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Outlines
(1, 2, 3,)

1 In
�

this lecture the building blocks for the two-loop
renormalization of the Standard Model will be
introduced Two-loop Ward-Slavnov-Taylor
identities and the complete set of counterterms
needed for two-loop renormalization will be
discussed. L1

2 In this lecture a renormalization scheme will be
introduced, connecting the renormalized quantities
to an input parameter set of (pseudo-)experimental
data. L2

3 In this lecture the set of techniques needed to compute
decay rates at the two-loop level will be derived.
The main emphasis of the lecture will be on the two
Standard Model decays H ����� and H � gg.

L3
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Part I

Lecture I



�

Basics

The minimal Higgs sector of the SM is provided by the Lagrangian�
S 
���� D � K ��� � D � K � ��� 2K � K ������� 2 � � K � K � 2 � (1)

where the covariant derivative is given by

D � K 
 � � � i
2

gBa� � a � i
2

g ! B0� K � (2)

g ! � g 
"� sin # � cos # , # is the weak mixing angle, � a are the standard Pauli
matrices, Ba� is a triplet of vector gauge bosons and B0� a singlet. For the
theory to be stable we must require �%$ 0. We choose � 2 & 0 in order to
have SSB. The scalar field in the minimal realization of the SM is

K 
 1'
2

(*)
i + 0� + 2
)

i + 1

� (3)

where
(

and the Higgs-Kibble fields + 0, + 1 and + 2 are real. For � 2 & 0 we
have SSB, , K - 0 .
 0. In particular, we choose

(*)
i + 0 to be the component of

K to develop the non-zero VEV, and we set ,/+ 0 - 0 
 0 and , ( - 0 .
 0. We then
introduce the (physical) Higgs fields as H 
 ( � v . The parameter v is not a
new parameter of the model; its value must be fixed by the requirement that, H - 0 
 0 (i.e. , K - 0 
0� 1 � ' 2 � � v � 0 � ), so that the vacuum doesn’t
absorb/create Higgs particles.
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Tadpoles do not depend on any particular scale other than their internal
mass, and cancel in any renormalized self-energy. However, they play an
essential role in proving the gauge invariance of all the building blocks of the
theory.2 In order to exploit this option, we will now consider a strategy to set the

Higgs VEV to zero.

We will define the new bare parameters M ! (the W boson mass), M !H (the
mass of the physical Higgs particle) and 3 t (the tadpole constant) according
to the following “3 t scheme”:

M ! � 1 ) 3 t � 
 gv � 2
� M !H � 2 
 �4� 2M ! � g � 2

0 
 � 2 )65
2 � 2M ! � g � 2


87
v 
 2M ! � 1 ) 3 t � � g
� 
 gM !H � 2M ! 2

� 2 
 � 1
2 � M !H � 2

(4)
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The new set of bare parameters is therefore g � g ! , M ! � M !H and 3 t . Remember
that 3 t is not an independent parameter and it appears in the Higgs doublet K
via

( 
 H
)

v , with v 
 2M ! � 1 ) 3 t � � g. As a consequence, all three terms of
the Lagrangian

�
S in Eq.(1) depend on this parameter. In particular, the

interaction part of
�

S becomes� I
S 
:�;� 2K � K �<����� 2 � � K � K � 2 (5)


=� 1 ) 3 t � 2 1 � 3 t � 2 ) 3 t � M ! 2H
M ! 2

2g2 � 3 t � 3 t
)

1 � � 3 t
)

2 � M ! 2H
M !

g
H

� 1
2

M ! 2
H

H2 � 1
4

M ! 2
H
3 t � 3 t

)
2 � 3H2 ) + 2

0
)

2 +�>�+@?
� g � 1 ) 3 t � M ! 2H

4M ! H H2 ) + 2
0
)

2 +�>A+B?
� g2 M ! 2H

32M ! 2 H2 ) + 2
0
)

2 + > + ? 2 � (6)
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while the term of
�

S involving ��� D � K � � � D � K � , yields a (lengthy)3 t -independent expression, plus the following terms containing 3 t :

3 t D igs E M ! + ? W >� � + > W ?� A � � s E
c E Z �

� gM !
2

H 2W
>� W

?� ) Z � Z �
c2E

� M ! 2
2

3 t
)

2 2W
>� W

?� ) Z � Z �
c2E) M !

c E Z � � � + 0
)

M ! W >� � � +@? )
M ! W ?� � � +�> � (7)

where, as usual, W F� 
0� B1�HG iB2� � � ' 2, and

Z �
A � 
 c E � s E

s E c E B3�
B0� I (8)
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Where else, in the SM Lagrangian, does the parameter 3 t appear? Wherever
v does — as it can be readily seen from Eq.(4). Let us now quickly discuss
the other sectors of the SM: Yang–Mills, fermionic, Faddeev–Popov (FP) and
gauge-fixing. The pure Yang–Mills Lagrangian obviously contains no 3 t

terms.
The gauge-fixing part of the Lagrangian,

�
gf , cancels in the R K gauges the

gauge–scalar mixing terms Z– + 0 and W F – + F contained in the scalar
Lagrangian

�
S . These terms are proportional to gv � 2, i.e., to M ! � 1 ) 3 t � in

the 3 t scheme. The gauge-fixing Lagrangian
�

gf is a matter of choice: we
adopt the usual definition

�
gf 
"�;L > L ? � 1

2 L 2
Z � 1

2 L 2
A
� (9)

with

L A 
�� 1M
A
� � A � � L Z 
�� 1M

Z
� � Z � )NM

Z
M !
c E + 0

� L F 
�� 1M
W
� � W F� )<M

W M ! + F
(10)
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(note: no 3 t terms), thus canceling the
�

S g-independent gauge–scalar
mixing termsP proportional to M ! , but not those proportional to M ! 3 t

(appearing at the end of Eq.(7)), which are of Q � g2 � .
Alternatively, one could choose M ! � 1 ) 3 t � instead of M ! in Eq.(10), thus
canceling all

�
S gauge–scalar mixing terms, both proportional to M ! and

M ! 3 t , but introducing then new two-leg 3 t vertices. We will not follow this
latter approach.2 Of course it is only a matter of choice, but the explicit form of

�
gf

determines the FP ghost Lagrangian.

The parameter 3 t shows up also in the FP ghost sector. The FP Lagrangian
depends on the gauge variations of the chosen gauge-fixing functions L A, L Z

and L F .
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If, under gauge transformations, the functions L i transform as

L i S L i
) � Mij

)
gLij �UT j

� (11)

with i 
0� A � Z �WV � , then the FP ghost Lagrangian is given by�
FP 
 X i � Mij

)
gLij � Xj I (12)

With the choice for
�

gf given in Eq.(9) (and the relation gv � 2 
 M ! � 1 ) 3 t � ) it
is easy to check that the FP ghost Lagrangian contains the 3 t terms

�
FP 
�� M ! 2 3 t

M
W X

>
X
> )<M

W X
?

X
? )<M

Z X Z XZ � c2E )YXWXWX � (13)

where the dots indicate the usual 3 t –independent terms. Had we chosen
�

gf

with M ! � 1 ) 3 t � instead of M ! in Eq.(10), additional 3 t terms would now arise
in the FP Lagrangian.
In the fermionic sector, the tadpole constant 3 t appears in the mass terms:

v'
2

�;Z4[uu
) 3 [dd 
"��� 1 ) 3 t � mu [uu

)
md [dd (14)

� v 
 2M ! � 1 ) 3 t � � g � , where Z and 3 are the Yukawa couplings, and mu , md

are the masses of the fermions. The rest of the fermion Lagrangian does not
contain 3 t , as it doesn’t depend on v .
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In the 3 t scheme we have (many) two- and three-leg 3 t vertices containing
also non-scalar fields. Note that three-leg 3 t vertices introduce a fourth
irreducible topology for Q � g4 � self-energy diagrams containing 3 t vertices,
namely:

I



]

Define 3 t 
 3 t0
) 3 t1 g2 ) 3 t2 g4 )=X^XWX

. We will now fix the parameter 3 t such
that the VEV of the Higgs field H remains zero order by order in perturbation
theory. At the lowest order, the only diagram contributing to , H - 0 is the one
depicted in Eq.(15),

H (15)

which origins from the term in
� I

S linear in H, � 3 t � 3 t
)

1 � � 3 t
)

2 � � M ! 2H
M ! � g � H.

Therefore, at the lowest order we can simply set 3 t 
 0, i.e. 3 t0 
 0.
Up to one loop, the diagrams T !0 and T !1 contributing to the Higgs VEV are

T !0 _ + T !1 _ (16)

so that

3 t1 
 1� 2̀�� 4i
T !1

2M ! gM ! 2H
I (17)



a

Up to terms of Q � g3 � , , H - 0 gets contributions from the following diagrams:

T !0 _ (1) +

T !1 _ (1/2) +

T !2 _ (1/6) + (1/4) + (1/4) +

T !3 _ (1/2) + (1/2),

plus reducible diagrams (analogous to those appearing in T4–T7 of section
2.4) which add up to zero because of our choice for 3 t0 and 3 t1 . Note the new
diagrams in T !3, with three-leg 3 t vertices, not present in the 3 h case (T3). The
parameter 3 t2 can be set in the usual manner, requiring

3

i b 0

T !i 
 0 � 
c7 3 t2 
 1� 2̀d� 4i
T !2 )

T !3
2M ! g3M ! 2H

� 3
2
3 2

t1 I (18)
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Consider the (doubly-contracted) WST identity relating the Z self-energyf �hg^i ZZ � p � , the + 0 self-energy
f�j

o

j
o � p � , and the Z– + 0 transition

f �ki Z j o � p � :
p � p g f �hg�i ZZ � p � )

M2
0
f j

o

j
o � p � )

2ip � M0
f �ki Z j o � p � 
 0 I (19)

Each of the three terms in Eq.(19) contains contributions from the tadpole
diagrams, but they add up to zero, within each term. For example, at the
one-loop level, the first term in Eq.(19) contains the tadpole diagrams

Z Z

and

Z Z (20)

which cancel each other.
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In the 3 t scheme, all three terms of Eq.(19) contain the two-leg 3 t vertices
already at the one-loop level. Similar comments are valid for the WST identity
involving the W self-energy.
Concerning renormalization, the constraints imposed on 3 t in the previous
sections are the renormalization conditions to insure that , 0 m H m 0 - 
 0, also in
the presence of radiative corrections. In particular, the renormalized 3 t

parameter is 3;n R ot 
 3 t
)Np 3 t 
 0. The equivalent of Eq. (4) for the

renormalized parameters is just the same equation with the tadpole
constants set to zero.
In the 3 t scheme, the one-loop renormalization of the W and Z masses
involves the diagrams

� a � � c � � b � � d � I (21)

Both � a � and � b � diagrams are gauge-dependent, their sum is
gauge-independent on-shell, and the 3 t tadpole � d � is chosen to cancel � b � .
But, the mass counterterm is now gauge-independent, as it contains both � a �
and the two-leg 3 t vertex diagram � c � .
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Diagonalization of the neutral sector

The Z–r transition in the SM does not vanish at zero squared momentum
transfer. Although this fact does not pose any serious problem, not even for
the renormalization of the electric charge, it is preferable to use an alternative
strategy. Consider the new SU � 2 � coupling constant [g, the new mixing angle[# and the new W mass [M in the 3 h scheme:

g 
 [g 1
)ts

g ! 
���� sin [# � cos [#u� [g
v 
 2 [M � [g �v
 [gMH � 2 [M 2 � 2 
 3 h � 1

2 M2
H

(22)

(note: g sin # � cos # 
 [g sin [# � cos [# ), where
s 
 s

1 [g2 )ts
2 [g4 )YXWXWX

is a new
parameter yet to be specified. This change of parameters entails new A � and
Z � fields related to B3� and B0� by

Z �
A � 
 cos [# � sin [#

sin [# cos [# B3�
B0� I (23)
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The replacement g Sx[g � 1 )ys � introduces in the SM Lagrangian several
terms containing the new parameter

s
. In our approach

s
is fixed,

order-by-order, by requiring that the Z–r transition is zero at p2 
 0 in theM 
 1 gauge. Let us take a close look at these ‘
s

terms’ in each sector of the
SM.z The pure Yang–Mills Lagrangian�

YM 
�� 1
4

F a�{g F a�hg � 1
4

F 0�hg F 0�{g � (24)

with F a�{g 
t� � Bag �|� g Ba� )
g } abcBb� Bcg and F 0�hg 
t� � B0g �|� g B0� , contains

the following new
s

terms when we replace g by [g � 1 )ys � :~ �
Y M
�� i [g s [c E � g Z � W

>� W
?g � W

>g W
?� � Z g W

>� � g W ?� � W
?� � g W >� )

)
Z � W

>g � g W ?� � W
?g � g W

>� � i [g s [s E � g A � W
>� W

?g � W
>g W

?�
� A g W

>� � g W ?� � W
?� � g W >� )

A � W
>g � g W ?� � W

?g � g W >�) [g2 s 2
)ts 1

2
W >� W ?g W >� W ?g � W >� W ?� W >g W ?g) [c2E Z � W

>� Z g W
?g � Z � Z � W

>g W
?g ) [s2E A � W

>� A g W ?g � A � A � W
>g W

?g) [s E [c E A � Z g � W >� W
?g )

W
>g W

?� � � 2A � Z � W
>g W

?g � (25)

where [s E 
 sin [# and [c E 
 cos [# . As these terms are of Q � [g3 � or Q � [g4 � , they
do not contribute to the calculation of self-energies at the one-loop level, but
they do beyond it.



�

New coupling constant in the � t

scheme

The 3 t scheme equations are the following

g 
 [g � 1 )ts � g ! 
���� sin [# � cos [#�� [g
v 
 2 [M ! � 1 ) 3 t � � [g �v
 [gM !H � 2 [M ! 2 � 2 
�� 1

2 � M !H � 2 I
(26)

(Note: g sin # � cos # 
 [g sin [# � cos [# .) The new fields [A � and [Z � are related to
B3� and B0� by Eq.(23). Thus, we obtain the following results:
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z The replacement g Sx[g � 1 )ts � in the pure Yang–Mills sector introduces
new

s
vertices� collected in

~ �
YM , which does not depend on the parameters

of the 3 t schemes.
~ �

YM will not be given here.

z The new
s

terms introduced in
�

S by eqs. (26) can be arranged once again
in the three classes

~ �
S i t 
 ~ ��� nf b 2 �

S i t )t~ �H� nf b 3 �
S i t )y~ �H� nf b 4 �

S i t � (27)

according to the number of fields appearing in the
s

terms. The explicit
expression for

~ � � 2 �
S i t is, up to terms of Q � [g4 � ,



�

~ � � nf b 2 �
S i t 
 [M ! s � 1

2
[M ! [s2E s A � A � � 1

2
[M ! 2

)�s [c2E ) 43 t Z
0� Z

0� (28)

� [M ! [s E[c E 1
)ys [c2E ) 23 t A � Z

0� ) � ��+ 0 [s E A � ) [c E Z 0� � 1 ) 3 t �
� [M ! � 2 )tsH)

43 t � W
>� W

?� )
W

?� � � + > )
W

>� � � + ? � 1 ) 3 t �
with [s E 
 sin [# and [c E 
 cos [# , etc.



�

z Our recipe� for gauge-fixing is the same as in the previous sections: we
choose the R K gauge

�
gf to cancel the zeroth order (in [g) gauge–scalar

mixing terms introduced by
�

S , but not those of higher orders. Here, this
prescription is realized by

�
gf with

L A 
�� 1M
A
� � [A � � L Z 
�� 1M

Z
� � [Z 0� )<M

Z

[M ![c + 0
� L F 
�� 1M

W
� � W F� )NM

W [M ! + F �
(29)

clearly
s
-independent.
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The new
s

terms of the FP ghost Lagrangian in the 3 t scheme are:

~ �
FP i t 
 ~ � � nf b 2 �

FP i t )t~ � � nf b 3 �
FP i t � (30)

where the two-field terms are

~ � � nf b 2 �
FP i t 
"��� 1 ) 3 t � s [M ! 2 M

Z X Z XZ
) [s E[c E XA

)�M
W X > X > )

X ? X ? �
(31)

Like in the scalar sector, the
s

and 3 t factors are entangled.
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We conc lude� this analysis with the fermionic sector
. As in the Yang–Mills case, the fermion – gauge boson Lagrangian

�
fG does

not depend on the parameters of the 3 t scheme. Its expression in terms of
the new coupling constant [g contains new

s
terms.

The neutral sector redia gonalization
induces no

s
terms in the fermion–scalar Lagrangian

�
fS , which contains,

however, the 3 t vertices (the ratio M ! � g is now replaced by the identical ratio[M ! � [g).
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The � – � t mixing

A comment� on the presence of 3 t factors in the new
s

vertices is now
appropriate. Consider the scalar Lagrangian

�
S . The interaction part of

�
S ,� I

S 
 �;� 2K � K ������� 2 � � K � K � 2 �
does not induce

s
terms. On the other hand,

� I
S gives rise to 3 t terms: as

M ! � g 
 [M ! � [g, these 3 t terms are simply expressed in terms of [M ! � [g instead
of M ! � g.

The derivative part of the scalar Lagrangian,

��� D � K ��� � D � K � �
induces both

s
and 3 t vertices, plus mixed ones which we still call

s
vertices

(see the 3 t factors in the two-leg
s

terms of
~ � � nf b 2 �

S i t ).
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It works like this: first, we replace g S�[g � 1 )ts � and g ! S � [g � [s E � [c EW� in��� D � K � � � D� � K � , splitting the result in two classes of terms, both written in
terms of [g, with or without

s
.

Then we substitute in both classes v S 2 [M ! � 1 ) 3 t � � [g: the class containings
is, up to terms of Q � [g4 � , ~ �

S i t [Eq.(27)], and includes also 3 t factors, while
the class free of

s
has the same 3 t vertices as Eq.(7) with g, # , M ! , A � and

Z � replaced by [g, [# , [M ! , [A � and [Z 0� . The upshot is that you need both the
results for the new

s
vertices derived in the previous section 1 (containing 3 t ),

and the expressions for the 3 t terms.

The
s

and 3 t terms of the Faddeev–Popov sector are intertwined just as in
the case of the scalar Lagrangian.
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WSTI for two-loop gaug e boson
self-ener gies

WSTI
The purpose of this section is to discuss in detail the structure of the
(doubly-contracted) Ward-Slavnov-Taylor identities (WSTI) for the two-loop
gauge boson self-energies in the Standard Model, focusing in particular on
the role played by the reducible diagrams. This analysis is performed in the
’t Hooft–Feynman gauge.
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Definitions and WST identities

Let
f

ij be the sum of all diagrams (both one-particle reducible and
irreducible) with two external boson fields, i and j , to all orders in perturbation
theory (as usual, the external Born propagators are not to be included in the
expression for

f
ij )

f
ij 
��

n b 1

g2n

� 16̀ 2 � n

f � n �
ij I (32)

In the subscripts of the quantities
f � n �

ij we will also explicitly indicate, when
necessary, the appropriate Lorentz indices with Greek letters. At each order
in the perturbative expansion it is convenient to make explicit the tensor
structure of these functions by employing the following definitions:



�

f � n ��hg�i V V 
 D
� n �
V V

p �{g )
P
� n �
V V p � p g f � n ��ki V S 
"� ip � MS G

� n �
V S

f � n �
SS 
 R

� n �
SS

� (33)

where the subscripts V and S indicate vector and scalar fields, MS is the
mass of the Nambu–Goldstone scalar S, and p is the incoming momentum of
the vector boson (note:

f � n ��ki SV 
�� f � n ��ki V S).

The quantities Dij , Pij , Gij , and Rij depend only on the squared
four-momentum and are symmetric in i and j . Furthermore, D and R have the
dimensions of a mass squared, while G and P are dimensionless.



�

The WST identities require that, at each perturbative order, the gauge-boson
self-energies

satisfy the equations

p � p g f � n ��hg�i AA 
 0

p � p g f�� n ��{g�i AZ

)
ip � M0

f4� n ��ki A j o 
 0

p � p g f � n ��hg^i ZZ

)
M2

0
f � n �j

o

j
o

)
2 ip � M0

f � n ���i Z j o 
 0

p � p g f4� n ��hg�i W W

)
M2 f4� n �j j )

2 ip � M
f4� n ��ki W j 
 0 � (34)
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which imply the following relations among the form factors D, P, G, and R

D
� n �
AA

)
p2 P

� n �
AA 
 0 (35)

D
� n �
AZ

)
p2 P

� n �
AZ

)
M2

0 G
� n �
A

j
o 
 0 (36)

p2 D
� n �
ZZ

)
p4 P

� n �
ZZ

)
M2

0 R
� n �j

o

j
o 
:� 2 M2

0 p2G
� n �
Z

j
o

(37)

p2 D
� n �
WW

)
p4 P

� n �
WW

)
M2 R

� n �j j 
:� 2 M2 p2G
� n �
W

j I (38)

The subscripts A, Z , W , + and + 0 clearly indicate the SM fields. We have
verified these WST Identities at the two-loop level (i.e. n 
 2) with our code
GraphShot.
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WSTI at two loops: the role of
reducib le diagrams

At any given order in the coupling constant expansion, the SM gauge boson
self-energies satisfy the WSTI (34). For n   2, the quantities

f � n �
ij contain

both one-particle irreducible (1PI) and reducible (1PR) contributions. AtQ � g4 � , the SM
f4� n �

ij functions contain the following irreducible topologies:

eight two-loop topologies,

three one-loop topologies with a 3 t1 vertex,

four one-loop topologies with a
s

1 vertex,

and one tree-level diagram with a two-leg Q � g4 �¡3 t or
s

vertex .
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Reducible Q � g4 � graphs involve the product of two Q � g2 � ones:

two one-loop diagrams,

one one-loop diagram and a tree-level diagram with a Q � g2 � two-leg
vertex insertion,

or two tree-level diagrams, each with a Q � g2 � two-leg vertex insertion.

There are also Q � g4 � topologies containing tadpoles but, as we discussed in
previous sections, their contributions add up to zero as a consequence of our
choice for 3 t .
In the following we analyze the structure of the Q � g4 � WSTI for photon, Z ,
and W self-energies, as well as for the photon–Z mixing, emphasizing the
role played by the reducible diagrams.
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The photon self-ener gy

The contribution of the 1PR diagrams to the photon self-energy at Q � g4 � is
given, in the ’t Hooft–Feynman gauge, by (with obvious notation)

f n 2 o R�{g�i AA 
 1� 2̀d� 4i
1
p2 ¤f n 2 o R�hg^i AA

) 1
p2

)
M2

0

¥f n 2 o R�hg^i AA
� (39)

where

¤f n 2 o R�{g�i AA 
 f � 1 ��h¦�i AA

f � 1 �¦�g�i AA

¥f n 2 o R�{g�i AA 
 f � 1 ��h¦�i AZ

f � 1 �¦�g�i ZA

)tf � 1 ���i A j o

f � 1 �g�i j o A I
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It is interesting to consider separately the reducible diagrams that involve an
intermediate photon propagator ( ¤f n 2 o R�hg^i AA) and those including an intermediate
Z or + 0 propagator (

¥f n 2 o R�hg�i AA). By employing the definitions given in the
previous subsection and eq. (35) with n 
 1, one verifies that ¤f 2R�{g�i AA obeys
the photon WSTI by itself,

Theorem

p � p g ¤f n 2 o R�{g�i AA 
 p2 D
� 1 �
AA

)
p2 P

� 1 �
AA

2 
 0 I (40)
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This is not the case for
¥f n 2 o R�hg^i AA, although most of its contributions cancel when

contracted by p � p g as a consequence of eq. (36) (n 
 1),

p � p g ¥f n 2 o R�{g�i AA 
 p2 M2
0 p2 )

M2
0 G

� 1 �
A
j

o

2

I (41)

The only diagrams contributing to the A– + 0 mixing up to Q � g2 � are those with
a W – + or FP ghosts loop, and the tree-level diagram with a

s
insertion. Their

contribution, in the ’tHooft–Feynman gauge, is

G
� 1 �
A
j

0 
0� 2̀�� 4i sc 2B0 � p2 � M � M � ) 16̀ 2 s
1 I (42)

A direct calculation (e.g. with GraphShot) shows that this residual
contribution of the reducible diagrams to the Q � g4 � photon WSTI, eq. (41), is
exactly canceled by the contribution of the Q � g4 � irreducible diagrams, which
include two-loop diagrams as well as one-loop graphs with a two-leg vertex
insertion.
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Dyson resummed propagator s and
their WSTI

Dyson resummed propagator s
We will now present the Dyson resummed propagators for the electroweak
gauge bosons. We will then employ the results of sec. 1 to show explicitly, up
to terms of Q � g4 � , that the resummed propagators satisfy the WST identities.
Following definition (32) for

f
ij , the function

f I
ij represents the sum of all 1PI

diagrams with two external boson fields, i and j , to all orders in perturbation
theory (as usual, the external Born propagators are not to be included in the
expression for

f I
ij ).
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As we did in« eqs. (33), we write explicitly its ,

Lorentz structure

f I�hg�i VV 
 DI
VV

p �hg )
P I

VV p � p g (43)f I�ki VS 
�� ip � MS GI
VS

f I
SS 
 R I

SS
� (44)

where V and S indicate SM vector and scalar fields, and p � is the incoming
momentum of the vector boson [note:

f I��i SV 
�� f I�ki VS].
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We also introduce the

transver se and longitudinal projector s

t �hg 
 p �hg � p ­ p ®
p2

� l �hg 
 p ­ p ®
p2

�
t �h¦ t ¦�g 
 t �hg � l �h¦ l ¦�g 
 l �{g � t �{¦ l ¦�g 
 0 �

f I�hg^i VV 
 DI
VV t �hg )

LI
VV l �hg � LI

VV 
 DI
VV

)
p2 P I

VV I (45)
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The full propagator for a field i which mixes with a field j via the function
f I

ij is
given by the perturbative series

[~ ii 
 ~
ii
)°~

ii �
n b 0

n > 1

l b 1 kl

f I
kl ± 1kl

~
kl kl (46)


 ~
ii
)°~

ii
f I

ii
~

ii
)°~

ii

k1 b i i j
f I

ik1

~
k1k1

f I
k1 i

~
ii
)²XWX X �

where k0 
 kn > 1 
 i , while for l .
 n
)

1, kl can be i or j .
~

ii is the Born
propagator of the field i .
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We rewrite Eq.(46) as

[~ ii 
 ~
ii 1 ��� f´~ � ii

? 1 � (47)

and refer to [~ ii as the resummed propagator. The quantity � f´~ � ii is the sum
of all the possible products of Born propagators and self-energies, starting
with a 1PI self-energy

f I
ii , or transition

f I
ij , and ending with a propagator

~
ii ,

such that each element of the sum cannot be obtained as a product of other
elements in the sum.
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A diagrammatic representation of � f¶~ � ii is the following,

� f¶~ � ii 
 ) ) )²XWX^X

where the Born propagator of the field i (j) is represented by a dotted (solid)
line, the white blob is the i 1PI self-energy, and the dots at the end indicate a
sum running over an infinite number of 1PI j self-energies (black blobs)
inserted between two 1PI i–j transitions (gray blobs).
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It is also useful¸ to define, as an auxiliary quantity, the partially resummed
propagator for the field i ,

¥~
ii , in which we resum only the proper 1PI

self-energy insertions
f I

ii , namely,

¥~
ii 
 ~

ii 1 � f I
ii
~

ii
? 1 I (48)

If the particle i were not mixing with j through loops or two-leg vertex
insertions,

¥~
ii would coincide with the resummed propagator [~ ii .
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¥~
ii can be graphically depicted as

¥~
ii 
 ) ) ) XWX X I
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Partially resummed propagators allow for a compact expression for � f¶~ � ii ,

� f´~ � ii 
 f I
ii
~

ii
)yf I

ij

¥~
jj
f I

ji
~

ii
� (49)

so that the resummed propagator of the field i can be cast in the form

[~ ii 
 ~
ii 1 � f I

ii
)yf I

ij

¥~
jj
f I

ji
~

ii

? 1

I (50)

We can also define a resummed propagator for the i–j transition. In this case
there is no corresponding Born propagator, and the resummed one is given
by the sum of all possible products of 1PI i and j self-energies, transitions,
and Born propagators starting with

~
ii and ending with

~
jj . This sum can be

simply expressed in the following compact form,

[~ ij 
 [~ ii
f I

ij

¥~
jj I (51)
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Dressed propagator s

Suppose that we have a simple model with an interaction Lagrangian

L 
 g
2 ¼ � x �¡+ 2 � x � I (52)

The mass M of the ¼ -field and m of the + -field be such that the ¼ -field be
unstable. Let

~
i be the lowest order propagators and

~
i the one-loop

dressed propagators, i.e.

~�½ 
 ~ ½
1 � ~H½*¾8½{½ � ~´¿ 
 ~ ¿

1 � ~%¿�¾�¿h¿ � (53)

etc. In fixed order perturbation theory, the + self-energy is given in Fig. 1.
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a) skeleton

+ + Á

b)
¾

insertion

Á

c) skeleton

Figure: The Â self-energy with skeleton expansion, diagrams a) and
c), and insertion of a sub-loop ÃÅÄ�Ä , diagram b).
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+ imaginar y par t
Note that the imaginary part of

¾�¿h¿
is non-zero only for

� p2 $ 9 m2 � (the three-particle cut of diagram b) in Fig. 1) �
if m Ç M I (54)
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When we use dressed propagators only diagrams a) and c) are retained in
Fig. 1 (for two-loop accuracy) but in a) we use

~H½
with one-loop accuracy:

¾ � a �¿É¿ 
 dnq2

q2
2

)
M2 � g2

16 Ê 2

¾8½{½ � q2
2 � � q2

)
p � 2 )

m2

�
¾8½{½ � q2

2 � 
 B0 � q2
2 Ë m � m � � (55)

where we assume p2 & 0.
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Since the complex ¼ pole is defined by

M2 � sM � g2

16 ` 2

¾8½h½ ��� sM � 
 0 � (56)

we write the inverse (dressed) propagator as

1 � g2

16 ` 2

¾8½h½ � q2
2 � � ¾8½h½ ��� sM �
q2

2

)
sM

q2
2
)

sM
� (57)

expand in g as if we were in a gauge theory with problems of gauge
parameter dependence and obtain

¾Í� a �¿h¿ 
 g2 dnq

� q2
)

sM � � q )
p � 2 )

m2

D 1
) g2

16 ` 2

¾8½{½ � q2 � � ¾8½{½ ��� sM �
q2

)
sM

(58)



Î


 i
2

g2 ` 2 B0 1 � 1 Ë p2 Ë sM
� m2 )

i
g4

16
SE p2 Ë m2 � m2 � sM

� m2 � sM

)
i

g4

16
B0 2 � 1 Ë p2 Ë sM

� m2 ~
UV � ln

m2

� 2

)
2 � 3 ln

3 )
13 � 1

� (59)

where

3 2 
 1 � 4
m2

sM I (60)
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More on dressed propagator s
Note that there is an interply between using dressed propagators for all
internal lines of a diagram and combinatorial factors and number of diagrams
with and without dressed propagators.
Note that the poles in the q0 complex plane remain in the same quadrants as
in the Feynman prescription and Wick rotation can be carried out, as usual.
Evaluation of diagrams with complex masses does not pose a serious
problem; in the analytical approach one should, hovever, pay the due
attention to splitting of logarithms.



Ð

Consider a B0 function,

B0 � p2 Ë M1
� M2 � 
 ~

UV � 1

0
dx Ñ � x �� 2

�
Ñ � x � 
"� p2 x2 ) � p2 )

M2
2 � M2

1 � x
)

M2
1
� (61)

where one usually writes

ln Ñ � x �� 2 
 ln ��� p2

� 2 � i
p � ) ln � x � x ?B� ) ln � x � x >Ò� I (62)

Since Im Ñ � x � does not change sign with in Ó 0 � 1 Ô the correct recipe for
M2 
 m2 � i m r is

ln Ñ � x �� 2 
 ln m p2 m ) ln � x � x ?c� ) # ��� p2 � ln � x � x >U� )NÕ ��� x ? � � x >U�
) # � p2 � ln � x > � x � )NÕ ��� x ? � x >Ò� I (63)
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In the numerical treatent, instead, no splitting is performed and no special
care is needed.
A t -channel propagator deserves some additional comment: one should not
confuse the position of the pole which is always at � 2 � i � r with the fact that
a dressed propagator function is real in the t -channel.
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+ +

~H½ � sM �

~´¿ � m2 �

Á

~´¿ � m2 �

~´¿ � m2 �
~�½ � sM � Á

Zpole

~ ¿ � m2 �

~H½ � sM �

Figure: Diagram b) of Fig. 1 with one-loop dressed Ø propagators is
equivalent, up to Ù g4 , to the sum of three diagrams with lowest
order propagators mu with the Ø mass replaced with the Ø complex
pole. The Zpole vertex is given in Eq.(64)
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Theorem
Therefore, using one-loop diagrams with one-loop dressed ¼ propagators is
equivalent, to Q g4 , to use the sum of the three diagrams of Fig. 2 where ¼propagators are at lowest order but with complex mass sM and where the
vertex Zpole is defined by

Zpole 
 g2

16 ` 2
B0 ��� sM Ë m � m � I (64)
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The charged sector

We now apply Eq.(48), Eq.(50), Eq.(51)) to W and charged Goldstone boson
fields. The partially resummed propagator of the charged Goldstone scalar
follows immediately from Eq.(48). The Born W and + propagators in the ’t
Hooft–Feynman gauge are

~ �{g
WW 
 p �{g

p2
)

M2
� ~´¿É¿ 
 1

p2
)

M2
� (65)

where, for simplicity of notation, we have dropped the coefficients � 2̀�� 4i .
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In the same gauge, the partially resummed + and W propagators are

¥~´¿h¿ 
 ~´¿É¿
1 � f I¿É¿ ~´¿É¿ ? 1 
 p2 )

M2 � R I¿É¿ ? 1
(66)

¥~ �{g
WW 
 1

p2
)

M2 � DI
WW

p �hg ) p � p g P I
WW

p2
)

M2 � DI
WW � p2P I

WW I (67)
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Equation (67) assumes a more compact form when expressed in terms of the
transverse and longitudinal projectors t �{g and l �{g ,

¥~ �{g
WW 
 t �{g

p2
)

M2 � DI
WW

) l �{g
p2

)
M2 � LI

WW I (68)

The resummed W and + propagators can be then derived from Eq.(50),

[~ ¿É¿ 
 p2 )
M2 � R I¿É¿ � p2 M2 � GI

W

¿ � 2

p2
)

M2 � LI
WW

? 1

(69)

[~ �hg
WW
 t �hg

p2
)

M2 � DI
WW

)
l
�hg

p2 ) M2 � LI
WW � p2M2 � GI

W

¿ � 2

p2
)

M2 � R I¿É¿
? 1

I (70)
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The resummed propagator for the W – + transition is provided by Eq.(51),

[~ �
W

¿ 
 � ip � MGI¿
W

p2
)

M2 � R I¿É¿ p2 )
M2 � LI

WW � p2M2 � GI
W

¿ � 2

p2
)

M2 � R I¿h¿
? 1

I (71)

We will now show explicitly, up to terms of Q � g4 � , that the resummed
propagators defined above satisfy the following WST identity:

Theorem

p � p g [~ �hg
WW

)
i p � M [~ �

W

¿ � i p g M [~ g¿
W

)
M2 [~´¿É¿ 
 1 � (72)



ß

which, in turn, is satisfied if

p2M2 GI
W

¿ 2 )
M2R I¿É¿ )

p2LI
WW � R I¿É¿ LI

WW

)
2p2M2GI

W

¿ 
 0 I (73)

This equation can be verified explicitly, up to terms of Q � g4 � , using the WSTI
for the W self-energy: at Q � g2 � Eq.(73) becomes simply

M2R
� 1 �¿É¿ )

p2L
� 1 �
WW

)
2p2M2G

� 1 �
W

¿ 
 0 � (74)

which coincides with eq. (38) for n 
 1.
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To prove Eq.(73) at Q � g4 � we use (forsimplicity of notation, in this section we
dropped the coefficients � 2̀�� 4i .)

p2M2 G
� 1 �
W
¿ 2 )

M2R
� 2 � I¿É¿ )

p2L
� 2 � I
WW � R

� 1 �¿h¿ L
� 1 �
WW

)
2p2M2G

� 2 � I
W
¿ 
 0 I (75)
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The LQ basis

For the purpose of the renormalization, it is more convenient to extract from
the quantities defined in the previous sections the factors involving the weak
mixing angle # . To achieve this goal, we employ the LQ basis, which relates
the photon and Z fields to a new pair of fields, L and Q:

Z �
A � 
 c 0

s 1 � s L �
Q � I (76)
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Consider theã fermion currents j
�
A and j

�
Z coupling to the photon and to the Z .

As the Lagrangian must be left unchanged under this transformation, namely
j �Z Z � )

j �A A � 
 j �L L � )
j �Q Q � , the currents transform as

j �Z
j
�
A


 1 � c � s2 � c
0 s

j �L
j
�
Q I (77)
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If we rewrite the SM Lagrangian in terms of the fields L and Q, and perform
the same trå ansformation (76) on the FP ghosts fields [from (XA,XZ ) to
(XL,XQ)], then all the interaction terms of the SM Lagrangian are independent
of # . Note that this is true only if the relation M � c 
 M0 is employed,
wherever necessary, to remove the remaining dependence on # . In this way
the dependence on the weak mixing angle is moved to the kinetic terms of
the L and Q fields which, clearly, are not mass eigenstates.

The relevant fact for our discussion is that the couplings of Z , photon, XZ and
XA are related to those of the fields L and Q, XL and XQ by identities like the
one described, in a diagrammatic way, in the following figure:
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Z
f

f


 1
c

L
f

f

� s2

c
Q

f

f

A Z

W


 s
c

Q L

W

� s3

c
Q Q

W

I
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As the couplings of the fields L, Q, XL and XQ do not depend on # , all the
dependence on this parameter is factored out in the coefficients in the
r.h.s. of these identities.
Since # appears only in the couplings of the fields A, Z , XA and XZ (once
again, the relation M � c 
 M0 must also be employed, wherever necessary), it
is possible to single out this parameter in the two-loop self-energies of the
vector bosons. Consider, for example, the transverse part of the photon
two-loop self-energy D n 2 oAA (which includes the contribution of both irreducible
and reducible diagrams). All diagrams contributing to D n 2 oAA can be classified in
two classes: those including � i � one internal A, Z , XA or XZ field, and � ii �
those not containing any of these fields. The complete dependence on # can
be factored out by expressing the external photon couplings and the internal
A, Z XA or XZ couplings of the diagrams of class � i � in terms of the couplings
of the fields L, Q, XL and XQ, namely
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D n 2 oAA 
 s2 1
c2

f AA
1

)
f AA
2

)
s2f AA

3
� (78)

where the functions f AA
i � i 
 1 � 2 � 3 � are # -independent. Similarly, we can

factor out the # dependence of the transverse part of the two-loop photon–Z
mixing and Z self-energy,

D n 2 oAZ 
 s
c

1
c2

f AZ
1

)
f AZ
2

)
s2f AZ

3
)

s4f AZ
4

� (79)

D n 2 oZZ 
 1
c2

1
c2

f ZZ
1

)
f ZZ
2

)
s2f ZZ

3
)

s4f ZZ
4

)
s6f ZZ

5
� (80)



é

where, once again, the functions f AZ
i and f ZZ

i � i 
 1 � IWIWI � 5 � do not depend on# . Analogous relations hold for the longitudinal components of the two-loop
self-energies.
We note that D n 2 oAZ and D n 2 oZZ also contain a third class of diagrams containing
more than one internal Z (or XZ ) field (up to three, in D n 2 oZZ ). However, the
diagrams of this class involve the trilinear vertex ZHZ (or X Z HXZ ), which does
not induce any new # dependence.
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However, from the point of view of renormalization it is more convenient to
distinguish between the # dependence originating from external legs and the
one introduced by external legs. We define, to all orders,

DAA 
 s2 f
QQ ë ext p2 
 s2 �

n b 1

g2

16 ` 2

n f � n �
QQ ë ext p2 �

DAZ 
 s
c
¾

AZ ë ext 
 s
c �

n b 1

g2

16 ` 2

n ¾Í� n �
AZ ë ext

�

DZZ 
 1
c2

¾
ZZ ë ext 
 1

c2 �
n b 1

g2

16 ` 2

n ¾Í� n �
ZZ ë ext

�
¾Í� n �

AZ ë ext 
 ¾Í� n �
3Q ë ext � s2 f4� n �

QQ ë ext p2 �
¾ � n �

ZZ ë ext 
 ¾ � n �
33 ë ext � 2 s2 ¾ � n �

3Q ë ext

)
s4 f � n �

QQ ë ext p2 I (81)
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Furthermore, our procedure is such that¾Í� n �
3Q ë ext 
 f4� n �

3Q ë ext p2 � (82)

with
f � n �

3Q ë ext regular at p2 
 0. At Q g2 the external quantities are# -independent while, at Q g4 the relation with the coefficients of
Eqs.(78)–(80) is

f4� 2 �
QQ ë ext p2 
 1

c2
f AA
1

)
f AA
2

)
f AA
3 s2 �

¾Í� 2 �
3Q ë ext 
 1

c2 � f AA
1

)
f AZ
1 � � f AA

1
)

f AZ
2

)
s2 � f AA

2
)

f AZ
3 � ) s4 � f AA

3
)

f AZ
4 �

¾ � 2 �
33 ë ext 
 1

c2 � f AA
1

)
2 f AZ

1
)

f ZZ
1 � � f AA

1 � 2 f AZ
1

)
f ZZ
2)

s2 ��� f AA
1

)
2 f AZ

2
)

f ZZ
3 � ) s4 � f AA

2
)

2 f AZ
3

)
f ZZ
4 �)

s6 � f AA
3

)
2 f AZ

4
)

f ZZ
5 � � (83)

and s � c in Eq.(83) should be evaluated at Q g0 .
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Consider the process f f S hh; taking into account Dyson re-summed
propagators and neglecting, for the moment, vertices and boxes we write

î � f f S hh � 
=� 2̀�� 4 i � e2 Qf Qh r ��ï r � [~ T
AA

� eg
2 c

Qf r �Nï r � � vh
)

ah r 5 � [~ T
ZA

� eg
2 c

Qh r � � vf
)

af r 5 � ï r � [~ T
ZA

� g2

4 c2
r � � vf

)
af r 5 � ï r � � vh

)
ah r 5 � [~ T

ZZ (84)

where f and h are fermions with quantum numbers QI
� I3i

� i 
 f � h;
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furthermoreñ we have introduced

vf 
 I3f � 2 Qf s2 � af 
 I3f
� (85)

with e2 
 g2 s2. Always neglecting terms proportional to fermion masses it is
useful to introduce an effective weak-mixing angle as follows:

Definition

s2
eff 
 s2 1 � f

AZ ë ext

1 � s2
f

AA ë ext

� Vf 
 I3f � 2 Qf s2
eff I (86)
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The amplitude of Eq.(84) can be cast into the following form:

î � f f S hh � 
0� 2̀d� 4 i � r �Nï r � 1
1 � s2

f
AA ë ext

e2 Qf Qh

p2

� g2

4 c2
r � � Vf

)
af r 5 � ï r � � Vh

)
ah r 5 � [~ T

ZZ I (87)

The functions
f

AA ë ext
� f

AZ ë ext and
¾

Z Z ë ext start at Q g2 in perturbation theory.
Eq.(87) shows the nice effect of absorbing – to all orders – non-diagonal
transitions into a redefinition of s2 and forms the basis for introducing
renormalization equations in the neutral sector, e.g. the one associated with
the fine-structure constant Z . Questions related to gauge-parameter
independence of Dyson re-summation, e.g. in Eq.(86), will not be addressed
here.
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Part II

Lecture II



ô

The QED case

To understand renormalization at the two-loop level we consider first the case
of pure QED where we have

f
QED � s � m � 
 e2

16 ` 2

f � 1 � � s � m � ) e4

256 ` 4

f � 2 � � s � m � � (88)

where p2 
"� s and where we have indicated a dependence of the result on
the (bare) electron mass. Suppose that we compute the two-loop contribution
(3 diagrams) in the limit m 
 0. The result is

f � 2 � � s � 0 � 
"� 4} ) Q � 1 � � (89)

where n 
 4 � } . This is a well-known result which shows the cancellation of
the double ultraviolet pole as well as of any non-local residue. The latter is
related to the fact that the four one-loop diagrams with one-loop counterterms
cancel due to a Ward identity. Let us repeat the calculation with a non-zero
electron mass;
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f � 1 � � s � m � ) e4

256 ` 4

f � 2 � � s � m � � (88)

where p2 
"� s and where we have indicated a dependence of the result on
the (bare) electron mass. Suppose that we compute the two-loop contribution
(3 diagrams) in the limit m 
 0. The result is

f � 2 � � s � 0 � 
"� 4} ) Q � 1 � � (89)

where n 
 4 � } . This is a well-known result which shows the cancellation of
the double ultraviolet pole as well as of any non-local residue. The latter is
related to the fact that the four one-loop diagrams with one-loop counterterms
cancel due to a Ward identity. Let us repeat the calculation with a non-zero
electron mass;
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after scalarization of the result we consider the ultraviolet divergent parts of
the various diagrams. Collecting all the terms we obtain

f � 2 � � s � m � 
�� 1} 4 1
)

24
m2

s
)

192
m4

s2

13 � m � ln
3 � m � ) 13 � m � � 1

) Q � 1 � I
(90)

Note that the m dependent part is not only finite but also zero in the limit
s S 0; indeed, in the limit s S 0 and with � 2 
 m2 � s � i

p
we have

3 
 2 i ��� i
2 �

) Q � ? 2 � 13 ln
3 )

13 � 1 
�� 1
2 � 2

� (91)

so that

f � 2 � � 0 � m � 
"� 4} )yf � 2 �
fin � 0 � m � I (92)
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Eq.(92) is the main ingredient to build our renormalization equation and
contains only bare parameters, in the true spririt of the fitting equations that
express a measurP able input, Z in this case, as a function of bare parameters,
e and m in this case, and of ultraviolet singularites.
To make a prediction, the running of Z in this case, is a different issue: the
scattering of two charged particles is proportional to

e2

1 � f � s � 
 e2 1
)

f � s � ) f 2 � s � )²XWXWX �
f � s � 
 e2

16 ` 2

f � 1 � � s � ) e4

� 16 ` 2 � 2

f � 2 � � s � ) Q e6 I (93)
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Renormalization

Renormalization amounts to substituting

e2 
 4 ` Z<��Z 2 f � 1 � � 0 � ) Z 3

4 ` f � 1 � � 0 � 2 � f � 2 � � 0 � ) Q Z 4 � (94)

with the following result

e2

1 � f � s � 
 4 ` Z 1
) Z

4 ` f � 1 �
R � s � ) Z

4 `
2 f � 1 �

R � s � f � 1 �
R � s �

)0f � 2 �
R � s � ) Q Z 3 �

f4� n �
R � s � 
 f � n � � s � � f � n � � 0 � I (95)
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If our result has to be ultraviolet finite then the poles in
f � n � � s � should not

depend on the scale s. This is obviously true for the one-loop result but what
is the origin of the scale-dependent extra term in Eq.(90)? One should take
into account that

f � 1 � � s � m � 
:� 8
3

1} ) 4
3

ln
m2

M2

) � 1 )
2

m2

s
3 � m � ln

3 � m � ) 13 � m � � 1

� 20
9

) 4
3
~

UV � 16
3

m2

s
� (96)

and that m is the bare electron mass. To proceed step-by-step we introduce
a renormalized electron mass which is given by

m 
 mR 1
) e2

16 ` 2 � 6} )
finite part I (97)
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If we write m2 
 m2
R � 1 )<p � then

3 � m � 
 3 � mR � � 2
m2

R3 � mR � s
p�) Q p 2 �

ln
3 � m � ) 13 � m � � 1 
 ln

3 � mR � ) 13 � mR � � 1 �
p

3 � mR � ) Q p 2 I (98)

Inserting this expansion into our results we obtain

f
QED � s � mR � 
 e2

` 2 � 1
6 } ) 1

12
ln

m2
R

M2

) 1
3

1
4 � 1

2
m2

R

s � 2
m4

R

s2

13 � mR � ln
3 � mR � ) 13 � mR � � 1 �

� 5
36

) 1
12

~
UV � 1

3
m2

R

s) e4

` 4 � 1
64 } ) 1

256
f � 2 �

fin � s � mR � � (99)
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showing cancellation of the ultraviolet poles in
f4� n �

R � s � mR � with n 
 1 � 2. Of
course Eq.(97) is not yet a true renormalization equation since the latter
should contain the physical electron mass me and not the intermediate
parameter mR but the relation between the two is ultraviolet finite. All of this is
telling us that a renormalization equation has the structure

pphys 
 f
1} � pbare

� (100)

where the residue of the ultraviolet poles must be local. A prediction,

O
1} � pbare ü O � pphys� � (101)

gives a finite quantity that can be computed in terms of some input parameter
set.
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The SM case

In the full standard model the one-loop result is

f � 1 � 
 f � 1 �
bos

)
l

f � 1 �
l

)�f � 1 �
tb

)tf � 1 �
udcs I (102)

We introduce

xW 
 M2
W

s
� xl 
 m2

l

M2
W

� etc �
~

UV 
 r )
ln ` )

ln
M2

W� 2
� L þ � x � 
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3 � x � ) 13 � x � � 1
� (103)
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In the limit s S 0 we have

f � 1 �
bos� 0 � 
"� 3 � 2} )y~

UV
�

f�� 1 �
l � 0 � 
 4

3 � 2} )y~
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) 4
9

) 4
3

ln xl
�
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 20

9 � 2} )y~
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27

) 16
9

ln xt
) 4

9
ln xb I (104)

First we consider fermion mass renormalization, obtaining

m2
f 
 m2

f R 1
)

2
g2

16 ` 2

p
Z f

m} � (105)

with renormalization constants given by
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fermion mass renormalization

lepton

p
Z l

m 
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b quark

p
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t quark

p
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m 
:� 3
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1
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Consider the fermionic part of
f � 1 � relative to one fermion generation ( � l

� l � t
and b) and perform fermion mass renormalization; we obtain

f � 1 �
fer S f � 1 �

ferm

) g2

` 2 } ~ f � 1 �
ferm

� (109)

where

f � 1 �
fer 
 32

9 � 2} )y~
UV

) 4
3

ln xL

) 1
3

ln xB

) 4
3

ln xT

� 160
27 � 16

3
xW � xL

) 1
3

xB
) 4

3
xT � ) 4

3 � 1 � 2 xW xL � 8 x2
W x2

L �
) 4

3
3 ? 1 � xW xL � L þ � xW xL � ) 4

9
3 ? 1 � xW xB � L þ � xW xB �

) 16
9

3 ? 1 � xW xT � L þ � xW xT � � (110)
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When we add the two-loop result we obtain

g2
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f4� 1 �
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� 16 ` 2 � 2
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fin I (112)

The two residues are given by
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Theorem
Therefore mass renormalization has removed

all logarithms in the residue of the simple ultraviolet pole for the
fermionic part

while a non-local residue remains in the bosonic part.

Unfortunately a simple procedure of W mass renormalization is not enough
to get rid of logarithmic residues in the bosonic component and the reason is
that in a bosonic loop we may have three different fields,
the W , the + and the charged ghosts
and only one mass is available.



	

Example
The situation is illustrated in Fig. 3 where the cross denotes insertion of a
counterterm

p
ZM ; the latter is fixed to remove the ultraviolet pole in the W

self-energy and one easily verifies that the total in the second and third line of
Fig. 3 ( + and X self-energies, respectively) is not ultraviolet finite.
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Figure: W mass counterterm insertion in the charged tarnsitions.
While the WW one is ultraviolet finite the same is not true for and
ghost-ghost transitions.
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Figure: The correct recipe for renormalizing mass dependent
ultraviolet poles in the charged sector.
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The procedure has to be changed if we want to make the result in the
bosonic sector as similar as possible to the one in the fermionic sector. With
this goal in mind we introduce the following counterterms

W � 
 Z 1 � 2
W W R� � + 
 Z 1 � 2¿ + R � MW 
 Z 1 � 2

M MR

W I (115)

Our solution is to work in a R K K -gauge where the gauge-fixing term (limited to
the charged sector) is

L|
"� 1M
W
� � W � )NM�¿

MW + I (116)
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We also introduce additional counter-terms for the gauge parameters,M
W 
 Z

K
W

M R
W
� M�¿ 
 Z

K¿ M R¿ I (117)

Our scheme is further specified by imposing the conditionM R
W 
 M R¿ 
 1 I (118)
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Dropping from now on the index R for renormalized fields and parameters we
define the counter-Lagrangian to be

�
ct 
 g2

16 ` 2

� W W
ct

) � ¿
W

ct
) � ¿h¿

ct
� � ij

ct 
 ¼ R
i Q ij ¼ R

i
� (119)

¼ i being a vector or scalar field. We define
p
Z factors in the MS-scheme as

Z 
 1
) g2

16 ` 2

p
Z

1} � (120)
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and obtain
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�

These counter-terms are used to remove all poles from the transitions in the
charged sector. After including the tadpole contribution and using Eq.(118)
we find

p
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Theorem
An important result follows, namely both

� Z 1 � 2
W � M W Z

K
W � ? 1 � )

Z 1 � 2
M Z

K¿ Z 1 � 2¿ M
M ¿ � (123)

are ultraviolet finite so that the gauge-fixing term remains unrenormalized.
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To continue our derivation we consider the ghost Lagrangian and the
associated counter-terms,

�
g 
 ZX [X F 1

Z K
W

M
W
� 2 � Z

K¿ ZM
M�¿

M2
W

X F I (124)

To this Lagrangian corresponds an operator

}dQ gg 
�� � p ZX � p
Z
K

W � � p2 )
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W
� ) � p ZM

)<p
Z
K

W
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Z
K¿ � M2

W I (125)
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A simple calculation shows that, with the choice

p
ZX 
 23

6
� (126)

also the ghost Lagrangian is ultraviolet finite. The correct combination of
mass counterterms is illustrated in Fig. 4. Note that in the MS scheme we
define

Z 
 1
) g2

16 ` 2

p
Z � 2} )t~

UV
� p

ZMS 
"� 1
2
p
ZMS I (127)

Note that the two-loop part of
f

remains unchanged since modifications are
of Q g6 while for

f4� 1 �
bos we have to repeat the calculation, working in the new

gauge.
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The bare propagators for charged fields in the R K K gauge are
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where the last propagator refers to the ghost - ghost transition.
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One example will be enough to describe the procedure. Consider the
following integral, corresponding to a + loop in the AA self-energy:

I �hg 
 dnq
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We expand the propagators,
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and obtain
I �hg 
 I0

p �{g )
I1 p � p g � (131)

with form factors
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where MW is the bare W mass. Collecting all diagrams, renormalizing the W
mass and inserting the solution for the renormalization constants we find the
expression for the bosonic, one-loop, AA self-energy:
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Including both components and taking into account the additional contribution
arising from renormalization we finally get residues for the ultraviolet poles
which show the expected properties:

R
� 2 � 
"� 55

768
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R
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192
~

UV
) 1199

27648 � 131
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Eq.(134) shows complete cancellation of poles with a logarithmic residue;
furthermore the two residues in Eq.(134) are scale independent and cancel in
the difference

f � p2 � � f � 0 � .
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Transitions

A final comment concerns the Z -photon transition which is not zero, at
p2 
 0, in any gauge where

M .
 1 even after the
s

1 re-diagonalization
procedure.

However, in our case, the non-zero result shows up only due to a different
renormalization of the two bare gauge parameters and it is, therefore, ofQ g4 ; it can be absorbed into

s
2 which does not modify our result for

f
since there are no

s
2-dependent terms in the AA transition (only

s 2
1 appears).
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renormalization procedure
One should observe that our procedure is completely equivalent to consider
one-loop diagrams with the insertion of one-loop counterterms and one may
wonder why
we have not included

p
ZW

� p Z
¿ � p ZX and also a

p
Ze,

arising from charge renormalization and a
p
ZA from the renormalization of the

photon field.
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about counter terms
The argument goes as follows: first we consider the relevant vertices with
counterterms:

AWW 
 ZW Z 1 � 2
A Ze

ï
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Next, we consider the ultraviolet divergent part of the corresponding one-loop
diagrams and obtain:
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With these results we can prove that

p
Ze

) 1
2
p
ZA 
 0 � (138)

i.e. that, like in QED, charge renormalization is only due to vacuum
polarization. Note that the

s
1 prescription is crucial for proving the Ward

identity of Eq.(138). Consider now the one-loop photon self-energy in our
gauge; for instance, the diagrams with a ghost loop have vertices
proportional to ZX (thanks to Eq.(138)) and ghost propagators given by

~ gg 
 1
ZX

M
W

p2
)<M

W
M ¿

mw2 I (139)

Clearly,
p
ZX gives no contribution. The same holds for all other diagrams and

for the remaining counterterms,
p
Z
¿

and
p
ZW . In conclusion, in computing

f
we can forget about one-loop diagrams with field and charge counterterms
and only worry about mass renormalization which we do, in some
unconventional way, by expanding the explicit expression for

f � 1 � � s � .
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Inc lusion of
~

UV

In the previous section we have performed renormalization in the MS scheme
and here we proceed by extending the same procedure to the MS scheme.
The counterterms in the two schemes are connected by the simple relationp
ZMS 
�� 1

2

p
ZMS and what we may show that not only the double and single

ultraviolet poles of
f � s � have scale independent, local, residues but also the

terms proportional to powers of
~

UV have the same property.
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Fermion mass fitting equations

For the complete answer we need fitting equations that relate the bare
masses to the physical ones since the renormalized mass is only an
intermediate parameter which is bound to disappear in the expresion for any
physical observable. For a generic u � d doublet we obtain
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W mass fitting equations

The relation between renormalized and physical W mass is

M2
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where the quantity within square brackets is ultraviolet finite by construction
and where ¾

W W 

gen

¾ f
W W

)t¾ b
W W � 2 � 3 t1

)�s
1 � I (142)
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Definitions

Writing a renormalization equation that involves GF should not be confused
with making a prediction with the muon life-time.

In the following section we present few examples that are relevant in
evaluating

~
g (see Eq.(145)) up to two-loops and therefore in contructing

one of our renormalization equations.

– The Lagrangian of the Fermi theory which is relevant for our pourposes
can be written as:

�
F 
 �

QED
) GF'

2

( g mu r � rA> ( � ( e r � rA> ( g e
� (143)

where rA> 
 1
) r 5.
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To leading order in GF and to all orders in Z the muon lifetime takes the form

1� � 
 s
0 � 1 )t~

q � � s
0 
 G2

F m5�
192 ` 3 I (144)

The standard model weak corrections to � � are conventionally parametrized
by the relation

GF'
2


 g2

8 M2 � 1 )y~
g � I (145)

Our goal will be to derive an explicit expression for
~

g so that one can use
Eq.(145) as a relation where on the left hand side there is a quantity whose
value is obtained by experiment and where on the right hand side we have
bare quantities.
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Ther quantity
~

g may be written as the sum of various contributions, which
are

~
g 
 ~

gWF )t~
gV )t~

gB )y~
gS I (146)

The various terms arise from wave-function renormalization factors, weak
vertices, boxes and the W self-energy. Self-energy corrections always play a
special role and will be dicussed separately, although they are crucial in
establishing gauge parameter independence.
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Strategy of the calculation

In the standard model and in the
M 
 1 gauge the lowest order amplitude is

î
SM ë 0 
=� 2̀�� 4 i

g2

8
1

Q2
)

M2
u � p g ­ �kr ¦ r > u � p �k� u � pe �kr ¦ r > v � p g e �

, GF'
2

u � p g ­ �{r ¦ r > u � p �k� u � pe �kr ¦ r > v � p g e � ü î
F
� (147)

where we have introduced Q 
 p � � pe.
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Note that at one loop we have

1� � 
 m5�
192 ` 3

g4

32 M2 � 1 )
2
~

g
� 1 � )y~

q
� 1 � � � (148)

and we have to separate the pure e.m. corrections evaluated in the Fermi
theory to obtain

~
g
� 1 � . To obtain the amplitude which generates the one-loop

weak correction we consider firstî
W ë 1 
 î

SM ë 1 � î
sub ë 1 � (149)

where
î

sub ë 1 is obtained by
grouping the one-loop SM corrections with one photon line connected to
external fermions and one W line,
by shrinking the W line to a point and by replacing the corresponding W
propagator with 1 � M2.



.

At the one-loop level and after the substitution g2 � � 8 M2 � S GF � ' 2 we obtain

î
sub ë 1 ü î

F ë 1 � (150)

where the latter generates
s

0
~

q
� 1 � . In the subtracted amplitude the soft

terms have disappeared and we generate
~

g
� 1 � with the help of

î leading
W ë 1 
 lim

pi i mi / 0

î
sub ë 1 � (151)

i.e. we only retain the lading part, with vanishing lepton masses and external
momenta, which amounts to neglect corrections of Q Z m2 � M2 . One-loop
diagrams with no photons only have an hard component and do not need a
subtraction.
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r W

Figure: Infrared divergent one-loop box.



1

This amplitude contains two structures,

M0 
 u r ¦ rA> u u r ¦ rA> v � M1 
 u r ¦ r � r þ rA> u u r þ r � r ¦ rA> v I
(152)

However, M1 is simply related to the current
ï

current structure as it will be
illustrated by considering the case of the one-loop box with W � r exchange.
We neglect for the moment all coupling constants and write

î sub
box2 W 
�� dnq

q 5 q 3� q2
)

M2 � � q2 � 2
J
¦ 5 þ

J
þ 3{¦ �

J ¦ 5 þ 
 u � p g ­ �hr ¦ r > r 5 r þ u � p ��� � J
þ 3k¦ 
 u � pe �{r þ r 3 r ¦ r > v � p g e � I

(153)
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After integration we obtain

î sub
box2 W 
�� i ` 2 B0 � 2 � 1 Ë 0 � 0 � M � J ¦ 5 þ J

þ 5 ¦ I (154)

It can be shown that

J
¦ 5 þ

J
þ 5 ¦ 
 B

� 1 � M0
� (155)

where B
� 1 � is obtained with the help of a projection operator,
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spin

6
J ¦ 5 þ J

þ 5 ¦ � B
� 1 � M0 
 0 �

6 
 v � p g e �{r87UrA> u � p g ­ � u � p � �hr87UrA> u � pe � I (156)

After a straightforward algebraic manipulation one obtains (in the limit
Q2 S 0)

B
� 1 � 
 � n � 2 � 2 � (157)

which, after multiplication by B0 � 2 � 1 Ë 0 � 0 � M � and in the limit n S 4
reproduces the correct result, proportional to B0 � 2 � 1 Ë 0 � 0 � M � � 1 � 2.
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Alternatively: we start from the expression for the r � W box without nullifying
the soft scales,

î
box2 W 
 dq 1

d0d1d2d3
u � p g ­ �kr ¦ r > � i ���q ) �p �k� ) m � r þ u � p �{�

D u � pe �{r þ � i ���q ) �pe � ) me r ¦ rA> v � p g e � � (158)



;

where we introduce

d0 
 q2 � d1 
0� q )
p �{� 2 ) m2� � d2 
0� q )

P � 2 ) M2 � d3 
0� q )
pe � 2 ) m2

e
�

(159)

p � � p g ­ 2 
 P2 � � p � � pe � 2 
 Q2 I (160)

A standard decomposition gives

1
d0d1d2d3


 1
P2

)
M2

1
d0d1d3

� 1
d1d2d3

� 2
q
X
P

d0d1d2d3 I (161)
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– The first= term in the decomposition (in the limit m P2 mUÇ M2) is the QED
vertex in the local Fermi theory that can be computed with standard
techniques;

– The last two terms inside the square bracket of Eq.(161) are finite in the
soft limit so that the extra contribution from the infrared SM box can be
evaluated for m � � me 
 0 and Q2 � P2 
 0.

In this limit only the term with three propagators survives and gives the
well-known result.
With this technique (extracting instead of subtracting) we circumvent the
puzzling procedure of Eq.(151) where the subtracted term is zero in
dimensional regularization. However, the two procedures are totally
equivalent.
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If we neglect, for the moment, issues related to gauge parameter
independence it is convenient to define a G constant that is totally process
independent,

~
g 
 p

G
)y~

gS � G 
 GF 1 � g2

8 M2

p
G

� p
G 


n b 1

g2

16 ` 2

n p � n �
G I
(162)

Alternatively, but always neglecting issues related to gauge parameter
independence, we could resum

p
G by defyning GR 
 GF � � 1 )Np

G � .
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In one caseñ we obtain

G 
 g2

8 M2
1 � g2

16 ` 2 M2

¾
W W � 0 � ? 1 �

¾
W W � 0 � 
 ¾Í� 1 �

W W � 0 � ) g2

16 ` 2

¾Í� 2 �
W W � 0 � � (163)

where
¾

W W is the W self-energy,
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whereas withA resummation we get

GR 
 g2

8 M2
1 � g2

16 ` 2 M2

¾
W W � 0 � ? 1 �

¾
WW � 0 � 
 ¾ � 1 �

W W � 0 � ) g2

16 ` 2

¾ � 2 �
W W � 0 � � ¾ � 2 �

W W � 0 � p � 1 �G I (164)
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GraphShot package II
Introduction & Motivation C

D
alculation & Techniques Results & Discussion Summary & Conclusion

Calculation & Techniques

2-loop contributions are computed numerically:

Diagrams: GraphShot
S
t

. Actis, A. Ferroglia, G. Passarino, M. Passera, C.S., S. Uccu irati

Form3 based package for automatic generation and
manipulation of 1- and 2-loop Feynman diagrams:
insert Feynman-rules, perform traces, remove reducible
scalar products, symmetrize integrals, reduction, counter terms,
renormalization,...
v UV-finite integrals classified into:

sw calar, vector and tensor type integralsx mapped on form factors

Form factors are evaluated numerically in parametric space

Before num. integration: C
y

ancel collinear sing. +z S
{

tudy threshold

For a moment consider H | } ~ without loss of generality

C
�
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Generating the Amplitude:
reduction

��� � �"���� � � � � � ���
���
� � � � � � ���
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Generating the Ampitude

Strategy
group diagrams into families, paying attention to permutation of
external legs
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p3

p1
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Rooting

Strategy
mapping onto a standard rooting for loop momenta

� P
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q1
�

P
q1
�
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� q2

q2
�
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�
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�
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�

P
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q1
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� P
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Symmetr y

Strategy
apply symmetries to identify identical objects

� P
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List-of-dia grams: all what is needed
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2
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� ���
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1�
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�
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Any Feynman diagram G with L internal legs and l loops is representable in n dimensions as

G ÓÕÔ i Ö n × 2 Ø l ÙÛÚ
L � n

2
l ÜÞÝ dxG ß � 1 � xG �

Un × 2 � V � i 0 � L à n l × 2 á (165)

where
Ù

is the Euler gamma-function and where the integration measure can be written as

dxG Ó lâ
i ã 1

dxi á xG Ó lä
i ã 1

xi å (166)
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Furthermore, the polynomials V and U are defined by

V Ó ä
i

m2
i xi

� ä
i

q2
i xi

� 1

U

ä
ij

Bij qi ç qj xi xj á
U Ó ä

T

â
xi è T

xi Ó det � Urs � á Urs Ó ä
i

xi é ir é is á (167)

where é is is the projection of line i along the loop s. Furthermore, T is a co-tree and Bij are the parametric functions
for the given diagram. Although these functions can be determined completely by the topological structure of the
diagram G we give a practical example of how to construct U and V for the two-loop diagram of Fig. 2

r1 r2

r2 ê p

r1 à r2
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After introducing Feynman parameters the integrand contains a factor 1 ì D4 with

D Ó 4ä
i ã 1

xi Ô q2
i
�

m2
i
Ø á q1 Ó r1 á q2 Ó r1 � r2 á q3 Ó r2 á q4 Ó r2

�
p á (168)

where rs is the independent integration momentum around the loop s, xi are Feynman parameters with í i xi Ó 1.
The part of D which is quadratic in r1 î 2 will be written as

r t U r á U11 Ó x1
�

x2 á U22 Ó x2
�

x3
�

x4 á U12 Ó U21 Ó � x2 å (169)

Next we rewrite Uij as a sum,

Uij Ó 4ä
l ã 1
é li é lj xl á (170)

and derive the coefficients é as

é 11 Ó é 21 Ó é 32 Ó é 42 Ó �
1 á é 22 Ó � 1 á é 31 Ó é 41 Ó é 12 Ó 0 å (171)
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Furthermore, let U be the determinant of the matrix Uij , thus

U Ó det Ô Uij
Ø Ó x1 x234

�
x2 x34 á (172)

where xij ð ð ð l Ó xi
�

xj
� çñçòç � xl . Momenta pi will then be defined with p4 Ó p and pi Ó 0 for i ó 4. The following

change of variables in the r1-integral is then performed:

r ô1 õ r ô1 � 4ä
j ã 1

2ä
t ã 1

xj p ôj é it Ô U à 1 Ø
1t
Ó r ô1 � 2ä

t ã 1

x4p ô é 4t Ô U à 1 Ø
1t
Ó r ô1 � x4

x2

U
p ô å (173)

Similarly we change variable also in the r2-integral,

r ô2 õ r ô2 � 4ä
j ã 1

2ä
r ã 1

xj p ôj é jr Ô U à 1 Ø
2r
Ó r ô2 � x4

x12

U
p ô å (174)
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We derive the following result:
4ä

i ã 1

xi Ô q2
i
�

m2
i
Ø õ r t U r

�
V á (175)

which defines the polynomial V as

V Ó 4ä
i ã 1

xi m2
i
�

x4 p2 � 1

U
x12 x2

4 p2 å (176)

After a diagonalization of the symmetric matrix U,ä
i ÷ j ÷ � A à 1 � ii ÷ Ui ÷ j ÷ Aj ÷ î j Ó Ui ß ij á (177)

we perform a change of variables with unit Jacobian, si Óøí j Aij rj , and use

Ý lâ
i ã 1

dsi ù lä
i ã 1

Ui s
2
i
�

V ú à NL ÓøÝ lâ
i ã 2

dsi ds1 ù U1s2
1
� lä

i ã 2

Ui s
2
i
�

V ú à NL

Ó i Ö n × 2 U à n × 2
1

Ù � NL
� n ì 2 �Ù � NL � Ý lâ

i ã 2

dsi ù lä
i ã 2

Ui s
2
i
�

V ú n × 2 à NL Ó etc. á (178)
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to obtain the result of Eq.(165). Note that UV-singularities come from U. We also define

V Ó U ù ä
i

m2
i xi

� ä
i

q2
i xi ú � ä

ij

Bij qi ç qj xi xj (179)

and obtain

G ÓÕÔ i Ö n × 2 Ø l ÙÛÚ
L � n

2
l Ü Ý dxG ß � 1 � xG �

U ü n × 2 ê 1 ý l à L Ô V � i 0Ø L à n × 2 l å (180)
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All-y ou-can-do-anal ytic

rule-of-the-game
Adelante Numerics, cum judicio

UVÿ
UV poles, of courseÿ
beware, overlapping
divergencies

IR/Collÿ
IR poles, of courseÿ
Collinear logs, of course

upshot
Cancellations, if any, enforced analytically
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Collinear

Example�
double divergency � double subtraction

1

0
dxdy

1
xyA

�
x � y ��� 	 B

�
x � y ��
 1

0
dxdy

1
xyA

�
x � y ��� 	 B

�
x � y � �
�

� 1
xyA

�
x � 0 ��� 	 B

�
x � 0 � � � 1

xyA
�
0 � y ��� 	 B

�
0 � y � �

� 1
xyA

�
0 � 0 ��� 	 B

�
0 � 0 � � 	 � 0ÿ

First term � set 	 
 0
ÿ

Second (third) term � integrate in y(x) � ln 	ÿ
Last term � integrate in x and y � ln2 	
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Extracting Collinear diver gencies

Theorem
Coefficients of collinear logarithms are integrals of one-loop
functions

m

m

m
m

M3
M4

M5� P

p1

p2


 ln
m2

s

1

0
dy

M3

M4

M5� P�
1� y � p1

yp1

p2

� finite part
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Extracting Collinear diver gencies

Example
Sometimes the answer is explicit

m
m

M
m�m�� P

p1

p2


 ln
m2

s
ln

m� 2
s

Li2
s

M2 � ln
m2

s
� ln

m� 2
s

Li3
s

M2 � 2 S12
s

M2

� ln
M2

s
Li2

s
M2 � finite part
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General results I

p

m

m

q

q � p

q � 1
a ����� q � m

a 
 ln
m2

s

1

0
dz

zp

�
1 � z  p

q � 1
a ���!� q � m

a � coll. fin.

Coll. behavior of
arbitrary two-loop
q -scalar, UV-finite
diagrams
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General results II

p

m

m

q

q � p

q # 1���!� q # r q � 1
a ����� q � m

a 
 ln
m2

s
1 �%$

2
&

UV

�
s � �'$

4
ln

m2

s

( 1

0
dz

� � z � r
zp

�
1 � z  p

q � 1
a ����� q � m

a p ) 1*+*+* p ) r � c. f.

Generalization to
tensor integrals
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General results III

V H
dc - P2M2 . 2P2q1/ p1 0 4 1 q1/ p1 2 2 3 P

p1

p2

m

m

M

M

m 4
m 4

- 2 1 0 1 .655 l7 L L8 . 2 1 . 1 .655 l7 l7 0 1 . Li2 1 5 2 1 L . L8 2

0 2
1

0
dz 1 1 0 z 2 P2 L . 1 P2 . 2 q / p2 2 L8 3 P

9
1 3 z : p1

p2 ; zp1

M

0

M . V H
dc fin

< 
 � P2 = M2 � l> 
ln
�
1 � < �
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Extracting Ultra violet diver gencies

V I 
 � P

p1

p2

m1

m2

m3

m4

m5


 1@ 4

dnq1 dnq2A
1 B A 2 B

x

A
3 B A 4 B A 5 B

y1 C y2 C y3

�
D
1 EGF q2

1 � m2
1D

2 EGF � q1
� q2 � 2 � m2

2D
3 EGF q2

2 � m2
3D

4 EGF � q2 � p1 � 2 � m2
4D

5 EGF � q2 � P � 2 � m2
5


 CH 1

0
dx dS3

�
y1 � y2 � y3 � A x � 1 � x �IB � HKJ 2 � 1 � y1 � HLJ 2 � 1 V

� 1 � H
The single pole can always be expressed in terms of 1L.

V I 
 m2
3 m2

3

m1

m2

( � P

p1

p2

m3

m4

m5 � finite part*
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Checks

Off-shellN WSTIs involving special sources; contracted sources� black circles, physical ones � gray boxes

H O
O

� H

Y A

O
� H

W

X

O

 0

H O
O

� P 0

Y Z O
O

� P
X O

O

 0
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Tasting numerical evaluation

Finite par ts

Write the finite par t of a FD in one of the following forms:

1 dx Q
�
x �

V
�
x � V

�
x �SR 0;

2 dx Q
�
x � lnn V

�
x � ;

3 dx Q
�
x �

V
�
x � f V

�
x �

P
�
x � f

�
x � 
 lnn � 1 � x �T� Lin

�
x �T� Sn C p � x �

Typical integrand with k Feynman variab les:

zn1
1 U+U+U znk

k V V � z1 � *+*+* � zk � lnm V
�
z1 � *+*+* � zk �T�W 
 � 1 � � 2 �YX z Z\[ A

0 � 1 B k
V quadratic with respect to a subset of X z Z in which each z2

i is
proportional to one squared external momentum.
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bite-and-run strategy I

Multiv ariate^ Polylogsÿ
V is not complete_ ` - 0 1 and m - 0 (m a 0 similar)

1
a x . b -Yb x

1
a

ln 1 . a
b

x_ ` - 0 2 and m - 0 (m a 0 similar)

11 a x y . b x . c y . d 2 2 - 0 b x b y

a d 0 b cc ln 1 . 1 a d 0 b c 2 x
b 1 axy . bx . cy . d 2
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bite-and-run strategy II

Multiv ariate PolyLogsÿ
V is complete

V
�
z � 
 z t H z � 2 K t z � L 
 �

z t � Z t � H
�
z � Z �
� B


 Q
�
z �e� B �

Z 
 � K tH
� 1 � B 
 L � K tH

� 1K �f t g
z Q

�
z � 
 � Q

�
z �T� f 
 � � z � Z � = 2 �

V V � z � 
 h � f t g
z

1

0
dy y i � 1 Q

�
z � y � B V

e.g. V
� 1 
 1 � f t g

z
1
Q

ln 1 � Q
B
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Around threshold

H

O
O

W

W

d

u

u

u
H

O
O

W

W
d

u

u

u

H

O
O

Z

Z
u

u

u

u
H

O
O

W

W

d

u

u

u
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Singularities

ÿ
FD have a complicated analytical structure

ÿ
A frequently encountered singular behavior is associated
with the so-called normal thresholds: the leading Landau
singularities of self-energy-like diagrams

ÿ
which can appear, in more complicated diagrams, as
sub-leading singularities.
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1 mon -behavior

H

m

m

m

m 
 � - m2

( H
m

m

m

� reg. part
at
h 
 0
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Origin of 1 mqnÿ
(1-loop diagrams) r (H wave-function FR)

H

Ws t u
H v

v
ÿ

(1-loop diagrams) r (W mass FR)

W

u
H v

v
W

W

W

ÿ
Pure 2-loop diagrams
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Logarithmic singularities

H

x

x
x

Wy!z
Wy!z

Wy!z
Wy�z

Wy!z

{ ln | W

Remnant of
Coulomb
singularity

H x
Wy!z
Wy!z

Wy!z
Wy!z

{ 1 }I| W
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Cure for logarithmic singularities

H

x

x
x

Wy!z
Wy!z

Wy!z
Wy�z
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 = 0 GeVWΓ
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Solutions

RM scheme - noneÿ
where masses are the real on-shell ones; it gives the
extension of the generalized minimal subtraction scheme
up to two loop level.

MCM scheme - minimalÿ
start by removing the Re label in those terms that, coming
from finite renormalization, violate WSTIs.ÿ
split the amplitude

� NLO 

i F W C Z

ASRC ih
i
� ALOG ln � h 2

W
� i0 � AREM �
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Solutions

MCM scheme� - minimalÿ
After proving that all coefficients, gauge-parameter
independent by construction, satisfy the WST identities, we
minimally modify the amplitude introducing the
complex-mass scheme of for the divergent terms.

m2
i 
 M2

i 1 � GF M2
W

2 � 2 @ 2
Re � � 1 �i

�
M2

i � �
m2

i 
 si 1 � GF sW

2 � 2 @ 2
� � 1 �i

�
si � �
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Solutions
pitfalls
A nice feature� of the MCM scheme is its simplicity

MCM scheme - minimalÿ
The MCM, however, does not deal with cusps associated
with the crossing of normal thresholds.

MCM scheme - minimalÿ
The large and artificial effects arising around normal
thresholds in the MCM scheme (or in RM scheme) are
aesthetically unattractive.ÿ
In addition, they represent a concrete problem in assessing
the impact of two-loop EW corrections on processes
relevant for the LHC.
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Solutions

CM scheme - completeÿ
The procedure described for the divergent terms has been
extended to the remainder AREM. In particular, all two-loop
diagrams have been computed with complex masses for
the internal vector bosons.

CM scheme - completeÿ
In the full CM setup, the real parts of the W and Z
self-energies induced by one-loop renormalization of the
masses and the couplings have to be traded for the
associated complex expressions.
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EW on gluon-gluon fusion

 [GeV]HM
100 150 200

�
250
�

300
�

350
�

400
�

450
�

500
�

 [%
]

E
W

δ

-4

-2

0
�2
4

6
�8
�

WW ZZ tt

EW, totalδ
�

�WW�
ZZ� � �

t t



�

EW on decay ( ��� )
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Comparing
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Comparing
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Comple x Summar y

C
²

orrections to g³ g ´ H M
µ

ethod for NLO EW T
¶

hreshold behaviour Results Conclusions

T
·

hreshold behaviour for H ¸ ¹
C
º

omparison of EW corrections to H » ¼ ½ around the WW t
¾
hreshold,

o¿ btained using d
À

ifferent schemes f
Á
or treating unstable particles
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Æ Result obtained with real masses divergent at WW ; good approx. below;
completely off above threshold, since no cancellation mechanism occursÇ Result in MCM setup finite, shows cusp; result in CM setup is smoothÈ At threshold, result in MCM setup É 3 Ê 5 Ë ; result in CM setup Ì 2 Í 7ÎÏ prediction at the Ð level requires complete CMS implementation
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EW on K-factor s - uncer tainty

We introduce two options for including NLO electroweak
correctionsÒ

CF (Complete Factorization):

ÓÕÔ 0 Ö Gij × ÓÕÔ 0 Ö 1 ØÚÙ EW Û M2
H Ü Gij ÝÒ

PF (Partial Factorization):

Ó Ô 0 Ö Gij × Ó Ô 0 Ö Gij ØÚÞ 2
S Ûàß 2

R Ü Ù EW Û M2
H Ü G Ô 0 Öij á

Can we do it better? Babis, Radja and Frank say yes
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EW on K-factor s - LHC
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Another view

Introduction & Motivation Calculation & Techniques Results & Discussion S
å

ummary & Conclusion

Result:
The hadronic process pp æ H ç X

Use Fortran program HiggsNNLO by M. Grazzini

K-factor: Ratio cross section with higher orders over LO result
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Central value for cross section is shifted by 2-5% (
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MH ë 120 GeV)
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wo-loop electroweak corrections to Higgs production and deð cay at LHC 11
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EW on K-factor s - Tevatron
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Tevatron summar y

C
²

orrections to g³ g ó H M
ô

ethod for NLO EW Threshold behaviour Results C
²

onclusions

NLO EW corrections at the Tevatron

Impact of NLO EW effects at Tevatron II, õ s ö 1 ÷ 9ø 6 TeV,
100 GeV ù MH ú 2

û
00 GeV (using HIGGSNNLO, by M.Grazzini)
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� Uncertainty band shows stronger sensitivity on the Higgs mass, once

NLO EW effects are included� Impact of NLO EW corrections smaller respect to NNLL resummation
Catani,de Florian,Grazzini,Nason’03 (

� �
12 � for MH � 120 GeV)  95 ¡ C

º
L exclusion of a SM Higgs for MH ¢ 170 GeV, £ e¤ ffects relevant;

CM result employed by Anastasiou,Boughezal,Petriello’08,
prediction ¥ is 7 ¦ 10 § larger than ¨ u© sed by TEVNPH WG
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LHC summar y

C
«

orrections to g¬ g ­ H M
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5 Uncertainty band shows stronger sensitivity on the Higgs mass, once
NLO EW effects are included6 WW and t t thresholds visible, but smooth having introduced
everywhere CMs7 Impact of NLO EW corrections comparable to that of NNLL
resummation Catani,de Florian,Grazzini,Nason’03 ( 8 6 9 for
MH : 120 GeV); for large MH NLO EW corrections turn negative,
screening effect with NNLL resummation
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