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It is well known that the study of stochastic process started from the
Einstein [1] and Langevin [2] works on Brownian motion. Brownian motion
(i.e. the erratic movement of a grains suspended in liquid) was observed by
the botanist Robert Brown as early as in 1827. Being a botanist, Brown was
interested in the motion as a possible manifestation of life. To this aim, he
made a series of careful experiments which excluded the biological origin of
the motion.

The Langevin mechanical model for Brownian motion is based on two
key ingredients: a deterministic viscous drag and a stochastic force due to
the impacts of the molecules. The drag can be written, assuming a spherical
grain, as 6mpuav (where p is the dynamical viscosity of the fluid, a the grain
radius and v the grain velocity). The stochastic term will be denoted by 7,
which is assumed with zero mean and short correlated in time, and which
represents the collisions of molecules on the grain.

The Langevin equation for Brownian motion is nothing but the Newton

equation for the grain:
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which, introducing the viscous relaxation time 7 = m/(6mau), can be written

as
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By taking the scalar product of (2) with the grain position r, averaging
over many grains and assuming 7 not correlated with position, one obtains
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If the Brownian particle is in thermal equilibrium with fluid at tempera-

ture 7" we have
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(k is the Boltzmann constant). Integrating twice in time with the appropriate
initial conditions (at ¢ = 0 we can suppose 7 = 0 without loosing generality)
one finally get
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(r*(t)) ~(1-eT) (5)

The solution (5) contains two asymptotic regimes:

-t < 7 the expansion of the exponential gives, at leading order,

BT,
T m

(r*(t)) (6)
which is the ballistic regime, i.e. (6) is nothing but a complicate way
to write r = vi;

-t > 7 in this case one obtains the well known diffusive regime
(r?(t)) ~ 6Dt (7)
where D = kT1/m = kT /(6mapu) is the diffusion coefficient.

The diffusion coefficient depends on the grain size, but it is usually very
small also for microscopic grains. Considering, as an example, a = 10~%m in
water at room temperature one gets D ~ 1073 m?/s.

The reason for reporting the above very classic exercise, is only to stress
the fact that diffusion (i.e. (r?) ~ t) is obtained only asymptotically (¢ > 7).
This is a consequence of central limit theorem which assures Gaussian dis-
tributions and diffusive behavior in the limit of many independent collisions.
The necessary, and sufficient, condition for observing diffusive regime is the
existence of a finite correlation time (here represented by 7) for the mi-
croscopic dynamics. Let us stress that this is the important ingredient for
diffusion, and not a stochastic microscopic dynamics. We will see below that
diffusion can arise even in completely deterministic systems.

In order to study more in detail the properties of diffusion, let us introduce
the simplest model of Brownian motion, i.e. the one-dimensional random
walk. The walker moves on a line making discrete jumps v; = 41 at discrete
times. The position of the walker, started at the origin at t = 0, will be

R(t) = Zl Vi (8)
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Assuming equiprobability for left and right jumps (no mean motion), the
probability that at time ¢ the walker is in position z will be
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For large ¢t and = (i.e. after many microscopic steps) we can use Stirling
approximation and get

t t+x t+x_t—x t—x] (10)
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The well known Gaussian distribution is recovered only in the core, i.e. for
z < t. In this case from (10) we get

() = | 5 e (—Q—t) (11)

An important remark is that Gaussian distribution (11) is intrinsic of dif-
fusion process, independent on the distribution of microscopic jumps: indeed
only the first two moments of v; enter into expression (11). This is, of course,
the essence of the central limit theorem. Following the above derivation, it is
clear that this is true only in the core of the distribution. The far tails keep
memory of the microscopic process and are, in general, not Gaussian. As an
example, in Figure 1 we plot the pdf p;(x) at step t = 100 compared with
the Gaussian approximation. Deviations are evident in the tails.

The Gaussian distribution (11) can be obtained as the solution of the dif-
fusion equation which governs the evolution of the probability in time. This
is the Fokker-Planck equation for the particular stochastic process. A direct
way to relate the one-dimensional random walk to the diffusion equation is
obtained by introducing the master equation, i.e. the time evolution of the
probability [3]:

e () = %pt(x -1+ %pt(x +1). (12)

In order to get a continuous limit, we introduce explicitly the steps Az and
At and write
pe1(2) —pe(z)  (Az)’ p(x +1) + pz — 1) — 2py()

At T 2At (Az)? ' (13)
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Figure 1: Probability distribution function of the one-dimensional random
walk after ¢ = 100 steps. The dashed line is the Gaussian distribution

Now, taking the limit Az, At — 0 in such a way that (Ax)?/At — 2D (the
factor 2 is purely conventional) we obtain the diffusion equation
Op(z, 1) 0*p(z,1)

o5 :Diax2 . (14)

The way the limit Az, At — 0 is taken reflects the scaling invariance property
of diffusion equation. The solution to (14) is readily obtained as

p(a, 1) = \/ﬁexp (-4”’—;> . (1)

Diffusion equation (14) is here written for the probability p(x, t) of observ-
ing a marked particle (a tracer) in position x at time ¢. The same equation
can have another interpretation, in which p(z,t) = 6(z,t) represents the
concentration of a scalar quantity (marked fluid, temperature, pollutant) as
function of time. The only difference is, of course, in the normalization.



As already stated time decorrelation is the key ingredient for diffusion. In
the random walker model it is a consequence of randomness: the steps v; are
random uncorrelated variables and this assures the applicability of central
limit theorem. But we can have a finite time correlation and thus diffusion
also without randomness. To be more specific, let us consider the following
deterministic model (standard map [4]):

{ t+1) = @) +J(t+1)
. (16)
Jit+1) = J(t)+ Ksinf(t)

The map is known to display chaotic behavior for K > K, ~ 0.9716. For
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Figure 2: Square dispersion (.J(¢)?) for the standard map at K = 10.5. The
dashed line is the RPA prediction.

large times, J(t) is large and thus the angle 6(¢) rotates rapidly. In this limit,
we can assume that at each step 6(t) decorrelates and thus write

J(t)? = K? (i sin 9(t’)> ~ K*(sin® 0)t = 2Dt (17)
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The diffusion coefficient D, in the random phase approximation, is obtained
by the above expression as Dgrps = K?/4. In Figure 2 we plot a numerical
simulation obtained with the standard map. Diffusive behavior is clearly
visible at long time.

The two examples discussed above are in completely different classes:
stochastic for the random walk (8) and deterministic for the standard map
(16). Despite this difference in the microscopic dynamics, both lead to a
macroscopic diffusion equation and Gaussian distribution. This demonstrates
how diffusion equation is of general applicability.

The random walk model (8) can be extended to higher dimensions. It
is clear that the macroscopic properties described above, i.e. diffusive be-
havior and Gaussian distribution, are independent on dimensionality. There
are other macroscopic properties which, on the contrary, depend on the di-
mension of the space. One particularly important property is the ability of
the walker to come back at the starting point (recurrence). It is clear that,
increasing the space dimensionality, the walker has more opportunity to wan-
der in the space without never return at the origin. Indeed, the following
theorem holds [5, 6]

one- and two-dimensional random walks are persistent, i.e. return with
probability one to the origin; d-dimensional random walks with d > 3 are
transient, i.e. there is a finite probability that the walker never return to the
oTLgIn.

The demonstration of the theorem is rather simple. Let us introduce the
probability u(t) that the walker is at the origin at time ¢ and f(¢) the prob-
ability that it is at the origin at ¢ for the first time (after t = 0). Persistence
means

IEWIOES (18)

while transient means f < 1 (we have defined f(0) = 0). It is not difficult to
understand that

u(t) = f(t) + f(t = Du(l) + f(t — 2u(2) + .. + FQut—1)  (19)

Defining u(0) = 1 and introducing the characteristic functions F'(s) = Y52, s f(¢)
and U(s) = 302, s'u(t), multiplying (19) by s* and summing over ¢ we get

U(s) =1+ U(s)F(s) (20)



In this way persistence, i.e. lim,_,; F'(s) = 1 is equivalent to the condition

o0
ll_I)r% U(s) => u(t) = lim Y u(t) = o0 (21)
The latter equality express the obvious fact that if the process is persistent
the walker passes infinitely often at the origin (and at any other point).
For large ¢t we can approximate u(¢) in (21) with the Gaussian distribution
u(t) ~ p(0). In one-dimension from (11) we have

1
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In generic dimension d, the pdf is still a Gaussian, product of d Gaussian,
and thus p;(0) ~ 1/t%2. From (21) we have, for T — oo,

pt(o) = (22)

T T g t12  for d=1
> ult) ~ / a7z ™ InT for d=2 (23)
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and thus U(s) diverges for d < 2. As an example, for d = 3 one gets [5]
U(1) ~ 1.51 which means by (20) that f = 0.34, i.e. there is about 66%
probability that the walker never came back to the origin.

Now let us consider the more complex situation of dispersion in a non-
steady fluid with velocity field v(x, ). For simplicity will we consider incom-
pressible flow (i.e. for which V - v = 0) which can be laminar or turbulent,
solution of Navier-Stokes equation or syntetically generated according to a
given algorithm. In presence of v(x,t), the diffusion equation (14) becomes
the advection-diffusion equation for the concentration 0(x, t)
%—FV-VH:DAQ. (24)
ot
Equation (24) is linear in 6 but nevertheless it can display very interesting
and non trivial properties even in presence of simple velocity fields. In the
following we will consider a very simple example of diffusion in presence of an
array of vortices. The example will illustrate in a nice way the basic mecha-
nisms and effects of interaction between deterministic (v) and stochastic (D)
components.



Let us remark that we will not consider here the problem of transport in
turbulent velocity field. This is a very classical problem, with obvious and
important applications, which has recently attracted a renewal theoretical
interest as a model for understanding the basic properties of turbulence [7].

Before going into the example, let us make some general consideration.
We have seen that in physical systems the molecular diffusivity is typically
very small. Thus in (24) the advection term dominates over diffusion. This
is quantified by the Peclet number, which is the ratio of the typical value of
the advection term to the diffusive term

vl
Pe = — 2
¢ D ( 5)

where vy is the typical velocity at the typical scale of the flow ly. With
To = lo/vp we will denote the typical correlation time of the velocity.

The central point in the following discussion is the concept of eddy dif-
fusivity. The idea is rather simple and dates back to the classical work of
Taylor [8]. To illustrate this concept, let us consider a Lagrangian description
of dispersion in which the trajectory of a tracer x(t) is given by

dx(t)

S = vx(0), 1) + () (26)

where each component of the molecular noise 7 is a Gaussian white noise
with zero mean and correlation

(n(t)n(t")) = 2D5(t —t). (27)

Being interested in the limit Pe — oo, in the following we will assume D = 0.
Starting from the origin, x(0) = 0, and assuming (v) = 0 we have (x(t)) =
0 for ever. The square displacement, on the other hand, grows according to

) = (xl6) 2 (1) = [ {vas) i ()ds (28)

where we have introduced, for simplicity of notation, the Lagrangian velocity
vy (t) = v(x(t),t). Define the Lagrangian correlation time 7, from

/000<VL(8) -vi(0))ds = (v(0)*)7L (29)

and assume that the integral converge so that 7, is finite. From (28), for
t > 1 we get
(x(t)*) = 2 {vi)t (30)

8



i.e. diffusive behavior with diffusion coefficient (eddy diffusivity) DF =
L(v%).

This simple derivation shows, once more, that diffusion has to be expected
in general in presence of a finite correlation time 7,. Coming back to the
advection-diffusion equation (24), the above argument means that for ¢ > 7,
we expect that the evolution of the concentration, for scales larger than [,
can be described by an effective diffusion equation, i.e.

00) _ g 0%(0)

N DE 1
ot Z’axiaxj (3 )

The computation of the eddy diffusivity for a given Eulerian flow is not an
easy task. It can be done explicitly only in the case of simple flows, for
example by means of homogenization theory [9, 10]. In the general case it
is relatively simple to give some bounds, the simplest one being D¥ > D,
i.e. the presence of a (incompressible) velocity field enhances large-scale
transport. To be more specific, let us now consider the example of transport
in a one-dimensional array of vortices (cellular flow) sketched in Figure 3.
This simple two-dimensional flow is useful for illustrating the transport across
barrier. Moreover, it naturally arises in several fluid dynamics contexts, such
as, for example, convective patterns [11].

)
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Figure 3: Cellular flow model. [y is the size of vortices, ¢ is the thickness of
the boundary layer.

Let us denote by vy the typical velocity inside the cell of size [, and
let D the molecular diffusivity. Because of the cellular structure, particles
inside a vortex can exit only as a consequence of molecular diffusion. In a
characteristic vortex time 7y =~ ly/vg, only the particles in the boundary layer
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of thickness 0 can cross the separatrix where
6> ~ D1y~ D—. (32)

These particles are ballistically advected by the velocity field across the vor-
tex so they see a “diffusion coefficient” [2/7y. Taking into account that this
fraction of particles is §/ly we obtain an estimation for the effective diffusion
coefficient as )
~ 00 Dlyvy ~ DPe'/? (33)

lo 7o

DF

The above result, which can be made more rigorous, was confirmed by
nice experiments made by Solomon and Gollub [11]. Because, as already
stressed above, typically Pe > 1, one has from (33) that D¥ > D. On the
other hand, this result do not mean that molecular diffusion D plays no role
in the dispersion process. Indeed, if D = 0 there is not mechanism for the
particles to exit from vortices.

Diffusion equation (31) is the typical long-time behavior in generic flow.
There exist also the possibility of the so-called anomalous diffusion, i.e. when
the spreading of particle do not grow linearly in time, but with a power law

(@*(t)) = ¢/ (34)

with v # 1. The case v < 1 corresponds to the so-called subdiffusive behavior
(where formally D¥ = 0) while v > 1 is called superdiffusion.

Superdiffusion arises when the Taylor argument for deriving (30) fails and
formally D¥ — oo. This can be due to two mechanisms: the divergence of
(v2) (which is the case of Léuvy flights), or the lack of decorrelation and thus
Ty, — oo (Lévy walks). The second case is more physical and it is related to
the existence of strong correlations in the dynamics, even at large times and
scales.

One of the simplest examples of Lévy walks is the dispersion in a quenched
random shear flow [12, 13]. The flow, sketched in Figure 4, is a superposition
of strips of size ¢ of constant velocity vy with random directions.

Let us now consider a particle which moves according to (26). Because
the velocity field is in the = direction only, in a time ¢ the typical displacement
in the y direction is due to molecular diffusion only

5y ~ /Dt (35)
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Figure 4: Random shear of +v, velocity in strips of size §

and thus in this time the walker visits N = dy/d strips. Because of the
random distribution of the velocity in the strips, the mean velocity in the
N strips is zero, but we may expect about /N unbalanced strips (say in
the right direction). The fraction of time ¢ spent in the unbalanced strips is
tvVN /N and thus we expect a displacement

t

ox ~ UO\/—N . (36)
From (35) we have N ~ /Dt/§ and finally
2
(022 ~ Y00 32 (37)

- VD
i.e. a superdiffusive behavior with exponent v = 3/2.

The origin of the anomalous behavior in the above example is in the
quenched nature of the shear. This leads to an infinite decorrelation time
for Lagrangian tracers and thus to a singularity in (30). We conclude this
example by observing that for D — 0 (37) gives (0z?) — oo. This is not a
surprise because in this case the motion is ballistic and the correct exponent
becomes v = 2.

As it was in the case of standard diffusion, also in the case of anomalous
diffusion the key ingredient is not randomness. Again, the standard map
model (16) is known to show anomalous behavior for particular values of
K. An example is plotted in Figure 5 for K = 6.9115 in which one find
(J()2) = 133,
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Figure 5: Square dispersion (J(t)?) for the standard map at K = 6.9155.
The dashed line is ¢133.

The qualitative mechanism for anomalous dispersion in the standard map
can be easily understood: a trajectory of (16) for which K sin §* = 2rm with
m integer, corresponds to a fixed point for # (because the angle is defined
modulo 27) and linear growth for J(¢) (ballistic behavior). It can be shown
that the stability region of these trajectories in phase space decreases as
1/K [14, 6] and, for intermediate value of K, they play a important role
in transport: particles close to these trajectories feel very long correlation
times and perform very long jumps. The contribution of these trajectory, as
a whole, gives the observed anomalous behavior.

Now, let us consider the cellular flow of Figure 3 as an example of subd-
iffusive transport. We have seen that asymptotically (i.e. for ¢ > I3/D) the
transport is diffusive with effective diffusion coefficient which scales accord-
ing to (33). For intermediate times ly/vy < ¢ < [3/D, when the boundary
layer structure has set in, one expects anomalous subdiffusive behavior as a
consequence of fraction of particles which are trapped inside vortices [15]. A
simple model for this problem is the comb model [13, 16]: a random walk
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on a lattice with comb-like geometry. The base of the comb represents the
boundary layer of size § around vortices and the teeth, of length [y, repre-
sent the inner area of the convective cells. For the analogy with the flow of

Figure 3 the teeth are placed at the distance 6 = /Dly/vy (32).

lo

o
Figure 6: The comb model geometry

A spot of random walker (dye) is placed, at time ¢ = 0, at the base of the
comb. In their walk on the x direction, the walkers can be trapped into the
teeth (vortices) of dimension y. For times ly/vy < t < I3/ D, the dye invades
a distance of order (Dt)'/2 along the teeth. The fraction F(t) of active dye
on the base (i.e. on the separatrix) decreases with time as

J

F(t) ~ 38
()~ G (38)
and thus the effective dispersion along the base coordinate b is
(V(t)) ~ F(t)Dt ~ §(Dt)*/? (39)
In the physical space the corresponding displacement will be
l
(2®(t)) = (B (£) 5 = lo(PeDt)"/? (40)

i.e. we obtain a subdiffusive behavior with v = 1/2.

The above argument is correct only for the case of free-slip boundary
conditions. In the physical case of no-slip boundaries, one obtains a different
exponent ¥ = 2/3 [15]. The latter behavior has been indeed observed in
experiments [17].
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