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ABSTRACT — Il problema della dispersione relativa in turbolenza pienamente
sviluppata e studiato per mezzo di simulazioni numeriche dirette ad alta risoluzione.
I risultati della statistica Lagrangiana sono compatibili con la descrizione di
Richardson, sebbene si osservino delle piccole deviazioni. Il valore della costante di
Richardson e stimato Cy ~ 0.55, in ottimo accordo con recenti risultati sperimentali.
Per mezzo della statistica dei temp? di uscita, si mostra che le deviazioni dalla legge di
Richardson sono una conseguenza dellintermittenza.

Relative dispersion in fully developed turbulence s investigated by means of high
resolution direct numerical stmulations. Lagrangian statistics is found to be compa-
tible with Richardson description although small systematic deviations are found. The
value of the Richardson constant is estimated as Cy ~ 0.55, in a close agreement with
recent experimental findings. By means of exit-time statistics it is shown that the
deviations from Richardson’s law are a consequence of Eulerian intermittency.

The statistics of two particle dispersion is historically the first issues which has
been quantitatively addressed in the study of fully developed turbulence. This was
done by Richardson, in a pioneering work on the properties of dispersion in the
atmosphere in 1926', 15 years before the theoretical development by Kolmogorov and
Obukhov”. Despite this fact, there are still few experimental studies on turbulent
Lagrangian dispersion. This is essentially due to the difficulties to obtain Lagrangian
trajectories in fully developed turbulent flow. The problem has been recently ap-
proached in laboratory experiments® but the results are still not conclusive. Therefore,
relative dispersion in turbulence is a natural candidate for numerical studies where
Lagrangian statistics is easily obtained. Numerical studies are based on direct
numerical simulation of fully developed turbulence at high Reynolds numbers, a
challenging numerical task requiring high performance computers.
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Richardson’s original description of relative dispersion is based on a diffusion
equation for the probability density function of pair separation p(r,¢) which in the
isotropic case can be written as
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The turbulent eddy diffusivity was empirically established by Richardson to follow the

“four-thirds law” K(r) = koc'/?>r*/3. The solution of (1) for é-distribution initial
condition has the form
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where A is a normalizing factor. The most peculiar feature of the Richardson
distribution (2) is non-Gaussianity with a very pronounced peak at the origin and fat
tails. In the past, alternative distributions have been proposed, in particular Gaussian.

According to (2), turbulent dispersion is self-similar in time, i.e. the scaling
exponents of the moments of the separation

R™(t) = (2" (1)) = Cope™t™ 3)

have the values a2, = 3n/2, as follows from dimensional analysis. All the dimension-
less coefficients Cy, are given in terms of the constant &y and a single number, such as
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FIGURE 1. — Relative dispersion R?(t) versus time t. The blue line is the Richardson t> law.
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the Richardson constant Cs, is sufficient to parameterize turbulent dispersion. There is
still a large uncertainty on the value of Cs, ranging from O(1072) — O(107!) for
kinematic simulations to O(1) or more in the case of closure predictions. A recent
experimental investigation gives the value Cy; = 0.5 [3].

We now turn to our numerical procedure. The turbulent velocity field is generated
by direct numerical integration of Navier-Stokes equation in a periodic box of size
L = 27. The integration was done on the Cray T3E at CINECA by means of a fully parallel
pseudo-spectral code at resolution 256° with Re, ~ 200. Passive tracer trajectories are
obtained by simultaneous integration of about 3 x 10° Lagrangian tracer pairs advected
by the turbulent flow and starting from initial separation R(0) = L/256. The reported
results are obtained after averaging over 10 independent runs.

The movie shows the evolution of blobs of 10* particles released in the center of
the box. The remarkable formation of long filaments (with respect to standard diffusive
behavior) is a consequence of the accelerated nature of turbulent dispersion as
expressed by (3).

In Fig. 1 we plot the second moment of relative dispersion R?(¢): the Richardson #*
law is clearly observable. From an independent measure of the energy flux ¢, it is
possible to determine the value of the Richardson constant Cy; ~ 0.55, in close
agreement with recent experimental data [3].
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FIGURE 2. — Probability distribution function of relative separations at three different times.
The purple line is the Richardson prediction, the blue line is the Gaussian distribution.
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The distribution of relative separations is plotted in Fig. 2 for three different times
within the ¢ range. The form of the pdf is very close to the Richardson prediction (2)
and excludes other distributions. Our result is the first direct numerical evidence of the
substantial validity of Richardson’s equation.

In order to investigate possible deviations from self-similar behavior (3) in relative
dispersion we have implemented an exit-time statistics which enhances extreme
events'. We have measured the exit-time 7'(R) for a pair separation to grow from R to
pR (with p > 1). The outstanding advantage of exit-time statistics, as opposite to a fixed
time one, is that it removes crossover effects and thus a better determination of scaling
exponents can be achieved. Richardson scaling (3) dimensionally corresponds to exit-

time scaling
1 Gp
(mm) =7 W

with 3, = —2p/3. In Fig. 3 we plot the first moments of inverse doubling time
compensated with best fit exponents 3,. The remarkable quality of scaling allows a
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FIGURE 3. — First moments of the inverse doubling time (1/TP(R)) compensated with best fit
exponent [3,. In the inset we plot the scaled exponent —3),/p compared with the self-similar
value 2/3 (blue line).
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precise determination of scaling exponents (3, which deviates from self-similar
prediction —2p/3. This is the first indication of Lagrangian intermittency in two-
particle dispersion in turbulence. The values of the Lagrangian scaling exponents are
compatible with the Eulerian structure function exponents according to a theoretical
model of Lagrangian intermittency [1].

In the next future it will be probably possible to have experimental Lagrangian
trajectories in high Reynolds number flows”. It would be extremely interesting to check
our findings in real fluid turbulence.
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