High-precision calculations of Higgs properties

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

Precision Observables and Radiative Corrections relevant for future $e^{+} e^{-}$colliders, 13-14 July 2015,CERN

This talk is about why NLO SMEFT + POs 1, it is not

x how NLO^{2}
x what NLO^{3}
x why POs^{4}

fuel for discussion ... nothing more

[^0]
Part I

Warming up: mostly Lep

POs at Lep，the role of the \mathbf{Z}－pole

From $\frac{V_{e^{+}+-\gamma}^{\mu} V_{\mathrm{ffy}}^{\mu}}{s}+\frac{V_{e^{+}-\mathrm{z}}^{\mu} V_{\mathrm{frZ}}^{\mu}}{s-M_{\mathrm{Z}}^{2}}+$ Boxes
To $\quad \sigma_{f}^{\text {peak }}=12 \pi \frac{\Gamma_{\mathrm{e}} \Gamma_{\mathrm{f}}}{M_{\mathrm{Z}}^{2} \Gamma_{\mathrm{Z}}^{2}}$
Caution：unstable particles present

From on－shell mass $M_{\mathbf{z}} \rightarrow$ To complex pole $\boldsymbol{s}_{\mathbf{z}}$

Figure 1: The process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow(\mathrm{Z}, \gamma) \rightarrow \mathrm{ff}$ in the Born approximation:

Figure 2- The process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow(\mathrm{Z}, \gamma) \rightarrow \mathrm{f}$; final fermion vertex and its counter-terms.

DIAGRAMMATICA at Lep1

role of theory:

delivering boxes and crosses with maniacal care for gauge invariance

Figure 4: Procens $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow(\mathrm{Z}, \gamma) \rightarrow \mathrm{ff}^{-}$; selfenergies and kinetic connter-terms

The complete amplitude for the four-fermion process should be presented in all schemes and all gauges with a general structure,

$$
\begin{aligned}
\mathscr{A} \sim & \frac{1}{s}\left\{\alpha^{\mathrm{fer}}(s) \gamma^{\mu} \otimes \gamma_{\mu}+\chi(s)\right. \\
& {\left[\mathscr{F}_{\mathrm{QQ}}^{\mathrm{ef}}(s, t) \gamma^{\mu} \otimes \gamma_{\mu}+\mathscr{F}_{\mathrm{LL}}^{\mathrm{ef}}(s, t) \gamma^{\mu} \gamma_{+} \otimes \gamma_{\mu} \gamma_{+}\right.} \\
& \left.\left.+\mathscr{F}_{\mathrm{QL}}^{\mathrm{ef}}(s, t) \gamma^{\mu} \otimes \gamma_{\mu} \gamma_{+}+\mathscr{F}_{\mathrm{LQ}}^{\mathrm{ef}}(s, t) \gamma^{\mu} \gamma_{+} \otimes \gamma_{\mu}\right]\right\}
\end{aligned}
$$

$$
\chi(s)=s \chi_{Z}(s)
$$

Again the raison d'etre of any renormalization scheme is deeply connected to the possibility of defining the form factors in a gauge-invariant manner.

Where are the PO's?

$$
\begin{aligned}
\frac{d \sigma_{\mathrm{f}}}{d \Omega} & =\frac{\alpha^{2}}{4 s} \mathrm{~N}_{\mathrm{f}}^{c} \beta_{\mathrm{f}}\left[\left(1+c^{2}\right) \mathscr{F}_{1}(s)\right. \\
& \left.+4 \mu_{\mathrm{f}}^{2}\left(1-c^{2}\right) \mathscr{F}_{2}(s)+2 \beta_{\mathrm{f}} c \mathscr{F}_{3}(s)\right]
\end{aligned}
$$

where $c=\cos \theta$ is the cosine of the scattering angle and

$$
\beta_{\mathrm{f}}^{2}=1-4 \mu_{\mathrm{f}}^{2} \text { with } \mu_{\mathrm{f}}^{2}=m_{\mathrm{f}}^{2} / s
$$

The energy dependence is confined in the \mathscr{F}-functions

$$
\begin{aligned}
\mathscr{F}_{1}(s) & =Q_{\mathrm{e}}^{2} Q_{\mathrm{f}}^{2}+2 Q_{\mathrm{e}} Q_{\mathrm{f}} g_{\mathrm{v}}^{\mathrm{e}} g_{\mathrm{v}}^{\mathrm{f}} \operatorname{Re} \chi(s) \\
& +\left[\left(g_{\mathrm{v}}^{\mathrm{e}}\right)^{2}+\left(g_{\mathrm{A}}^{\mathrm{e}}\right)^{2}\right]\left[\left(g_{\mathrm{v}}^{\mathrm{f}}\right)^{2}+\left(g_{\mathrm{A}}^{\mathrm{f}}\right)^{2}-4 \mu_{\mathrm{f}}^{2}\right]|\chi(s)|^{2}, \\
\mathscr{F}_{2}(s) & =Q_{\mathrm{e}}^{2} Q_{\mathrm{f}}^{2}+2 Q_{\mathrm{e}} Q_{\mathrm{f}} g_{\mathrm{v}}^{\mathrm{e}} g_{\mathrm{v}}^{\mathrm{f}} \operatorname{Re} \chi(s) \\
& +\left[\left(g_{\mathrm{v}}^{\mathrm{e}}\right)^{2}+\left(g_{\mathrm{A}}^{\mathrm{e}}\right)^{2}\right]\left(g_{\mathrm{v}}^{\mathrm{f}}\right)^{2}|\chi(s)|^{2}, \\
\mathscr{F}_{3}(s) & =2 Q_{\mathrm{e}} Q_{\mathrm{f}} g_{\mathrm{A}}^{\mathrm{e}} g_{\mathrm{A}}^{\mathrm{f}} \operatorname{Re} \chi(s)+4 g_{\mathrm{v}}^{\mathrm{e}} g_{\mathrm{v}}^{\mathrm{f}} g_{\mathrm{A}}^{\mathrm{e}} g_{\mathrm{A}}^{\mathrm{f}}|\chi(s)|^{2}
\end{aligned}
$$

χ is the reduced γ / \mathbf{Z} propagator ratio. The form factors \mathscr{F} include weak loop corrections but, in their construction, we have completely ignored a few ingredients:
\& QED radiation,
\diamond weak boxes and
© all the imaginary parts

Usually, 25 POs were introduced and discussed

- the mass of the $\mathbf{W}\left(M_{\mathbf{W}}\right)$
- the hadronic peak cross-section ($\boldsymbol{\sigma}_{\mathbf{h}}$)
- the partial leptonic and hadronic widths
$\left(\Gamma_{\mathrm{f}}, \mathbf{f}=\mathbf{v}, \mathbf{e}, \mu, \tau, \mathbf{u}, \mathbf{d}, \mathbf{c}, \mathbf{s}, \mathbf{b}\right)$
- the total width $\left(\boldsymbol{\Gamma}_{\mathbf{z}}\right)$
- the total hadronic width $\left(\Gamma_{\mathbf{h}}\right)$

Queen of new POs $\boldsymbol{\sigma}_{\mathbf{Z H}}$

- the total invisible width ($\Gamma_{\text {inv }}$)
- various ratios ($\boldsymbol{R}_{1}, \boldsymbol{R}_{\mathrm{b}}, \boldsymbol{R}_{\mathrm{c}}$)
- the asymmetries and polarization
$\left(\mathrm{A}_{\mathrm{FB}}^{\mathrm{u}}, \mathrm{A}_{\mathrm{LR}}^{\mathrm{e}}, \mathrm{A}_{\mathrm{FB}}^{\mathrm{b}}, \mathrm{A}_{\mathrm{FB}}^{\mathrm{c}}, P^{\mathrm{c}}, P^{\mathrm{b}}\right)$
- effective sines $\left(\sin ^{2} \theta_{e}, \sin ^{2} \theta_{b}\right)$

Part II

Learning from LHC: mostly SMEFT

$$
\text { In the next few slides I will show you beauty in a bandful of } \kappa \mathrm{s}
$$

Start with EFT at a given order (here NLO)
O write any amplitude as a sum of κ-deformed SM sub-amplitudes

Oadd another sum of κ-deformed non-SM amplitudes
show that ks_{s} are linear combinations of Wilson coefficients
discover correlations among the кs

Rationale for this course of action

Physics is symmetry plus dynamics
Symmetry is quintessential (gauge invariance etc.)
Symmetry without dynamics don't bring you this far
(1) At Lep dynamics was SM, unknowns were $M_{H}\left(\boldsymbol{\alpha}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{Z}}\right), \ldots\right)$
(2) At LHC (post SM) unknowns are SM-deviations, dynamics?

- BSM is a choice. Something more model independent?
(1) An unknown form factor?
(2) A decomposition where dynamics is controlled by $\operatorname{dim}=4$ amplitudes (with known analytical properties) and deviations (with a direct link to UV completions) are Wilson coefficients?
O It is for posterity to judge (tor me deviaitions need a sm basis)

A study of SM-deviations: here the reference process is

$$
\mathbf{H} \rightarrow \gamma \gamma
$$

$\checkmark \times$-approach: write the amplitude as

$$
\mathrm{A}=\sum_{i=\mathrm{t}, \mathrm{~b}, \mathrm{w}} \kappa_{i} \mathscr{A}^{i}+\kappa_{c}
$$

\mathscr{A}^{t} being the SM t -loop etc. The contact term (which is the LO SMEFT) is given by κ_{c}. Furthermore

$$
\kappa_{i}=1+\Delta \kappa_{i} \quad i \neq c
$$

\checkmark For the sake of simplicity assume

$$
\kappa_{\mathbf{b}}=\mathbf{\kappa}_{\mathrm{w}}=1 \quad\left(\kappa_{\mathrm{w}}^{\exp }=0.95_{-0.13}^{+0.14} A T L A S \quad 0.96_{-16}^{+35} C M S\right)
$$

and compute

In LO SMEFT κ_{c} is non-zero and $\kappa_{\mathbf{t}}=1^{5}$. You measure a deviation and you get a value for $\boldsymbol{\kappa}_{\boldsymbol{c}}$. However, at NLO $\Delta \boldsymbol{\kappa}_{\boldsymbol{t}}$ is non zero and you get a degeneracy. The interpretation in terms of $\boldsymbol{\kappa}_{\boldsymbol{c}}^{\mathrm{LO}}$ or in terms of $\left\{\boldsymbol{\kappa}_{\boldsymbol{c}}^{\mathrm{NLO}}, \Delta \mathrm{K}_{\mathbf{t}}^{\mathrm{NLO}}\right\}$ could be rather different.

$\Gamma\left(\Delta \kappa_{t}, \kappa_{c}\right)=\left(42.29-23.87 \Delta \kappa_{t}-13.01 \kappa_{c}\right) \frac{G_{F} \alpha^{2}}{128 \sqrt{2 \pi^{3}}} M_{H}^{3}$

Fitting is not interpreting

Of course, depending on what you measure, the corresponding interpretation could tell us that the required kappas or Wilson coefficients are too large to allow for a meaningful interpretation in terms of a weakly coupled UU completion ${ }^{6}$

[^1]For interpretations other than weakly coupled renormalizable, see arXiv:1305.0017
EFT purist: there is no model independent EFT statement on some operators being big and other small (arXiv:1305.0017)

[^2]
Going interpretational

$$
\mathrm{A}_{\mathrm{SMEFT}}=\frac{g^{2} s_{\theta}^{2}}{8 \pi^{2}}\left[\sum_{i=\mathrm{t}, \mathrm{~b}, \mathrm{w}} \kappa_{i} \mathscr{A}^{i}+\frac{g_{6}}{g^{2} s_{\theta}^{2}} \frac{M_{\mathrm{H}}^{2}}{M_{\mathrm{W}}^{2}} 8 \pi^{2} a_{\mathrm{AA}}\right]
$$

\checkmark Assumption: use arXiv:1505.03706, work in the Einhorn-Wudka PTG scenario (arXiv:1307.0478), adopt Warsaw basis (arXiv:1008.4884)
(1) LO SMEFT: $\boldsymbol{\kappa}_{\boldsymbol{i}}=\mathbf{1}$ and a_{AA} is scaled by $1 / 16 \pi^{2}$ being LG
(2) NLO PTG-SMEFT: $\boldsymbol{\kappa}_{\boldsymbol{i}} \neq 1$ but only PTG operators inserted in loops (non-factorizable terms absent), $\boldsymbol{a}_{\mathrm{AA}}$ scaled as above

$$
\begin{aligned}
& \text { At NLO, } \Delta \mathrm{\kappa}=g_{6} \rho \text { and } a_{\mathrm{AA}}=s_{\theta}^{2} a_{\phi \mathrm{w}}+c_{\theta}^{2} a_{\phi \mathrm{B}}+s_{\theta} c_{\theta} a_{\phi \mathrm{WB}} \\
& \mathscr{A}_{\mathrm{SMEFT}}=\sum_{i=\mathrm{t}, \mathrm{~b}, \mathrm{w}}\left(1+g_{6} \rho_{i}\right) \mathscr{A}^{i}+g_{c} a_{\mathrm{AA}}
\end{aligned}
$$

Warsaw basis

$$
\begin{aligned}
g_{6}^{-1} & =\sqrt{2} G_{\mathrm{F}} \Lambda^{2} \\
g_{c} & =\frac{1}{2} \frac{g_{6}}{g^{2} s_{\theta}^{2}} \frac{M_{\mathrm{H}}^{2}}{M_{\mathrm{W}}^{2}} \\
\rho_{\mathrm{t}} & =-\frac{1}{2}\left[a_{\phi \mathrm{D}}-2 s_{\theta}^{2}\left(a_{\mathrm{t} \phi}+2 a_{\phi \square}\right)\right] \frac{1}{s_{\theta}^{2}} \\
\rho_{\mathrm{b}} & =-\frac{1}{2}\left[a_{\phi \mathrm{D}}+2 s_{\theta}^{2}\left(a_{\mathrm{b} \phi}-2 a_{\phi \square}\right)\right] \frac{1}{s_{\theta}^{2}} \\
\rho_{\mathrm{w}} & =-\frac{1}{2}\left[a_{\phi \mathrm{D}}-4 s_{\theta}^{2} a_{\phi \mathrm{D}}\right] \frac{1}{s_{\theta}^{2}} \\
\Gamma_{\text {SMEFT }} & =\frac{\alpha^{2} G_{\mathrm{F}} M_{\mathrm{H}}^{3}}{32 \sqrt{2} \pi^{3}} \frac{M_{\mathrm{W}}^{4}}{M_{\mathrm{H}}^{4}}\left|\mathscr{A}_{\text {SMEFT }}\right|^{2} \quad \Gamma_{\mathrm{SM}}=\left.\Gamma_{\mathrm{SMEFT}}\right|_{\Delta \kappa_{i}=0, \kappa_{c}=0}
\end{aligned}
$$

hi-tech center
Relaxing the PTG assumption introduces non-factorizable sub-amplitudes proportional to $a_{t W}, a_{t B}, a_{b W}, a_{b B}, a_{\phi W}, a_{\phi B}, a_{\phi W B}$ with a mixing among $\left\{a_{\phi W}, a_{\phi B}, a_{\phi W B}\right\}$. Meanwhile, renormalization has made one-loop SMEFT finite, e.g. in the G_{F}-scheme, with a residual μ_{R}-dependence

Appendix C. Dimension-Six Basis Operators for the SM^{22}. Einhorn, Wudka

$X^{3}(\mathrm{LG})$		φ^{6} and $\varphi^{4} D^{2}$ (PTG)		$\psi^{2} \varphi^{3}$ (PTG)	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right)^{3}$	$Q_{e \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right)$
$Q_{\tilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	$Q_{\varphi \square}$	$\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)$	$Q_{u \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right)$
$\begin{aligned} & Q_{W} \\ & Q_{\widetilde{W}} \\ & \hline \hline \end{aligned}$	$\begin{aligned} & \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \\ & \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \\ & \hline \hline \end{aligned}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$	$Q_{d \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right)$
$X^{2} \varphi^{2}$ (LG)		$\psi^{2} X \varphi$ (LG)		$\psi^{2} \varphi^{2} D$ (PTG)	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{\text {eW }}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi l}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{\stackrel{\leftrightarrow}{\mu}_{\mu}} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi} \widetilde{G}$	$\varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e B}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi l}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{\stackrel{H}{\mu}^{I}} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A}$	$Q_{\varphi e}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}$	$Q_{\varphi q}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi B}$	$\varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}$	$Q_{u B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}{ }_{\mu}^{I} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}$	$Q_{d G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A}$	$Q_{\varphi u}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
$Q_{\varphi W B}$	$\varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi d}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{\varphi \widetilde{W} B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi u d}$	$i\left(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

Table C.1: Dimension-six operators other than the four-fermion ones.

[^3]\checkmark Demonstration strategy:
(1) Allow each Wilson coefficient to vary in the interval $\mathbf{I}_{\mathbf{2}}=[-2,+2]$ (naturalness ${ }^{7}$; put $\Lambda=3 \mathrm{TeV}$ (conventional point)
(2) LO: generate points from $\mathbf{I}_{\mathbf{2}}$ for $\boldsymbol{a}_{\mathrm{AA}}$ with uniform probability and calculate \mathbf{R}_{Lo}
(2) NLO: generate points from I_{2}^{5} for $\left\{a_{\phi \mathrm{D}}, a_{\phi \square}, a_{t \phi}, a_{b \phi}, a_{A A}\right\}$ with uniform probability and calculate $\mathbf{R}_{\text {NLo }}$
(3) Calculate the \mathbf{R} pdf
$$
\text { N.B. }\left|a_{\mathrm{AA}}\right|<1 \text { is equivalent to }\left|g_{c} a_{\mathrm{AA}}\right|<8.610^{-2}
$$

[^4]

Changing the interval

From Wilson coefficients (a) to $\boldsymbol{\kappa}$

$$
\Lambda=3 T e V
$$

$$
-2 \leq a_{i} \leq+2
$$

$$
\text { ATLAS: } k_{\gamma}=0.90_{-0.14}^{+0.16}
$$

CONFNOTES/ATLAS-CONF-2015-007/tab-08.png CMS: $\boldsymbol{k}_{\boldsymbol{\gamma}}=1.14_{-0.13}^{+0.12}$
http://arxiv.org/pdf/1412.8662.pdf
these unc. cannot be underestimated

ATLAS $\kappa^{\mathrm{t}}=1.28 \pm 0.35$

CMS $\kappa^{t}=1.60_{-0.32}^{+0.34}, 2 \sigma$?
other couplings $<\mathbf{1 0}^{\mathbf{- 2}}$, MAGA note

https://cds.cern.ch/record/2001958/files/LHCHXSWG-INT-2015 - 001 - 2.pdf
Is $\boldsymbol{\kappa}^{\mathbf{t}}$ the only window? Relax bounds compared to LO analysis (arXiv:1502.02570)?
Correctly define kappas? $\mathrm{k}_{\mathrm{t}}^{\mathrm{ttH}} \neq \mathrm{k}_{\mathrm{t}}^{\mathrm{H} \gamma \gamma}$ etc.

Conclusions:

(1) For the SMEFT, (almost) regardless of the $\mathbf{k}_{\boldsymbol{c}}$, to have more than 5% deviation (at $\Lambda=3 \mathrm{TeV}$) you have to go NLO, or unnatural ${ }^{8}$ (Wilson coefficients not $\left.\mathscr{O}(1)\right)$
(2) The LO, NLO pdfs are different, therefore interpretation is different, how to reweight once your analysis was LO interpreted? It all depends on the new central value for $\kappa_{\gamma}^{\exp }$

$$
\text { presently } \quad \text { ATLAS: } a_{\mathrm{AA}}^{\mathrm{LO}}=+3.79_{-6.06}^{+5.31} \quad \mathrm{CMS}: a_{\mathrm{AA}}^{\mathrm{LO}}=-5.31_{-4.55}^{+4.93}
$$

$$
\text { naive dimensional estimate } a_{\mathrm{AA}} \approx 1
$$

(3) Cbi ba avuto, ba avuto, ba avuto \ldots. chi ba dato, ba dato, ba dato ... scurdammoce o ppassato
Those who've taken, taken, taken ... Those who've given, given, given ... Let's forget about the past

[^5]Other than Higgs (just one example): if we neglect LG operators in loops, the following result holds for vacuum polarization:

$$
\Pi_{\mathrm{AA}}^{(\mathrm{dim}=6)}(0)=-8 \frac{c_{\theta}^{2}}{s_{\theta}^{2}} a_{\varphi \mathrm{D}} \Pi_{\mathrm{AA}}^{(\mathrm{dim}=4)}(0)
$$

One of the key ingredients in computing precision (pseudo-)observables is $\alpha_{\text {QED }}$ at the mass of the Z . Define

$$
\begin{gathered}
\alpha\left(M_{\mathrm{z}}\right)=\frac{\alpha(0)}{1-\Delta \alpha^{(5)}\left(M_{\mathrm{z}}\right)-\Delta \alpha_{\mathrm{t}}\left(M_{\mathrm{z}}\right)-\Delta \alpha_{\mathrm{t}}^{\alpha \alpha_{\mathrm{s}}}\left(M_{\mathrm{z}}\right)} \\
\Delta \alpha^{(5)}\left(M_{\mathrm{z}}\right)=\Delta \alpha_{1}\left(M_{\mathrm{z}}\right)+\Delta \alpha_{\text {had }}^{(5)}\left(M_{\mathrm{z}}\right)
\end{gathered}
$$

$$
\begin{array}{ll}
\Delta \alpha_{\text {had }}^{(5)}\left(M_{\mathrm{Z}}\right) & =0.0280398 \\
10^{4} \times \Delta \alpha_{1}\left(M_{\mathrm{Z}}\right) & =0.0314976 \\
10^{4} \times \Delta \alpha_{\mathrm{t}}\left(M_{\mathrm{Z}}\right) & \approx[-0.62,-0.55] \\
10^{4} \times \Delta \alpha_{\mathrm{t}}^{\alpha \alpha_{\mathrm{s}}}\left(M_{\mathrm{Z}}\right) & \approx[-0.114,-0.095]
\end{array}
$$

The SMEFT effect is equivalent to replace

$$
\begin{aligned}
\Delta \alpha_{1}\left(M_{\mathrm{Z}}\right)+\Delta \alpha_{\mathrm{t}}\left(M_{\mathrm{Z}}\right) & \rightarrow\left(1-\kappa_{\alpha}\right)\left[\Delta \alpha_{1}\left(M_{\mathrm{z}}\right)+\Delta \alpha_{\mathrm{t}}\left(M_{\mathrm{z}}\right)\right] \\
\kappa_{\alpha}=8 g_{6} \frac{c_{\theta}^{2}}{s_{\theta}^{2}} a_{\phi \mathrm{D}} & =0.188 a_{\phi \mathrm{D}} \quad \text { at } \Lambda=3 \mathrm{TeV} \\
\left|\kappa_{\alpha} \Delta \alpha_{\mathrm{t}}\right| & >\Delta \alpha_{1} \\
\left|\kappa_{\alpha} \Delta \alpha_{\mathrm{t}}\right| & \approx\left|\Delta \alpha_{\mathrm{t}}^{\alpha \alpha_{\mathrm{s}}}\right|
\end{aligned}
$$

Part III

Mostly POs

Expansion

$\Gamma(\mathrm{H} \rightarrow \overline{\mathrm{f}} \mathrm{f} \gamma)$ etc.

$$
\begin{aligned}
& \frac{\mathscr{A}_{\mathrm{SR}}\left(s_{1} ; \ldots\right)}{s_{1}-s_{\mathrm{Z}}}=\frac{\mathscr{A}_{\mathrm{SR}}\left(s_{\mathrm{Z}} ; \ldots\right)}{s_{1}-s_{\mathrm{Z}}}+\mathscr{A}_{\mathrm{SR}}^{\mathrm{rest}}\left(s_{1} ; \ldots\right) \\
& \\
& { }^{\text {remember LEP }} \\
& \sigma_{\mathrm{f}}^{\text {peak }}=12 \pi \frac{\Gamma_{\mathrm{e}} \Gamma_{\mathrm{f}}}{M_{\mathrm{Z}}^{2} \Gamma_{\mathrm{Z}}^{2}} \\
& \mathscr{A}_{\mathrm{NR}}(\ldots) \\
& \quad+(Z \longrightarrow \gamma)
\end{aligned}
$$

$$
\begin{array}{rll}
\mathrm{H} \rightarrow \gamma \gamma(\gamma \mathrm{Z}) & \mapsto & \rho_{\mathrm{H}}^{\gamma(\mathrm{Z})} \frac{p_{1} \cdot p_{2} g^{\mu v}-p_{2}^{\mu} p_{1}^{v}}{M_{\mathrm{H}}} \\
\mathrm{H} \rightarrow \mathrm{VV} & \mapsto & \rho_{\mathrm{H}}^{\mathrm{V}}\left(M_{\mathrm{H}} g^{\mu \nu}+\frac{\mathscr{C}_{\mathrm{L}}^{\mathrm{V}}}{M_{\mathrm{H}}} p_{2}^{\mu} p_{1}^{\nu}\right)
\end{array}
$$

$$
\mathrm{H} \rightarrow \overline{\mathrm{~b}} \mathbf{b} \quad \mapsto \quad \rho_{\mathrm{H}}^{\mathrm{b}} \overline{\mathbf{u}} \mathbf{v}
$$

etc.

a middle way language wolf, goat, and cabbage

POs (container) at LHC: summary table
(1) external layer (similar to LEP of ${ }_{\mathrm{f}}^{\text {peak }}$,

$$
\Gamma_{\mathrm{VV}} \quad \mathrm{~A}_{\mathrm{FB}}^{\mathrm{ZZ}} \quad \mathrm{~N}_{\text {off }}^{41} \text { etc }
$$

(2) intermediate layer (similar to LEP g_{VA}^{e})

$$
\rho_{\mathrm{H}}^{\mathrm{V}} \quad \mathscr{G}_{\mathrm{L}}^{\mathrm{V}} \quad \rho_{\mathrm{H}}^{\gamma \gamma}, \rho_{\mathrm{H}}^{\gamma \mathrm{Z}} \quad \rho_{\mathrm{H}}^{\mathrm{f}}
$$

(3) internal layer: the kappas

$$
\kappa_{\mathrm{f}}^{\gamma \gamma} \quad \kappa_{\mathrm{w}}^{\gamma \gamma} \quad \kappa_{i}^{\gamma \gamma \mathrm{NF}} \text { etc }
$$

(4) innermost layer: Wilson coeff. or non-SM parameters in BSM (e.g. $\alpha, \beta, M_{\mathrm{sb}}$ etc. in THDMs)

How to inlude EWPD? The case of the \mathbf{W} mass

Working in the α-scheme we can predict M_{W}. The solution is

$$
\begin{aligned}
\frac{M_{\mathrm{W}}^{2}}{M_{\mathrm{Z}}^{2}} & =\hat{c}_{\theta}^{2}+\frac{\alpha}{\pi} \operatorname{Re}\left\{\left(1-\frac{1}{2} g_{6} a_{\phi \mathrm{D}}\right) \Delta_{\mathrm{B}}^{(4)}\left(M_{\mathrm{W}}\right)\right. \\
& +\sum_{\text {gen }}\left[\left(1+4 g_{6} a_{\phi 1}^{(3)}\right) \Delta_{\mathrm{l}}^{(4)}\left(M_{\mathrm{W}}\right)+\left(1+4 g_{6} a_{\phi \mathrm{q}}^{(3)}\right) \Delta_{\mathrm{q}}^{(4)}\left(M_{\mathrm{W}}\right)\right] \\
& \left.+g_{6}\left[\Delta_{\mathrm{B}}^{(6)}\left(M_{\mathrm{W}}\right)+\sum_{\mathrm{gen}}\left(\Delta_{\mathrm{l}}^{(6)}\left(M_{\mathrm{W}}\right)+\Delta_{\mathrm{q}}^{(6)}\left(M_{\mathrm{W}}\right)\right)\right]\right\}
\end{aligned}
$$

The expansion can be improved when working within the SM $(\operatorname{dim}=4)$. Any equation that gives $\operatorname{dim}=6$ corrections to the SM result will always be understood as

$$
\mathscr{O}=\left.\mathscr{O}^{\mathrm{SM}}\right|_{\mathrm{imp}}+\frac{\alpha}{\pi} g_{6} \mathscr{O}^{(6)}
$$

in order to match the TOPAZO/Zfitter SM results whe $g_{6} \rightarrow 0$.

THE

Example

$$
\begin{aligned}
S_{\mathrm{WW}} & =\frac{g^{2}}{16 \pi^{2}} \Sigma_{\mathrm{WW}} \\
S_{\mathrm{ZZ}} & =\frac{g^{2}}{16 \pi^{2} c_{\theta}^{2}}\left(\Sigma_{33}-2 s_{\theta}^{2} \Sigma_{3 Q}-s_{\theta}^{4} \Pi_{\mathrm{AA}} s\right) \\
\Sigma_{\mathrm{F}} & =\Sigma_{\mathrm{WW}}(0)-\operatorname{Re} \Sigma_{33}\left(M_{\mathrm{Z}}^{2}\right)+\operatorname{Re} \Sigma_{3 Q}\left(M_{\mathrm{Z}}^{2}\right)
\end{aligned}
$$

Define $\rho^{-1}=1+\frac{G_{F}}{2 \sqrt{2} \pi^{2}} \Sigma_{\mathbf{F}}=0.99490, \Delta \rho$ contains (PTG only):
$a_{\phi D}, a_{\Phi \square}, a_{\phi f}, a_{\phi f}^{(1,3)}, \quad f=1, u, d$
Leading term (don't use it for precision) is

$$
\begin{aligned}
\Delta \rho & =M_{\mathrm{t}}^{2}\left[\kappa_{\rho} \Delta \rho^{(4)}+g_{6} \sum_{i} F_{i} a_{i}\right] \quad a_{i}=a_{\phi D}, a_{\phi t}, a_{\phi \mathrm{q}}^{(1,3)} \\
\kappa_{\rho} & =1+\frac{g_{6}}{11}\left[\frac{7}{6} a_{\phi D}+28\left(a_{\phi q}^{(1)}+a_{\phi q}^{(3)}\right)-20 a_{\phi t}\right]
\end{aligned}
$$

How to inlude EWPD?

(1) By reducing (a priori) the number of $\operatorname{dim}=6$ operators
(2) By imposing penalty functions ω on the global fit, that is functions defining an ω-penalized LS estimator for a set of global penalty parameters (perhaps using merit functions and the homotopy method)
(3) Using a Bayesian approach, with a flat prior for the parameters. One κ at the time? Fit first to the EWPD and then to H observables? Combination of both?

Of course, all EWPO must be rewritten in the к-EFT approach

. Thant you for your attention

Backup Slides
 (moving backward)

- Return

How/what NLO?

\checkmark Start with Warsaw basis, full set, write down Lagrangian and Feynman rules
\checkmark Normalize the quadratic part of the Lagrangian and pay due attention to the FP ghost sector \square
\checkmark Compute (all) self-energies (up to one $\mathscr{O}_{\text {dim }=6}$ insertion), write down counterterms, make self-energies UV finite
\checkmark Compute the set of processes you like/want (don't forget non-SM topologies), mix Wilson coefficients to make them UV finite, check closure under renormalization \quad
\checkmark Perform finite renormalization, selecting a scheme (better the $\boldsymbol{G}_{\mathrm{F}}$-scheme), introduce wave-function factors, get the answer \square
\checkmark Start making approximations now (if you like), e.g. neglecting operators etc.

How/what NLO? (cont.)

\checkmark Transform the answer in terms of κ-shifted SM sub-amplitudes and non SM factorizable sub-amplitudes
\checkmark Derive к-parameters in terms of Wilson coefficients \square
\checkmark Write Pseudo-Observables in terms of $\mathbf{\kappa}$-parameters \square
\checkmark Decide about strategy for including EWPD ■
\checkmark Claim you invented the whole procedure \square
NLO is like biking, you learn it when you are a kid
\square Fade Out Round House \square Fast Pace \square Coked Pistol

SMEFT evolution

LO $\mathscr{A}^{\text {SMEFT }}=\mathscr{A}^{\mathrm{SM}}+\mathrm{a}_{i}$, where $\mathrm{a}_{i} \in \mathrm{~V}_{6}$ and V_{6} is the set of $\operatorname{dim}=6$ Wilson coefficients

RGE $\quad a_{i} \rightarrow \mathrm{Z}_{i j}(\mathrm{~L}) a^{j}$, where $\mathrm{L}=\ln \left(\Lambda / M_{H}\right)$ and $j \in \mathrm{H}_{\mathbf{6}} \subset \mathrm{V}_{\mathbf{6}}$
NLO $\mathscr{A}^{\text {SMEFT }}=\mathscr{A}^{\text {SM }}+\mathscr{A}_{k}\left(\mathrm{~L}\right.$, const) a^{k}, where $k \in \mathrm{~S}_{6}$ and $\mathrm{H}_{6} \subset \mathrm{~S}_{6} \subset \mathrm{~V}_{6}$

How/what NLO? FAQ

\checkmark Are there some pieces that contain the dominant NLO effects
\checkmark It depends on the TH bias:
(1) For EFT purists there is no model independent EFT statement on some operators being big and other small
(2) Remember, logarithms are not large, constants matter too
\checkmark which could be easily incorporated in other calculations/tools?
\checkmark Well, Well, Well, its certainly a compelling provocative exciting to think about idea

How/what NLO? FAQ

\checkmark NLO SMEFT availability? From arXiv:1505.03706 Reum
(1) Counterterms (SM fields and parameters): all
(2) Mixing: those entries related to $\mathbf{H} \rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma}, \mathrm{Z} \boldsymbol{\gamma}, \mathrm{ZZ}, \mathbf{W W}$
(3) Self-energies, complete and at $p^{2}=0$: all
(4) Amplitudes, sub-amplitudes (both SM and non-factorizable, full PTG + LG scenario)
(1) $\mathrm{H} \rightarrow \boldsymbol{\gamma \gamma} \mathbf{2} \mathrm{H} \rightarrow \mathrm{Z} \mathrm{\gamma} \mathbf{3} \mathrm{H} \rightarrow \mathrm{ZZ}, \mathrm{WW}^{9} 4 \mathbf{H} \rightarrow \mathrm{ff}$ (the latter available, although not public)
(5) EWPD, $\mathbf{M}_{\mathbf{W}}, \mathbf{T}$-parameter; $\mathbf{Z} \rightarrow \overline{\mathbf{f}} \mathbf{f}$ available, although not public.

[^6]Backup Plots (the role of $\boldsymbol{\kappa}_{\mathbf{w}}$)

$$
\Lambda=3 \mathrm{TeV} \quad \kappa_{\mathrm{W}}=\kappa_{\mathbf{b}}=0
$$

 rate

(2ain

[^0]: ${ }^{1}$ What can be said at all should be said clearly and whereof one cannot speak thereof one must be silent
 ${ }^{2}$ Covered in "ATLAS Higgs (N)NLO MC and Tools Workshop for LHC RUN-2", https://indico.cern.ch/event/345455/, see also https://indico.desy.de/conferenceDisplay.py?confld=476
 ${ }^{3}$ same as above
 ${ }^{4}$ Covered in "Pseudo-observables: from LEP to LHC", https://indico.cern.ch/event/373667/

[^1]: hi-tech center
 Caveat: SMEFT interpretation should include LO SMEFT and (at least) RGE modified predictions (arXiv:1301.2588); furthermore, full one-loop SMEFT gives you (new) logarithmic and constant terms that are not small compared to the one from RGE, see arXiv:1505.02646, arXiv:1505.03706

[^2]: ${ }^{6}$ Simpler theories are preferable to more complex ones because they are better testable and falsifiable

[^3]: ${ }^{22}$ These tables are taken from [5], by permission of the authors.

[^4]: ${ }^{7}$ Disregarding TH bias for the sign (Sect. D of arXiv:0907.5413)

[^5]: 8 from the point of view of a weakly coupled UV completion

[^6]: ${ }^{9}$ Green's functions in well-defined kinematic limit, i.e. residue of the poles after extracting the parts which are 1 P reducible

