High-precision calculations of Higgs properties

Giampiero Passarino

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

Precision Observables and Radiative Corrections relevant for future e^+e^- colliders, 13–14 July 2015,CERN

シック・ 正則 《田》 《田》 《日》

This talk is about why NLO SMEFT + POs¹, it is not

- × how NLO²
- > what NLO³

however, see backup material row

✗ why POs⁴

fuel for discussion ... nothing more

¹What can be said at all should be said clearly and whereof one cannot speak thereof one must be silent

²Covered in "ATLAS Higgs (N)NLO MC and Tools Workshop for LHC RUN-2",

https://indico.cern.ch/event/345455/, see also https://indico.desy.de/conferenceDisplay.py?confld=476

³same as above

⁴Covered in "Pseudo-observables: from LEP to LHC", https://indico.cern.ch/event/373667/

Part I

Warming up: mostly Lep

- うんの 三回 《日》 《日》 《日》

POs at Lep, the role of the Z-pole

$$\begin{array}{l} \text{From} \quad \displaystyle \frac{V_{e^+e^-\gamma}^{\mu} \, V_{\bar{f}f\gamma}^{\mu}}{s} + \frac{V_{e^+e^-Z}^{\mu} \, V_{\bar{f}fZ}^{\mu}}{s - M_Z^2} + \text{Boxes} \\ \text{To} \quad \displaystyle \sigma_f^{\text{peak}} = 12\pi \, \frac{\Gamma_e \Gamma_f}{M_Z^2 \Gamma_Z^2} \end{array}$$

Caution: unstable particles present

From on-shell mass $M_z \rightarrow$ To complex pole s_z

- うック・ 単同・ 4 町 + 4 町 + 4 日 +

Figure 1: The process $e^+e^- \rightarrow (Z, \gamma) \rightarrow f\bar{f}$ in the Born approximation.

Figure 2: The process $e^+e^- \rightarrow (Z, \gamma) \rightarrow f\bar{f}$; final fermion vertex and its counter-terms

DIAGRAMMATICA at Lep1

role of theory: delivering boxes and crosses with maniacal care for gauge invariance

Figure 3: Process $e^+e^- \rightarrow (Z, \gamma) \rightarrow ff$; electron vertex and its counter-terms

Figure 4: Process $e^+e^- \rightarrow (Z, \gamma) \rightarrow f\bar{f}$; self-energies and kinetic counter-terms

▲□▶▲圖▶▲필▶▲필▶ ④오오

The complete amplitude for the four-fermion process should be presented in all schemes and all gauges with a general structure,

G

$$\begin{split} \mathscr{A} &\sim \frac{1}{s} \Big\{ \alpha^{\text{fer}}(s) \gamma^{\mu} \otimes \gamma_{\mu} + \chi(s) \\ \Big[\mathscr{F}_{\text{QQ}}^{\text{ef}}(s,t) \gamma^{\mu} \otimes \gamma_{\mu} + \mathscr{F}_{\text{LL}}^{\text{ef}}(s,t) \gamma^{\mu} \gamma_{+} \otimes \gamma_{\mu} \gamma_{+} \\ &+ \mathscr{F}_{\text{QL}}^{\text{ef}}(s,t) \gamma^{\mu} \otimes \gamma_{\mu} \gamma_{+} + \mathscr{F}_{\text{LQ}}^{\text{ef}}(s,t) \gamma^{\mu} \gamma_{+} \otimes \gamma_{\mu} \Big] \Big\} \end{split}$$

 $\boldsymbol{\chi}(\boldsymbol{s}) = \boldsymbol{s} \boldsymbol{\chi}_{\mathrm{Z}}(\boldsymbol{s})$

Again the *raison d'être* of any renormalization scheme is deeply connected to the possibility of defining the form factors in a gauge-invariant manner.

Where are the PO's?

$$\begin{array}{ll} \displaystyle \frac{d\sigma_{\rm f}}{d\Omega} & = & \displaystyle \frac{\alpha^2}{4\,s} \, {\rm N}_{\rm f}^c \beta_{\rm f} \left[\left(1 + c^2 \right) \mathscr{F}_1(s) \right. \\ & + & \displaystyle 4\,\mu_{\rm f}^2 \, (1 - c^2) \, \mathscr{F}_2(s) + 2\,\beta_{\rm f} \, c \, \mathscr{F}_3(s) \right] \end{array}$$

where $c = \cos \theta$ is the cosine of the scattering angle and $\beta_{\rm f}^2 = 1 - 4 \,\mu_{\rm f}^2$ with $\mu_{\rm f}^2 = m_{\rm f}^2/s$.

The energy dependence is confined in the ${\mathscr F}$ -functions

シック 비로 《로》《로》《句》《曰》

$$\begin{aligned} \mathscr{F}_{1}(s) &= Q_{e}^{2}Q_{f}^{2} + 2 Q_{e}Q_{f}g_{V}^{e}g_{V}^{f} \operatorname{Re}\chi(s) \\ &+ \left[\left(g_{V}^{e}\right)^{2} + \left(g_{A}^{e}\right)^{2}\right] \left[\left(g_{V}^{f}\right)^{2} + \left(g_{A}^{f}\right)^{2} - 4 \mu_{f}^{2}\right] \left|\chi(s)\right|^{2}, \\ \mathscr{F}_{2}(s) &= Q_{e}^{2}Q_{f}^{2} + 2 Q_{e}Q_{f}g_{V}^{e}g_{V}^{f} \operatorname{Re}\chi(s) \\ &+ \left[\left(g_{V}^{e}\right)^{2} + \left(g_{A}^{e}\right)^{2}\right] \left(g_{V}^{f}\right)^{2} \left|\chi(s)\right|^{2}, \\ \mathscr{F}_{3}(s) &= 2 Q_{e}Q_{f}g_{A}^{e}g_{A}^{f} \operatorname{Re}\chi(s) + 4 g_{V}^{e}g_{V}^{f}g_{A}^{e}g_{A}^{f} \left|\chi(s)\right|^{2} \end{aligned}$$

 χ is the reduced γ/Z propagator ratio. The form factors \mathscr{F} include weak loop corrections but, in their construction, we have completely ignored a few ingredients:

& QED radiation,

G

- \diamondsuit weak boxes and
- all the imaginary parts

Usually, 25 POs were introduced and discussed

- the mass of the W (MWW)
- the hadronic peak cross-section (σ_h)
- the partial leptonic and hadronic widths
 (Γ_f, f = ν, e, μ, τ, u, d, c, s, b)
- the total width (Γ_z)
- the total hadronic width (Γ_h)
- the total invisible width (Γ_{inv})
- various ratios (R_l , R_b , R_c)
- the asymmetries and polarization (A^µ_{FB}, A^e_{LR}, A^b_{FB}, A^c_{FB}, P^r, P^b)
- effective sines $(\sin^2 \theta_e, \sin^2 \theta_b)$

Queen of new POs ozH

Part II

Learning from LHC: mostly SMEFT

~ ♡♪♡ 비로 《로》《로》《팀》《□》

In the next few slides I will show you beauty in a handful of κ_s

- O Start with EFT at a given order (here NLO)
- O write any amplitude as a sum of κ-deformed SM sub-amplitudes
- O add another sum of κ -deformed non-SM amplitudes
- O show that κ_s are linear combinations of Wilson coefficients
- O discover correlations among the $\kappa_{\!\scriptscriptstyle S}$

Rationale for this course of action

- O Physics is symmetry plus dynamics
- O Symmetry is quintessential (gauge invariance etc.)
- $m O\,$ Symmetry without dynamics don't bring you this far
- ① At Lep dynamics was SM, unknowns were $M_{\rm H}(\alpha_{\rm s}(M_{\rm Z}),...)$
- ② At LHC (post SM) unknowns are SM-deviations, dynamics?
 - BSM is a choice. Something more model independent?
 - - An unknown form factor?
 - A decomposition where dynamics is controlled by dim = 4 amplitudes (with known analytical properties) and deviations (with a direct link to UV completions) are Wilson coefficients?

O It is for posterity to judge (for me deviations need a SM basis)

A study of SM-deviations: here the reference process is

 $H \rightarrow \gamma \gamma$

 \checkmark κ -approach: write the amplitude as

$$\mathbf{A} = \sum_{i=t,b,w} \kappa_i \mathscr{A}^i + \kappa_c$$

 \mathscr{A}^t being the SM t-loop etc. The contact term (which is the LO SMEFT) is given by κ_c . Furthermore

$$\kappa_i = 1 + \Delta \kappa_i \qquad i \neq C$$

《口》《母》《臣》《臣》 된言 今久の

✓ For the sake of simplicity assume

$$\kappa_{b} = \kappa_{w} = 1$$
 $\left(\kappa_{w}^{exp} = 0.95^{+0.14}_{-0.13} \textit{ATLAS} \ 0.96^{+35}_{-16} \textit{CMS}
ight)$

and compute

$$\overset{}{\circledast} \quad \kappa_{\gamma} \mapsto R = \Gamma(\kappa_{t}, \kappa_{c}) / \Gamma_{sm} - 1 \quad [\%]$$

In LO SMEFT κ_c is non-zero and $\kappa_t = 1^{-5}$. You measure a deviation and you get a value for κ_c . However, at NLO $\Delta \kappa_t$ is non zero and you get a degeneracy. The interpretation in terms of κ_c^{LO} or in terms of $\{\kappa_c^{NLO}, \Delta \kappa_t^{NLO}\}$ could be rather different.

⁵Certainly true in the linear realization

Fitting is not interpreting

Of course, depending on what you measure, the corresponding interpretation could tell us that the required kappas or Wilson coefficients are too large to allow for a meaningful interpretation in terms of a weakly coupled UU completion⁶

Caveat: SMEFT interpretation should include LO SMEFT and (at least) RGE modified predictions (arXiv:1301.2588); furthermore, full one-loop SMEFT gives you (new) logarithmic and constant terms that are not small compared to the one from RGE, see arXiv:1505.02646, arXiv:1505.03706

For interpretations other than weakly coupled renormalizable, see arXiv:1305.0017

EFT purist: there is no model independent EFT statement on some operators being big and other small (arXiv:1305.0017)

⁶Simpler theories are preferable to more complex ones because they are better testable and falsifiable

Going interpretational

G

$$\mathbf{A}_{\text{SMEFT}} = \frac{g^2 s_{\theta}^2}{8 \pi^2} \Big[\sum_{i=\text{t,b,w}} \kappa_i \mathscr{A}^i + \frac{g_6}{g^2 s_{\theta}^2} \frac{M_{\text{H}}^2}{M_{\text{W}}^2} 8 \pi^2 a_{\text{AA}} \Big]$$

- ✓ Assumption: use arXiv:1505.03706, work in the Einhorn-Wudka PTG scenario (arXiv:1307.0478), adopt Warsaw basis (arXiv:1008.4884)
- 1 LO SMEFT: $\kappa_i = 1$ and a_{AA} is scaled by $1/16\pi^2$ being LG
- 2 NLO PTG-SMEFT: $\kappa_i \neq 1$ but only PTG operators inserted in loops (non-factorizable terms absent), a_{AA} scaled as above

At NLO,
$$\Delta \kappa = g_6 \rho$$
 and $a_{AA} = s_\theta^2 a_{\phi w} + c_\theta^2 a_{\phi B} + s_\theta c_\theta a_{\phi w B}$

$$\mathscr{A}_{\text{SMEFT}} = \sum_{i=t,b,w} (1 + g_6 \rho_i) \mathscr{A}^i + g_c a_{AA}$$

Warsaw basis

$$g_{6}^{-1} = \sqrt{2} G_{F} \Lambda^{2}$$

$$g_{c} = \frac{1}{2} \frac{g_{6}}{g^{2} s_{\theta}^{2}} \frac{M_{H}^{2}}{M_{W}^{2}}$$

$$\rho_{t} = -\frac{1}{2} \left[a_{\phi D} - 2 s_{\theta}^{2} (a_{t\phi} + 2 a_{\phi D}) \right] \frac{1}{s_{\theta}^{2}}$$

$$\rho_{b} = -\frac{1}{2} \left[a_{\phi D} + 2 s_{\theta}^{2} (a_{b\phi} - 2 a_{\phi D}) \right] \frac{1}{s_{\theta}^{2}}$$

$$\rho_{W} = -\frac{1}{2} \left[a_{\phi D} - 4 s_{\theta}^{2} a_{\phi D} \right] \frac{1}{s_{\theta}^{2}}$$

$$\Gamma_{SMEFT} = \frac{\alpha^{2} G_{F} M_{H}^{3}}{32 \sqrt{2} \pi^{3}} \frac{M_{W}^{4}}{M_{H}^{4}} |\mathscr{A}_{SMEFT}|^{2} \qquad \Gamma_{SM} = \Gamma_{SMEFT} \Big|_{\Delta \kappa_{i}=0, \kappa_{c}=0}$$

Relaxing the PTG assumption introduces non-factorizable sub-amplitudes proportional to

at w, at B, ab w, ab B, ab w, ab B, ab w, ab B, ab wB with a mixing among {ab w, ab B, ab wB}. Meanwhile, renormalization has made

one-loop SMEFT finite, e.g. in the G_F -scheme, with a residual μ_R -dependence

《日》《聞》《臣》《臣》 通言 今久の …

X^3 (LG)		φ^6 and $\varphi^4 D^2$ (PTG)		$\psi^2 \varphi^3$ (PTG)	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \square}$	$(\varphi^{\dagger}\varphi)\square(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2 \varphi^2$ (LG)		$\psi^2 X \varphi$ (LG)		$\psi^2 \varphi^2 D$ (PTG)	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Appendix C. Dimension-Six Basis Operators for the SM²².

Table C.1: Dimension-six operators other than the four-fermion ones.

Grzackowski, Iskrzynski, Misiak, Rosiek

Einhorn, Wudka

²²These tables are taken from [5], by permission of the authors.

- Demonstration strategy:
 - 1 Allow each Wilson coefficient to vary in the interval $I_2 = [-2, +2]$ (naturalness⁷; put $\Lambda = 3$ *TeV* (conventional point)
 - (2) LO: generate points from I_2 for a_{AA} with uniform probability and calculate R_{LO}
 - 2 NLO: generate points from I_2^5 for $\{a_{\phi D}, a_{\phi \Box}, a_{t\phi}, a_{b\phi}, a_{AA}\}$ with uniform probability and calculate R_{NLO}
 - 3 Calculate the R pdf

N.B. | aAA | < 1 is equivalent to | gc aAA | < 8.610⁻²

⁷Disregarding TH bias for the sign (Sect. D of arXiv:0907.5413)

《日》《聞》《臣》《臣》 通言 今久の …

Conclusions:

- For the SMEFT, (almost) regardless of the κ_c, to have more than 5% deviation (at Λ = 3 TeV) you have to go NLO, or unnatural⁸ (Wilson coefficients not 𝒪(1))
- 2 The LO, NLO pdfs are different, therefore interpretation is different, how to reweight once your analysis was LO interpreted? It all depends on the new central value for k^{exp}_Y

presently ATLAS: $a_{AA}^{LO} = +3.79^{+5.31}_{-6.06}$ CMS: $a_{AA}^{LO} = -5.31^{+4.93}_{-4.55}$

naive dimensional estimate $a_{AA} \approx 1$

3 Chi ha avuto, ha avuto, ha avuto ... chi ha dato, ha dato, ha dato ... scurdammoce o ppassato Those who've taken, taken, taken ... Those who've given, given, given ... Let's forget about the past

⁸ from the point of view of a weakly coupled UV completion

Other than Higgs (just one example): if we neglect LG operators in loops, the following result holds for vacuum polarization:

G

$$\Pi_{\mathrm{AA}}^{(\mathrm{dim}=6)}(0) = -8 \frac{c_{\theta}^2}{s_{\theta}^2} \, a_{\phi \mathrm{D}} \, \Pi_{\mathrm{AA}}^{(\mathrm{dim}=4)}(0)$$

One of the key ingredients in computing precision (pseudo-)observables is α_{QED} at the mass of the Z. Define

$$\alpha\left(M_{Z}\right) = \frac{\alpha(0)}{1 - \Delta\alpha^{(5)}\left(M_{Z}\right) - \Delta\alpha_{t}\left(M_{Z}\right) - \Delta\alpha_{t}^{\alpha\alpha_{s}}\left(M_{Z}\right)}$$

$$\Delta \alpha^{(5)}(M_{Z}) = \Delta \alpha_{l}(M_{Z}) + \Delta \alpha^{(5)}_{had}(M_{Z})$$

- シック 正則 《川を《川を《四》《日》

The SMEFT effect is equivalent to replace

Part III

Mostly POs

○ 20 비로 < 로 > < 로 > < 팀 > < □ >

《口》《聞》《臣》《臣》 된는 외의에

https://indico.cern.ch/event/373667/ arXiv:1504.04018

$$\begin{split} \mathbf{H} &\to \gamma \gamma \left(\gamma \mathbf{Z} \right) &\mapsto \quad \rho_{\mathbf{H}}^{\gamma \gamma (\mathbf{Z})} \; \frac{\rho_{1} \cdot \rho_{2} \, g^{\mu \nu} - \rho_{2}^{\mu} \rho_{1}^{\nu}}{M_{\mathbf{H}}} \\ \mathbf{H} &\to \mathbf{V} \mathbf{V} \quad \mapsto \quad \rho_{\mathbf{H}}^{\mathbf{V}} \left(M_{\mathbf{H}} \, g^{\mu \nu} + \frac{\mathscr{G}_{\mathbf{L}}^{\mathbf{V}}}{M_{\mathbf{H}}} \rho_{2}^{\mu} \rho_{1}^{\nu} \right) \\ \mathbf{H} &\to \mathbf{\bar{b}} \mathbf{b} \quad \mapsto \quad \rho_{\mathbf{H}}^{\mathbf{b}} \, \mathbf{\bar{u}} \, \mathbf{v} \\ &\quad \text{etc.} \end{split}$$

G

a middle way language wolf, goat, and cabbage

POs (container) at LHC: summary table

(1) external layer $(similar to LEP \sigma_{f}^{peak})$

$$\Gamma_{VV}$$
 A_{FB}^{ZZ} N_{off}^{41} etc

2 intermediate layer (similar to LEP g_{VA}^{e})

$$\rho_{H}^{V} \hspace{0.1 in} \mathscr{G}_{L}^{V} \hspace{0.1 in} \rho_{H}^{\gamma\gamma}, \hspace{0.1 in} \rho_{H}^{\gamma Z} \hspace{0.1 in} \rho_{H}^{f}$$

③ internal layer: the kappas

 $\kappa_{\rm f}^{\gamma\gamma} \kappa_{\rm W}^{\gamma\gamma} \kappa_{i}^{\gamma\gamma\,\rm NF}$ etc

 innermost layer: Wilson coeff. or non-SM parameters in BSM (e.g. α, β, M_{sb} etc. in THDMs)

How to inlude EWPD? The case of the W mass

Working in the α -scheme we can predict M_{W} . The solution is

$$\begin{split} \frac{M_{\rm W}^2}{M_Z^2} &= \hat{c}_{\theta}^2 + \frac{\alpha}{\pi} \, {\rm Re} \left\{ \left(1 - \frac{1}{2} \, g_6 \, a_{\phi {\rm D}} \right) \Delta_{\rm B}^{(4)}(M_{\rm W}) \right. \\ &+ \sum_{\rm gen} \left[\left(1 + 4 \, g_6 \, a_{\phi {\rm I}}^{(3)} \right) \Delta_{\rm I}^{(4)}(M_{\rm W}) + \left(1 + 4 \, g_6 \, a_{\phi {\rm q}}^{(3)} \right) \Delta_{\rm q}^{(4)}(M_{\rm W}) \right] \\ &+ g_6 \left[\Delta_{\rm B}^{(6)}(M_{\rm W}) + \sum_{\rm gen} \left(\Delta_{\rm I}^{(6)}(M_{\rm W}) + \Delta_{\rm q}^{(6)}(M_{\rm W}) \right) \right] \right\} \end{split}$$

The expansion can be improved when working within the SM $(\dim = 4)$. Any equation that gives $\dim = 6$ corrections to the SM result will always be understood as

$$\mathscr{O} = \mathscr{O}^{\rm SM}\Big|_{\rm imp} + \frac{\alpha}{\pi} \, g_6 \, \mathscr{O}^{(6)}$$

in order to match the *TOPAZ0/Zfitter* SM results whe $g_6 \rightarrow 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{split} S_{\rm WW} &= \frac{g^2}{16 \, \pi^2} \Sigma_{\rm WW} \\ S_{ZZ} &= \frac{g^2}{16 \, \pi^2 \, c_{\theta}^2} \left(\Sigma_{33} - 2 \, s_{\theta}^2 \, \Sigma_{3Q} - s_{\theta}^4 \, \Pi_{\rm AA} \, s \right) \\ \Sigma_{\rm F} &= \Sigma_{\rm WW}(0) - \operatorname{Re} \Sigma_{33}(M_Z^2) + \operatorname{Re} \Sigma_{3Q}(M_Z^2) \end{split}$$

Define $\rho^{-1} = 1 + \frac{G_F}{2\sqrt{2}\pi^2}\Sigma_F = 0.99490$, $\Delta\rho$ contains (PTG only): $a_{\phi D}, a_{\Phi \Box}, a_{\phi f}, a_{\phi f}^{(1,3)}, f = l, u, d$

Leading term (don't use it for precision) is

G

$$\Delta \rho = M_{t}^{2} \left[\kappa_{\rho} \Delta \rho^{(4)} + g_{6} \sum_{i} F_{i} a_{i} \right] \quad a_{i} = a_{\phi D}, \ a_{\phi t}, \ a_{\phi q}^{(1,3)}$$

$$\kappa_{\rho} = 1 + \frac{g_{6}}{11} \left[\frac{7}{6} a_{\phi D} + 28 \left(a_{\phi q}^{(1)} + a_{\phi q}^{(3)} \right) - 20 a_{\phi t} \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ● ◆◎

. . .

How to inlude EWPD?

- ① By reducing (a priori) the number of dim = 6 operators
- ⁽²⁾ By imposing penalty functions ω on the global fit, that is functions defining an ω -penalized LS estimator for a set of global penalty parameters (perhaps using *merit functions* and the *homotopy method*)
- ③ Using a Bayesian approach, with a flat prior for the parameters. One κ at the time? Fit first to the EWPD and then to H observables? Combination of both?

Of course, all EWPO must be rewritten in the κ -EFT approach

Thank you for your attention

- 約2℃ 비로 《로》《로》《팀》《□》

Backup Slides (moving backward)

シック 비로 《重》《트》《□》

How/what NLO?

- ✓ Start with Warsaw basis, full set, write down Lagrangian and Feynman rules ■
- Normalize the quadratic part of the Lagrangian and pay due attention to the FP ghost sector
- ✓ Compute (all) self-energies (up to one 𝒪_{dim=6} insertion), write down counterterms, make self-energies UV finite
- Compute the set of processes you like/want (don't forget non-SM topologies), mix Wilson coefficients to make them UV finite, check closure under renormalization
- Perform finite renormalization, selecting a scheme (better the *G*_F-scheme), introduce wave-function factors, get the answer
- Start making approximations now (if you like), e.g. neglecting operators etc.

How/what NLO? (cont.)

- ✓ Transform the answer in terms of κ-shifted SM sub-amplitudes and non SM factorizable sub-amplitudes ■
- ✓ Derive κ -parameters in terms of Wilson coefficients
- ✓ Write Pseudo-Observables in terms of κ-parameters ■
- Decide about strategy for including EWPD
- ✓ Claim you invented the whole procedure □

NLO is like biking, you learn it when you are a kid

■ Fade Out

SMEFT evolution

LO $\mathscr{A}^{\text{SMEFT}} = \mathscr{A}^{\text{SM}} + a_i$, where $a_i \in V_6$ and V_6 is the set of $\dim = 6$ Wilson coefficients

RGE $a_i \rightarrow Z_{ij}(L) a^j$, where $L = \ln(\Lambda/M_H)$ and $j \in H_6 \subset V_6$

NLO
$$\mathscr{A}^{\text{SMEFT}} = \mathscr{A}^{\text{SM}} + \mathscr{A}_k(L, \text{const}) a^k$$
, where $k \in S_6$ and $H_6 \subset S_6 \subset V_6$

- 신수야 비로 《로》《로》《립》《曰》

How/what NLO? FAQ

- Are there some pieces that contain the dominant NLO effects
- ✓ It depends on the TH bias:
 - ① For EFT purists there is no model independent EFT statement on some operators being big and other small
 - 2 Remember, logarithms are not large, constants matter too
- which could be easily incorporated in other calculations/tools?
- Well, Well, Well, its certainly a compelling provocative exciting to think about idea

How/what NLO? FAQ

- ✓ NLO SMEFT availability? From arXiv:1505.03706 Return
- ① Counterterms (SM fields and parameters): all
- ② Mixing: those entries related to $H \rightarrow \gamma \gamma, Z\gamma, ZZ, WW$
- ③ Self-energies, complete and at $p^2 = 0$: all
- ④ Amplitudes, sub-amplitudes (both SM and non-factorizable, full PTG + LG scenario)
 - **1** $H \rightarrow \gamma \gamma$ **2** $H \rightarrow Z \gamma$ **3** $H \rightarrow Z Z, WW^9$ **4** $H \rightarrow \overline{f}f$ (the latter available, although not public)
- (5) EWPD, M_W , T-parameter; $Z \rightarrow \overline{f}f$ available, although not public.

⁹Green's functions in well-defined kinematic limit, i.e. residue of the poles after extracting the parts which are 1P reducible

Backup Plots (the role of κ_w)

- シック・ 正則 - 《川・《川・《四》 - (日 *

 $\Lambda=3~TeV\quad \kappa_W=\kappa_b=0$

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆</p>

●○○○ 비로 《토》《토》《퇴》《□》