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Mission impossib le:

how to keep students away from the beach

This is a very complex problem and the solutions are not going
to be easy and aren’t going to be realized overnight, but we are
putting mechanisms in place that we believe will have a major
impact on easing the tensions within the beach community
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Feynman quoting Gibbons:
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Thepowerof instructionis seldomof
mud eficacyexceptin thosehappy
dispositionsvhele it is almost
superfluous

Ameffican Institut

Gell-Mann on Feynman

no, Dick’s methodsare notthe sameasthe methodsised
here. Dick’'s methods this. You write downthe problem.
Youthink veryhard. Thenyouwrite downtheanswer




THE GREAT SUCCESS of modern particle physics is based
on the possibility of describing the fundamental structure
and behavior of matter within a theoretical framework
called the standar d model
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o FromLagrangians
Q to renormalizatiorandHiggs Physics,

what else, but the inevitable!
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© Our goal: New Physics

(%] No SMbadkgroundcangiveriseto a sharppeak(but
for W, Z, t. all soucesgiveriseto a continuum
spectrum.

o Cautionis demandedn assuminghatweknowall

thatis neededn accumately predictthe properties
of LHC final states.




Motiv ations

The New Standar d Model?

Fundamental theory of TeV scale?

Thefirst stepin uncoreringthe NSMwill betherediscaery
of theOSMat 14 TeV. Manydiscrepanciedetween
dataand SMpredictionswill likely beuncorered most
of which will notbe signalsof New Physics.Ultimately,
we seekthe effective Loy but this goal will notbe
immediatelyattainable




Motiv ations
[ ]

Challeng e

Solutions
HO perturbative QFT is a @ importing new ideas
rather challenging field from
requiring: developments into QCD )

clever ideas and algorithms

@ new ideas from QCD
into EW physics to
confront the practical
difficulties there,

@ especially as concerns %




Motiv ations
L]

Comple xity of an NLO(NNLO) process

Comple xity: n! growth
Different amplitudes interfere

]




Motiv ations
L]

Comple xity of an NLO(NNLO) process

(1,2 3)

© A variety of important
processes will benefit
from NLO(NNLO)
computations

Comple xity: n! growth
Different amplitudes interfere




Motiv ations
L]

Comple xity of an NLO(NNLO) process

@€ ., ) Comple xity: n! growth
© A variety of important Different amplitudes interfere

processes will benefit
from NLO(NNLO)
computations

@ some in conjuction with
resummation of large
logs




Motiv ations
L]

Comple xity of an NLO(NNLO) process

Complexiy: n ! growh

]

© A variety of important Different amplitudes interfere
processes will benefit
from NLO(NNLO) (a, )
computations

© virtual ® tree
@ some in conjuction with

resummation of large
logs

) [ty e e i
NLO(NNLO) program

.. N
that mimic the MI JII j;;[
experimental situation
(@ (b) ©




Motiv ations
L]

Comple xity of an NLO(NNLO) process

1, 2,3) Comple xity: n! growth
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Comple xity of an NLO(NNLO) process

1, 2,3) Comple xity: n! growth

© A variety of important Different amplitudes interfere
processes will benefit '
flom NLO(NNLO)
computations

@ virtual ® tree
Q virtual ® real
© real ® real

@ some in conjuction with
resummation of large
logs

- ekelly, i senli ke =
NLO(NNLO) program

L N
that mimic the MI JII j;;[
experimental situation
(@ (b) ©
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NNLO flowchart
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Motiv ations
L]

How to beat comple xity?

Problems
@ Memory @ Analytic (approximations?):
@ Performance symbolic programs
@ Software @ Numerical:

stability & cancellations

3-loop 4-graviton ~ 102! terms / diag )

@ parallelization
@ automatization ]

@ standardization




Intr oduction

Concept of renormalization

Lagrangian
L(x), x = parameters

@ no ambiguity
@ one data — fix x

@ compare with
experiment(s)

Use dimensional regularization é




Intr oduction

Concept of renormalization

Lagrangian
L(x), X = parameters

@ no ambiguity @ Xx(experiment) more

@ one data — fix x complicated

@ compare with @ Xjoops — Xtree = X

experiment(s)

Use dimensional regularization é
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Counter -term |

Lagrangian
Because corrected x and tree x are so different

@ one introduces the
notion of counter-term

0X is chosen such that x remains in the neighborhood of the
tree x. The only thing that ever emerges in the confrontation é

with the data is x (1 + 6x)




Intr oduction
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Counter -term |

Lagrangian
Because corrected x and tree x are so different

@ in the Lagrangian

@ one introduces the
notion of counter-term X —X(1+6x)

0X is chosen such that x remains in the neighborhood of the
tree x. The only thing that ever emerges in the confrontation é

with the data is x (1 + 6x)




Intr oduction
o

Counter -term |l

In order to have meaningful communication it is necessary,
when talking about x, to specify what éx is used

Stating one’s conventions is termed renormalization scheme

@ prescribe what X is;
@ prescribe what §x is.




Intr oduction
[ ]

Schemes

QED
@ In the older days of QED method 1 was preferred

@ The convention was to prescribe x and to use for that
some very well defined experimental quantity; ox is then
obtained from the data including radiative corrections

| A\

A case in point

Electron mass. m (1 + dm) is the bare mass and m itself the
experimental mass

A\

Example

Method 1 has the advantage of not being dependent on the

choice of RS, but it offers a problem when there is no clear, %
precisely known experimental quantity that can play the role of
defining x.

A\



Intr oduction
L]

Renormalization |

The renormalization idea:

@ Experimentally one observes never the lowest order alone,
but the sum of all orders.

@ Up to first order, the mass in a propagator is m (1 -+ ém)
and that is what the experimenter observes.

@ Therefore, m is the observed mass and the theory makes
no predictions about the mass. It is a free parameter, and it
must be fixed by comparing the results of the theory with
the observed data.

The most impor tant question is:

do all infinities of the theory appear in combination with a few %
parameters? If this is the case we call the theory
renormalizable else, non-renormalizable.



Intr oduction
o

Renormalization I

Example

We start by assuming the existence of some cutoff A, above
which the theory eventually changes. The question now is what
A-depemdent effects could we expect at low energy,
characterized by some energy scale E < A.

uv

In working out perturbation theory (in some coupling constant
g) we will encounter series in the variable gA%/E?. In a
non-renormalizable theory any measurable quantity will
correspond to a series that at sufficiently high order diverges as

N — oo,
we [

g' (a0 + @20 +--- + ag" (E) + a0 <E> o]

| A\

~



Intr oduction
[ ]

Renormalization Il

consider the leptonic part of the Fermi theory of weak
interactions,

g2

2,
mp

Jo = Z Y (1+’75)|
|

L = Gejjf, Ge= g% ~ 1075,

Consider vge elastic scattering.

@ In lowest order the result is proportional to g2, %

@ however in next order we have three diagrams proportional
to g#A2/E2.
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Renormalization 1V

is not measurable at low energies simply because through
renormalization of g this effect can be transformed away.




Intr oduction
L]

Renormalization 1V

is not measurable at low energies simply because through
renormalization of g this effect can be transformed away.

Example

Another amplitude suffering large corrections is that for
u-decay.
@ The situation is precisely as before but the series has
different coefficients and the renormalization of g on the
basis of vee scattering will not neutralize the series for

p-decay. %
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Renormalization V

Thus now the corrections become observable and we can rule
out the values of A larger than E /g.




Intr oduction
[ ]

Renormalization V

Thus now the corrections become observable and we can rule
out the values of A larger than E /g.

I

In a renormalizable theory the cutoff dependence is not
observable and can be absorbed in the parameters of the
theory, e.g. coupling constants and masses.




Gaug e invariance

The quantum-mec hanical counterpar t

of the subsidiary condition that restricts the solutions in the
classical theory, e.g. 9,A" = 0, is that

is a free field that decouples, i.e. does not interact with matter.
@ To get rules for diagrams in a gauge theory, including the

abelian one, difficulties manifest in the fact that the matrix
that defines the propagator of the theory has no inverse.




'CQED

Example
Consider for instance the following Lagrangian:

1 L1
£ = —ZFuF" -3,

2
3 M2A,A¥.

The propagator for the field A* is given by the inverse of
Vi = —(p? + M?2)6,, + p.p, Which has a simple solution

1 1 1 ( » pupu> '

V =
pv (271_)4| p2_|_M2 M2

The gauge invariant theory corresponding to M = 0 is therefore
singular since V is singular.

>



'CQED

If, due to gaug e invariance ,

a Lagrangian is singular, then a good Lagrangian can be
obtained by

@ adding a term —1/2 C? where C behaves non trivially with
respect to the gauge transformation, C — C +t A.

@ Here t is an operator that may contain derivatives and be
field-dependent.

@ C will appear to be a free field and successively we must
introduce the so-called Faddeev—Popov ghost fields to
compensate for its introduction. %




'CQED

A gaug e-fixed

Lagrangian for QED is given by

1 1

‘CQED = 2 FHVFHV ) (CA)2

— > W (P—ieQA + my) ux,
f

1
Fur = Py =0 Co= =g Ouh

and where the sum runs over the fermion fields.




Each fermion has

@ a charge, eQs, e, being the charge of the positron,
@ and mass ms.

@ Within the SM we have leptons with charge Q, = —1,
up-quarks with Qs = % and down-quarks with charge

1
Qr = —3.




FR

The Feynman rules of QED
are particularly simple. They can be summarized as follows:

1 —i[é—l—mf
(2n)*i p?2+mf —
ANNANNANN O + 2_q) V],
(2r)%i p2 —ie [“ (5 ) p2

H (2m)*i ieQs Fs %
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SM Lagrangian

Basic

EW

The electroweak theory is based on SU(2) ® U(1) and we must
discuss the field content of this theory in terms of
representations of the group itself.

YM

There is a triplet of vector bosons Bf}, a singlet Bﬂ, a complex
scalar field K, fermion families, and Faddeev—Popov
ghost-fields (hereafter FP) X *,YZ,YA. The physical fields Z
and A are related to Bﬁ and Bg by a rotation in terms of the so
calledweak-mixing angle. %




SM Lagrangian
[ ]

Lsy

The scala field

in the minimal realization of the SM is

X
1 M
K=—> ,  x=H+2—+i¢’,
where by H we denote the physical Higgs boson and moreover
M and g are Lagrangian parameters corresponding to the bare
W mass and to the SU(2) bare coupling constant.

The total Lagrangian will be the sum of various pieces.




SM Lagrangian
L]

Lsy

with the standard Yang—Mills terms given by

1 1 6 -0
£YM = _ZFEI/FSV_ZF#VFNW

The minimal Higgs sector

1
Lo = —(DuK)T DK — p?KFK — ZA(KFK)®,

where X > 0 and SB requires p? < 0. SB is the mechanism of
introducing masses for the vector bosons through the shift in
the scalar field that allows for < H >= 0. The remaining %
degrees of freedom in K will be non-physical and connected
with the longitudinal polarizations of the spin 1 particles.




SM Lagrangian
[ ]

Moreo ver

F2, = 0,B2-0,B}+geancB]BE,
0 0 0
FO, = 09,B)—0,B,

DK = <au _ InggTa _ 'Egngg> K,

with the standard Pauli matrices 72 and g; = —Sgy/Cs. é




SM Lagrangian
L]

Lsy

L., —(D.K)"D,K and L.

Z
Lo = (DuK) DK = Lo+ M(T0,0°
0
+ W70,07 +W;8,07),

where the charged fields have been introduced as

1 1
+ _ 1 (p1l_ip2 +_ 1 (1.2 0_ .3
This part of the Lagrangian contains Z — ¢°, W* — ¢¥ mixing
terms; they are of O (g°) and their contribution must be %
summed up. There we disco ver the singularity of the

Lagrangian .



SM Lagrangian
[ ]

Lsy

Ly IS invariant

under a set of transformations that are the generalization of the
well known QED example A, — A, + 9,A.

B2 — BZ+0eancA®BS —0,A%, B — B —9,A°

K — <1 — I—gA""Ta — IzgglA(’) K, with g3=—-=2
0

H — H- —g {(/\3 +gll\°) (H + 2% + iqbo) + 2i/\+¢_}
M .
¢ - g0 Eg (A% + 0a1°) <H + 25> - 'Eg (AN=¢" —AFg™

n :
¢~ — ¢~ —EgA_ (H +2— |¢°> ( A3+gl/\°) b %

~




SM Lagrangian
[ ]

Lsy

add a gaug e-fixing piece
to the Lagrangian (L) that cancels these mixing terms.

However

it breaks the gauge invariance and successively we must
introduce the so-called Faddeev—Popov ghost fields to
compensate for this breaking. The gauge-fixing term
transforms as

¢ - C‘+(M”+gL”>/\i.

MU must have an inverse and we thus have a permissible %
gauge. gL" defines the interaction with the gauge bosons.

A\



SM Lagrangian
L]

Lsy

Example

We now specify a set of gauges R, depending on a single
parameter £. We have

@ arenormalizable gauge for finite £ and
@ the physical (unitary) gauge is obtained for £ — oc.

That these two gauges belong to the same family and are
connected through a continuous parameter is vital in proving
renormalizability and unitarity of the theory.




SM Lagrangian
[ ]

Lsy

The gaug e-fixing piece is

_ 1.a.a 1(.0\% i = E 3)2 0)2
Ly = —5CC fé(c) = —¢tc™ -5 (€®)"+ ()],
where we can write
c? = —}8M82+§M¢a.

§




SM Lagrangian
L]

Lsy

The various components are given in the following equations:
first

1
ct = _gauijrquﬁi, = 5a B°+§ |v|¢°
Then, in the Z — A basis, we obtain
1 1 M
C, = —EauAM, C, = fgauzu + sc—eqso.

In the R; gauge we have that

1 ®
- (D,K) DK -CTC™ - 2022—50,3 = Lpop+ L.



SM Lagrangian
[ ]

Lsy

Lprop, NOW reads

_ 1 _
Lorop = *8MW:_8MWV aF <1 52) Oy W+3 W,
1 1 1
_§8MZ,,3MZ,, -+ E <1 = 5—2> (6“ZM)2
1 1 1 2
—S0ABA, + 3 (1 — 5_2) (9,A,)
1 +9 4= _ 1o 109 10
_EauHauH _8M¢ 8#‘]5 - E MCIS 8#‘15
1M?
~MPWIW, - >—7,7
2 Cg (2 %
7£2M2¢+¢* 62 2 ¢0¢0 M H2




SM Lagrangian
L]

Ly
Those for the gaug e fields are as follo ws:
1 2 p pu
Loop — WF pZ + M2 {5w/ + (5 - 1) p2 +M§2M2}
1 PPy P.Py
— ) 5 [ _ K
p2+M2<“ i M?2 ) M2 (p2 + £2M2)
_ 1 _ Pupy & puby
p2+M2 2 p2 p2+£2M2 p2 P
i . M
Z from W= by replacing M — o %
0

f A %)



SM Lagrangian
[ ]

Lsy

The scalar field propagators are

1
ceod>=ooo
¢* p? +&£2M%’
________ 1
2
¢0
0




SM Lagrangian
o

Lsy

Fermions will be arrang ed into isodoub lets
u 1
¢ - (d )7 @bL,R:E(li’YS)dJa

o u=y(l =e,u,1),u,c,t-quark and
od=I(l=e,u,71),d,s,b-quark.
Furthermore, we distinguish between left and right fields since

a theory of weak interactions cannot be purely vectorial, in
contrast with QED (and QCD). %




SM Lagrangian
L]

Lsy

The covariant deriv ative for the L-fields is

Dup. = (u+BiT)y, =03
i i
T = —ETaa TO = —Egzl.
DﬂwR - (au_‘_gBLtl) wR’ I = 07 337
a _ o_ 1 (93 O %
o0 T ( 0 94 >



SM Lagrangian

Lsy

This part of the Lagrangian can be written as

Ef/er’l = —aydk - ERI;Dva g = _3_9 Jo

Co

@ The parameters g,, g3 and g4 are arbitrary constants.
@ However, one can prove that g3 = g1 + 02.

@ In other words, these constants are not completely free if
we want to generate fermion masses with the help of the
Higgs system. %




SM Lagrangian

Lsy

@ ¢ transforms as a doublet under SU(2) and the
@ 7, as asinglet.

The parameters )\; are then fixed by the requirement that the
e.m. current has the conventional structure, iQfeHuf, without
parity violating terms and with the right normalization. We put
e = gsy and derive the solution as

A2 = 1-2Qy = -1-2Qq¢,  A3=-2Qu, A= -2Qq;

where the charge is Qs = 2|f(3)|Qf|. %




SM Lagrangian

Lsy

£ =Y igseQrAuff
f

g 3
+ |2—zm(() 2Q;s3 + 18y )f]

+ Z |—W+u'yu (1+7s)d

+ iLWJdW (1+s)u],

2V2 %




SM Lagrangian

Lsy

For the Higgs-fermion sector ,

in the presence of quarks, we need not only the field K but its
conjugate K° too;
@ that is, we need both K and K¢ in order to give mass to the
up- and down-partner of the fermionic isodoublet. The K¢
is

V2igt

1
A

KC = —




SM Lagrangian

Lsy

with the corresponding part of the Lagrangian:

£ = —ag Ku, — B Ked, +h.c.
The solution for the Yukawa couplings gives

LM o1 mg

The last part of the Lagrangian is now

af =

£l = =S mff et
f




SM Lagrangian

Lsy

with an interaction Lagrangian given by

et = T {igge [ - Gaa ]

+i-2 s [W"H(lﬂs)u—%a(l—%)u]}

1 mq-, . mg -
+> (—EgH fof + Iglf(3)¢oﬁff75f) ,
f




SM Lagrangian

Lsy

weak Lagrangian

Having fixed the propagators we can spell out the weak
Lagrangian, describing the vector bosons and their interactions
including interactions with the scalar system. The interested
reader should consult any textbook for further details.




Confronting with the infinities

This shor t section will be devoted

mainly to introducing some of the building blocks that are
needed in order to discuss radiative corrections in any field
theory. Beyond the Born-level loops will appear and they will
depend on several variables, internal and external masses.

~

To cope with the complications of the SM,

we must derive a complete set of formulas valid for arbitrary
internal and external masses. One has to deal with expressions
for scalar diagrams with one, ... four external lines (or more).

. o

Besides scalar functions

we also need tensor integrals with as many powers of
momentum as allowed in a renormalizable theory. They can be
reduced to linear combinations of scalar functions.

\



Confronting with the infinities
[ ]

One-point

Figure: The one-point Green function.



Confronting with the infinities
o

Dimensional regularization

one-point scalar integrals

1
i 2 _ 4—n n
iTAg(m) = u /d q7q2+ .

@ . is an arbitrary mass scale and

@ we adopted DR defining an analytical continuation of the
S-matrix in the complex n-plane.

@ Note the presence of a factor i as a consequence of a
Wick rotation.

Within DR one obtains a consistent theory if it can be shown
that the poles for n = 4 can be removed, oder by order in
perturbation theory.




Confronting with the infinities
[ ]

Integrals

One-point integral

can be easily evaluated in terms of the Euler I'-function giving

n m2 n/2—2
Ag(m) = 2721 (1 — E) m? (—2> .
1

If we introduce € = 4 — n and expand around n = 4, then the
following expression is derived:

2 m?
Ag(m) = m? <g+7+lnw1+ln?> +0(e).

where v = 0.577216 is the Euler constant.



Confronting with the infinities
o

Integrals

It is customar y

to define a quantity 1/Z by

1

2 In
S [
E - Y ;

and to write

1 m?
Ao (m) = m? <_E —1+In?> + Ofe).
Explicit expressions for two and higher point scalar functions
will not be discussed here. For the two-point function we have
an expression that contains logarithms at most while for three- %
and four-point functions the final expression contains 12 and

108 (in the most general case) di-logarithms.




Two-point

Confronting with the infinities
[ ]

mp

Figure: The two-point Green function.



Confronting with the infinities
L]

Three-point

Figure: The three-point Green function. ' é



Confronting with the infinities
[ ]

Four -point

my
P1 — o« P4
my my
—— TTe—
P2 ms P3

Figure: The four-point Green function.



Renormalization again

What's new?

If one thinks for a while, everything is in the old papers of 't
Hooft and Veltman; however, translating few formal properties
into a working scheme is far from trivial; most of the times it is
not a question of how do | do it?, rather it is a question of
bookkeeping, namely

@ can | do it without exhausting the memory of my
computer?, or,

@ is there any practical way of presenting my results besides
making my codes public?.




Renormalization again

Renormalization flowchart

Feynman | _ | Feynman

Rules "~ | Diagrams
Green . (Pseudo)
Functions Observables

A

uv IPS %

Counterterms Ren. Eq.




Renormalization again
From modern 1Lto 2L

Shin(f) = M—E/dnqw

i 702

[Ticon—1 (1)
(Q+po+ - +pi)>+m?

=
N
I




Renormalization again

From modern 1Lto 2L

1L in a nutshell

= ’LLE n f(qa{p})
sl = iz [ L5
() = (@+pot - +p)”+mf.

Sn;N(f ZbBO(P +ZCUCO |aJ

ijk

+ ZdukDo(Pl, i )+R, %



Renormalization again

Technical problems

Although

HTF (usually) have nice properties,

@ expansions are often available with good properties of
convergence

@ the expansion parameter has the same cut of the function

>

where is the limit?

@ One - loop, Nielsen - Goncharov

@ Two - loop, one scale (s = 0, m? cuts) harmonic
polylogarithms

@ Two - loop, two scales (s = 4m? cuts) generalized
harmonic polylogarithms

@ next? New higher transcendental functions?




Renormalization again
[ ]

Counter terms?

Then, there is the perennial question, with or without
counter -terms ? In a way, it is a fake question.

@ The two approaches are fully equivalent and we will
discuss the transition from bare parameter s to
renormaliz ed ones.

@ Finally we discuss the ultimate step in any renormalization

procedure: the transition from renormalized parameters to
a set of physical (pseudo-)observables.




Renormalization again
[ ]

One should try

to make a clear vocabulary of renormalization in QFT; a
renormalization procedure is designed to bring you from a
Lagrangian to theoretical predictions;

@ regularization (nowadays dimensional regularization is
easy to understand),

@ arenormalization scheme and
@ an input parameter set.



[ ]
Comments

@ The scheme, being a transitory step, is almost irrelevant; it
can be on-mass-shell or MS or complex poles, but unless
you do something illegal (resummations that are not
allowed or similar things) it really does not matter.

@ One can define MS quantities as convenient landmarks but
it is the last step that matters, at least as long as we have a
convenient subtraction point (which we miss in QCD).
Renormalized quantities should always be expressed in
terms of a set of physical quantities.

@ One may indulge to the introduction of an MS running e.m.
coupling constant (importing from QCD to QED, which
sounds strange anyway) but, finally, only cross sections
matter. %




[ ]
Steps

@ All the Green functions of the theory have to be made
finite, up to two-loops, by introduction of counter-terms and
all counter-terms are of non logarithmic nature, to respect
unitarity.

@ Renormalized Ward-Slavnov-Taylor identities must be
satisfied.

@ All ultraviolet finte parts must be classified and an
algorithm has to be designed for their evaluation at any
scale.

Of course, there are preliminar steps — not always the easy
ones — but it is only the full control on the multi-scale level that
pays off.




Renormalization again
@00

Multiplicative renormalization

Fields, gauge parameters
= (%" 5
n
zZ = 1ty (ﬁ) oz, 2 L =y 520
n=1 az T Z 16 72 §az
- n=1
Z1/2 LR 1/2 LR
¢ = 2% ¢"R=212 yp
masses, parameters A* = Zl/2 A“ dk Zl/2
1/2 — g% (n)
2172 z = —R_) sz,]
mo= ! e, " n=1 (16”2) 2
p = ZpPr, P=0,Ch,Sp

FP ghost fields are not renormalized




Renormalization again

(o] 1o}

Az 2
gl =}




Renormalization again
ooe

The two facets of renormalization

promote bare quantities p to
renormalized ones pg




Renormalization again
ooe

The two facets of renormalization

promote bare quantities p to
renormalized ones pg

@ fixthec.t. atlL =to
remove the UV poles
from all 1L GF;

@ check that 2L GF
develop local UV

residues;
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The two facets of renormalization

Finite renomalization

promote bare quantities p to the absorption of UV poles
renormalized ones py into local c.t. does not
exhaust the procedure; we

Step 2 have to connect pg to POs,

@ fixthect. atlL =to Il (A e Bsely

remove the UV poles predictive.
from all 1L GF;

@ check that 2L GF
develop local UV

residues;
@ fix the 2L c.t. to remove
2L local UV poles.
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Renormalization, once again

Ren in QED

The QED Lagrangian

in the Feynman gauge (£ = 1) is unambiguous at the tree level.
Moving to higher orders, we assume that it is made of

@ bare fields and parameters labelled with sup- or
sub-indices 0 and

@ specifies the renormalization constants for the two
fields—A,, and ¢»—and the two QED parameters—the
electron mass m and the charge e:

1/2 1/2
A = ZPA. =27,
e, = Zece, mo:me:m+e26m+(’)<e4>, %

Zi = 14+e%7,+0 (e4) :
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Ren in QED

The Lagrangian

can now be rewritten, up to terms O (e?), as

LR = Lop+La,

QED

with a counter-term Lagrangian:

Lo = 2P 10 (e4) ,
1 1

2 _
L8 = —70ZuFuFu — 5 0Zs (A — 02,00

— (6Zym + 6m) pap —i <6Ze +6Zy + %5ZA> evA. %

>
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Ren in QED

the coumter -term part

of the Lagrangian generates a new set of QED Feynman rules
to be denoted by a cross. With their help we fix the
counter-terms. First, the §Z, counter-term:

A
Wi — —e25Z,.

Then the 6Z,, and ém counter-terms:

e

S — —e% (0Zyip + 6Zym +om).
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And finall y, the remaining combination

et

. 1
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a relatively simple calculation one derives the following
expressions:
1 1 m?
0Zy, = —|—=+Ih—
A 1272 ( :t e >
m 3 m?
om = —|——=43Ih— —4
e (-2 +emiE ).
1 1 2 m?
0Zy, = —|—-—=+=+3In— —4.
¥ 1672 ( g + € * e >
1
0Ze = —§5zA.
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Ren in QED

At this point

the renormalization procedure can be carried through order by
order. With the one-loop renormalized Lagrangian and with the
one-loop counter Lagrangian we construct all two-loop
diagrams and introduce O (e2) new counter-terms.

@ One obtains the correct result consistent with unitarity,
provided that one has shown that overlapping diagrams
contain new divergences behaving as local counter-terms.
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( The perturbative unitary bound )

A very severe constraint on the Higgs boson mass comes from unitarity of the scattering
amplitude.
unitarity <=> QM probability < 1

Scattering probability bounded from above!
Considering the elastic scattering of longitudinally polarized Z bosons
2171 — 2171

2
m s t u . A
_ _"Mu { + + } in the s > m?% limit

2 2 2 2
v s—my t—my  u—my
where s, t and u are the usual Mandelstam variables.

The perturbative unitary bound on the | = 0 partial amplitude takes the form

2
3 m? 167
M| = {m vf:| <1 B mpy <ﬁz7%lToV




C Clues to the Higgs boson mass )

From the sensitivity of electroweak observables to the mass of the top, we are able to measure its
mass, even without directly producing it

t 1
b 3
These quantum corrections alter the link between W and Z boson masses
1 T 3G 1
2 ~ F 2
M = APtiop) ~ ~ g 5 /3 tanz oy

sin? Oy (1 — Ap) V2Gr

The strong dependence on m? accounts for the precision of the top-quark mass estimates derived

from electroweak observables.




Higgs to
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The Higgs boson quantum corrections are typically smaller than the top-quark corrections, and
exhibit a more subtle dependence on 11y than the m? dependence of the top-quark corrections.

H
H TN
o A 11Gpm? cos? 6W1 m?,
wrrloriinnns H svaanedannnn PlHigss) = — oy 108 | 2
24+/2 72 m?,

Since my has been determined at LEP to 23 ppm, it is interesting to examine the dependence of
my upon m; and m .

T
—LEP1 and SLD
Indirect measurements of my and m; (solid line) 80.5 ~LEP2 and Tevatron (prel.)
68% CL

. . 3
Direct measurements of my and m; (dotted line) 3 g0
my =170.9 + 1.8 GeV S
mw — 80.398 & 0.025 GeV E

80.31
both shown as one-standard-deviation regions. Ty
150 175 200

m, [GeV]
The indirect and direct determinations are in reasonable agreement and both favor a hght Higgs
boson, within the framework of the SM.
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Measurement Fit

(Summary of EW precision data)

|omeas_gftygmeas

m, [GeV]
r, (Gev]
Opaa (D)
R

Al

Rh

R,
A
A
Ah
A
A

(SLD)
my, [GeV]

ry [Gev]
m, [GeV]

91.1875 +0.0021 91.1875
2.4952 +0.0023  2.4957
41.540 £ 0.037 41.477
20.767 + 0.025 20.744

0.01714 + 0.00095 0.01645

0.21629 + 0.00066 0.21586
0.1721 + 0.0030 0.1722
0.0992 + 0.0016 0.1038
0.0707 + 0.0035 0.0742

0.923 + 0.020 0.935
0.670 + 0.027 0.668
0.1513 £+ 0.0021 0.1481

80.398 + 0.025 80.374
2.140 £ 0.060 2.091
1709+1.8 171.3

Better estimates of the SM Higgs boson mass
- are obtained by combining all available data:

== Summary of electroweak precision measure-
- ments (status winter 2007) as given on LEP-
[ EWWG page:

— http://lepewwg.web.cern.ch/LEPEWWG/

°
-
N
@



( SM Higgs mass fit to EW precision data )

6 m,, = 144 GeV
_ +33 :
my =763 GeV cory ]
had
— 0.02758+0.00035 ]
Including theory uncertainty A& i 0.027490.00012 1
44 === incl. low Q” data —
mpy < 144 GeV  (95% CL)
N>< 3
Does not include <
Direct search limit from LEP 2
mpy > 114 GeV  (95% CL) 1
Renormalize probability for Excluded
my > 114 GeV to 100%: 030

my < 182 GeV  (95% CL)
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( Decay of the SM Higgs )

Higgs decay width and branching fractions within the SM

F(H) [GeV]

I
Branching Ratio

50 100 200 500 1000 100 150 200 250 300 350 400
M,, [Gev] :
Higgs Mass (GeV)
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( Higgs Production Modes at Hadron Colliders )
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( Total SM Higgs cross sections at the LHC )

— T T T T T

102 o(pp - H+X) [pb] ] t
£ H Vs=14TeVv t ---H

10 L 89— H (Lo NLO/NNLO ] t

1k ) ]

_1: o \“———;;7_;
10 " b qq — Haq -4
10k g0/qq — ttH (NLO) -

73: J\/\/\(\.\*\W,Z
10 3 4

MRST t
10’4 A S R I I R S B “H
100 200 300 400 500 600 700 800 900 1000 t

M,, [GeV]

[Kréimer ('02)]
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X BR(H —yy) ~ 1073
X large backgrounds from g7 — yy and gg — vy

but CMS and ATLAS will have excellent
photon-energy resolution (order of 1%)

Look for two isolated photons.
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( H—vyy )
8000 [~
R CMS
= 3
2 H — ~vy
= 7ooo | 2
§ my = 130 GeV/c?
Look for a narrow 7yy invariant - 3
= 6000 |-
mass peak =
= L
extrapolate background into the =
ignal region from sideband z °0°F
signal region from sidebands. g 1
[sa]
4000
C 1 1
110 120 130 140

m- -, (GeV/c?)




C H—ZZ 00 0+4— )

The mode

g T 2

g 7T z

This is the most important and clean
search mode for 2my < mpy < 600 GeV.
continuum, limited, irreducible back-
ground from q§ — ZZ

X small BR(H — ¢T¢=¢1¢07) ~ 0.15%
(even smaller when my < 2my)




C H—ZZ 00 0+4— D

[ H-2zz* . de m,, = 130 GeV/c®

[The X © 25: CMS, 100 fb™ = m, = 150 Gevic?

/H' E = my = 170 Gevic?

0 Z/. ~ 20F 2z i+ 205

P He P =5
./ z 8 15
w S 7k
— N 8§ [
\l»l 2 10f-
u>.| .
invariant mass of the charged leptons P
fully reconstructed E

9]
100 110 120 130 140 150 160 170 180 190 200
my, (Gevic?)

For my ~ 0.6-1 TeV, use the “silver-plated” mode H — ZZ — vv{* ¢
BR(H —vv{T{~) =6 BR(H — £T{~(T¢7)

the large E1 missing allows a measurement of the transverse mass




( H—>WW—£¢tve—v )

_ ATLAS TDR
A\
ot . > [ — signal + bockgrouna
9 w i & 300 - - totol backgroung
A ! S [ 3 ttondwtbockgraund
v — :
g T w 2
" 2 200
m
Exploit £+~ angular correlations
100
measure the transverse mass with a Jaco-
bian peak at my
mr = \/Zp(T”IZT (1 —cos (AD)) °

X background and signal have similar
shape == must know the background
normalization precisely

my = 170 GeV
integrated luminosity = 20 fb~!



C

Higgs discovery potential

D)

Signal significance

S

1

fLdt=30fb™ o Y o)
(no K-factors) A H - 27270 _ a1
ATLAS H -~ ww® iy
qgH - qqgww®
4 qgH - qqu

Total significance

%/\/

o0 10140 180

200

my, (GeV/c )




	
	Outlines
	Motivations
	Challenges in NLO - NNLO
	Complexity in N...NLO
	Flowcharting NNLO
	Computational challenge

	Introduction
	Counter-terms I
	Counter-terms II
	Renormalization Schemes
	Renormalization basic I
	Renormalization basic II
	Renormalization basic III
	Renormalization basic IV
	Renormalization basic V

	QED
	QED Lagrangian I
	QED Lagrangian II
	QED Lagrangian III
	QED Lagrangian IV
	QED Feynman rules

	SM Lagrangian
	SM Lagrangian I
	SM Lagrangian II
	SM Lagrangian III
	SM Lagrangian IV
	SM Lagrangian V
	SM Lagrangian VI
	SM Lagrangian VII
	SM Lagrangian VIII
	SM Lagrangian IX
	SM Lagrangian X
	SM Lagrangian XI
	SM Lagrangian XII
	SM Lagrangian XIII
	SM Lagrangian XIV
	SM Lagrangian XV
	SM Lagrangian XVI
	SM Lagrangian XVII
	SM Lagrangian XVIII
	SM Lagrangian XIX
	SM Lagrangian XX
	SM Lagrangian XXI

	Confronting with the infinities
	Diagrams I
	Diagrams II
	Diagrams III
	Integrals
	Diagrams III
	Diagrams IV
	Diagrams V

	Renormalization again
	In a nutshell I
	In a nutshell II
	In a nutshell III
	In a nutshell IV
	Renormalization constants

	Renormalization, once again
	QED renormalization I
	QED renormalization II
	QED renormalization III
	QED renormalization IV
	QED renormalization V

	Higgs tour
	Seightseeing I
	Seightseeing II
	Seightseeing III
	Seightseeing IV
	Seightseeing V
	Seightseeing VI
	Seightseeing VII
	Seightseeing VIII
	Seightseeing IX
	Seightseeing X
	Seightseeing XI
	Seightseeing XII
	Seightseeing XIII
	Seightseeing XIV


