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Many species of phytoplankton migrate vertically
near the surface of the ocean, in search of either
light or nutrients. These motile organisms are
affected by ocean surface waves. We derive a set
of wave-averaged equations to describe the motion
of microswimmers with spheroidal body shapes
that includes several additional effects, such as
gyrotaxis, settling and wind-driven shear. In addition
to the well-known Stokes drift, the microswimmer
trajectories depend on their orientation in a way that
can lead to trapping at a particular depth; this in
turn can affect transport of organisms, and may help
explain observed phytoplankton layers in the ocean.

1. Introduction
Many phytoplankton species, inhabiting lakes and
oceans, are motile, an ability that allows them to migrate
vertically in the water column to better exploit light,
which is available near the surface, and to search
for nutrients, which are typically more plentiful at
depth. While migrating they must contend with the
background fluid motion driven by waves, currents and
turbulence. As a primary producer of biomass in aquatic
ecosystems, phytoplankton supports the aquatic food
web and sequesters carbon. Thus, geophysical processes
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that affect the vertical migration and spatial distribution of phytoplankton are fundamental to
aquatic ecology and biogeochemistry.

For motile phytoplankton (or more generally, any microswimmers), the interaction with
the background flow occurs via advection due to the velocity field and rotation due to the
velocity gradients, where the latter also involves body shape. This coupling between swimming,
advection and body rotations has been studied in different contexts and shown to affect the
spatial distributions of microswimmers and alter their vertical migration. In isotropic turbulence,
microswimmers cluster and align nematically with fluid vorticity [1,2]. These results were
extended, showing that the swimming direction also aligns in a polar way with fluid velocity due
to correlations between the velocity field and velocity gradients along microswimmer trajectories,
combined with swimming which breaks the fore–aft symmetry of relative motion with respect to
the flow [3,4]. Microswimmers also show interesting spatial distributions in cellular flows [5–7]
and isolated vortices [8–12] and non-trivial transport effects have been studied in microchannel
flows [13–17]. Recent extensions of this research have begun to consider active control of
transport by mechanisms such as optimal swimming strategies [18–20], biological responses
to hydrodynamic cues [21–23] and mutual interactions of microswimmers in the presence of
background flow [24].

Since upwards vertical migration towards well-lit waters is a common goal, many
phytoplanktonic microswimmers exhibit gravitaxis, i.e. they tend to orient their swimming
direction against gravity, owing to a bottom-heaviness within an uneven body mass distribution.
When combined with flow-induced reorientations, this produces a phenomenon known as
gyrotaxis [25]. Gyrotactic microswimmers display a plethora of behaviours in different flow
conditions [26–28]. In turbulent flows, they form small-scale clusters, fractal distributions and
sample vertical fluid velocities in shape-dependent ways [3,27,29–33]. Gyrotaxis can also lead
to trapping in high shear [28,34,35], which is one mechanism for the formation of ‘thin
phytoplankton layers’ commonly observed in the field [36,37]. When the fluid acceleration is
comparable to the gravitational one, they respond to the total acceleration and can cluster in high
vorticity regions [30].

Here, we consider the emerging topic of how microswimmers behave in flows with free-
surface effects that are important for light-seeking phytoplankton [38–40]. This parallels recent
work on passive particle transport in surface gravity waves [41–46]. In particular, we extend
the previous work [40] that examined how microswimmers interact with a wavy background
flow, to also consider gyrotactic and settling microswimmers within a more general flow
configuration that includes a wind-driven shear superimposed on surface waves, a situation
typically encountered in oceans [47]. Using a multiscale approach, we analyse the most general
system of negatively buoyant gyrotactic swimmers with spheroidal body shapes in surface
gravity waves with a wind-driven shear, followed by specific sub-cases that neglect certain
aspects. In general, we find that both gyrotaxis and shear introduce new orientation effects that
change the topology of microswimmer trajectories. Specifically, we observe trajectories where
microswimmers are confined to a particular depth. By considering stability and observability of
the trapping behaviour, we show how the depth at which microswimmers are trapped depends
on the balance of different effects. For example, neutrally buoyant gyrotatic microswimmers in
waves without shear oscillate about a depth where wave-induced re-orientation and gyrotactic
re-orientation balance, whereas negatively buoyant gyrotactic microswimmers in the same flow
field are attracted to a depth where the upwards swimming component (determined by the
orientation dynamics) balances settling velocity. Overall, these trapping features of the system
present new mechanisms that may contribute to the formation of thin phytoplankton layers in the
ocean [36].

The rest of the paper is structured as follows. In §2, we describe the dynamics combining the
effects of waves, linear shear and gyrotaxis on the swimmer’s mechanics. Section 3 focuses on
specific sub-cases where certain effects are neglected in order to obtain interpretable analytical
solutions. In §4, we provide a discussion where the results are placed into realistic oceanic and
biological scenarios. Conclusions are provided in §5.
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Figure 1. Definition sketch of the problem. (a) A prolate gyrotactic microswimmer swims with velocity Vs along its symmetry
axis, settles with velocity Vg and re-orients against gravity with characteristic timescale B. It interacts with a flow field induced
by surface waves of amplitude a and wavenumber k, superposed on a linear shear with shear rate σ . (b) Definition of the
orientation vector p and associated anglesφ and θ .

2. Mathematical model and multiple-scale analysis
We consider axisymmetric ellipsoidal microswimmers whose dynamics of position and
orientation are described by (figure 1)

ẋ = u + Vsp − Vgk (a)

and ṗ = Ω p + λ[S p − (pTS p)p] + 1
2B

[k − (k · p)p]. (b)

⎫⎪⎬
⎪⎭ (2.1)

In the first equation, which describes the microswimmer’s velocity, there are three terms on
the right-hand side: fluid transport, swimming and settling, respectively. The microswimmer
moves with a constant swimming velocity Vs in the direction of its symmetry axis p. The
effect of negative buoyancy is taken into account by adding a constant vertical sinking velocity
vg = −Vgk, with k being the unit vector in the vertical (z) direction. For the main body of
this paper, we assume this simplified form of the settling velocity, neglecting the dependency
of the settling velocity vector on the microswimmer orientation. Also, for the sake of brevity
and because it captures the main phenomenology, in the main body of the paper, we limit the
discussion to two-dimensional dynamics in which the microswimmer axis p is restricted to the
x–z plane and orientation is denoted by the angle measured relative to the vertical direction
(px = sin φ; pz = cos φ), as shown in figure 1. The full three-dimensional dynamics with a more
complete model where the microswimmer settling velocity also depends on its orientation is
considered in appendix B.

Equation (2.1b) describes the evolution of the particle’s orientation: the first two terms
come from the classic Jeffery’s equation [48] for the rotation of a spheroid in a fluid due
to local velocity gradients (in particular, Ω = (1/2)[∇u − (∇u)T] and S = (1/2)[∇u + (∇u)T] are
the local rotation rate and strain rate tensors, respectively), and the last term describes the
gyrotaxis for bottom-heavy microorganisms [27,49] which, in the absence of a flow, orient
themselves against gravity with the characteristic re-orientation time B. The body shape of
the swimmers is parametrized by λ = (AR2 − 1)/(AR2 + 1), where AR is the aspect ratio of the
body, i.e. the ratio of the diameter along the symmetry axis to the diameter perpendicular
to that direction. Based on this definition λ ∈ [−1, 1], with λ > 0 implying prolate swimmers
and λ < 0 oblate ones. We focus on the former shape as it is the most common in aquatic
microorganisms.

As for the fluid velocity field, we consider a monochromatic surface gravity wave travelling
in the x-direction. Under the assumption of small wave amplitudes and deep water, the velocity
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Table 1. Physical parameters and their non-dimensional forms.

parameter description dimensionless form

k wavenumber
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω wave frequency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ elongation (dimensionless)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a wave amplitude α = ka (steepness)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vs swimming velocity ν = Vsk/ω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vg settling velocity νg = Vgk/ω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sinking to swimming ratio r = νg/ν
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B reorientation time Ψ = Bω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ shear σ ′ = σ/ω
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β linearized depth β ′ = βk
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

field, which is incompressible and irrotational (i.e. Ω = 0), is a solution of the Euler equations and
given by

ux = aω ekz cos(kx − ωt) (a)

and uz = aω ekz sin(kx − ωt), (b)

⎫⎪⎬
⎪⎭ (2.2)

where z ≤ 0 is the vertical domain (where z = 0 denotes the average surface position), a is the wave
amplitude, k is the wavenumber and ω =√

gk is the angular frequency (for further details, see for
example [50, pp. 36–45]).

As a generalization of the simple monochromatic gravity wave, we introduce an additional
shear velocity that represents the effect of wind on the surface velocity and, consequently, on
the underlying fluid layers [47]. A simple model for the shear is given by an exponentially
decaying velocity ux,shear = u0 exp(z/β) where β represents a characteristic depth [51–53]. In order
to simplify the analytical treatment, we linearize the shear profile (for z ≥ −β) as

ux,shear = σ (β + z), (2.3)

with σ = u0/β being the shear rate. In the approximation of linear waves and linear shear, we can
then assume that the resulting general flow is obtained by a linear superposition of the wave and
shear flows.

In what follows, all lengths and times are made dimensionless using k and ω, respectively.
The resulting non-dimensional parameters are the wave steepness α = ak, the dimensionless shear
rate σ ′ = σ/ω, the dimensionless shear depth β ′ = βk, the swimming number ν = kVs/ω, the settling
number νg = Vgk/ω and the stability number Ψ = Bω. Hereafter, we remove the primes for the sake
of notational simplicity. The physical parameters used throughout the paper are summarized in
table 1. Equation (2.1) takes the two-dimensional, dimensionless form

ẋ = α ez cos(x − t) + ν sin φ + σ (β + z), (a)

ż = α ez sin(x − t) + ν cos φ − νg (b)

and φ̇ = λα ez cos(x − t + 2φ) − 1
2Ψ

sin φ + σ

2
(1 + λ cos 2φ). (c)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

The range of validity of the model in equation (2.4) is −β ≤ z ≤ 0, where the lower limit is
determined by the linearization of the shear and the upper limit is determined by the requirement
that the swimmer remains below the average free surface position. In numerical simulations of
(2.4), trajectories are stopped when z is outside the range [−β, 0].
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The dynamics of swimmers is characterized by fast oscillations at the surface wave
frequency superposed with a slower trend at a longer timescale. Following the approach of
[40,46], we use a multiple timescale expansion to remove the fast oscillations by introducing
the slow timescale T = ε2t. The magnitude of the parameters are assumed to scale as
follows:

α → εα; ν → ε2ν; Ψ −1 → ε2 Ψ −1; νg → ε2νg; σ → ε2σ . (2.5)

The wave steepness α has to be small in order to guarantee the validity of the linear assumptions
leading to (2.2), and is therefore assumed to be of O(ε). The fluid velocities, which are proportional
to α in (2.4), are small compared to the wave phase speed ω/k and hence chosen to scale as
O(ε). The swimmer parameters Ψ , ν and νg are chosen to scale as O(ε2) since the swimmers are
small and their dynamics is slow compared to the fluid motions. Finally, the shear in the upper
ocean has a timescale that is typically much smaller than the wave period, and comparable to the
reorientation time of microswimmers, and hence is chosen to scale as O(ε2). We remark, however,
that the scaling choices are dictated, as usual in multiple scale analysis [54], by the ultimate goal
of eliminating secular terms via a solvability condition.

From the multiple timescale expansion, we obtain the following differential equations for the
T-dependent slow variables (represented by upper-case letters) as a solvability condition at order
ε2 (see appendix A for details):

∂TX = α2 e2Z + ν sin Φ + σ (β + Z), (a)

∂TZ = ν cos Φ − νg (b)

and ∂TΦ = λα2 e2Z[cos(2Φ) + λ] − 1
2Ψ

sin(Φ) + σ

2
(1 + λ cos 2Φ). (c)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.6)

The first equation in (2.6) describes the horizontal motion and the first term represents the Stokes
drift [55,56] which is always positive (in the direction of the waves) and can be enhanced or
reduced by the other terms, as will be discussed in the following.

Remarkably, the dynamics of Z and Φ is independent of X, so we can study the two-
dimensional system (Z, Φ) separately. In the plane (Z, Φ), we find two fixed points (Z+, Φ+) and
(Z−, Φ−) given by

Φ± = ± arccos(r), (2.7)

where r = νg/ν ≥ 0 is the ratio of the sinking speed and the swimming velocity, and

Z± = 1
2 ln

[
±
√

1 − r2 − Ψ σ (1 + λ(2r2 − 1))
2Ψ λα2(λ + 2r2 − 1)

]
. (2.8)

The existence of the fixed points requires r ≤ 1. Indeed if r > 1 (i.e. νg > ν) the swimmers sink
and no fixed point can be reached. Depending on the stability of the corresponding solution, the
existence of a fixed point can result in trapping of some swimmer trajectories at a finite depth
from the free surface. This is the main finding of this work and it will be discussed in detail in the
following sections.

3. Analysis of the fixed points and their stability
In this section, in order to make the results clearer, we study in detail the existence and the nature
of the fixed points in (Φ, Z) in three different limits in which one or more ingredients of the model
are disregarded.
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Figure 2. Numerical simulations for the pure gyrotactic case with α = 0.1, λ = 0.6, ν = 0.01 and Ψ = 103. Lines with
different colours represent trajectories starting from x = 0 at different depths z and at a fixed initial orientationφ = −π/2.
The blue horizontal line is the average surface of the fluid. (a) Representation of the neutral fixed point (Φ− = −π/2,
Z− = −0.7843) in phase space. Black lines represent two examples of slow dynamics as average of fast oscillations. (b) Real
space representation of the same trajectories. Waves propagate from left to right, while the swimmers swim in the opposite
direction. The closed orbits in (a) correspond to swimmers trapped between two depths below the sea level.

(a) Pure gyrotaxis
We start by considering the case of a neutrally buoyant (νg = 0, i.e. r = 0), gyrotactic swimmer
(Ψ < +∞) in the absence of shear (σ = 0). In this limit equations (2.6) simplify to

∂TX = α2 e2Z + ν sin Φ + σ (β + Z), (a)

∂TZ = ν cos Φ − νg (b)

and ∂TΦ = λα2 e2Z[cos(2Φ) + λ] − 1
2Ψ

sin(Φ) + σ

2
(1 + λ cos 2Φ). (c)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.6)

The fixed points (2.7)–(2.8) then become

Φ± = ±π

2
, Z± = 1

2
ln
[ ±1

2Ψ λα2(λ − 1)

]
, (3.2)

and therefore we have only one real fixed point (Z−, Φ−). The stability analysis of this fixed point
gives the eigenvalues η1,2 = ±i

√
ν/Ψ , meaning that the fixed point is neutrally stable. For the fixed

point to be of physical relevance, i.e. to be below the water surface (Z < 0), the argument of the
logarithm in equation (3.2) must be smaller than one, implying the observability condition

Ψ >
1

2λ(1 − λ)α2 . (3.3)

Since λ = O(1) and, for linear waves, α � 0.1 the above expression requires that Ψ = Bω = O(102).
Therefore, depending on the wave frequency, the existence of a fixed point below the water
surface may require a very long gyrotactic relaxation time B. We remark that large values of B have
been observed for chains of gyrotactic cells (e.g. [57]). In figure 2, we show that the multiple-scale
analysis accurately predicts the behaviour of the full dynamics obtained by numerical simulation
of the original equations (2.4) with λ = 0.6, α = 0.1, Ψ = 103 and ν = 0.01 (code available at https://
github.com/jeanluct/microgyro_code). Indeed, we observe a family of trajectories centred on the
fixed point, the outermost of which extend roughly from the surface to a few times Z− in depth.
The orbits starting further away from the fixed point end up crossing the surface and cannot be
consistently treated within our model.

https://github.com/jeanluct/microgyro_code
https://github.com/jeanluct/microgyro_code
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We now consider the horizontal (X) dynamics. The first equation in (3.1) evaluated at the fixed
point (3.2) gives the horizontal velocity

∂TX = 1
2Ψ λ(1 − λ)

− ν. (3.4)

In general, the swimming direction (with speed ν) is opposite to the Stokes drift (given by the
first term in (3.4)). In the limit of large Ψ as required for observability, the Stokes drift is negligible
and the horizontal motion is dominated by the swimming term. Under the observability condition
(3.3), one can show that the swimming term in (3.4) dominates also when ν ≥ α2, as in the example
shown in figure 2.

(b) Gyrotaxis combined with settling
We now consider the case of negatively buoyant (νg > 0) gyrotactic swimmers (Ψ < +∞), still in
the absence of shear (σ = 0). The equations for the slow variables are still given by (3.1) with the
equation for Z modified to ∂TZ = ν cos Φ − νg, so that the fixed points become Φ± = ± arccos r (as
in (2.7)) and

Z± = 1
2

ln

[
±
√

1 − r2

2Ψ λα2(λ + 2r2 − 1)

]
, (3.5)

as easily derived from (2.8) for σ = 0. The domain of existence of the fixed points is

(Φ−, Z−) ∈ R ⇔ 0 < r <

√
1
2

(1 − λ) (3.6a)

and

(Φ+, Z+) ∈ R ⇔
√

1
2

(1 − λ) < r < 1. (3.6b)

The eigenvalues associated with the fixed points (Φ−, Z−) are

η1,2 = − r(3 − 2r2 + λ) ±
√

r2(3 − 2r2 + λ)2 − 16Ψ (1 − r2)(2r2 − 1 + λ)2

4Ψ (2r2 − 1 + λ)
. (3.7)

It is easily checked that the eigenvalues always have a positive real part and therefore the fixed
point (Φ−, Z−) is unstable. Clearly, in the limit r = 0, the eigenvalues become imaginary and we
recover the results of §3a.

The eigenvalues associated with the fixed point (Φ+, Z+) are still given by (3.7) but, in this
case, in the domain of existence the real part of the eigenvalues is negative and therefore (Φ+, Z+)
is stable. The observability condition (i.e. Z+ < 0) is more complicated than in the previous
case since it involves a combination of the parameters Ψ and r, and will be discussed in the
context of numerical simulations in §4 below. Figure 3 shows how several trajectories converge,
asymptotically oscillating around a mean depth Z+.

As for the horizontal dynamics, once the attractive fixed point (Φ+, Z+) is reached, the motion
is given by

∂TX =
√

1 − r2

2Ψ λ(λ − 1 + 2r2)
+ ν

√
1 − r2. (3.8)

In the domain of existence of the fixed point, both terms in (3.8) are positive, and therefore in this
case the Stokes drift is enhanced by swimming.
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Figure 3. Attractive fixed point in the gyrotactic case with a settling velocity. The parameter values λ = 0.6, Ψ = 103,
r = 0.7 (i.e. ν = 0.01 and νg = 0.007) andα = 0.1 result in Z+ = −1.14. Lines with different colours represent trajectories
starting from x = 0 at a fixed depth z = −5 and different orientations inφ ∈ [0, 2π ]. All trajectories converge to each other.
(a) Dynamics around the fixed point in phase space. (b) Corresponding real space representation. Both the waves’ propagation
and swimming are from left to right.

(c) Pure shear
We now consider a neutrally buoyant (νg = 0), non-gyrotactic swimmer (Ψ → ∞) in a velocity
field characterized by waves with a linear shear (σ �= 0). From (2.6), the equations are

∂TX = α2 e2Z + ν sin Φ + σ (β + Z), (a)

∂TZ = ν cos Φ (b)

and ∂TΦ = λα2 e2Z[cos(2Φ) + λ] + σ

2
(1 + λ cos 2Φ). (c)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9)

The system has two fixed points, which can be obtained from (2.8) for r = 0 after taking the limit
Ψ → ∞, given by Φ± = ±π/2 and

Z∗ = 1
2

ln
[

σ

2λα2

]
. (3.10)

The observability condition Z∗ < 0 in the existence domain requires that

0 < σ ≤ 2λα2. (3.11)

The stability analysis for the fixed points leads to the eigenvalues η1,2 = ±i
√

νσ (1 − λ) for
(−π/2, Z∗), i.e. a neutral fixed point, and η1,2 = ±√νσ (1 − λ) for (+π/2, Z∗), i.e. an unstable fixed
point. Thus, the dynamics in the plane (Φ, Z) is qualitatively similar to the case of pure gyrotaxis
discussed in §3a, as shown in figure 4 (to be compared with figure 2). We remark that for typical
values λ = 0.6 and α = 0.1, the observability condition becomes σ ≤ 0.012 which, as we will see, is
a number compatible with values observed in the ocean.

The horizontal dynamics at the neutral fixed point is in this case given by

∂TX = σ

2λ
− ν + σ (β + Z∗), (3.12)

with Z∗ given by (3.10). The Stokes drift (first term in (3.12)) is proportional to the shear. Since in
the model of the shear we assume |Z| ≤ β, the last term is also positive, while the swimming
contribution is negative, i.e. opposite to the direction of waves and the shear. The resulting
horizontal motion depends on the parameters and can be either upstream or downstream as in
figure 4. We remark that this result is consistent with the multiple scale analysis in which ν and σ

are both second-order terms: their relative magnitude controls the sign of the horizontal velocity.
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Figure 4. Fixed point in the casewith shear only.We useσ = 10−3,β = 100,λ = 0.6,α = 0.1 andν = 0.01, which results
in Z 
 −1.24. Lines with different colours represent trajectories starting from x = 0 at different depths with a fixed initial
orientationφ = −π/2. (a) Dynamics around the fixed point in the phase space representation. (b) Corresponding trajectories
in real space. The waves’ direction is from left to right. The mean velocity is left to right despite the swimmer’s upstream
orientation, as in this particular case transport is dominated by shear.

4. Discussion
The analysis in the previous sections has been carried out in dimensionless variables. We now
discuss the applicability of our results in the context of realistic values for the dimensional
parameters. Figure 5 summarizes the different cases discussed in the paper.

The particle elongation and the wave steepness are fixed, respectively, to λ = 0.6, which
corresponds to AR = 2 and are in the range of typical values for gyrotactic microorganisms [35].
The wave steepness, α = 0.1, is a reasonable value for linear waves as used in our model. The
linear wave model is derived under a number of approximations. For the case of deep water (as
assumed here), the main limit of validity of the theory is the upper limit of α (e.g. the waves
are expected to break for α = 1/7 according to [58]). Thus α = 0.1 is at the border of values above
which second-order terms in the wave theory become important and the linear theory is no longer
valid.

All plots refer to the analytical solutions for the depth Z∗ of the fixed point (stable or neutral)
varying one or more parameters in the different limits discussed in §3. The range of wavenumbers
k is chosen to be in the range of values typical of wavelengths encountered in the ocean [59]. Recall
that physically one must have Z∗ < 0, which corresponds to the observability condition z∗ < −a
in dimensional form with an oscillating surface.

The pure gyrotactic case is described in figure 5a, where the depth of the fixed point in
equation (3.2) is plotted as a function of the wavenumber and the gyrotactic orientation time B.
The plot shows that, for typical values of k, negative values of z∗ are obtained for large values
of B, outside the typical range (of a few seconds) cited in the literature [21,60]. For example,
the case discussed in figure 2 with k = 1 m−1 corresponds to B 
 300 s and a depth of the fixed
point z∗ 
 −0.8 m. In this case, the Stokes drift velocity in (3.4) is O(1) cm s−1, much larger than
typical swimming velocities. Thus, there is no trapping behaviour for neutrally buoyant gyrotactic
organisms swimming in waves without shear with realistic re-orientation times.

We now consider the case of sinking gyrotactic microswimmers. Figure 5b displays the depth
z∗ of the fixed point as a function of B and r = Vg/Vs at fixed wavenumber k = 0.1 m−1, whereas
figure 5c shows the depth of the fixed point as a function of k for two values of B at fixed
r = 0.9. Remarkably, the position of the fixed point is non-monotonic in k, and the position of
the minimum value depends on the value of B. In figure 5c rather large values of B were chosen
as examples, compatible with those observed in chain-forming organisms [57] and larger than
the ones expected for single cells. Even considering those large values of B, a negative value
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Figure 5. Depth of the fixed points as a function of the parameters in the different regimes forα = 0.1 andλ = 0.6. (a) Pure
gyrotactic case (§3a). Negative values of z∗ require large values of B. (b) Gyrotactic and settling case (§3b) with wavenumber
k = 0.1 m−1. Large negative values of z∗ are obtained for large values of B and r close to one. (c) Gyrotactic and settling case
(as in (b)) with r = 0.9 as a function of k. The depth is a non-monotonic function of k with a absolute minimum (maximum
depth) that is dependent on B: greater B implies deeper depth (according to [57] very high values of B are observed for chains
of phytoplankton). (d) Shear case (§3c) as a function of wavenumber and shear intensity.

of z∗ requires r = O(1), i.e. a settling velocity Vg close to the swimming speed Vs. This is not
common in swimming microorganisms, since motility is often assumed to evolve as a way to
escape sinking through the water column. For example, Chlamydomonas reinhardtii swims with
speed 50–70 µm s−1 while its sedimentation speed is only 2.5 µm s−1 [60].

Finally, we discuss the case of swimmers in waves with a shear, in the absence of gyrotaxis and
sedimentation. Figure 5d shows the depth of the fixed point z∗ as a function of the wavenumber
k and the shear rate σ . The observability condition in this case requires small values of the shear
rate σ � 10−2 s−1 which are common in the ocean [61]. In this case, confinement at a few metres
below the surface is compatible with realistic values of the parameters. Using the parameters of
figure 4, with a wavenumber k = 0.2 m−1, the horizontal motion (3.12) is dominated by the shear
term and the swimmer moves downstream.

5. Conclusion
In this paper, we have studied the dynamics of elongated microorganisms swimming in the
flow produced by water waves and a linear shear. We have investigated in detail how the
interplay of swimming and flow leads to trapping of the microswimmers below the water
surface. The analysis has been done by exploiting a multiple scale analysis, extending the work
in [40,46], complemented by numerical simulations. In general, our results demonstrate that
the combination of swimming and flow (and/or gravity) can produce trapping but this process
depends on the details of the physical and biological parameters. In particular, we have found that
the presence of a shear (in combination with waves) close to the surface is essential to produce
confinement with realistic values of the parameters. This is a promising finding with regards to
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how the mechanisms discussed above could lead to the production of ‘thin phytoplankton layers’
since wind-generated shear will often accompany locally generated waves.

Future investigations should consider more realistic models of the microswimmers (e.g.
including some randomness in the swimmer behaviour) and of the velocity field, beyond the
kinematic model for linear waves, as for example in the case of nonlinear waves where fluid
accelerations may also become comparable to gravity requiring a more complete model of
gyrotaxis [30]. Furthermore, it would be very interesting to study the problem of swimmer–water
wave interaction by means of laboratory experiments with real microswimmers to see the degree
of agreement with this simple model.
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Appendix A. Multiple scale analysis
We start from (2.4) with parameters rescaled according to (2.5) and multiple times (t, T = ε2t)

∂tx + ε2∂Tx = εα ez cos(x − t) + ε2ν sin φ + ε2σ (β + z),

∂tz + ε2∂Tz = εα ez sin(x − t) + ε2ν cos φ − ε2νg

and ∂tφ + ε2∂Tφ = λεα ez cos(x − t + 2φ) − ε2 1
2Ψ

sin φ + ε2 σ

2
(1 + λ cos 2φ),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 1)

together with a perturbative expansion of the variables [54]:

x = x0 + εx1 + ε2x2 + · · · ,

z = z0 + εz1 + ε2z2 + · · ·
and φ = φ0 + εx1 + ε2φ2 + · · · .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 2)

At order zero, ε0, (A 1) gives

∂tx0 = 0 �⇒ x0 = X(T),

∂tz0 = 0 �⇒ z0 = Z(T)

and ∂tφ0 = 0 �⇒ φ0 = Φ(T),

⎫⎪⎪⎬
⎪⎪⎭ (A 3)

i.e. zero-order solutions are function of the slow time T only.

https://github.com/jeanluct/microgyro_code
https://github.com/jeanluct/microgyro_code
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At the order ε1, we have

∂tx1 = α eZ cos(X − t),

∂tz1 = α eZ sin(X − t)

and ∂tφ1 = αλ eZ cos(X + 2Φ − t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 4)

Note that the integral on t over [0, 2π ] of the right-hand side of each equation (A 4) vanishes
(which is the solvability condition) and therefore the solutions are [40]

x1 = −α eZ sin(X − t),

z1 = α eZ cos(X − t)

and φ1 = −αλ eZ sin(X + 2Φ − t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 5)

Finally, at the order ε2, we have

∂tx2 + ∂TX = α2 e2Z + ν sin Φ + σ (β + Z),

∂tz2 + ∂TZ = ν cos Φ − νg

and ∂tφ2 + ∂TΦ = α2λ e2Z[cos(2Φ) + 2λ sin2(X − t + 2Φ)]

− 1
2Ψ

sin Φ + σ

2
(1 + λ cos 2Φ).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 6)

At this order, by averaging (A 6) over one period, we obtain the non-trivial solvability
conditions (2.6). Full details for analogous calculations are available in [40,46].

Appendix B. Three-dimensional model with orientation-dependent settling
We now introduce two extensions which improve the mathematical model. The first one is to
consider a three-dimensional model, in which the orientation of the swimmers is parametrized
by the two angles (θ , φ) and therefore

p = (sin θ sin φ, cos θ , sin θ cos φ). (B 1)

The second modification is a more realistic model for the settling velocity which depends on the
orientation of the ellipsoidal body:

vg = −vs[k̂ + (vsr − 1)(k̂ · p)p], (B 2)

where vs is the settling velocity in quiescent fluid in the highest drag orientation (i.e. symmetry
axis perpendicular to gravity for prolate spheroids and symmetry axis parallel to gravity for
oblate spheroids), and vsr is the relative increment of this velocity in the case of lowest drag
orientation (and thus vsr > 1). For prolate spheroids, we have (e.g. [62])

vs = 3S
√

(1/λ) − 1
32λ

[
2
√

λ(1 + λ) +
√

2(5λ − 1) arcsinh

(√
1 + λ

1 − λ
− 1

)]
(B 3)

and

vsr = −
2
√

2λ(1 + λ) + 2(3λ + 1) arcsinh
(√

1+λ
1−λ

− 1
)

√
2λ(1 + λ) + (5λ − 1) arcsinh

(√
1+λ
1−λ

− 1
) , (B 4)

where S = (ρp − ρ)d2
pgk/18μω and μ is the dynamic viscosity, ρ is the fluid density, ρp is the

particle’s density, dp is the particle diameter. Note that both vs and vsr are dimensionless.
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The complete model reads

ẋ = α ez cos(x − t) + ν sin φ sin θ − vs(vsr − 1) cos φ sin φ sin2 θ , (a)

ẏ = ν cos θ − vs(vsr − 1) cos φ cos θ sin θ , (b)

ż = α ez sin(x − t) + ν cos φ sin θ − vs[1 + (vsr − 1) cos2 φ sin2 θ ], (c)

φ̇ = λα ez cos(x − t + 2φ) − 1
2Ψ

sin φ

sin θ
(d)

and θ̇ = λα ez cos θ sin θ sin(x − t + 2φ) + 1
2Ψ

cos θ cos φ. (e)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 5)

It is again possible to obtain the slow-time equations using a multiple scale analysis.
Neglecting the equations for X and Y, that are independent of the others, one obtains

∂TZ = ν cos Φ sin Θ − vs[1 + (vsr − 1) cos2 Φ sin2 Θ], (a)

∂TΦ = λα2 e2Z(λ + cos(2Φ)) − 1
2Ψ

sin Φ

sin Θ
(b)

and ∂TΘ = λα2 e2Z cos Θ sin Θ sin(2Φ) + 1
2Ψ

cos Θ cos Φ. (c)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B 6)

From the third equation, we note that a solution is cos θ = 0 and so θ = π/2. Based on the analysis
of the two-dimensional case, we expect that a pair of fixed points is on the xz-plane. We remark
that θ = π/2 is also the stable orientation for neutrally buoyant, non-swimmers [46]. Using θ = π/2
in (B 6), we obtain the equation for the fixed points as

ν cos Φ − vs[1 + (vsr − 1) cos2 Φ] = 0 (a)

and λα2 e2Z(λ + cos(2Φ)) − 1
2Ψ

sin Φ = 0. (b)

⎫⎪⎬
⎪⎭ (B 7)

The first equation gives two real solutions for the angle Φ

Φ± = ± arccos(A), where A =
1 −

√
1 − 4q2(vsr − 1)

2q(vsr − 1)
(B 8)

and q = vs/ν. The associated values of Z are

Z± = 1
2

ln

(
±

√
1 − A2

2Ψ λα2(λ − 1 + 2A2)

)
. (B 9)

The existence domain and the physical observability condition (i.e. whether Z < 0) of these fixed
points are not trivial, but it can be shown that they never coexist in the same range of parameters
and, where they exist, they are both negative (i.e. below the sea level, thus observable).

We can conclude that the three-dimensional case is a natural extension of the two-dimensional
one. Indeed, despite the different form of the settling velocity, the fixed points qualitatively agree
with the results in §3b. One can also note that in the formal limit vsr → 1 (B 9) reduces to (3.5) once
the identification vg = vs is made and vsr and vg are considered as independent on λ.
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