approximation considered here
and that the associated description in terms of LNLS also
predicts this behavior.

V.EXAMPLE WAVE MOTIONS

We now give examples of particle motions described by
the Lagrangian NLS equation. We select for the envelope a
particular periodic solution to the NLS equation, the snoidal
wave, which is a single nonlinear Fourier component of the
NLS spectrum. To arrive at this form of the envelope we set

¥(a,t) = A(a,t)e, (68)
where 4 (a,?) is a real field, so that (40) gives

4, +CA4,=0, (69)

©A — pd,, —vA?=0, (70

the solution of the latter is in terms of the sn elliptic function

A(a,t) = Aysn[k(a — C,t);m], (71
where m is the modulus and

k= (—v/2u)"*(4/ym), (72)

o= (vA3/2)[(1 +m)/m]. (73)

Note that when the modulus of the snoidal wave is small,
m <1 and the envelope is approximated by a sine wave; when
the modulus approaches one, m~1 and the envelope ap-
proaches a tanh function. The first example we choose is an
unmodulated small-amplitude sine wave; we use formulas
(59) and (60) to graph a single period of the particle mo-
tions under the wave (Fig. 3). The maximum amplitudes of

S

(=]
-y

FIG. 3. Orthogonal decomposition of the nonlinear particle motion during
the passage of a small-amplitude cnoidal wave with Ursell number 0.019,
amplitude g, = 2.0 cm, wavelength L = 10.0 m in depth s = 1.0 m. The
motion is nearly a cosine in the (a) vertical and a sine in the (b) horizontal.
These motions combine to give a nearly elliptical particle orbit, displayed
here as a circle resulting from normalization of the relative particle maxi-
mum amplitudes to 1(c).
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FIG. 4. Orthogonal decomposition of the nonlinear particle motion during
the passage of a small-amplitude cnoidal wave with Ursell number 0.19,
amplitude g, = 20.0 cm, wavelength L = 10.0 m in depth 4 = 1.0 m. The
(a) vertical motion combines with the (b} horizontal motion to give an
obviously (c¢) nonelliptic particle orbit. The relative horizontal and vertical
particle maximum amplitudes are normalized to unity; consequently devia-
tions from a circular orbit are due to nonlinear effects.

the particle motions have been normalized to one; the unnor-
malized particle motion is elliptical rather than circular, as
in Fig. 3(c¢). With this normalization, nonlinearity is viewed
as a deformation from the circular shape; on this basis the

Yh @

FIG. 5. Orthogonal decomposition of the nonlinear particle motion during
the passage of a modulated, small-amplitude cnoidal wave in the absence of
radiation stress: the amplitude g, = 1.0 cm, wavelength L = 5.0 m in depth
h = 0.5 m. The modulation envelope is a snoidal wave of modulus m = 0.49
and wavelength 100 m. The (a) vertical motion combines with the (b) hori-
zontal motion to give the (¢) particle orbit. The particle orbit shown is that
over the first half-cycle of a single modulation period.
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FIG. 6. The orthogonal decomposition of the nonlinear particle motion
during the passage of the modulated, small-amplitude cnoidal wave of Fig. 5
in the presence of radiation stress: the amplitude a, = 1.0 cm, wavelength
L = 5.0min depth & = 0.5 m. The modulation envelope is a snoidal wave of
modulus m = 0.49 and wavelength 100 m. The (a) vertical motion com-
bines with the (b) horizontal motion to give (c) particle orbit. The radi-
ation stress contributions to the particle motions are the low-frequency,
small-amplitude waves shown beneath the rapidly oscillating wave trainsin
(a) and (b). The particle orbit shown is that over the first half-cycle of a
single modulation period.

motion in Fig. 3 is seen to be essentially linear. The second
example (Fig. 4) is a small-amplitude cnoidal wave that is
considerably more nonlinear than that of Fig. 3. Note the
deviations of the particle motions from sinusoidal; further-
more, the particle orbit is quite distorted from circular, indi-
cating that nonlinear effects are clearly present in ths exam-
ple.

We now consider a case where the carrier is modulated
by a snoidal wave of modulus m = 0.49 (Fig. 5). We first
show the results for the particle motions when radiation
stress is excluded from the calculations. The time series for
horizontal and particle motions are quite similar. The parti-
cle orbit, circular near the maximum in the modulation en-
velope, spirals cleanly to the center as the modulation falls to
zero between two consecutive packets. In Fig. 6 we repeat
the results of Fig. 5 but we now include the effects of radi-
ation stress. In Fig. 6(a) the total particle motion includes
the contribution resulting from radiation stress, here shown
as a long, small-amplitude, low-frequency variation beneath
the rapidly oscillating wave train. For the horizontal mo-
tions [Fig. 6(b)] radiation stress is seen to be quite larger
than that for the vertical motions and the result is a quite
skewed horizontal motion compared to the previous case
without radiation stress [ Fig. 5(b) ]. Comparing Figs. 5 and
6 it is clear that there are substantial differences in the mo-
tion, particularly in the horizontal component, when the ef-
fects of radiation stress are included. Another effect, which
we found quite surprising, is that the orientation of the parti-
cle ellipses [Fig. 6(c)], as viewed locally under each wave,
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are not horizontal. This occurs because of the nonlinearity in
the radiation stress contribution to the motion. This is seen
by comparing Figs. 5(c) (no radiation stress) and 6(c) (ra-
diation stress included). The average orientation of the par-
ticle ellipses over a modulation period is, however, zero.

We now consider examples of particle motions that are
quite nonlinear; the snoidal wave modulation envelope has
modulus m = 0.98 (Fig. 7), where we first exclude the ef-
fects of radiation stress. Note that the modulation envelopes
of the particie motions are distinctly nonsinusoidal. Note
also that a greater number of waves have amplitudes near the
maximum modulation relative to the linear case of Fig. 5.
This effect is seen in the particle orbit where the motion is
observed to stay a substantial amount of the time near the
maximum amplitude. In Fig. 8 we include the effects of radi-
ation stress on the particle motions. The radiation stress con-
tribution is shown in Figs. 8(a) and 8(b) as long, small-
amplitude particle motions. Note that the presence of
radiation stress skews the horizontal motions substantially
[Fig. 8(b)]. The particle orbit that includes radiation stress
[Fig. 8(c)] differs substantially from that in the absence of
radiation stress [Fig. 7(c)]. Inclinations of the particle el-
lipses to the horizontal are seen to be greater in this case than
in the example of Fig. 6. Increasing the nonlinearity in-
creases the local orbital inclination.

VL. EXPERIMENTAL CONSIDERATIONS

It is now appropriate to discuss LNLS as a tool for the
time series analysis of data. The approach consists of appli-
cation of the inverse scattering transform, a method that
furnishes robust mathematical machinery for the nonlinear

y ‘- (a)

0 -y

FIG. 7. The orthogonal decomposition of the nonlinear particle motion
during the passage of a modulated, small-amplitude cnoidal wave in the
absence of radiation stress: the amplitude a,, = 2.8 cm, wavelength L = 5.0
m in depth 2 = 0.5 m. The modulation envelope is a snoidal wave of modu-
lus m = 0.98 and wavelength 100 m. The (a) vertical motion combines with
the (b) horizontal motion to give the (c) orbit particle. The particle orbit
shown is that over the first half-cycle of a single modulation period.
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FIG. 8. The orthogonal decomposition of the nonlinear particle motion
during the passage of the modulated, small-amplitude cnoidal wave of Fig. 7
in the presence of radiation stress: the amplitude g, = 2.8 cm, wavelength
L = 5.0mindepth & = 0.5 m. The modulation envelope is a snoidal wave of
modulus m = 0.98 and wavelength 100 m. The (a) vertical motion com-
bines with the (b) horizontal motion to give the (c) particle orbit. The
radiation stress contributions to the particle motions are the low-frequency,
small-amplitude waves shown beneath the rapidly oscillating wave trains in
(a) and (b). The particle orbit shown is that over the first half-cycle of a
single modulation period.

Fourier analysis of computer or experimentally measured
data,2!:22:25-27:34-36 T gbtain an appropriate perspective we
first discuss how the nonlinear Fourier approach works for
Eulerian data, where two basic procedures are available. The
first corresponds to the classical Cauchy problem in which a
wave field is given at some initial time ¢ = 0, 77(x,0), and the
subsequent evolution is followed for all time ¢ thereafter. In
this approach 7(x,0) is recorded experimentally as a space
series. The alternative approach is a boundary value problem
where the wave field is specified at some fixed values of the
space coordinate, x = 0, for all time ¢, (0,¢); the field is then
evolved over all space.>?**” This latter method has been ex-
ploited to nonlinearly Fourier analyze time series of numeri-
cal, laboratory, and field data®"?>34-%°

In the study of Lagrangian particle motions one also has
two different, but analogous approaches. For the LNLS
equation (40) the Cauchy problem is well defined: one has
the modulation field at ¢ = 0, ¥(a,0) and then solves for the
field ¥(a,?) for all time ¢ thereafter. For the boundary value
problem one specifies the temporal motion for some initial
particle position, say a = a,, so that ¥(a,,t) is well defined.
The implication is that one experimentally records a time
series of the field ¥ for some initial particle position a,, i.e.,
one “colors” a particle at a = a, and follows its motion in
time thereafter. Unfortunately, given ¥(a,,?) the solution to
(40) is not well posed. LNLS as given by (40), is what we
refer to as a “space” evolution equation; this terminology is
taken from the fact that there are spatial derivatives in the
dispersive term. To alleviate the difficulty that (40) does not
solve the boundary value problem associated with ¥(a,t)
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we introduce a “time” evolution equation for LNLS, given
by

o ., 0 %y
e ol C'—- i ’ 2 —_
laa +iC, o +u P +V|Y*Y =0, (74)
where

C,=1/C, (75)

, 1 3%,  cohk,

2C, 9k} 2C,
v = 9¢y/14h *k,C,. an

To obtain (74) we used the approach suggested by Ablowitz
and Segur’ and Karpman®’ and exploited by Osborne et al.?°
for the Lagrangian KdV equation. Spatial derivatives are
evaluated in the second-order terms using the first-order ap-
proximation: dy/da= — (1/C,)dy/dt.

Vil. HAMILTONIAN FORMULATION

The Lagrangian nonlinear Schrédinger equation (40)
can also be derived from the following Lagrangian density:

L= (2)(Y*d, — rd) + (iIC,/2) (Y*y, — ¥¥y)
— p U + (V/2) PP (78)

To obtain the associated Hamiltonian density it is conven-

ient to change the field ¥(a,t) to two real fields (N, ), de-
fined by

1/} — ‘/Nekb(a,t).

Then the Lagrangian density becomes

(79)

2

N
L=N®, + C,N®, +% N + uN®? —%NZ (80)

and one can see that the field N(a,t) is the momentum conju-
gate to the coordinate ®(a,t); then the Hamiltonian density
is given by

2

N
H= — C,N®, —% N — uN®? +%N2 (81)

and the equations of motion, in terms of N(a,t) and ®(a,?),
are

N Jda AN,
N =9 9H (83)
da 0P,
The explicit coupled evolution equations are given by
N, +C,N, +2u(NV), =0, (84)
1 NN N,N,
V.+CV, +2uVV, — — ( ") _a’ aa
+C, H 2 M N +u NZ
N,
_ 4 Teaa —wN, =0, (85)
2 N

where V(a,t) = ®,(a,t) and N(a,t) = A%(a,t) [compare
(79) with (42); note that ®(a,t) = — o't + ¢(a,t)]. Equa-
tions (84) and (85) may also be derived directly from (40)
with (79). The orthogonally decomposed particle motions,
in terms of solutions to (84) and (85), are given by (59) and
(60).

A. R. Osborne and G. Boffetta 1208

Downloaded 14 Dec 2007 to 128.165.96.84. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Viil. SUMMARY AND CONCLUSIONS

We have derived the Lagrangian form of the shallow-
water nonlinear Schrodinger equation from the LKAV equa-
tion. This brings to a total of four the number of nonlinear,
Lagrangian wave equations known to be integrable by the
inverse scattering transform: the Boussinesq, Korteweg—de
Vries, potential Korteweg—de Vries, and nonlinear Schré-
dinger equations. Orthogonal decomposition of the horizon-
tal and vertical particle motions into independently evolving
nonlinear trajectories is a characteristic property of the theo-
ry. Radiation stress has been included in a natural way and
has profound effects on the particle motions: (i) the hori-
zontal component of the motion of fluid parcels displays a
quite skewed modulation envelope for increasing nonlinear-
ity and (ii) the (approximately elliptical) particle orbits are
seen to vary their orientation periodically during a single
modulation period. Both of these predictions should be ex-
perimentally accessible.

As a result of this and previous research,? it now ap-
pears that for every nonlinear, integrable wave equation in
Eulerian coordinates it is conceivable that there is a corre-
sponding wave equation in Lagrangian coordinates that is
also integrable by IST. In the results obtained so far thereis a
simple transformation of coordinates from the Eulerian
(x,t) to the Lagrangian (a,t) equations. In general, deter-
mination of this transformation evidently requires a detailed
multiscale analysis of the primitive Lagrangian equations of
motion and of the associated particle trajectories.

It is interesting to consider the range of validity of the
present results. Formally speaking we use a multiscale aver-
aging procedure to derive LNLS from LKdV when the wave
motion is small in amplitude and the Fourier spectrum is
narrow banded. Thus we are considering a subclass of possi-
ble solutions to LKdV, which we formulate in terms of
LNLS. For wave motion sufficiently small in amplitude,
with a narrow-banded spectrum, the two formulations must
be equivalent. In a separate paper’* we conduct numerical
simulations and examine the range of Ursell numbers for
which the two theories are approximately equal; we find that
U must be less than about 0.268.

In the spirit of future work it seems plausible that the
Lagrangian formulation given herein can be extended to the
three-dimensional (3-D) case in which the motion is gov-
erned by the Kadomtsev—Petviashvilli** (KP) equation.
Here KP is essentially a three-dimensional generalization of
the KdV equation. Formally speaking, an extension of the
present results might allow the shallow-water limit of the
Davey-Stewartson*' (DS) equations (a three-dimensional
generalization of NLS) to be derived directly from KP. This
seems entirely plausible, in view of the results of Freeman
and Davey,*’ who show that, in Eulerian coordinates, both
KP and DS may be derived from the 3-D Euler equations in
the limit that the wavenumber k£ — 0. In the present context it
remains to formulate a multiscale averaging procedure that
would allow the shallow-water DS equations to be derived
directly from KP. We would expect to find the Lagrangian
form of the DS equations and we would also anticipate the
possibility of asymptotically summing the carrier to improve
estimates of the particle motions.
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