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The particle orbits obtained by integrating the velocity field of the Eulerian Korteweg—deVries
{KdV) equation and the trajectories given by the Lagrangian KdV equation are contrasted. It
is shown that the two classes of orbits, while apparently equivalent, may be quite different. In
particular, a spurious wave drift is generated by integrating the Eulerian velocities. It is shown
that these differences are due to a mixing of perturbation orders inherent in the integration of
the Eulerian velocity field. It is believed that these results may have some implications on the
calculation of particle orbits in Eulerian flow models obtained by a perturbation expansion of

the primitive equations.

The study of fluid flows in Lagrangian coordinates fo-
cuses on the motion of individual fluid particles. In a pre-
vious paper' we derived the Korteweg—deVries (hereafter
known as KdV) equation in Lagrangian coordinates, and in
a subsequent work? the results were extended to the nonlin-
ear Schrodinger equation. In Refs. 1 and 2 we used the clas-
sic approach for the Lagrangian description of fluid flows,
where the dynamical (dependent) variables are the posi-
tions of all the fluid particles and the independent variables
are the time and the positions of the particles at rest.> This
approach results in a set of partial differential equations
{field equations) that must be complemented by appropriate
boundary and initial conditions.

A different approach to the study of fluid flows in La-
grangian coordinates is, however, possible. In this context
the particle orbits are obtained by appropriately integrating
the velocity field provided by the Eulerian equations of mo-
tion [see system (4) below]. This approach has been exten-
sively used, e.g., in Refs. 4-12, in the study of chaotic advec-
tion. In this Brief Communication we show that the orbits
obtained using such an approach may, in certain cases, spur-
iously differ from the particle trajectories provided by a di-
rect Lagrangian formulation. This occurs when the Eulerian
flow model is obtained by a perturbation expansion of the
primitive equations and it is due to a mixing of perturbation
orders in system (4) below. The case of the KdV equation is
used as an explicit example of this type of problem.

First we recall the properties of the Lagrangian KdV
equation (L-KdV). This is obtained from the surface wave
problem in Lagrangian coordinates by a regular perturba-
tion expansion in powers of a nonlinearity parameter
€ = no/h (where 7, is a typical wave amplitude and 4 is the
water depth) and of a dispersion parameter §° = (h/L)?
(where L is a typical wavelength). The KdV model is found
at O(€) and O(8%) with the further requirement that € and
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& are of the same order of magnitude. At this order the
evolution equations for the particle positions are'

X, +coX, — (ah /2)X2 +BX,,, + C=0,
Y, +cY, + (ah/b)YY, + B Y,,, =0. (1b)

The dependent variables are X=x(a,t) —a and
Y =y(a,b,t) — b, where (x,y) is the position of a fluid parti-
cle at time 7 and (a,b) is the position of the particle at rest.
Subscripts a and ¢ indicate partial derivatives; ¢, = (gh)'/?,
a = 3¢y/2h, and B = c,h 2/6 are constant, g is the accelera-
tion of gravity, and 4 is the water depth. Note that the above
constants have the same definition as in the Eulerian ap-
proach.'? The constant C in Eq. (1a) is given by
a+ L

7°(a,t)da,

(1a)

c=_%_
2hL Ja
in the infinite-line limit L — « and C— 0. The two evolution

equations [ (1a) and (1b) ] may be summarized by a single
KdV equation,

77: +C077a +a7’7’a +B17mm =0’ (2)
with the definitions
n(a,t) = — hm, (3a)
da

Y(a,b,t) = (b/h)n(a,t). (3b)

A different approach to the study of fluid particle mo-
tions is based on considering the dynamics of a single-fluid
particle, which is subjected to a given Eulerian velocity field:

dax

dt
where x () = (x(¢),y(?)) is the position of the fluid particle
and u(x,?) = (u(x,t),v(x,t))is the Eulerian velocity at point

=u(x,t), 4
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x and at time ¢. Note that in (4) we have considered a two-
dimensional fluid.

While apparently equivalent, the two approaches de-
picted above may in some cases provide different particle
orbits. To elucidate this problem we consider some examples
of the use of system (4) with # and v given by a particular
solution of the Eulerian KdV (E-KdV) equation, together
with the corresponding orbits predicted by the L-KdV equa-
tion. The E-KdV equation is given by"?

771‘ + c077x + aﬂnx + ﬁnxxx = 0’ (5)
where 77(x,?) is the surface elevation and the constants ¢, a,
and 8 have been defined above. At the KdV order of approx-
imation the relationship between the velocity field and the
surface elevation is given by

u=co(n/h), (6a)
v= —cy(y/h)n,, (6b)

i.e., the velocity field is entirely determined by the knowl-
edge of the surface elevation. Thus the form of 77(x,?) defines
the Eulerian fiow structure entirely.

First we consider the case of a single soliton. This solu-
tion of the KdV equation is written in Eulerian coordinates
as

7(x,t) = 1o sech’[K(x — x,) — Q1] (7N

where the amplitude 7,, the wavenumber X, and the fre-
quency () are related by

o= 2(K?/4),

Q =c,K +48K?,
and A = a/6f3. The corresponding single-soliton solution of
the L-KdV equation is obtained from (7) by the substitu-
tion x —a. In Fig. 1 we report the orbit of a fluid particle
during the passage of a soliton, known to be a parabola.’ The
solid curve is obtained from the single-soliton solution of the
L-KdV equation while the dashed curve is obtained from
integration of system (4) with u given by formula (7) and
Egs. (6a) and (6b). As we can see, the two orbits are differ-
ent.

The second type of example is provided by the (period-
ic) cnoidal wave solution of the KdV equation. The Eulerian
form of the cnoidal wave is
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FIG. 1. Particle orbits for the single-soliton solution of the KdV equation.
The solid line indicates the solution of the L-KdV equation and the dashed
line indicates the solution given by inserting the Eulerian KdV velocity field
into system (4) in the text. Parameters are A = 100cm and 7, = 30cm. The
reference position of the particle is a = 0, b = A, i.e., the particle is on the
surface.

867 Phys. Fluids A, Vol. 2, No. 5, May 1990

n(x,t) = 2n.cn’{(K(m)/m) k(x — xo) — wt |;m} — 9,
(8)

where the amplitude 5., the wavenumber & = 27/L, and the
modulus m of the cnoidal wave are related by

mK?*(m) = (37%/2k*h®)y,, 9)

and K(m) is the complete elliptic integral of the first kind.
The cnoidal wave (8) has zero mean, the constant 7,, is
given by

N =2m, + 4k 2h*K(m)[E(m) — K(m)1/37%, (10)
and the frequency o is given by
@ = cok — Pk> + ok { — n./h + (k*h*/677)
X [ — 4K (m)(3E(m) — 2K(m))]1}, (1)

where E(m) is the complete elliptical integral of the second
kind. The cnoidal wave solution of the L-KdV equation may
be obtained from formula (8) by the substitution x—a.
Again, we may compute a particle orbit by deriving the Eu-
lerian velocity field for the cnoidal wave (8) through Egs.
(6a) and (6b) and by subsequently using it in system (4). In
Figs. 2(a) and 2(b) we report the orbits obtained in this way
(dashed line) together with the orbits obtained as exact
cnoidal wave solutions of the L-KdV equation (solid line)
for two different values of the modulus of the cnoidal wave.
The orbits drawn in Figs. 2(a) and 2(b) refer to particles
that have the same vertical rest position, both in the L-KdV
and in the E-KdV approach. The orbits obtained with the
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FIG. 2. Particle orbits for the cnoidal wave solution of the KdV equation.
The solid lines indicate the solution of the L-KdV equation and the dashed
lines indicate the solution given by inserting the Eulerian KdV velocity field
into system (4) in the text. For panel (a) the parameters are 4 = 100 cm,
L = 1500 cm, 27, = 10 cm, and the modulus of the cnoidal waveis 0.81; for
panel (b) the parameters are # = 100 cm, L = 1500 cm, 279, = 26 cm, and
the modulus of the cnoidal wave is 0.98. The reference positions of the parti-
cles are a = 0, b = h, i.e., the particles are on the surface.
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direct Lagrangian approach and with the use of system (4)
are different. In particular, the orbits obtained by integrating
the system (4) display a spurious particle drift that is well
known to be absent at the order of approximation of the KdV
equation."'* Physically, the lack of the Stokes drift in the
KdV model may be understood by recalling that this drift is
generated by the joint effect of a noninfinitesimal wave am-
plitude and of a vertical dependence of the horizontal veloc-
ity, a fact that induces nonclosed particle orbits. By contrast,
the horizontal velocity is independent of the vertical coordi-
nate in the KdV approximation; consequently, no Stokes
drift is generated. Also note that the orbits obtained from
system (4) plus expressions (6a) and (6b) have slightly
larger amplitudes than the orbits given by the L-KdV equa-
tion.

The above examples show that one is faced with the
problem of two apparently equivalent descriptions that pro-
vide different results. A natural first question to ask is
whether the solutions obtained by the Eulerian procedure
and by the Lagrangian procedure correspond to the same
flow. This is equivalent to asking whether the same func-
tional form of the Eulerian free surface 7 (x,¢) and of the
Lagrangian free surface 7, (a,#) generates the same flow,
i.e., whether 7g (x = a,t) = 7 (a,?) at the KdV order of
approximation. To answer this question we note first that, by
definition, the free surface has the property
7e [x(a2),t] =7, (at). From this we may write
N (x,t) = 9 (@ + X,t), where a is the rest position of a par-
ticle and X = x — a is the horizontal displacement of the
particle from its rest position. We may Taylor expand
the above expression and obtain 7. (x,t) = 9 (x = a,t)
+ X(Ie/dx),_, + --+ . Next we note that the surface
7 /h is order €, and that each space derivative brings out a
factor €'/, see, for example, Segur.'* From system (4) plus
expression (6a) we obtain that dx/dt is of order ¢, and since
each time derivative also brings out a factor €'/?, we have
that X = x — a is order €'/2. Thus the second term in the
Taylor expansion of 77(a + X,¢) is order €%, beyond the KdV
order of approximation. As a consequence, at the KdV order
of approximation we have that 7, (a,¢) = 1 [x(a,t),t]

= 7 (x = a,t), and the same functional form of the Euler-
ian free surface and of the Lagrangian free surface corre-
sponds to the same flow structure.

The kind of arguments introduced above completely ex-
plain the observed differences between the E-KdV and the
L-KdV trajectories. As mentioned above, the discrepancy
between the two classes of orbits is in fact due to a mixing of
perturbation orders generated by the naif use of system (4).
Combining system (4) and expressions (6a) and (6b) we
obtain for the particle orbits in the KdV model'*

dx

2 _ DN 4 o) (12a)
W8 )L,
%= — eyt @D | ey, (12b)

where 7/h=0(€) and 7, /h=0(€d) ~0(€¥'%). However,
the rhs terms of both Eqgs. (12a) and (12b) also contain
terms that generate effects of order higher than € or §* and
that must be discarded to be consistent with the KdV ap-
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proximation. Considering for simplicity §? = € (consistent-
ly with the assumptions made in deriving the KdV) in Eqs.
(12a) and (12b) we have, in fact, that

7. = — (1/eo)n, {1 + O(e)}. (13)
In addition, by Taylor expanding 7(x(a,t),f) around the spa-
tial position @ we have that n(x(a,t),0)/h = (y(a,t)/h)
X {1+ O(€)} and, using Eq. (13), that c,n,(x(a,1),0)/h
= (n,(a,t)/h){1 + O(€)}. Thus, finally,

dx n(a,t)

L=t {140 , 1
= {1+0(e)} (14a)
%—’tf = b"'—(:ﬁ{l +0(e)}. (14b)

Systems (14a) and (14b) are now at the same order of ap-
proximation of the KdV equation. Using the surface eleva-
tion 7(a,?) in the point a and at time ¢ given by the E-KdV
equation we immediately obtain the expressions (3a) and
(3b) for x(a,t) and for y(a,b,t). Considering for simplicity
the infinite-line problem, at the order of the KdV equation,
we have, in fact, that

Yabt) = %f e dt'{1 + 0(e)},

ie.,
y(abt) — b= (b/m)n(a,n){1 + O(e)},

which is the same expression given in Eq. (3b). By differenti-
ating expression (14a) with respect to a, we obtain for the
horizontal motions

d ¢ 1 :
—x,(a,bt) = 29, 87) = ——n,{1+ 0(e)},
dtx (a,b,t) hn + 0(€,6%) h‘l]{ + 0(e)}

and by integrating this expression with respect to time from
— oo to t we have

— aia[x(a,t) —a) =@{1 + 0o,

asinformula (3a). In this way, retaining the correct order of
approximation, the use of system (4) with the velocity field
provided by the E-KdV equation provides the same particle
orbits obtained by directly integrating the L-KdV equation.
The discrepancies observed in the examples discussed above
were thus entirely due to the use of Eqs. (12a) and (12b)
without the elimination of the higher-order terms. These
terms are totally spurious since they are not balanced by any
quantities at the same order of approximation in the expres-
sion for the Eulerian velocity field.

We believe that the results discussed here may have
some general implications since they indicate that system

.(4) must be used with caution when considering (exact)

solutions of Eulerian models that are obtained through per-
turbation expansions of the primitive equations. When sys-
tem (4) is used with » and v, given by an exact solution of the
Euler or Navier-Stokes equations (such as in the case of the
Arnold-Beltrami-Childress flow’), or when it is used in
connection with particular models of the Eulerian velocity
field (such as in the case of two intermittent vortex singulari-
ties*) the problems discussed in this Brief Communication
are not relevant. On the other hand, the use of system (4)
with a velocity field given by an exact solution of some ap-
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proximate form of the Euler equations may generate particle
orbits that are not consistent with the order of approxima-
tion of the Eulerian model. In this case, it would be mislead-
ing to claim that the observed trajectories are the correct
particle orbits at the order of approximation of the Eulerian
model employed. In all these cases, a careful evaluation of
the perturbation orders is required in order to resolve the
issues raised herein. Also, for such problems a direct deriva-
tion of the equations of motion in Lagrangian coordinates
(as done for the case of the KdV equation') may be desir-
able. ' '
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Cylinder wake velocity measurements were made at Reynolds number 100 with varying levels
of free-stream turbulence. The Grassberger—Procaccia (G-P) correlation function, which is
often used for estimating fractal dimension, was computed for these data, and also for data
obtained by adding random noise to the iterations of the Henon map. A comparison of the two
plots shows that the free-stream turbulence acts as a highly random external noise source.
Since free-stream turbulence determines the details of the smaller flow scales, no low-order
dynamical system will be able to model all the scales in this open flow.

Fractal descriptions of turbulent and transitional flow
have recently been a popular and sometimes controversial
topic of research (see, e.g., Refs. 1-4). The low-Reynolds-
number wake of a circular cylinder was chosen as a test case
for the applicability of chaos concepts to open-flow systems
because it is a classical open-flow oscillator. This wake has
often been studied, perhaps most recently by Williamson.’
For Reynolds numbers of roughly 50 to 180, the wake con-
sists of alternately shed laminar vortices, which give rise to
periodic velocity fluctuations at a fixed point in the wake. It
is considered to be an open-flow system because the flow
contains at least one open boundary across which fluid flows
from some other region. In this case, the nominally uniform
wind tunnel free stream crosses the upstream boundary to
flow over the cylinder, and then crosses the downstream
boundary into the wind tunnel diffuser.

When this work began, it was hoped that the free-stream
turbulence would act only as the small error in the initial
conditions of a low-order chaotic system such as the Henon
map, so that the wake velocities would scale as a fractal all
the way down to the viscous scales. However, it will be
shown that free-stream turbulence acts instead as an added
source of noise. This result provides a significant quantita-
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tive small-scale limitation to fractal descriptions of turbulent
and transitional flow. Although it has been known for some
time that any fractal scaling region must have a lower cutoff
set by noise, the author believes that this Brief Communica-
tion provides the first clear evidence that free-stream turbu-

lence can cause such a noise cutoff in an open flow. A quanti-

tative relation between the turbulence level and the noise
cutoff level is also provided.

Cylinder wake velocity measurements were made in an
open-return wind tunnel at Reynolds number 100. The cyl-
inder (diameter 0.0825 in.) was placed normal to the flow,
and spanned the 20 in. width of the square test section. A hot
wire was placed parallel to the cylinder in order to measure
the streamwise component of velocity. The hot wire was lo-
cated at the cylinder midspan, about ten diameters down-
stream of the cylinder, and about one diameter off the cen-
terline, just out of the frequency-doubling region. The
vortex-shedding frequency was 58 Hz. The single-sensor TSI
hot wire was operated at constant temperature using anemo-
meters similar to those used by Cimbala et al.® The data were
digitized at 4 kHz using a computer system constructed lo-
cally.” Raw voltage data were converted to velocity using a
King’s law calibration, although the dimension results were
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