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Abstract We propose a simple numerical model for the motion of microswimmers based on the immersed
boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces
corresponding to the body and the flagellum. We study in particular the minimal model consisting of only
three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When
the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we
demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle
between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in
collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large
number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their
complex collective dynamics in both straight and circular swimmers.

1 Introduction

The study of motility in swimming animals and microor-
ganisms is a captivating subject in the biological
realm, encompassing various aspects, such as feeding,
reproduction and prey–predator interactions [1,2] with
potential applications to biomedicine [3]. Additionally,
it extends to the field of biological-inspired intelligent
navigation [4,5]. Moreover, in recent years, a growing
amount of research has focused on wet active matter [6],
i.e. dense suspensions of swimmers moving in a vis-
cous fluid where the hydrodynamic disturbances are a
key mode of interaction. Consequently, the dynamics
of a single swimmer becomes the focal point of numer-
ous experimental [7–10], theoretical [11], and numerical
investigations [12–16]. The overarching goal is to model
the dynamics of a single swimmer in its environment
and understand how the interaction of these organ-
isms influences global behavior and the background flow
field, leading to collective organized motion [16–20].

Modeling self-propelled bodies can be broadly cate-
gorized based on the streamlines they produce around
them as “pushers” or “pullers” [11]. Spermatozoa and
some bacteria like E. coli, which propel via (single
or bundled) flagella pushing the fluid away along the
propulsion axis and drawing it in from the sides, are
typical examples of pushers. Many biflagellates, such
as microalgae like Chlamydomonas, which draw the
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fluid inwards along the propulsion axis and ejected
it to the sides, are pullers. Direct numerical simula-
tions are crucial to understand swimmer-swimmer and
swimmer-fluid interactions. Several models, with differ-
ent degrees of complexity, have been developed, includ-
ing the boundary integral method for ellipsoidal swim-
mers [21,22], simple dumbbell models [23–27], Stoke-
sian dynamics of ’squirmers’ propelled by a surface slip
velocity [19,28–31], immersed boundary (IB) method
[32–35], penalty methods [16] and the method of regu-
larized Stokeslets for non-interacting swimmers [36–38].

This paper aims at proposing a swimmer model based
on immersed boundary methods. The IB method [39],
initially developed to simulate blood flows into the
heart, has found applications in various biological fluid
dynamics problems [40–44], including animal locomo-
tion [45,46]. In essence, the method treats the elastic
material as part of the fluid: body motion is obtained
by interpolating the forces due to fluid stress onto a
set of points representing the surface of the immersed
body, and the body feedback on the fluid is applied
by using the same interpolation method. This allows
the straightforward application of Navier–Stokes (NS)
solvers to complex flow geometries without the con-
straint of a boundary-conforming grid, which is valu-
able especially in the case of biological problems, where
non-static walls or bodies are the norm. In our case,
the NS equations are solved using a standard pseudo-
spectral solver [47–50] on a regular, triple-periodic grid,
while each swimmer is represented by as few as three
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Lagrangian points whose geometry is prescribed by the
internal forces. Two kinds of swimmer will be consid-
ered: a straight-swimming model in which the beads
are in a line and, in a still fluid, move in a straight
line with a stationary velocity proportional to a fixed
propulsion force, also parallel to the swimmer itself; a
model in which the flagellum and the body are at a
constant angle, which at stationarity swims in a closed,
circular trajectory. We will call the second model a cir-
cle swimmer, based on previous literature [51–55].

The paper is structured as follows. In Sect. 2, we
present the model and its numerical implementation,
including a series of preliminary studies needed to set
parameters and prove the robustness of the method.
Sections 3 and 4 present the numerical results for sin-
gle swimmers and a pair of swimmers in the straight
and circular swimming mode, respectively. In Sect. 5
we present a preliminary exploration of the dynamics
of a large number of swimmers and of how their collec-
tive organization changes when passing from straight to
circular swimmers. The appendices present some more
technical material. Appendix A describes the Stokeslets
solution used to fit the beads radius from the numerical
simulations. Appendix B details the way inextensibility
and rigidity are ensured in the model, while Appendix C
presents an analytical derivation of the dynamics of the
swimmer in the absence of propulsion, demonstrating
that it behaves as an infinitely elongated rod.

2 The immersed boundary method for a
microswimmer

We consider a simple swimmer model consisting in a
body and a flagellum. Following [27,56] both the body
and the flagellum are represented via a linear distribu-
tion of spherical beads connected by inextensible rods.
Flagellum dynamics is not directly modeled and the
effects of propulsion are taken into account via local-
ized forces applied to the fluid. The swimmer’s body
and flagellum are connected by inextensible rods whose
configuration is held constant by internal forces, mak-
ing the swimmer’s shape rigid and inextensible. We
will consider both the case of straight swimmers, in
which the flagellum is parallel to the body, and that
of circle swimmers, in which flagellum and body are
at a fixed angle, causing the swimmer to move on a
curved trajectory. At each bead, a point force acts on
the fluid. The nature of the forces acting along the
body differs from those along the flagellum [35]. The
body is considered as a rigid structure immersed in the
fluid, along which no-slip conditions are assumed for
the fluid velocity. The no-slip conditions are numeri-
cally enforced with a strategy derived from the IB meth-
ods, which will be described shortly. As a consequence,
the body exchanges momentum with the fluid through
viscous interaction, with no further modeling needed.
On the contrary, the flagellum beads are not subject to
no-slip conditions: they are instead used to apply the

propulsive force onto the fluid, while momentum con-
servation is guaranteed by applying an opposite force
on the beads themselves and, thanks to rigidity of the
rods, to the whole swimmer.

The simplest bead-based swimmers proposed are
made of two beads, i.e. one for the body and one for
the flagellum [27]. As discussed above, the flagellum
bead is not directly influenced by fluid velocity. It fol-
lows that a two-beads swimmer, with only one affected
by the flow, is unaffected by velocity gradients along
its body and, consequently, cannot behave as a pas-
sive rod in limit of vanishing propulsion. The mini-
mal swimmer must therefore have at least two beads
with no-slip boundary condition to describe the body.
In principle, one bead is sufficient to describe the flag-
ellum. It was shown that, if the same number of beads
are used for the body and the flagellum, the velocity
field surrounding the swimmer in steady motion is qual-
itatively similar to that produced by a force doublet
[27]. In the following we will consider the simpler three-
bead swimmer model, in analogy to previous theoretical
[25] and numerical works [23,26], which studied similar
models with slightly different approaches. One of the
novelties of the present paper is the possibility to have
curved trajectories, when the beads are not collinear.
In perspective, one can dynamically change the body-
flagellum geometry allowing for controlling the swim-
ming direction. The latter property can be exploited
to model the dynamics of microrobots to be employed,
eg., in biomedical applications [3,57] Fig. 1a represents
a sketch of the three-sphere model for a pusher. The
flagellum bead is labeled as bead 1. The force acting on
it is the propulsion force per unit mass fp. This force is
considered as fixed in modulus and parallel to the flagel-
lum rod connecting beads 1 and 2. The inextensibility
of the connecting rods implies that a similar force is
applied to the body beads so that, in an otherwise still
fluid, the resulting movement relative to the fluid pro-
duces on the body beads two drag forces, denoted as fIB

in the figure, in the opposite direction. Equal and oppo-
site forces (indicated in gray) are applied to the fluid
in the corresponding positions and guarantee momen-
tum conservation. The model for pullers (Fig. 1b) is
obtained by reversing fp relative to the body. A generic,
non-collinear configuration is shown in Fig. 1c. We will
show in Sect. 4 that when the flagellum is at a fixed,
nonzero angle with the body, the swimmer moves on a
circular trajectory. For this reason we will refer to this
case as a circle swimmer [51–55].

2.1 The numerical implementation

As outlined above, the swimmer is described in terms
of N spheres with centers at the points xi, with i =
1, .., N . In what follows we will consider the cases N = 2
and N = 3 and assume that the 3D Eulerian problem of
the evolution of the velocity field u(x, t) is discretized
in space on a uniform grid with grid spacing hx = hy =
hz = h equal along all the axes. If the radius of the
particles is comparable with h we can assume that the
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Fig. 1 Schematic view of the model swimmer. a Three-
sphere model for a pusher. The red vector fp is the propul-
sion force per unit of mass (i.e. acceleration) that allows
the motion. The blue vector is the acceleration due to the
no-slip condition. The gray arrows are the forces exerted by

the pusher on the fluid. b Three-sphere model for a puller.
Notice that the position of beads 1, 3 is exchanged with
respect to panel (a). In both cases the swimming direction
is from left to right. c A generic configuration for a pusher
with a nonzero angle φ0 between the body and the flagellum

3D Navier–Stokes equations take the form

Du
Dt

= −∇p

ρ0
+ νΔu +

N∑

i=1

Fi

ρ0h3
Φ(x − xi), (1)

where ρ0 is the fluid density, ν the kinematic viscosity,
Fi is the force applied on the fluid by the sphere in xi.
As typical with immersed boundary methods, the forces
are regularized by spreading their effects on the nearby
grid points with the function Φ(x), which has the fol-
lowing properties: Φ(x) ≥ 0; Φ(x) = 0 for |x| > nh,
with n not necessarily integer, i.e. it has support over
a finite stencil surrounding the particle; normalization,
i.e.

∑
x∈grid Φ(x) = 1 (sum over the points x of the

numerical discretized domain) [41,43]. Following [32]
we use

Φ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1+
√

−3|x|2+1

3
, |x|

h
< 1

2

5−3|x|−
√

−3(1−|x|)2+1

6
, |x|

h
∈ [

1
2
, 3
2

]

0, otherwise.

(2)

The Lagrangian problem associated with the motion
of the swimmer requires the knowledge of the fluid
velocity u(xi) at the position of each bead, which is
defined as a weighted average of the fluid velocity sur-
rounding the bead

u(xi) =
∑

x∈grid

u(x)Φ(x − xi). (3)

For what concerns the forces, as discussed above we
consider two kinds of beads, for the flagellum and the
body, respectively, whose interactions with the fluid are
treated differently. A flagellum bead is characterized
by a constant propulsion force contributing an accel-
eration fp applied on the bead along the flagellum.
An equal and opposite force is applied on the fluid to
guarantee conservation of momentum. A body bead is
instead part of a material boundary along which the
natural no-slip condition applies. In line with the IB
strategy, each body bead is subjected to the acceler-
ation fIB = β(u(xi) − vi), where vi is the velocity

of the i−th bead and β is a large, positive numerical
parameter. Also in this case a force of opposite sign is
applied to the fluid. Such IB forces lead to the recipro-
cal relaxation, with a characteristic time β−1 of bead
and fluid velocities to the same values, thus enforcing
the no-slip condition. Clearly β affects the relative error
on the implementation of the no-slip condition. If the
swimmer moves with a constant swimming velocity vs

in a still fluid the IB forces are the equivalent of the
viscous drag forces so one must have fIB � vs/τS ,
with τS an effective Stokes time of a bead which can
be estimated from the parameters obtained with the
fitting procedure described below. This implies that
|u(xi) − vi|/vs � (τSβ)−1.

The resulting equations of motion for a 3-bead swim-
mer are:

⎧
⎨

⎩

v̇1 = fpn1 + λ12n1 + gt1
v̇2 = −λ12n1 + λ23n2 − β (v2 − u(x2)) + gt2
v̇3 = −λ23n2 − β (v3 − u(x3)) + gt3

(4)
In these equations λij denotes the Lagrange multiplier
associated with the inextensibility of the rod connect-
ing beads i and j, n1 and n2 are unit vectors parallel
to the rods and gti are stiff elastic forces acting nor-
mal to the rods and implementing the constraint of
fixed angle φ0 (see Fig. 1). The individual terms are
discussed in details in Appendix B. The evolution of
the Eulerian velocity field is realized by means of a
standard, fully de-aliased, pseudo-spectral code [49,50].
Although both the model and its integration are fully
three-dimensional, in the following, for the sake of sim-
plicity in visualizing the results, we will restrict the
dynamics to the (x, y) plane by a suitable choice of the
initial conditions for the swimmers.

The rhs of both (1) and (4) have the dimension of
forces per unit mass. As detailed above, each force
Fi in the last term of (1) is due to conservation of
momentum and is the opposite of forces acting on the
beads and causing the propulsion acceleration or the
relaxation to fluid velocity. If we denote with fi one of
those Lagrangian accelerations in (4), one must have
Fi = −mfi where m is the bead’s mass. For a spherical
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bead we can write

Fi

ρ0h3
= −fi

ρ

ρ0h3

4
3
πR3 ≡ −fic, (5)

where ρ and R are the bead’s density and radius, respec-
tively, and c = 4

3π ρ
ρ0

(
R
h

)3
determines the relative inten-

sity of Lagrangian acceleration and feed-back on the
fluid. For simplicity, in the following, we consider neu-
trally buoyant swimmers only (ρ = ρ0).

2.2 Fixing the numerical parameters

At Re � 1 an approximate analytical solution for the
flow can be easily obtained and used to fix the numer-
ical parameters. We do so by considering the simpler
case of a pusher composed by two beads connected by
a rigid, inextensible rod (see Fig. 2a). One of those
beads represents the flagellum and one the body and
this configuration produces two opposite forces on the
flow and, therefore, an approximate force dipole field
which decays as r−2 in space [7]. Let 1 and 2 be the
index of the flagellum and body beads, respectively, in
this case the equations of motion (4) simplify to

{
v̇1 = fpn + λn
v̇2 = −λn − β(v2 − u(x2)),

(6)

where n = (x2 − x1)/|x2 − x1| and λ is the Lagrange
multiplier associated with inextensibility.

The value of c in (5) can be fixed by using the
(approximate) analytical solution of the Stokes flow
around the two spheres. Let L represent the distance
between the spheres moving at velocity vs. We consider
the swimmer Reynolds number Re = vsL/ν = 10−2

and we compute the longitudinal component of the
fluid velocity along the axis of the swimmer. Period-
icity of the domain is taken into account by consider-
ing the images in the three directions. Figure 2b shows
the comparison between the analytical (discussed in
Appendix A) and numerical results, which gives the
fit c � 5.58, corresponding to R � 1.1h. The analyti-
cal solution in the regions within the effective radius of
the beads (the gray regions in Fig. 2b) is excluded from
the comparison since it is singular and unphysical. The
numerical solution, on the other hand, is well behaved
also in those regions. We have tested the consistency of
the definition of c by verifying that it is not affected by
the resolution of the grid (up to 2563 points) and it is
also independent on Re when Re � 1.

3 Numerical results for rectilinear
swimmers

Here we focus on the case of rectilinear swimmers com-
posed by three spheres connected by two rods of length
L. In Fig. 1 bead 1 represents the flagellum, while beads

2 and 3 define the body. The whole system is consid-
ered rigid and inextensible. Inextensibility is enforced
via Lagrange multipliers while bending rigidity is guar-
anteed via a stiff spring, which is sufficient to prevent
oscillations. The length of the swimmer is defined as
the distance L between the two beads of the body, thus
neglecting the presence of the flagellum. Therefore, the
Reynolds number is defined as in the case of two-sphere
model Re = vsL/ν.

3.1 Single swimmer

In Fig. 3 we show the results of a numerical simula-
tion of a single 3-bead swimmer moving with constant
velocity, at Re = 10−2, in an otherwise quiescent fluid.
In Fig. 3a, a 2D section of the 3D domain containing the
pusher is shown. At the stationary state, from Eq. (4)
one must have fp = −β(v2 − u(x2)) − β(v3 − u(x3)).
In this case the distribution of forces among the three
spheres is less trivial than the completely symmetric
case of the 2-sphere model. Figure 3a shows that the
velocity produced by propulsion around the flagellum
bead is, in agreement with the above relation, larger in
magnitude than the disturbance produced by viscous
drag around each of the body beads and it is compa-
rable with the sum of the velocity field produced by
the others, according to the rigidity condition and to
the conservation of momentum. Further details on the
implementation of inextensibility and rigidity can be
found in Appendix B. While the far field properties of
the flow are dominate by the pusher/puller nature of
the swimmer, the differences between our three bead
model and other models like the dipole swimmers or
squirmers are particularly relevant close to the swim-
mer itself and therefore can affect short-range hydrody-
namic interactions [58].

In Fig. 3c–d the puller dynamics is shown. The results
are symmetric with respect to the pusher case, as
expected in the very low Re regime. In the case of higher
Re, the pusher and puller dynamics should present sub-
stantial differences. Indeed this is observed in simula-
tions of our model for Re = O(1). Figure 4 shows the
velocity fields produced by a pusher and a puller at
Re � 1.6. In this case the asymmetry between the two
configurations is apparent. It should also be noted that
the force applied to the pusher attains the same veloc-
ity with a force that is smaller (about 0.7 times) than
the one applied to the puller. In other words, at finite
Re a pusher swims faster than a puller with the same
propulsion, at least in this regime. This is consistent
with results obtained with other models [27,59]. We
stress that the absence of an analytical benchmark for
such values of Re does not allow a quantitative valida-
tion of our model in this regime

3.2 Non-motile swimmer

As a preliminary test for the dynamics of the model we
consider the case of a swimmer without any propulsive
force, i.e. fp = 0, immersed in a steady shear flow. As a
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Fig. 2 a Scheme of a two-sphere pusher. The gray arrows
are the forces exerted by the pusher on the fluid. b x -
component of the velocity field along the swimming direc-
tion produced by the two-sphere pusher with Re = 10−2.

The red line represents the analytical Stokes solution, blue
points are the numerical values computed with c = 5.58
with resolution 643

Fig. 3 Velocity field surrounding a 3-bead pusher (a, b)
and puller (c, d) at the stationary state for Re = 0.01.
Velocities are rescaled with the constant swimming speed. a
The color map indicates the amplitude of the velocity, while
the arrows (not scaled with amplitude) indicate the local
velocity direction. The typical pusher configuration (out-
wards streamlines along the swimmer axis, inwards in the
normal direction) can be clearly appreciated. The swimmer
is moving to the right. The leftmost white bead represents
the flagellum, where propulsion is applied. The correspond-
ing reaction force on the fluid produces an intense velocity
perturbation (red region). The black arrow on the right indi-

cates the swimming direction. b Plot of the x-component of
the velocity field along the swimming direction of a 3-beads
swimmer. The numerical solution (blue dots) is compared
with the approximate analytical solution (continuous line,
see text). Note that, as expected, the fluid field on the tail
beads (on the left) is comparable with the sum of the veloc-
ity field produced by the others, as a consequence of inex-
tensibility and conservation of momentum. c, d Same as
panels (a, b) but for a puller. Notice the leading (white)
flagellum bead. The clear specular symmetry between the
two configurations is due to the time-reversal invariance of
the equations at low Re
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Fig. 4 Velocity field produced by a a pusher and b a puller at Re � 1.6. In contrast to Fig. 3 the two configurations show
no clear reflection symmetry, due to the breaking of time reversal symmetry at finite Re

model flow we chose, for numerical convenience, a Kol-
mogorov flow u = (cos(z), 0, 0) [60,61]. We will there-
fore consider a non-motile swimmer initially resting in
the (x, z) plane and perpendicular to the flow itself at
z = 3π/2, i.e. in the flexus of the flow. As detailed in
Appendix C, in the absence of propulsion, i.e. when
the flagellum does not play any role, the body of the
swimmer should behave as an infinitely thin rod and
its dynamics is ruled by Jeffery’s equation [62]. Indeed,
the equation for the swimming direction n (C21) can
be written as

ṅ =
1
2
ω × n + Λ[Sn − (nSn)n] (7)

where Λ is the shape parameter (Λ = 0 for spheres and
Λ = 1 for infinitely thin rods) and ω = ∇ × u is the
vorticity. In the configuration described, the flow can
be approximated as a homogeneous shear with shear
rate σ = dux/dz. Using a 2D reference system in which
the swimming angle is measured from the horizontal
direction (nx = cos θ, ny = sin θ), one can write

θ̇ = −σ

2
[1 + Λ(1 − 2 cos2 θ)] , (8)

where, in our case, σ = 1. If Λ = 1, θ = 0 is a marginally
stable fixed point. The solution for a rod that starts
perpendicular to the shear direction is given by

{
θ(t) = arccot(σt)
θ(0) = π/2.

(9)

We expect Eq. (9) to describe the motion of a three-
bead swimmer in a linear shear when the propulsion is
switched off. We stress that the flagellum bead can be
completely disregarded in this regime.

Figure 5 shows the time evolution of the orientation
of a non-motile swimmer compared with the analyti-

cal solution (9). The numerical solution is obtained by
the integration of a three-bead swimmer placed in the
inflection point at z = 3π/2. The numerical result in
Fig. 5 is compared with the analytical expression (9)
valid for an ideal rod-like particle. The deviations can
be quantified by observing that the time it takes for the
numerical swimmer to reach 0.1rad is only 10% larger
than the theoretical prediction. Such a small difference
should be irrelevant when time dependent flows are con-
sidered. We conclude that for our model swimmer, a
linear shear in a creeping flow regime gives rise to a
dynamics that can be described by Jeffery’s equation
(7) with Λ = 1. This suggests that, for an isolated swim-
mer in flow that varies on a scale sufficiently larger than
the swimmer’s body, our model could be substituted
with a kinematic model obtained from Jeffery’s equa-
tions for a rod with a superposed swimming velocity.
However, when more than one swimmer is considered,
hydrodynamic interactions would not be accounted for
by such model. Moreover, if many swimmers are con-
sidered, the flow itself would be strongly affected by the
swimmers, which could be the main forcing in the fluid
as in the case of active turbulence.

3.3 Swimmers interaction

We now consider the interaction between two swim-
mers and the resulting trajectories. We only consider
the effects of hydrodynamic interactions without any
additional repulsive potential to account for steric inter-
actions. The latter can be anyway added to the model
in straightforward ways. We remark that in our model
swimmer there are no physical rods connecting the
beads. Therefore, in principle, swimmers can overlap
with crossing trajectories. Nevertheless, we find that,
if the beads are not too far apart, swimmers feel each
other as effective continuous bodies, thanks to the flow
produced in their motion and overlaps are observed only
in very special conditions.
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Fig. 5 Comparison between the solution (9) of Jeffery’s
equation for a rod (formally, an ellipsoid with Λ = 1, dashed
line) and numerical data from the 3-beads model (blue dots)
without propulsion in a Kolmogorov flow. Numerical simu-
lations are done at resolution N = 643 grid points in a cube
of size 2π for a swimmers of length L = 0.5 with initial ori-
entation θ = π/2. Inset: zoom of the long-time behavior, see
text for a discussion

We start by considering the scattering of two identi-
cal swimmers, moving at the same speed, with an inci-
dent angle θi. One example is shown in Fig. 6a with
θi = π/4. The scattering is a complex process dur-
ing which the two swimmers orient temporarily in a
parallel direction and finally emerge with a different
output angle θo. In the case of pusher swimmers, the
velocity field (see Fig. 3a) causes the flagella to come
closer together, turning the swimmers and leading first
to the alignment of the swimmers and subsequently to a
separation of the directions. The above described phe-
nomenology is consistent to what found in [25,26] start-
ing from parallel swimmers. For a pair of pullers, the
kinematics is qualitatively very similar, except that the
hydrodynamics which produces it is opposite to that of
pushers, see Fig. 3c. The flagella, which in this case are
the first to interact, tend to repel each other, leading
to the same kinematics of alignment and subsequent
divergence of the trajectories. The exit angle is conse-
quently different in the two cases, as evident from com-
paring Fig. 6a, b. We remark that the model does not
exclude the possibility of observing the overlap between
swimmers under certain conditions (for example, in the
case of high Reynolds numbers or very large collision
angle). The most common case is a superposition of the
flagella. This event is not per se problematic because in
our model the flagella are not affected by hydrodynamic
interactions. We stress that with our method (and at
variance with other approaches [26] where the particles
have a finite volume which behaves as a second fluid
with a large viscosity) the beads are effectively repre-
sented as regularized point forces whose effective radius
is a numerical parameter used to fit the resulting veloc-
ity field. The occasional partial overlap of the force sten-
cils can therefore cause numerical stiffness, by introduc-
ing large local forces, but is not necessarily physically

inconsistent. The cases in which also the bodies overlap
can be avoided with an effective, short-range repulsion
potential. Such potential can take different forms essen-
tially corresponding to steric interactions between the
beads or between the bodies (through the definition of
an effective shape). We consider here only the effects of
hydrodynamic interactions and remark that no numer-
ical instability was observed as a result of the overlap
of the tails or the bodies in the case of binary collisions.

4 Circle swimmer dynamics

The 3-beads model allows to control the swimming
direction in a simple and natural way. Indeed, when
the three beads are not in a collinear configuration, the
drag on the body together with the propulsion from
the flagellum produce a torque that rotates the swim-
mer. In what follows we will present only results about
circle pushers, in which the flagellum bead is the trail-
ing one. As discussed above, puller-like circle swimmers
can be obtained by reversing the propulsion. The con-
trolling parameter for the swimmer is the equilibrium
angle φ0 between the flagellum rod and the body rod.
The resulting trajectory of a single swimmer is a circle
with a radius Rc depending on φ0. Clearly in the limit
φ0 → 0 one recovers the original collinear model, with
Rc → ∞. One should note that when circular trajec-
tories are observed in biological microswimmers, these
are due to the swimmer’s chirality. The latter results in
helical swimming in the bulk and circular trajectories
when confined to a surface [51]. A model describing a
chiral swimmer would in principle require at least four
beads, considering such an extension to the model goes
beyond the scope of this paper.

Once the bending angle is set, the rigidity of the
swimmer is guaranteed by an elastic force that causes
the relative position of the two rods to relax to that
angle. This elastic force is implemented in the form of
internal forces gi, one for each bead (see Appendix B).
Referring to (B9), this means that if a perturbation pro-
duces deviations from the equilibrium angle φ0 these are
compensated by the torques due to the internal forces,
bringing the system to the wanted configuration. It is
worth noting that Eq. (B9) should produce a harmonic
oscillation of the angle φ around φ0. These oscillations
are damped by viscosity through the no-slip condition
on the body beads, thus causing a relaxation to the
prescribed angle φ0.

4.1 Circular trajectories of isolated swimmers

Figure 7 shows two examples of circular trajectories
produced by circle swimmers with different bending
angles, together with the dependence of the radius
of the trajectory on φ0. Observing that the segments
identifying the body and the flagellum are approxi-
mately tangent to the circles described by head and
middle beads, respectively, one can tentatively esti-
mate the radii of those circles as rhead ∼ L/ tan(φ0)
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Fig. 6 Collision of two identical swimmers starting with
a relative angle of π/4. The hydrodynamic interaction
between by the body’s beads allows the swimmers to scat-
ter without touching each other. a Pusher dynamics. The
subsequent positions of the swimmers are plotted, left to
right, at regular time intervals. The solid arrows indicate
the inextensible rod connecting the body beads, while the

dashed lines represent the flagella, connecting the rear body
beads to the flagellum beads. Only the body segment is con-
sidered as a rigid boundary, on which the no-slip condition
is applied for the fluid. b Pullers dynamics. The same time
series of pushers’ case is shown. The interaction in this case
produces a smaller output angle due to the different hydro-
dynamic interaction between the swimmers

and rmid ∼ L/ sin(φ0). The actual radii (see Fig. 7c)
are smaller than the estimate (dashed lines) except for
φ0 ∼ π/2, in which case the head is almost station-
ary (rhead ∼ 0) and the flagellum rotates by remaining
approximately tangent to the outer circle (rmid ∼ L).
More complex trajectories can be obtained if we allow
the angle to change in time, and this can be used to con-
trol the swimming trajectory. We leave the dynamics of
active steering for future investigations.

4.2 Swimmers interaction

In analogy with the case of straight swimmers, we stud-
ied the interaction of two circle swimmers. The bending
angle is fixed at π/4 as shown in Fig. 7a. Two differ-
ent behaviors were observed, depending on the relative
initial positions of the swimmers. If the initial separa-
tion is large enough, as expected, each swimmer tends
to swim on its own curvilinear trajectory without inter-
acting, in some cases after a brief transient character-
ized by a repulsive interaction. Two examples of this
behavior are shown in Fig. 8a, corresponding to dif-
ferent initial conditions. If the initial separation is fur-
ther decreased (Fig. 8b) the interaction changes quali-
tatively. After a more complex initial transient, the two
trajectories intertwine and start revolving around the
same center. It is worth noting that the reciprocal posi-
tions of the swimmers are not locked along the orbit but
change dynamically in a non-trivial way. In the presence
of many swimmers, a random initial configuration can
lead one swimmer to decouple from one neighbor (as
in Fig. 8a) only to be attracted by another one into
forming a strongly coupled pair (as in Fig. 8b). This
mechanism could lead to an ordered collective behavior
as briefly discussed in the next section.

5 Collective behavior

The numerical method proposed in this work can
be easily scaled to a large number of swimmers to
study their interaction and the emergence of collective
motion. In this section, we consider the evolution of
the distributions of hundreds of straight (in the next
subsection) and circle swimmers (in the following one).

5.1 Rectilinear swimmers

As first example we considered 500 identical straight
pushers initially placed at random positions and direc-
tions on a (x, y) plane in the 3D domain. In the absence
of perturbations in the z direction, the motion remains
planar, thus confirming the accuracy of the numerical
integration.

One snapshot of the configuration of the swimmers at
late time is shown in Fig. 9. We observe that the distri-
bution is not random any more, with local clusters (or
schools) swimming in a parallel direction, similarly to
the intermediate state observed in Fig. 6. This configu-
ration is highly dynamical, as different clusters appear
and dissolve in time in a statistically stationary condi-
tion (see Fig. 9b, c, d). Figure 10 shows the correlation
function of the swimming angle as a function of the
distance between the swimmers [63]. Being s the unit
vector in the swimming direction we define for the case
of N swimmers:

C(r) =

〈∑N
ij δsi · δsjδ(r − rij)
∑N

ij δ(r − rij)

〉
(10)

where δsi = si − 1
N

∑
i si is the deviation of the ori-

entation from the mean, rij is the distance between
two swimmers and 〈·〉 is an ensemble average which in
our case was exchanged with a time average, assuming
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Fig. 7 Trajectories of
isolated swimmers with a
constant bending angle. a,
b Two typical trajectories,
with φ0 = π/4 and
φ0 = π/6, respectively. The
red (blue) lines mark the
trajectory of the head-bead
(mid-bead). c Dependence
of the radii of the
trajectories of the head
and mid beads (solid lines)
on the angle φ0 between
the flagellum and the body.
The results obtained with
a simple model (dashed
lines, see text) are given
for comparison

Fig. 8 Interaction
between a pair of circle
swimmers. a Two
configurations are shown in
which after a transient the
two swimmers settle onto
essentially independent
trajectories. b Dynamics of
two swimmers starting
initially very close and
nearly parallel. In this case
the two trajectories are
intertwined and revolve
around a common center.
Note how the relative
positions of the swimmers
change during their orbits.
The position is rescaled
with the rod length
between two beads and
times are rescaled with the
period of the isolated
circular trajectory
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Fig. 9 Panels (a–d): collective behavior of 500 straight
pushers in a 2D configuration within a 3D fluid domain. In
this figure the flagella are not drawn and each swimmer is
colored based on its angle with respect to the x axis, so that
parallel swimmers have the same color. The fluid is forced
into a chaotic flow by the motility of the swimmers. The
resulting velocity fluctuations induce relatively large veloc-
ity differences between nearby swimmers which occasionally
defeat the repulsive effect of hydrodynamic interactions and
cause the bodies to overlap more frequently. The formation
of clusters of schools of swimmers sharing the same swim-

ming direction is highlighted by the coloring scheme. On
the left a 2D snapshot of the whole domain at time t � 23
(rescaled with the typical time in which the swimmer covers
its length) is shown. (b), (c) and (d): three zoomed snap-
shots of the dynamics within the dashed square in panel (a).
Panel (b) and (d) are taken at a time interval Δt = 0.30
before and after the main panel (corresponding to panels
(a) and (c)), respectively. It is here evident that the schools
persist several swimmer lengths following the surrounding
dynamics

ergodicity. The correlation is positive over a distance of
the order of the length L. For a large enough number
of swimmers the correlation length becomes indepen-
dent on the number of swimmers. In this dense con-
dition confined on a plane, the occurrence of overlap-
ping swimmers is not uncommon. In a realistic appli-
cation with the full 3D motion, the overlap would be
much more occasional as the mean free path of swim-
mers would be much larger. Remarkably, even in the
case of Fig. 9 we find that the swimmer model does
not develop numerical instabilities as a consequence of
the close encounters. However, when a similar case is
studied for pullers (not shown), the ensuing clustering
is much stronger than for pushers [64,65] and rapidly
leads to numerical instabilities due to the overlap of a
large number of beads, with their relative force sten-
cils. Clearly in this case a steric repulsion force must
be implemented. Steric interactions could likely modify
also the correlations (10) and other characteristic of the
collective motion.

5.2 Circle swimmers

The discussion in the previous section, as well as previ-
ous literature [53,55], suggest that circle swimmers can
present interesting collective dynamics. Also in this case
we show here only results regarding circle pushers, since
pullers tend to undergo strong clustering that requires
the implementation of steric interactions. We consid-
ered the case of 250 circle pushers (Fig. 11). The collec-
tive dynamics in this case is characterized by a transient
in which swimmers with an initial condition similar to
those observed in Fig. 8a tend to move apart until they
intersect other trajectories with which to form a collec-
tive circular trajectory, as shown in Fig. 8b. An exam-
ple of the resulting collective motion is shown in the
side panels of Fig. 11. Once swimmers achieve this cou-
pled configuration, the dynamics become rather com-
plex because each orbit is traveled at different and non-
constant speeds. Starting from a configuration where
all swimmers are closely packed (Fig. 11b), the flow
generated by each pusher accelerates the nearby swim-
mers, causing a fast rotation and a progressive separa-
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Fig. 10 Correlation function of swimming directions C(r)
between swimmers separated by a distance r (see text),
computed for different numbers of swimmers. The angles of
neighboring swimmers are correlated over a distance roughly
equivalent to the length L, which is consistent with the clus-
ters shown in Fig. 9. As a comparison, the same observable
is shown for random configurations

tion (Fig. 11c, d) of the swimmers along their collective
orbit. At later times a packed configuration forms again.
This behavior repeats and allows the formation of these

structures on the scale of the swimmer. Preliminary
observations suggest that, once formed, these structures
tend to persist and produce a global configuration char-
acterized by many swimmer vortices (Fig. 11a). Such
vortices survive for several orbital periods (estimated
via the orbital period of an isolated circle swimmer) and
are therefore qualitatively robust, as shown in figure
Fig. 11b–d. Quantitative assessment of the persistence
of the collective structures as well as their statistical
correlations is needed, in order to fully characterize this
system, and will be the subject of future investigations
focused on the collective motion.

6 Conclusions

In this paper we have proposed and analyzed a numer-
ical model based on immersed boundary methods of a
minimal swimmer, whose body is modeled by two beads
and flagellum represented by a single bead. The model
can be used for both pushers and pullers, by simply
changing the direction of the applied forces. The choice
of two beads, with no slip conditions, for the body make
the swimmer to feel the gradient of the velocity field
allowing it to be rotated by the flow. In particular, we
showed that, when the propulsion is switched off, the

Fig. 11 Collective behavior of 250 turning swimmers in
a 2D configuration. The dynamics is characterized by the
formation of groups of swimmers that, thanks to the hydro-
dynamic interaction, pair up to form groups of swimmers
that evolve along nearly circular, approximately concentric
trajectories. These structures are very robust and survive
for several orbits. On the left a 2D snapshot of the whole

domain. On the right three zooms of the dynamics of one
structure. The central plot (c) shares the same time of the
snapshot on the left and is preceded in time by the snapshot
(b) at time t � −3T0 (in units of the period T0 of a circular
trajectory of the single circle swimmer) and followed by the
snapshot (d) at time t � +3T0
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swimmer moves approximately according to Jeffery’s
equations for a thin rod.

When the three beads are collinear the model swim-
mer display straight swimming, while by maintaining
an angle between body and flagellum it swims in circles.
We analyzed the close encounters between both straight
and circle swimmers showing how hydrodynamic inter-
actions mediated by the solvent fluid cause the two
swimmers to scatter. Then we scaled up the system by
considering many either straight or circle swimmers and
showed that the active suspension can give rise to non-
trivial collective motions. For straight swimmers, local
alignment can be observed in the presence of the sole
hydrodynamic interactions leading to dynamic schools
of swimmers swimming in the same directions. Remark-
ably, interactions between co-rotating circle swimmers
lead to the formation of approximately ordered vortices
of swimmers, moving on approximately circular trajec-
tories.

The preliminary results on the collective motion of
swimmers suggest the directions in which the numer-
ical investigation could be pursued more extensively,
also in light of previous results on circle swimmers
[53,55]. In particular, it will be interesting to assess
whether and to what extent the structures observed
with other model swimmers are model-independent and
how the collective dynamics changes with steric inter-
actions. Another interesting direction of investigation
is to allow the swimmers to change dynamically their
geometry, this can be used to control the swimming
direction internally so to the swimmer can steer and
direct its motion in a desired direction. Eventually, this
can be supplemented by artificial intelligence, e.g. via
reinforcement learning [66] so to allow the swimmers to
accomplish some single (e.g. reach a target or control
dispersion [67–69]) or collective goal [70] (e.g. swim-
ming in schools). These features can be useful to micro-
robots design in biomedical applications, to model ani-
mal interactions, etc.
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Appendix A Stokeslets solution

Let’s start by considering a single sphere with a constant
speed v. The velocity field produced, in the very low Re
regime, is described by the Stokes equation and leads to the
following solution [71]:

u =
3

4
R
v + r̂(v · r̂)

r
+

1

4
R3 v − 3r̂(v · r̂)

r3
(A1)

where r̂ is a unit vector pointing from the center of the
sphere (origin) to a point in space, r is the distance with
respect to the origin and R is the radius of the sphere. The
previous equation could be rewritten as:

uα =
3

4

R

r
[vα + r̂α(vβ r̂β)] +

1

4

R3

r3
[vα − 3r̂α(vβ r̂β)]

=
1

4

(
3R

r
+

R3

r3

)

vα +
3

4
r̂α(vβ r̂β)

(
R

r
− R3

r3

)

(A2)

where the Greek subscript stands for spatial components.
On the surface of the sphere r = R the no slip condition
uα = vα is enforced. The fluid field around a dumbbell
swimmer is approximately given by the superposition of two
solutions having the same form of (A2). This approximation
clearly breaks down on the surface of the beads because it
violates the no-slip condition, but this is not relevant to our
numerical model because the beads have only an effective
radius and their surface is not resolved. Carrying on with
this approximation, we denote by v∗

i the speed of the i−th
sphere if it were isolated. Taking into account the distur-
bance induced by the other bead, one gets a linear relation
between these speeds and the ones resulting from hydrody-
namic interaction, formally

{
v1 = v∗

1 + v2
∗S

v2 = v∗
2 + v1

∗S,
(A3)

where 1 and 2 are the indices of the flagellum and body
beads, respectively, and S is a geometric factor which can
be computed from (A2). S appears in a symmetric way in
both equations because the beads are identical. Using vα

known from the numerical computation, equations (A3) can
be inverted obtain the unknown velocities v∗, which can
then be plugged into (A2) to compute the disturbance field.
Thus this two Stokes solutions are superposed and compared
with the numerical velocity field in order to fit the effective
radius R of each sphere.

Appendix B Implementation of
inextensibility and rigidity

Here we detail how inextensibility and rigidity are imposed
and used to fix the model parameters. Consider the 2-beads
model discussed in the introduction. The inextensibility con-
dition is:

|x2 − x1| = const ⇒ d

dt
|x2 − x1|2 = 0 (B4)

from which expanding the square x2 − x1 and considering
further derivation we obtain a condition on accelerations

(v̇2 − v̇1) · n = −|v2 − v1|2
|x2 − x1| . (B5)
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Fig. 12 Schematic view of the model swimmer. The inter-
nal forces g1,g2 and g3 allow to control the angle or (like
in this paper) keep it fixed

In the last equation we have introduced the unit vector
n = (x2 − x1)/|x2 − x1|. Equation (B5) is trivial for the
1D case, where a zero relative acceleration leads to a zero
relative velocity difference. From this point on, the simpli-
fied notation ui = u(xi) is used to denote the fluid velocity
in the position of the i-th bead.

From the (B5) and (6) we get:

λ =
1

2

[ |v2 − v1|2
|x2 − x1| − f − β[v2 − u2] · n

]

(B6)

that is the module of the tension. From (6) it is easy to
obtain the stationary state fn = β(v2 − u2) when v̇1 =
v̇2 = 0. Numerical simulations of the model here introduced,
with the constrain expressed by (B6), were carried out on a
dumbbell 0.5h long (where h is the grid step) in a 2D Kol-
mogorov flow of period 2π with velocity u = (cos(z), 0, 0)
and we observed a maximum relative deviation of the length
of each rod of order 10−6, which validates the model.

The model can be easily extended to the 3-beads swim-
mer. We define two unit vectors n1 e n2 that point, respec-
tively, from the tail to the central bead and from the central
to the head bead. This model introduces a new degree of
freedom that is the angle φ between the two unit vectors
(see Fig. 1c in the main text). To maintain a rigid shape we
need this angle to relax to a fixed value φ0. We define the
unit vectors t1 and t3 perpendicular to n1 and n2, respec-
tively, such that they lie in the plane defined by the swimmer
(Fig. 12), in formulae:

t1 =
n2 − cos φn1

|n2 − cos φn1| (B7)

t3 =
−n1 + cos φn2

| − n1 + cos φn2| (B8)

We introduce g1 along t1, g3 along t3, and g2 such that
g2 = −(g1 +g3) = −g(t1 + t3). In the last equality we sup-
pose that |g1| = |g3| = g. At each time step t we compute
g as

g = −a(φ − φ0), (B9)
where a is a constant setting the stiffness of the spring which
keeps φ close to φ0. The equations of the dynamics for a
generic angle φ are:

⎧
⎪⎨

⎪⎩

v̇1 = fn1 + λ12n1 + gt1

v̇2 = −λ12n1 + λ23n2 − β(v2 − u2) + gt2

v̇3 = −λ23n2 − β(v3 − u3) + gt3

(B10)

where λ12 and λ23 are the tension forces that guarantee the
inextensibility. The condition (B5) is now applied on each
rod and we obtain:

λ23 =

[

− |v2 − v1|2
|x2 − x1| − 2

cos φ

|v3 − v2|2
|x3 − x2| + f − β(v2 − u2)

·
(

2n2

cos φ
− n1

)

+
2β

cos φ
(v3 − u3) · n2 − g2t2

·
(−2n2

cos φ
+ n1

)]
1

cos φ − 4
cos φ

λ12 =

[

− |v3 − v2|2
|x3 − x2| − 2

cos φ

|v2 − v1|2
|x2 − x1| +

2f

cos φ

+ β(v2 − u2) ·
(

2n1

cos φ
− n2

)

+ β(v3 − u3) · n2 − g2t2 ·
(

2n1

cos φ
− n2

)]

1

cos φ − 4
cos φ

Appendix C The limit to Jeffery’s model of
a rod

In this appendix we show that the dynamics of a short
dumbbell is well described by Jeffery’s equation for an
infinitely thin rod, see also the discussion in Sec. III and
in particular Fig. 5. Consider a dumbbell with fixed length
L and particles x1 and x2. Assume the dynamics is Stoke-
sian with relaxation time τ . The equations of motion are

⎧
⎨

⎩

v̇1 = −v1 − u1

τ
− λn

v̇2 = −v2 − u2

τ
+ λn

(C11)

where ui = u(xi) is the fluid’s velocity at the i-th particle
and n = L/L, with L = x2 − x1. The modulus of the rod’s
tension λ is obtained by imposing inextensibility dL2/dt =
0 (see (B4)). Further derivation to obtain a condition on
accelerations gives

L̈ · L + |L̇|2 = 0, (C12)

where L̇ = v2 −v1 and L̈ = v̇2 − v̇1. Defining wi = vi −ui,
we get from (C11)

L̈ = −w2 − w1

τ
+ 2λn (C13)

and from (C12) and the definition of n

λ = −|L̇|2
2L

+
w2 − w1

2τ
· n. (C14)

Finally, the equations of motion for the positions of the
dumbbell’s beads are

⎧
⎪⎪⎨

⎪⎪⎩

v̇1 = −w1

τ
+

|v2 − v1|2
2L

n − w2 − w1

2τ
· n ⊗ n

v̇2 = −w2

τ
− |v2 − v1|2

2L
n +

w2 − w1

2τ
· n ⊗ n.

(C15)
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The latter equations are essentially the same obtained when
imposing no-slip conditions on the two spheres via an
immersed boundary method. If we now take the overdamped
(or Re = 0) limit τ → 0, we get

⎧
⎪⎨

⎪⎩

0 = −w1 − w2 − w1

2
· n ⊗ n

0 = −w2 +
w2 − w1

2
· n ⊗ n.

(C16)

By summing the two equations one gets w1 = −w2, and by
substituting this relation into each equation

(I − n ⊗ n)w1,2 = 0. (C17)

Since (v2 − v1) · n = 0 because of inextensibility, we can
take the difference of (C17) for w2 and w1 and get

L̇ = (I − n ⊗ n)(u2 − u1). (C18)

Now, since ṅ = (I − n ⊗ n)L̇/L, one gets

ṅ =
1

L
(I−n⊗n)(I−n⊗n)(u2−u1) =

1

L
(I−n⊗n)(u2−u1)

(C19)
with the last equality stemming from the idempotence of
the projector. If the dumbbell’s length is very small we can
write u2 − u1 = ∇unL + O(L2), so we get to first order in
L

ṅ = (I − n ⊗ n)∇un. (C20)

The latter is Jeffery’s equation [62] with elongation param-
eter Λ = 1. Indeed Jeffery’s equation can be written as

ṅ = On + ΛS(I − n ⊗ n)n (C21)

with O and S the antisymmetric and symmetric part of the
velocity gradient tensor ∇u, respectively. Because of sym-
metry On = (I−n⊗n)On so for λ = 1 one can reconstruct
the gradients and obtain (C20).
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51. H. Löwen, Chirality in microswimmer motion: from cir-
cle swimmers to active turbulence. Eur. Phys. J. Spec.
Top. 225, 2319–2331 (2016)

52. R. Ledesma-Aguilar, H. Löwen, J.M. Yeomans, A circle
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