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Chapter 1

Hilbert Spaces

1.1 Notations
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1.2 Hilbert Spaces: Introduction

The concept of a Hilbert space is seemingly technical and special. For example, the reader has probably
heard of the space £? (or, more precisely, £2(Z)) of square-summable sequences of real or complex numbers.

In what follows, we mainly work over the reals in order to serve intuition, but many infinite-dimensional
vector spaces, especially Hilbert spaces, are defined over the complex numbers. Hence we will write our
formulae in a way that is correct also for C instead of R. Of course, for z € R the expression | z |? is just
7. We will occasionally use the fancy letter K, for Korper, which in these notes stands for either K = R or
K=C.

That is, ¢ consists of all infinite sequences {...,c1,¢0,¢1,...}, ck € K, for which

oo

Y e P<e (1.1)

k=—oc0

Another example of a Hilbert space one might have seen is the space L?(R) of square-integrable complex-
valued functions on R, that is, of all functions f : R — K for which

/:o dx | f(x) [P< o0 (1.2)

The elements of L?(IR) are, strictly speaking, not simply functions but equivalence classes of Borel func-
tions.

In view of their special nature, it may therefore come as a surprise that Hilbert spaces play a central role
in many areas of mathematics, notably in analysis, but also including

* (differential) geometry,
* group theory,

* stochastics,

* and even number theory.

In addition, the notion of a Hilbert space provides the mathematical foundation of quantum mechanics.
Indeed, the definition of a Hilbert space was first given by von Neumann (rather than Hilbert!) in 1927
precisely for the latter purpose. However, despite his exceptional brilliance, even von Neumann would
probably not have been able to do so without the preparatory work in pure mathematics by Hilbert and
others, which produced numerous constructions (like the ones mentioned above) that are now regarded as
examples of the abstract notion of a Hilbert space.

In what follows, we shall separately trace the origins of the concept of a Hilbert space in mathematics
and physics. As we shall see, Hilbert space theory is part of functional analysis, an area of mathematics that
emerged between approximately 1880—1930. Functional analysis is almost indistinguishable from what is
sometimes called “abstract analysis” or “modern analysis”, which marked a break with classical analysis.
The latter involves, roughly speaking, the study of properties of a single function, whereas the former deals
with spaces of functions. The modern concept of a function as a map f : [a,b] — R was only arrived at by
Dirichlet as late as 1837, following earlier work by notably Euler and Cauchy. But Newton already had an
intuitive graps of this concept, at least for one variable.

One may argue that classical analysis is tied to classical physics, whereas modern analysis is associated
with quantum theory. Of course, both kinds of analysis were largely driven by intrinsic mathematical argu-
ments as well. 5 The jump from classical to modern analysis was as discontinuous as the one from classical
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to quantum mechanics. The following anecdote may serve to illustrate this. G.H. Hardy was one of the
masters of classical analysis and one of the most famous mathematicians altogether at the beginning of the
20th century. John von Neumann, one of the founders of modern analysis, once gave a talk on this subject
at Cambridge in Hardy’s presence. Hardy’s comment was: Obviously a very intelligent man. But was that
mathematics?

The final establishment of functional analysis and Hilbert space theory around 1930 was made possible
by combining a concern for rigorous foundations with an interest in physical applications [2].

Classical analysis grew out of the calculus of Newton, which in turn had its roots in both geometry and
physics. (Some parts of the calculus were later rediscovered by Leibniz.) In the 17th century, geometry
was a practical matter involving the calculation of lenths, areas, and volumes. This was generalized by
Newton into the calculus of integrals. Physics, or more precisely mechanics, on the other hand, had to do
with velocities and accellerations and the like. This was abstracted by Newton into differential calculus.
These two steps formed one of the most brilliant generalizations in the history of mathematics, crowned by
Newton’s insight that the operations of integration and differentiation are inverse to each other, so that one
may speak of a unified differential and integral calculus, or briefly calculus. Attempts to extend the calculus
to more than one variable and to make the ensuing machinery mathematically rigorous in the modern sense
of the word led to classical analysis as we know it today. (Newton used theorems and proofs as well, but his
arguments would be called “heuristic” or “intuitive” in modern mathematics.)

1.2.1 Origins in mathematics

The key idea behind functional analysis is to look at functions as points in some infinite-dimensional
vector space. To appreciate the depth of this idea, it should be mentioned that the concept of a finite-
dimensional vector space only emerged in the work of Grassmann between 1844 and 1862 (to be picked
up very slowly by other mathematicians because of the obscurity of Grassmann’s writings), and that even
the far less precise notion of a “space” (other than a subset of R") was not really known before the work of
Riemann around 1850.

Indeed, Riemann not only conceived the idea of a manifold (albeit in embryonic form, to be made
rigorous only in the 20th century), whose points have a status comparable to points in R”, but also explicitly
talked about spaces of functions (initially analytic ones, later also more general ones). However, Riemann’s
spaces of functions were not equipped with the structure of a vector space.

In 1885 Weierstrass considered the distance between two functions (in the context of the calculus of
variations), and in 1897 Hadamard took the crucial step of connecting the set-theoretic ideas of Cantor with
the notion of a space of functions.

Finally, in his PhD thesis of 1906, which is often seen as a turning point in the development of functional
analysis, Hadamard’s student Fréchet defined what is now called a metric space (i.e., a possibly infinite-
dimensional vector space equipped with a metric, see below), and gave examples of such spaces whose
points are functions. Fréchet’s main example was C[a, b], seen as a metric space in the supremum-norm, i.e.,
d(f,g) = | f—gl with || ]| = sup{f(x) | x € [a, ]}

After 1914, the notion of a topological space due to Hausdorff led to further progress, eventually leading
to the concept of a topological vector space, which contains all spaces mentioned below as special cases.

To understand the idea of a space of functions, we first reconsider R" as the space of all functions
f:{1,2,...,n} — R, under the identification x; = f(1),...,x, = f(n). Clearly, under this identification the
vector space operations in R” just correspond to pointwise operations on functions (e.g., f + g is the function
defined by (f+g)(k) = f(k) +g(k), etc.). Hence R" is a function space itself, consisting of functions defined
on a finite set. The given structure of R" as a vector space may be enriched by defining the length f of a
vector f and the associated distance d(f,g) = || f — g || between two vectors f and g. In addition, the angle 6



6 CHAPTER 1. HILBERT SPACES

between f and g in R” is defined. Lengths and angles can both be expressed through the usual inner product

f(k)g(k) (1.3)

(agE

(f.8) =

k

through the relations || f|| = +/(f, f) and (f,g) = || f||| g|| cos @ (f is the complex conjugate of f).
In particular, one has a notion of orthogonality of vectors, stating that f and g are orthogonal whenever

(f,g) =0, and an associated notion of orthogonality of subspaces: we say that V. C R” and W C R" are
orthogonal if (f,g) = 0 for all f € V and g € W. This, in turn, enables one to define the (orthogonal)
projection of a vector on a subspace of R". Even the dimension n of R"” may be recovered from the inner
product as the cardinality of an arbitrary orthogonal basis. Now replace {1,2,...,n} by an infinite set. In
this case the corresponding space of functions will obviously be infinite-dimensional in a suitable sense. The
simplest example is N = {1,2,..., }, so that one may define R* as the space of all functions f : N — R, with
the associated vector space structure given by pointwise operations. However, although R* is well defined
as a vector space, it turns out to be impossible to define an inner product on it, or even a length or distance.

Fréchet’s main example was C[a, b], seen as a metric space in the supremum-norm, i.e., d(f,g) = || f —
¢l with | £]] = sup{ f(x) | x € [a,b]}

A subspace of a vector space is by definition a linear subspace.

This is most easily done by picking a basis e; of the particular subspace V. The projection pf of f onto
V is then given by pf =Y, (ei, f) e;.

This is the same as the cardinality of an arbitrary basis, as any basis can be replaced by an orthogonal
one by the Gram-Schmidt procedure.

The dimension of a vector space is defined as the cardinality of some basis. The notion of a basis
is complicated in general, because one has to distinguish between algebraic (or Hamel) and topological
bases. Either way, the dimension of the spaces described below is infinite, though the cardinality of the
infinity in question depends on the type of basis. The notion of an algebraic basis is very rarely used in the
context of Hilbert spaces (and more generally Banach spaces), since the ensuing dimension is either finite
or uncountable. The dimension of the spaces below with respect to a topological basis is countably infinite,
and for a Hilbert space all possible cardinalities may occur as a possible dimension. In that case one may
restrict oneself to an orthogonal basis.

Indeed, defining

1

(f.0) = Y. F) (k) (1.4)
k=1

it is clear that the associated length f is infinite for most f. This is hardly surprising, since there are no
growth conditions on f at infinity. The solution is to simply restrict R to those functions with || f]| < eo.
These functions by definition form the set £2(N), which is easily seen to be a vector space. Moreover, it
follows from the Cauchy-Schwarz inequality

(f,8) <Il7 11l (1.5)

that the inner product is finite on /2(N). Consequently, the entire geometric structure of R” in so far as it
relies on the notions of lengths and angles (including orthogonality and orthogonal projections) is available
on ¢2(N). Running ahead of the precise definition, we say that R = ¢2({1,2,...,n}) is a finite-dimensional
Hilbert space, whereas ¢>(N) is an infinite-dimensional one. Similarly, one may define ¢>(Z) (or indeed
¢%(S) for any countable set S) as a Hilbert space in the obvious way.

From a modern perspective, £2(N) or £>(Z) are the simplest examples of infinite-dimensional Hilbert
spaces, but historically these were not the first to be found. From the point of view of most mathematicians
around 1900, a space like £>(N) would have been far to abstract to merit consideration.
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The initial motivation for the concept of a Hilbert space came from the analysis of integral equations of
the type

b
10+ [ dyKy) ) = glx) (1.6

where f, g, and K are continuous functions and f is unknown. Integral equations were initially seen as
reformulations of differential equations. For example, the differential equation Df = g or f/(x) = g(x) for
unknown f is solved by f = [g or f(x) = [5 dyg(y) = jol dyK(x,y) g(y) for K(x,y) = 6(x —y) (where
x < 1), which is an integral equation for g.

Such equations were first studied from a somewhat modern perspective by Volterra and Fredholm around
1900, but the main break-through came from the work of Hilbert between 1904—1910. In particular, Hilbert
succeeded in relating integral equations to an infinite-dimensional generalization of linear algebra by choos-
ing an orthonormal basis {e;} of continuous functions on [a,b] (such as e;(x) = exp(27kix) on the interval
[0,1]), and defining the (generalized) Fourier coefficents of f by fre= (ex, f) with respectto the inner product

b
(f.0)= [ daxfigl) (a7
a
The integral equation (1.6) is then transformed into an equation of the type
h=Y Kufi=2 (1.8)
I

Hilbert then noted from the Parseval relation (already well known at the time from Fourier analysis and more
general expansions in eigenfunctions)

R b
Y I feP= [ axl ) P (1.9

keZ

that the left-hand side is finite, so that f € ¢2(Z). This, then, led him and his students to study ¢* also
abstractly. E. Schmidt should be mentioned here in particular. Unlike Hilbert, already in 1908 he looked at
% as a “space” in the modern sense, thinking of seqences (c;) as point in this space. Schmidt studied the
geometry of /% as a Hilbert space in the modern sense, that is, empasizing the inner product, orthogonality,
and projections, and decisively contributed to Hilbert’s work on spectral theory. The space L?(a, b) appeared
in 1907 in the work of F. Riesz and Fischer as the space of (Lebesgue) integrable functions on (a,b) for
which

b
/ dx | f(x) P< oo (1.10)

of course, this condition holds if f is continuous on [a,b]. 14 More precisely, the elements of L?(a,b) are
not functions but equivalence classes thereof, where f ~ g when || f — g||» = 0.

Equipped with the inner product (1.7), this was another early example of what is now called a Hilbert
space. 15 The term “Hilbert space” was first used by Schoenflies in 1908 for ¢2, and was introduced in the
abstract sense by von Neumann in 1927; see below. The context of its appearance was what is now called
the Riesz-Fischer theorem:

Given any sequence (cx) of real (or complex) numbers and any orthonormal system (e;) in L?(a,b),
there exists a function f € L?(a,b) for which (e, f) = ¢ if and only if ¢ € £2, i.e., if ¥ | cx |*< . The
notion of an orthonormal system of functions on the interval [a,b] was as old as Fourier, and was defined
abstractly by Hilbert in 1906. At the time, the Riesz-Fischer theorem was completely unexpected, as it
proved that two seemingly totally different spaces were “the same” from the right point of view. In modern
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terminology, the theorem establishes an isomorphism of /> and L? as Hilbert spaces, but this point of view
was only established twenty years later, i.e., in 1927, by von Neumann. Inspired by quantum mechanics,
in that year von Neumann gave the definition of a Hilbert space as an abstract mathematical structure, as
follows. First, an inner product on a vector space V over a field K (where K = R or K = C), is a map
V xV — K, written as (f, g) — (f,g), satisfying, for all f,g €V andr € K,

L (f.f)=0;

2. (8.)=(f8):

3. (f.18) =1(f,8):

4. (f.g+h)=(f.8)+(f h);
5 (f,f)=0=f=0.

Given an inner product on V , one defines an associated length function or norm ||.|| : V — R* by (1.2). A
Hilbert space (over K) is a vector space (over K) with inner product, with the property that Cauchy sequences
with respect to the given norm are convergent (in other words, V' is complete in the given norm). A sequence
(fn) is a Cauchy sequence in V when || f,, — fi|| — O when n,m — oo; more precisely, for any € > 0 there
is [ € N such that ||f, — fu|| < € for all n,m > 1. A sequence (f,) converges if there is f € V such that
lim,, e || fn — fl| = 0.

Hilbert spaces are denoted by the letter H rather than V. Thus Hilbert spaces preserve as much as
possible of the geometry of R”.

It can be shown that the spaces mentioned above are Hilbert spaces. Defining an isomorphism of Hilbert
spaces U : H| — H, as an invertible linear map preserving the inner product (i.e., (Uf,Ug), = (f,g)1 for
all f,g € Hy), the Riesz-Fischer theorem shows that ¢>(Z) and L?(a,b) are indeed isomorphic.

In a Hilbert space the inner product is fundamental, the norm being derived from it. However, one may
instead take the norm as a starting point (or, even more generally, the metric, as done by Fréchet in 1906).
The abstract properties of a norm were first identified by Riesz in 1918 as being satisfied by the supremum
norm, and were axiomatized by Banach in his thesis in 1922. A norm on a vector space V over a field K as
above is a function || .|| : V — R™ with the properties:

Lolf+ell <l fl+ gl forall f,g € V;
2. ||tfll =]t || f]| forall f €V andt € K;
3£l =0=f=o0.

The usual norm on R” satisfies these axioms, but there are many other possibilities, such as

,l 1/p
1 f1lp = <Z | f(k) ”) (1.11)
k=1

forany p € Rwith 1 < p < oo, Or

[ ]lee = sup{| f(k) |, k= 1,....n}. (1.12)

In the finite-dimensional case, these norms (and indeed all other norms) are all equivalent in the sense that
they lead to the same criterion of convergence (technically, they generate the same topology): if we say that
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fn — f when || f, — f|| — Ofor some norm on R”, then this implies convergence with respect to any other
norm. This is no longer the case in infinite dimension. For example, one may define /7 (N) as the subspace
of R™ that consists of all vectors f € R” for which

- 1/p
1 fll,= (Z | f(k) IP> (1.13)
k=1

is finite. It can be shown that ||. ||, is indeed a norm on ¢”(N'), and that this space is complete in this norm.
As with Hilbert spaces, the examples that originally motivated Riesz to give his definition were not £” spaces
but the far more general L” spaces, which he began to study in 1910. For example, L”(a,b) consists of all
(equivalence classes of Lebesgue) integrable functions f on (a,b) for which

b 1/p
171, = ( [ asl s 1) 114)

is finite, still for 1 < p < oo, and also || f || = sup{| f(x) |, x € (a,b)}. Eventually, in 1922 Banach defined
what is now called a Banach space as a vector space (over K as before) that is complete in some given
norm. Long before the abstract definitions of a Hilbert space and a Banach space were given, people began
to study the infinite-dimensional generalization of functions on R". In the hands of Volterra, the calculus of
variations originally inspired the study of functions ¢ : V — K, later called functionals, and led to early ideas
about possible continuity of such functions. However, although the calculus of variations involved nonlinear
functionals as well, only linear functionals turned out to be tractable at the time (until the emergence of
nonlinear functional analysis much later). Indeed, even today (continuous) linear functionals still form the
main scalar-valued functions that are studied on infinite-dimensional (topological) vector spaces. For this
reason, throughout this text a functional will denote a continuous linear functional. For H = L2(a,b), it was
independently proved by Riesz and Fréhet in 1907 that any functional on H is of the form g — (f,g) for
some f € H. More generally, in 1910 Riesz showed that any functional on L”(a,b) is given by an element
Li(a,b), where 1/p+1/q = 1, by the same formula. Since p =2 implies g = 2, this of course implies the
earlier Hilbert space result.

The same result for arbitrary Hilbert spaces H was written down only in 1934—35, again by Riesz,
although it is not very difficult. The second class of “functions” on Hilbert spaces and Banach spaces that
could be analyzed in detail were the generalizations of matrices on R", that is, linear maps from the given
space to itself. Such functions are now called operators. Or linear operators, but for us linearity is part of the
definition of an operator. For example, the integral equation (1.6) is then simply of the form (1 +K) f = g,
where 1 : L?(a,b) — L?(a,b) is the identity operator 1 f = f, and K : L?(a,b) — L?(a,b) is the operator
given by

KN = [ " dyK(x3) ). (1.15)

This is easy for us to write down, but in fact it took some time before integral of differential equations
were interpreted in terms of operators acting on functions. For example, Hilbert and Schmidt did not really
have the operator concept but (from the modern point of view) worked in terms of the associated quadratic
form. That is, the operator @ : H — H defines a map ¢ : H x H — K by (f,g) — (f,ag). They managed
to generalize practically all results of linear algebra to operators, notably the existence of a complete set of
eigenvectors for operators of the stated type with symmetric kernel, that is, K(x,y) = K(y,x). The associated
quadratic form then satisfies g(f,g) = q(g, f)-

The abstract concept of a (bounded) operator (between what we now call Banach spaces) is due to
Riesz in 1913. It turned out that Hilbert and Schmidt had studied a special class of operators we now call
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“compact”, whereas an even more famous student of Hilbert’s, Weyl, had investigated a singular class of
operators now called “unbounded” in the context of ordinary differential equations. Spectral theory and
eigenfunctions expansions were studied by Riesz himself for general bounded operators on Hilbert spaces
(seen by him as a special case of general normed spaces), and later, more specifically in the Hilbert space
case, by Hellinger and Toeplitz (culminating in their pre-von Neumann review article of 1927). In the Hilbert
space case, the results of all these authors were generalized almost beyond recognition by von Neumann in
his book from 1932 [15], to whose origins we now turn.

John von Neumann (1903—1957) was a Hungarian prodigy; he wrote his first mathematical paper at the
age of seventeen. Except for this first paper, his early work was in set theory and the foundations of mathe-
matics. In the Fall of 1926, he moved to Gottingen to work with Hilbert, the most prominent mathematician
of his time. Around 1920, Hilbert had initiated his Beweistheory, an approach to the axiomatization of
mathematics that was doomed to fail in view of Gdel’s later work. However, at the time that von Neumann
arrived, Hilbert was mainly interested in quantum mechanics.

1.2.2 Why Hilbert space (level 0)?



Chapter V

Quantum mechanics and Hilbert
space I: states and observables

We are now going to apply the previous machinery to quantum mechanics, referring to the Intro-
duction for history and motivation. The mathematical formalism of quantum mechanics is easier
to understand if it is compared with classical mechanics, of which it is a modification. We therefore
start with a rapid overview of the latter, emphasizing its mathematical structure.

V.1 Classical mechanics

The formalism of classical mechanics is based on the notion of a phase space M and time-
evolution, going back to Descartes and Newton, and brought into its modern form by Hamilton.
The phase space of a given physical system is a collection of points, each of which is interpreted as
a possible state of the system. At each instance of time, a given state is supposed to completely
characterize the ‘state of affairs’ of the system, in that:

1. The value of any observable (i.e., any question that may possibly be asked about the system,
such as the value of its energy, or angular momentum,...) is determined by it.!

2. Together with the equations of motion, the state at ¢ = 0 is the only required ingredient for
the prediction of the future of the system.?

Observables are given by functions f on M. The relationship between states (i.e. points of M)
and observables is at follows:

The value of the observable f in the state x is f(x).

This may be reformulated in terms of questions and answers. Here an observable f is identified
with the question: what is the value of f? A state is then a list of answers to all such questions.

A very basic type of observable is defined by a subset S C M. This observable is the char-
acteristic function yg of S, given by xs(z) = 1 when = € S and xs(z) = 0 when = ¢ S. The
corresponding question is: is the system in some state lying in S C M ¢ The answer yes is identified
with the value ys = 1 and the answer no corresponds to xs = 0. Sich a question with only two
possible answers is called a yes-no question.

In these notes we only look at the special case M = R?", which describes a physical system
consisting of a point particles moving in R™". We use coordinates (q,p) := (¢, p;), where i =
1,...,n. The ¢ variable (“position”) denotes the position of the particle, whereas the meaning of

1Philosophers would say that any quantity pertaining to the system supervenes on its states; this means that no
change in a given quantity is possibly without a change in the state. For example, most scientists would agree that
the mind supervenes on the brain (seen as a physical system).

2We do not say that such a prediction is always possible in practice. But if it is possible at all, it merely requires
the state and the equations of motion.

31
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the p variable (“momentum”) depends on the time-evolution of the system. For example, for a
free particle of mass m one has the relation 7 = m¥, where v is the velocity of the particle (see
below). Let us note that one may look at, say, ¢* also as an observable: seen as a function on M,
one simply has ¢*(q,p) = ¢', etc.

Given the phase space M, the specification of the system is completed by specifying a function
h on M, called the Hamiltonian of the system. For M = R?" we therefore have h as a function
of (g, p), informally written as h = h(q,p). The Hamiltonian plays a dual role:

e Regarded as an observable it gives the value of the energy;
e it determines the time-evolution of the system.

Indeed, given h the time-evolution is determined by Hamilton’s equations

i da _ Oh
dt Op;’
Di = % = *g:l (V.1)
For example, a particle with mass m moving in a potential V' has Hamiltonian
2
h(g,p) = 5~ +V(a), (V.2)

where p? := Z?zl(pz)2 The equations (V.1) then read §* = p;/m and p; = _78V/8qi._ With
the force defined by F' := —9V/0¢’, these are precisely Newton’s equations d?q’/dt?> = F*/m, or
F = ma. In principle, h may explicitly depend on time as well.

V.2 Quantum mechanics

Quantum mechanics is based on the postulate that the phase space is a Hilbert space H, with the
additional stipulations that:

1. Only vectors of norm 1 correspond to physical states;

2. Vectors differing by a “phase”, i.e., by a complex number of modulus 1, correspond to the
same physical state.

In other word, v € H and 2% with z € C and |z| = 1 give the same state.> We here stick to the
physicists’ convention of denoting elements of Hilbert spaces by Greek letters.*

The reason for the first point lies in the probability interpretation of quantum mechanics. The
simplest example of this interpretation is given by the quantum mechanics of a particle moving in
R3. In that case the Hilbert space may be taken to be H = L?(R3), and Born and Pauli claimed in
1926 that the meaning of the ‘wavefunction’ ¢ € L?(R3) was as follows: the probability P(y, z € A)
that the particle in state v is found to be in a region A C R3 is

P(x € Al) = (i, xa®) = /A @z ()| (V.3)

Here xa is the characteristic function of A, given by xa(z) =1 when z € A and ya(z) = 0 when
x ¢ A. It follows that

P(z e R"¢) = [¢|* = (¢, %) =1, (V4)

3Tt follows that the true state space of a quantum-mechanical system is the projective Hilbert space PH, which
may be defined as the quotient SH/ ~, where SH := {f € H | ||f|| = 1} and f ~ g iff f = zg for some z € C with
lz| = 1.

4This notation was initially used by Schrédinger in order to make his wave mechanics, a precursor of quantum
mechanics, look even more mysterious than it already was.
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1.2.3 Why Hilbert space (level 1)?

One could go through great pains to learn the profound mathematics of Hilbert spaces and operators on
them but what in experiment suggests the specific form of quantum mechanics with its “postulates”? Why
should measurable quantities be represented by operators on a Hilbert space? Why should the complete
information about a system be represented by a vector from a Hilbert space?

It looks like we make a lot of assumptions for setting up quantum mechanics. The arguments below will
show, that we make one less than we make for classical mechanics, and that this intails all the strangeness.
It is a bit like in general relativity: by omitting one postulate from geometry, we enter a whole new space of
possibilities.

Overview
* Associate “physical quantity” Q with a mathematical object Q
» Key step: Q should be part of an algebra

* Define the “state” of a system, that leads to an expectation value for any measurement on the system.

» Given a “state” and the algebra of observables, a Hilbert space can be constructed and the observables
will be represented on it as linear operators in the Hilbert space (GNS representation).

* In turn, any Hilbert space that allows representing the algebra of observables as linear operators on it
is equivalent to a direct sum of GNS representations.

Physical quantities and observables Assume we have “physical quantities” Q. The concept is deliber-
ately vague to leave it as general as possible. Itshould be a number or set of numbers that are associated with
something we can measure directly or determine indirectly by a set of manipulations on an something we
call a physical system. For being able to establish logically consistent relations between physical quantities,
we want to map them into mathematical objects.

An algebra for the observables Let Q be the mathematical objects corresponding to the physical quan-
tities. We want to be able to perform basic algebraic operations with them: add them, multiply them, scale
them, in brief: they should be members of an “algebra” A:

1. A is a vector space

2. there is a multiplication: (P,Q) — O =:PQ €A
3. P(Q1+Q2) = PQ1+PQs for P,Q1,0> €A

4. P(aQ)=o(PQ) fora e C

5. McA:10=01=0

We would need to come back later and see what “physical quantity” may correspond to Q + Q or QQ. How
can we map this back into Q + Q etc.? A few extra mathematical properties we want for our Q:

1. There should be a norm: we should be able to tell how “large” at most the quantity is and it should
be compatible with multiplicative structure of the algebra. This norm should have the properties

POl < [P [e} 1] =1
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2. There should be an adjoint element with all the properties of a hermitian conjugate

3. A should be complete: if a sequence of O, “converges” (Cauchy series), the should be an element in
A such that the series converges to this element.

It is not obvious, whether these further assumptions are innocent or already imply deep postulates on the
physics we want to mirror in our mathematics. Note, however, that the “observables” of classical me-
chanics are simply functions on the phase space and have all those properties with the norm ||F|| = sup, ,
mod F(x, p) |, if we restrict ourselves to bounded functions: after all, there is no single apparatus to mea-
sure infinitely large values. Note, that in this sense momentum p would not fit into the algebra, as it is
unbounded. However, momentum restriced to any finite range does fit. An algebra with these properties is
called C-algebra.

Spectrum of O Any physical quantity Q can assume a set of values, which should be identical with the
spectrum of Q: Q, so to speak, is a general container for the possible values of the measurable quantity.

Let us remark that the spectrum ¢ (Q) of an element of the algebra can be defined just like for a linear
operator by looking at (Q —z)~! for z € C:

o(Q)=Cl{zeC|3(Q-2)"} (1.16)

The state of a system We call an element of the algebra positive, if its spectrum has strictly non-negative
values. A more fundamental definition of positivity is A > 0: A = B*B,B € A. Using the definition of
“positive”’, we can introduce a partial ordering in the algebra by The “state of a system” is a positive linear
functional f with f(1) =1

e Linear: f(aA+fB) = o f(A)+ Bf(B), we want that ... (we have it in classical mechanics).

* Positive: f(Q) >0 for Q > 0. Note the > rather than >: the observable Q may well have spectral
values = 0 in certain places. If a state fj only tests these places, the result f(Q) = 0, although Q > 0.

A state f is a very general definition of what we expect of something that gives an “expectation value” f(Q)
for a physical quantity Q: linear, not negative if there are only positive values available, and = 1, if we only
measure that the system exists at all, without referring to any physical property (Q = 1).

Gelfand isomorphism Can be paraphrased as follows: “Any commuting C-algebra is equivalent to an
algebra of continuous functions from the character set of the algebra into the complex numbers. A character
of an abelian C-algebra is a homomorphism of the algebra into the complex numbers.

If you are not familiar with the concept of “character”, for simplicity, think of subset of the linear
operators on the Hilbert space and imagine a single character as a common eigenvector shared by all the
operators (bypassing also the question of possibly degenerate eigenvalues). For the algebra formed by the
polynomials of a single “normal” operator, a character can be associated with a given spectral value of
the operator. The character set is nothing newly introduced, no new condition on our algebra: given a
commuting C* algebra, we can give its character set. For defining “continuity” we need a topology. A weak
topology is used: a sequence of characters y,, converges, if the sequence of real numbers x,(Q) converges
for each Q € A.
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Ilustration on the example of bounded linear operators Gelfand isomorphism is the correspondence
of what you know as “any set of commuting operators can be diagonalized simultaneously”. The statement
can be derived without any reference to a “Hilbert space” or ‘states on the Hilbert space”. It only uses
the precise definition of “character”. However, to develop a feeling for its meaning, in can be helpfull to
discuss a very simplified version for linear operators on a Hilbert space. Assume a commutative C* algebra
A of bounded linear operators on a Hilbert space. You have learnt that all operators of the algebra can
be “diagonalized” simultaneously. Assume for simplicity that all these operators have a strictly discrete
spectrum with eigenfunctions from the Hilbert space. Let {|i) } denote the set of simultaneous eigenvectors
of all operators in the algebra. Assume for simplicity that we can choose the |i) orthonormal: (i|j) = &;;
Then any operator A € A can be written as

A=Y ) fal) (ul = Y ) 2i(A) (chii (1.17)
Xi Xi

The set shared eigenvectors {|i) } defines the character set X = {x;} of this particular C* algebra:
x(A) = (il Ali) (1.18)

The fa (i) can be understood as mapping one particular character y; into the complex numbers.

States, measures, and integrals We can identify states with integration measures on the spectrum of an
element Q. What is an integral? It is a continuous (in the sense of some topology) linear map from a space
of functions f into the complex numbers. We write it as

| du oo (1.19)
xex

where d() is the integration “measure” on the set of xs.

What is a state? It is a (positive, continuous) linear map from the C* algebra into the complex numbers.

State < measure on the character set. To the extent that we can associate the character set with the
“spectrum” of the observable any measure on the character set is a measure on the spectrum.

Using again the analogy with a C* algebra of bounded linear operators: a state can be constructed using
a “density matrix” p by:

fo(A) =TrpA (1.20)
In the simplest case of a pure state p = |¥) (¥| (||¥| = 1)
fpla) =TrpA = ZI (P[] |2 xi(A) =Y u(x (1.21)
xeX

The integration measure induced by f, with p = [¥) (¥| is just u(x;) =| (¥| |i) |». We are back to the
simplest quantum mechanical situation.

The structure of classical and quantum mechanics Postulate: Observables of a physical system are
described by hermitian Q = Q* elements of a C* algebra A and the state of a physical system is mapped into
a state on A. The possible measurement results for Q are the spectrum of Q and their probability distribution
in a state f is given by the measure d f, which is the probability measure induced by it on the spectrum of
0.

In classical mechanics, all Q commute. In quantum mechanics, they do not commute. Here is the
fundamen- tal mathematical difference between the two theories.
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Where is the Hilbert space? C* algebras can always be represented as bounded operators on a Hilbert
space. “Represented”: what matters about the algebra is its addition and multiplication laws, and, as it is
C* also the conjugation operation. Let 7w : A — B(H) be a mapping that assigns a bounded operator on
the Hilbert space to each element of A : Q — w(Q). We call & a *-homomorphism, if it preserves the C*
algebraic properties. If we have a state f, we can use it to define a scalar product

(0lQ) = f(Q"0) (1.22)

and with it turn the algebra into a Hilbert space. We can then use this Hilbert space to represent the algebra
on it. Let us call this Hilbert space H(A, f). Note: f(Q*Q) will not be a legitimate scalar product on the
complete algebra as in general there will be 0 = A € A such that f(A*A) = 0. This can be fixed, loosely
speaking, by removing those A from the space used for representing A. Using the concepts of quotient
algebra and left sided ideal this can be done as follows: first observe that the A € N with f(A*A) =0 are a
left-sided ideal of the algebra:

f(A*A)=0= f(A*"B*BA) =0VB€ A (1.23)
To go into the quotient algebra
A/N={[B]|B€A}, [B|={B+A|AeN} (1.24)
The scalar product of quotient algebra is defined by
([B[B)) = inf f((B+A)+(B+A)) >0 (1.25)

for [B] = [0]. Note that [0] = A]A € N.

GNS representation (Gelfand, Naimark, Segal) Having constructed H (A, f) we get a representation of the
algebra on that Hilbert space as follows. Let |g) € H(A, f) be the vector in the Hilbert space that corresponds
to an element Q € A. Let P be any element in A. Then PQ € A with a corresponding |pg) € H(A, f). We
define the linear operator on H(A, f) ns(P) : |q) — s (P) |q) = |pq).

A vector |c) from the a Hilbert space is called “cyclic” w.r.t. a representation 7, if the vectors {7 (Q) |¢) |
7(Q) € w(A)} are dense in the Hilbert space.

Irreducibility of a representation can be also phrased as: all vectors of the Hilbert space are cyclic. By
construction, the vector corresponding to |1) ¢ n the GNS representation 7y for state f representation is
cyclic.

Pure-state < GNS construction is irreducible. States form a convex space, i.e. if fi and f, are states,
then also f = af; + (1 — &) f>, ¢ € [0,1] is a state. States that cannot be decomposed in this way are called
“pure”. Without discussing this further, we mention

* The density matrix corresponding to pure states has the form p = |¥) (\¥|
* The GNS representation 7, for a pure state p is irreducible.
Direct sum of representations Suppose there are two representations 7; and 7, of an algebra on two
Hilbert spaces, H; and H,, respectively. With the direct sum of the Hilbert spaces
YeH &H Y=y Sy (YY) = (vily) + (valya) (1.26)

the direct sum of the two representations is constructed by

I(A)Y = m(A) & m(A) (1.27)
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Equivalence of any cyclic representation to GNS Clearly, two representations that are related by a uni-
tary transformation (“‘change of basis”) will be considered equivalent. If the transformation is between
two different Hilbert spaces, we must replace “unitary transformation” with “isomorphism”, i.e. a linear,
bijective, norm-conserving transformation:

H]Q)Hzi HU‘P]HQZ ”T]H] (1.28)

Two representations related by an isomorphism 7, (A) = U (A)U ! are called equivalent.

Theorem: Any representation of the C* algebra on a Hilbert space with a cyclic vector is equivalent to a
GNS representation. Sketch of the proof: Assume a specific representation 7 which has a cyclic vector |c).
Then we can define a state on the algebra by

fe(A) = {c| m(A) |c). (1.29)
The GNS representation 7y, is then equivalent to 7. The map U between the two representations
la) = 7(A) |e) U, [[A]), (1.30)

is obviously isometric and invertible as ([A]|[A]) , =0 < (ala) = 0.

Equivalence any representation to a sum of GNS From representation theory: “Any representation” of
a C* algebra (with unity) on a Hilbert space is the direct sum of of representations of with a cyclic vector.
Therefore: any representation of a C* algebra is equivalent to a direct sum of GNS representations.

Let the mathematical dust settle an try to see what we have done. Using only the algebra of observables
and one or several states, we have constructed one ore several Hilbert spaces. We can map the algebraic
structure onto linear operators on each of these Hilbert spaces. These are the GNS representations. If, in
turn, we more or less arbitrarily pick a Hilbert space and represent our algebra on it, this Hilbert space can
be put into a one-to-one relation to a sum of the GNS representations. It is equivalent to it. It is all in the C*
algebra and the states. These states we introduced in the closest analogy to probability measures on phase
space. The Hilbert space representation pops out automatically.

What is new in quantum mechanics it non-commutativity. For handling this, the Hilbert space represen-
tation turned out to be a convenient - by many considered the best - mathematical environment. For classical
mechanics, working in the Hilbert space would be an overkill: we just need functions on the phase space.
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1.3 Spectral Theory



Chapter VII

Spectral theory for selfadjoint
operators

We denote the kernel or null space of a map a by N(a) and its range or image by R(a). As before,
D(a) denotes the domain of a. Also, a — z for z € C denotes the operator a — z1.

VII.1 Resolvent and spectrum

The theory of the spectrum of a closed operator on a Hilbert space (which may be bounded or
unbounded) is a generalization of the theory of eigenvalues of a matrix. From linear algebra we
recall:

Proposition VII.1 Let a: C" — C™ be a linear map. The a is injective iff it is surjective.

This follows from the fundamental fact that if a : V' — W is a Inear map between vector spaces,
one has R(a) 2 V/N(a). If V.= W = C", one one count dimensions to infer that dim(R(a)) =
n — dim(N(a)). Surjectivity of a yields dim(R(a)) = n, hence dim(N(a)) = 0, hence N(a) = 0,
and vice versa.! [ ]

Corollary VII.2 Let a: C* — C™ be a linear map. Then a — z is invertible (i.e., injective and
surjective) iff z is not an eigenvalue of a, i.e., if there exists no f € C"™ such that af = zf.

Defining the spectrum o(a) of a : C* — C™ as the set of eigenvalues of a and the resolvent
p(a) as the set of all z € C for which a — z is invertible, we therefore have

a(a) = C\p(a). (VIL1)

If z € p(a), the equation (a — 2)f = g for the unknown f € C™ has a unique solution for any g;
existence follows from the surjectivity of a — z, whereas uniqueness follows from its injectivity (if
a — z fails to be injective then any element of its kernel can be added to a given solution).

Now, if a is an operator on an infinite-dimensional Hilbert space, it may not have any eigen-
values, even when it is bounded and self-adjoint. For example, if a(z) = exp(—x?) the associated
multiplication operator a : L?(R) — L?(R) is bounded and self-adjoint, but it has no eigenvalues at
all: the equation af = Af for eigenvectors is exp(—a2)f(x) = Af(x) for (almost) all z € R, which
holds only if f is nonzero at a single point. But in that case f = 0 as an element of L?. However,
the situation is not hopeless. More generally, let any a € Cy(R), interpreted as a multiplication

In general, this proposition yields the very simplest case of the Atiyah-Singer index theorem, for which these
authors received the Abel Prize in 2004. We define the index of a linear map a : V — W as index(a) :=
dim(ker(a)) — dim(coker(a)), where ker(a) = N(a) and coker(a) := W/R(a), provided both quantities are finite. If
V and W are finite-dimensional, Proposition VIIL.1 yields index(a) = dim(V) — dim(W); in particular, if V = W
then index(a) = 0 for any linear map a. In general, the index theorem expresses the index of an operator in terms
of topological data; in this simple case the only such data are the dimensions of V and W.

41
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operator a : L?(R) — L%(R). If 2y € R one may find approximate eigenvectors of a in the following
sense: take

Fo(®) = (n/m)!/Aemnlame0)®/2, (VIL2)

Then || f»]| = 1 and lim, o (a(x) — a(xo)) fr, = 0, although the sequence f,, itself has no limit in
L?(R). Thus we may call A = a(zo) something like a generalized eigenvalue of a for any zo € R,
and define the spectrum accordingly: let a : D(a) — H be a (possibly unbounded) operator on a
Hilbert space. We say that A € o(a) when there exists a sequence (f,,) in D(a) for which ||f,]| =1
and

lim (a — \)f, = 0. (VIL3)
n—oo
Of course, when A is an eigenvalue of a with eigenvector f, we may take f, = f for all n.
However, this is not the official definition of the spectrum, which is as follows.

Definition VIL.3 Let a: D(a) — H be a (possibly unbounded) operator on a Hilbert space. The
resolvent p(a) is the set of all z € C for which a — z : D(a) — H is injective and surjective (i.e.,
invertible). The spectrum o(a) of a is defined by o(a) := C\p(a).

Hence the property (VIL.1) has been turned into a definition! We will prove the equivalence
of this definition of the spectrum with the definition above later on. In the example just given,
one has o(a) = a(R) if the right domain of a is used, namely (II11.17). Thus the spectrum can
be nonempty even if there aren’t any eigenvalues. The subsequent theory shows that these are
precisely the right definitons for spectral theory.

The following result explains the role of closedness.?

Proposition VII.4 If an operator a : D(a) — R(a) = H has an inverse, then a=! is bounded iff
a 1s closed.

The proof consists of two steps. First, one has that a : D(a) — R(a) is closed iff a=! is closed.
To prove “=", assume g, — g and a"'g, — f. Call f, := a~'g,; then af, = g, — g, so if a
is closed then by definition f € D(a) and af, — af, so af = g, hence f = a~'g, which means
a"tg, — a~lg. In particular, g € R(a) = D(a™!), and it follows that a~! is closed. The proof of
“«<” is the same, with a and a~! interchanged. Geometrically, the graph of a~! is just the image
of the graph of a in H @ H under the map (f,g) — (g, f), hence if one is closed then so is the
other.

Secondly, if R(a) = H, then D(a) = H, hence a~! is bounded by the closed graph theorem
(Theorem VL5). [ |

Returning to the equation (a — 2)f = g, it now follows that when z € p(a), the solution
f depends continuously on the initial data g iff a is closed. To avoid pathologies, we therefore
assume that a is closed in what follows. Furthermore, as we shall see, practically every argument
below breaks down when (a— z)~! is unbounded. This also explains why as far as spectral theory is
concerned there isn’t much difference between bounded operators and closed unbounded operators:
in both cases (a — 2)~! is bounded for z € p(a).

As an exercise, one easily shows:

Proposition VII.5 Let a be a closed operator.
1. p(a) is open (and hence o(a) is closed) in C.

2. p(a*) = pla); o(a*) = o(a).

N

For unbounded operators the spectrum can (literally) be any subset of C, including the empty
set.

2Some books define the resolvent of a as the set of those z € C for which (a — z) is invertible and has bounded
inverse. In that case, the resolvent is empty when a is not closed.
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VII.2 The spectrum of self-adjoint operators
For a general closed operator a, we may decompose the spectrum as
o(a) = o4(a) Uoc(a), (VIL4)

where the discrete spectrum o4(a) consists of all eigenvalues of a, and the continuous spec-
trum o.(a) is the remainder of o(a). Recall that eigenvalues lie in o(a), for if (a—\) f = 0 for some
nonzero f then a — A cannot be injective. The spectrum of self-adjoint operators has a particularly
transparent structure.

Theorem VII.6 Let a be a self-adjoint operator (i.e., a* = a), and let z € C. Then one of the
following possibilities occurs:

1. R(a—z)=H iff z € p(a);
2. R(a—2)" = H but R(a—z) # H iff z € 0.(a);
3. Rla—=z)" # H iff z € 04(a).

The key to the proof is a very simple result.

Lemma VIL7 If a is closable (equivalently, if D(a*) is dense), then R(a — 2)~ = N(a* — )+
and N(a* —Z) = R(a — 2)*.

Note that the kernel of a closed operator (in this case a* — Z) is automatically closed. Easy
calculations using the definition of a* yield the inclusions R(a — z)* C N(a* — %) and R(a — z) C
N(a* —2z)t. Since K++ = K~ for any linear subspace K of a Hilbert space, and K C L implies
Lt c K+, the claim follows. |

We first prove Theorem VIL6 for z € R. If R(a —2)~ # H, then N(a—z) = R(a—2)* # 0, so
(a — A)f = 0 has a nonzero solution and A € gg4(a). The converse implication has the same proof.
If R(a—2)~ = H, then N(a — z) = 0 and a — z is injective. Now if R(a — 2) = H then a — 2
is surjective as well, and z € p(a). The converse is trivial given the definition of the resolvent. If
R(a — z) # H, then z € o.(a) by definition of the continuous spectrum. Conversely, if z € o.(a)
then z ¢ o4(a) and z ¢ p(a), so that R(a — z) = H and R(a — z)~ # H are exlcuded by the
previous ‘iff” results for p(a) and o4(a). Hence R(a — 2)~ = H but R(a — z) # H.

To prove Theorem VIL.6 for z € C\R, we first note that eigenvalues of self-adjoint operators
must be real; this is immediate since if a* = a then (f,af) = (af, f) = (f,af), so if f is an
eigenvector with eigenvector A it follows that A = . In fact, we will prove that if z € C\R, then
also z € pc(a) is impossible, so that z € p(a). To see this we need some lemma’s.

Lemma VIL.8 Let a be symmetric. Then |[(a — z)f]| > |Im (2)]]| f]]-

Reading Cauchy—Schwarz in the wrong order, we obtain

Ia = 2) N = 1(f, (@ = 2) /)] = |(r = ilm () [ £1*] > [Tm (2)][|F]]*.

Here we used the fact that r := (f,af) — Re(z) is a real number by virtue of the symmetry of
a. |

Hence z € C\R implies N(a — %) = 0. Combining this with Lemma VIL7, we infer that
R(a—2)~ = N(a — %)t = H. To infer that actually R(a — z) = H we need yet another lemma.

Lemma VIL.9 Let a be any densely defined operator. If ||laf|| > C||f|| for some C > 0 and all
f € D(a), then a is injective and a=* : R(a) — D(a) is bounded with bound |a=!|| < C~!.
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Injectivity is trivial, for af = 0 cannot have any nonzero solutions given the bound; a linear map
a is injective when af = 0 implies f = 0. For the second claim, note that

la="|| = sup{lla~"gll,g € D(a™") = R(a), llgll =1} =

sup{ ot (a),f#O}:sup{ I (a),fséO}-

This yields the claim. |

Combining this with Lemma VILS, we see that z € C\R implies (a — 2)™ : D((a — 2)7!) —
D(a — z) = D(a) is bounded, where D((a — 2)™') = R(a — z). To infer that in fact R(a — 2) = H,
we use:

Lemma VIL.10 If b is closed and injective, then b=1 : R(b) — D(b) is closed.

See the proof of Proposition VII.4. [ |
Lemma VIIL.11 Ifb is closed and bounded, then D(b) is closed.
This is immediate from the definition of closedness. |

Taking b = (a — 2)~!, we find that D((a — z)™1) is closed. Since we know that R(a — 2z)~ = H,
we conclude that R(a — z) = H. The same is true for Z. Hence by Lemma VIL.7, N(a — z) =
R(a—2%)t = H* =0 and a — z is injective. With a — z already known to be surjective, z € p(a).

The proof of the converse implications is the same as for z € R, and we have finished the proof
of Theorem VII.6. ]

Using similar arguments, one can prove
Theorem VII.12 Let a be a symmetric operator. Then the following properties are equivalent:

1. a* = a, i.e., a is self-adjoint;

2. a is closed and N(a* £1i) = 0;
3. Rla+i)=H;

4. R(a—z)=H for all z € C\R;
5. o(a) CR.

Similarly, the following properties are equivalent:

1. a* = a**, i.e., a is essentially self-adjoint;

2. N(a* +i) =

3. Ra+i)~ =H;

4. Rla—2)~ =H for all z € C\R;
5 o(a”) C

The second half of the theorem easily follows from the first, on which we will therefore concentrate.
The implications 1 = 2, 1 = 4, 1 = 5 and 2 = 3 are immediate either from Theorem VIL.6 or
from its proof. The implications 4 = 3 and 5 = 4 are trivial. Thus it only remains to prove 3 = 1.

To do so, assume R(a +i) = H. For given f € D(a*) there must then be a g € H such
that (a* —i)f = (a — i)g. Since a is symmetric, we have D(a) C D(a*), so f — g € D(a*), and
(a* —i)(f —g) = 0. But N(a* —i) = R(a + i)* by Lemma VIL7, so N(a* —i) = 0. Hence
f =g, and in particular f € D(a) and hence D(a*) C D(a). Since we already know the opposite
inclusion, we have D(a*) = D(a). Given symmetry, this implies a* = a. |
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Corollary VIL.13 Let a* = a. The o(a) C R. In other words, the spectrum of a self-adjoint
operator is real.

As an illustration of Theorem VII.12, one can directly show:

Proposition VIL.14 Let a € C(Q) define a real-valued multiplication operator on
D(a) = {f € L*(Q) | af € L*(Q)} C H = L*(),

so that a* = a (cf. Proposition VI.8.) Then the operator a is injective iff a(z) # 0 for all x € Q,
and surjective iff there exists € > 0 so that |a(z)| > € for all z € Q; in that case a is injective and
has bounded inverse. Consequently, o(a) = a(2)~, with a(Q) := {a(z),x € Q}.

Finally, we justify our earlier heuristic definition of the spectrum; the thrust of the theorem
lies in its characterization of the continuous spectrum, of course.

Theorem VII.15 Let a be self-adjoint. Then \ € o(a) iff there exists a sequence (f,) in D(a)
with || fn]l =1 for all n such that lim,(a — \) f, = 0.

Suppose A € o(a). If A € o4(a) we are ready, taking f, = f for all n. If X € o.(a), then
R(a— X))~ = H but R(a— ) # H by Theorem VIIL.6. Now a is self-adjoint, hence a and a — \ are
closed, so that also (a—\)~! is closed by Lemma VII.10. Hence (a—X)~! : R(a—\) — H must bea a
densely defined unbounded operator by Lemma VII.11, for if it were bounded then its domain would
be closed, which D((a — A)™!) = R(a — \) is not, as we have just shown. Thus there is a sequence
gn in D((a—X)71) with norm 1 and ||(a — A\)"1g,|| — oo. Then f, := (a — A)"Lgn/||(a — X)"Lgn|]
has the desired property.

Conversely, if A € p(a) then (a — A\)~! is bounded, hence (a — \) f,, — 0 implies f,, — 0, so the
sequence (f,,) cannot exist, and A € o(a) by reductio ad absurdum. ]

VII.3 Application to quantum mechanics

The theory of self-adjoint operators has many applications, for example to the theory of boundary
value problems for linear partial differential equations. In these notes we focus on applications to
quantum mechanics.

In Chapter V we initially assumed that observables in quantum mechanics are mathematically
represented by bounded self-adjoint operators, i.e. linear maps a : B(H) — B(H) such that
la]] < oo and a* = a. As already mentioned at the end of that chapter, however, this model is too
limited. For example, in physics textbooks you will find the position and momentum operators

At )

qg =
0
Oxt’

Here & € Rt is a constant of nature, called Planck’s constant, and ¢ = 1,2,3. These operators
are allegedly defined on H = L?(R?), but we know from the previous chapter that at least ¢’ is
unbounded. It is a multiplication operator of the form ay(x) = ay(x) with a € C(R3), in this
case a(z) = . As we have seen, a is bounded iff ||@]|« < 0o, and this clearly not the case for .
Hence the position operator is unbounded. It follows from Proposition V1.8 that ¢’ is self-adjoint
on the domain

pi = —ih (VIL5)

D(q") = {v € L*(R®) | 2’9 € L*(R?)}, (VIL6)

where 1) is shorthand for the function z — x4y (x).

Although we have not had the opportunity to develop the necessary machinery, the story of
the momentum operator p; is similar. If we denote the Fourier transform of v € L?(R?) by ¥, and
call its argument k = (k1, ko, k3) € R3, we can write

D(k) = /R ) (VILT)

where kx = 21k, + 22ky + 23ks. This inproper integral is defined as follows.
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1.4 More on Hilbert Spaces




Basic Facts About Hilbert Space

The term Euclidean space refers to a finite dimensional linear space with an inner product.
A Euclidean space is always complete by virtue of the fact that it is finite dimensional (and
we are taking the scalars here to be the reals which have been constructed to be complete).
An infinite dimensional inner product space which is complete for the norm induced by the
inner product is called a Hilbert space. A Hilbert space is in many ways like a Euclidean
space (which is why finite dimensional intuituition often works in the infinite dimensional
Hilbert space setting) but there are some ways in which the infinite dimensionality leads to
subtle differences we need to be aware of.

Subspaces

A subset M of Hilbert space H is a subspace of it is closed under the operation of forming
linear combinations; i.e., for all x and y in M, Cx + C,y belongs to M for all scalars C;, C».
The subspace M is said to be closed if it contains all its limit points; i.e., every sequence of
elements of M that is Cauchy for the H-norm, converges to an element of M. In a Euclidean
space every subspace is closed but in a Hilbert space this is not the case.

Examples-

(a) If U is a bounded open set in R” then H = H°(U) is a Hilbert space containing M = C(U)
as a subspace. It is easy to find a sequence of functions in M that is Cauchy for the H norm
but the sequence converges to a function in H that is discontinuous and hence not in M.
This proves that M is not closed in H.

(b) Every finite dimensional subspace of a Hilbert space H is closed. For example, if M
denotes the span of finitely many elements xi, ... .xy in H, then the set M of all possible
linear combinations of these elements is finite dimensional (of dimension N), hence it is
closed in H.

(c) Let M denote a subspace of Hilbert space H and let M* denote the orthogonal
complement of M.
M- =<{xeH: (x,y)u =0,Vy € M}

Then M* is easily seen to be a subspace and it is closed, whether or not M itself is closed.

To see this, suppose {x,} is a Cauchy sequence in M* converging to limit x in H. For
arbitrary y in M,

X )a = —x0)m+ (X0, Y)m = (x —x,,y)n +0 — 0, as ntends to infinity.

Then the limit point x is orthogonal to every y in M which is to say, x is in M*, and M* is
closed.

Lemma 1- Let M denote a subspace of Hilbert space H. Then (M*)* = M.



If M is a subspace of H that is not closed, then M is contained in a closed subspace M of H,
consisting of M together with all its limit points. M is called the closure of M and M is said to
be dense in M. This means that for every x in M there is a sequence of elements of M that
converge to x in the norm of H. Equivalently, to say M is dense in M means that for every x
in M and every € > 0, there is a'y in M such that ||x—y|, < e.

Lemma 2 A subspace M of Hilbert space H is dense in H if and only if M* = {0}.

A Hilbert space H is said to be separable if H contains a countable dense subset {h,}. In
this case, for every x in H and every € > 0 there exists an integer N. and scalars {a,} such
that

” = 25:1 anltn

<e for N> N,
H

If H is a separable Hilbert space, then the Gram-Schmidt procedure can be used to
construct an orthonormal basis for H out of a countable dense subset. An orthonormal
basis for H is a set of mutually orthogonal unit vectors, {¢,} in H with the following property:

1) Forfe H, (¢.,/)u = 0 foreverynifandonlyif f=0

When the orthonormal set {¢,} has property 1, then it is said to be dense or complete in
H. Of course, not every orthonormal set in H is complete. Other equivalent ways of
characterizing completeness for orthonormal sets can be stated as follows:

2) For all f in H and every € > 0, there exists an integer N.such that

<e for N> N,
H

||f_ ZnN:1 (f’ ¢n)H¢n

3) ForeveryfinH, >.” f2 = |fl; where f, = (f.¢u)u

In a Euclidean space, E, where all subspaces M are closed, it is a fact that for each y in E
there is a unique z in M such that |y — z|| is minimal. This element z, which is just the
orthogonal projection of y onto M, is the "best approximation to y from within M”. In an
infinite dimensional Hilbert space, a similar result is true for closed subspaces but for
subspaces that are not closed there may fail to be a "best” approximation in M.

Hilbert Space Projection Theorem Let M be a closed subspace of Hilbert space H and
let y in H be given. Then

(i) there exists a unique x, in M such that [y —x,|l,, < [y -zl forallzin M
(x, is the unique point of M that is closest to y, the best approximationin Mtoy )

(i) y—xy,2)p =0 forallzinM;ie., y—-x, L M



(iii) every y in H can be uniquely expressed as y = x, +z, where
Py=x,eM, Qy =z, e M*

and vl = 1Pyl +10y1% e, H=Meo M".

The proof of this result will be given later.

Linear Functionals and Bilinear Forms
A real valued function defined on H, is said to be a functional on H. The functional, L, is
said to be:
(a) Linear if, for all x and y in H, L(Cx + C»y) = CiLx + C,Ly, for all scalars C;, C.
(b) Bounded if there exists a constant C such that 1Lxl < C||x||, forall xin H

(c) Continuous if |x, —x|,; - 0 impliesthat |Lx,—Lxl — 0

It is not difficult to show that the only example of a linear functional on a Euclidean space E
is Lx = (x,z)r for some z in E, fixed. For example, if F is a linear functional on E, then for
arbitrary x in E,

F(X) = F<27=1 Xi ,') = Z:;l )CiF( ,') = Z?:l xiF; = (x,ZF)E =Xx'zF

where {e;} denotes the standard basis in E and zr denotes the n-tuple whose i-th
component is F; = F( ;). This displays the isomorphism between functionals F and
elements, zr, in E. This isomorphism also exists in an abstract Hilbert space.

Riesz Representation Theorem For every continuous linear functional f on Hilbert
space H there exists a unique element z; in H such that f{x) = (x,zs)y for all x in H.

Proof- Let Ny = <{x € H: f{x) = 0};.Then N, is easily seen to be a closed subspace of H. If
Ny=H thenz;=0 and we are done. If Ny #+ H then H = N;® N; by the Hilbert space
projection theorem. Since Ny is not all of H, N} must contain nonzero vectors, and we
denote by zo an element of Nt such that ||zoll, = 1. Then for any x in H,

w = flx)zo = fzo)x

belongs to Ny hence w L zo. But in that case,
(f(x)zo0 — fz0)x,z0)u = f(x)(20,20) 1 — [z0)(x,20)H = 0.

This leads to, f(x) = f(z0)(x,z0)uw = (x,f(z0)z0)n Which is to say z; = f(z0)zo-



To see that z; is unique, suppose that f(x) = (zr,x)u = (ws,x)x for all x in H. Subtracting
leads to the result that (zs— wy,x)w = 0 for all x in H. In particular, choosing
x=z;—wy leadsto [(zg—wsll,=0.1

A real valued function a(x,y) defined on H x H is said to be:

(a) Bilinear if, for all x,x2,y1,y2 € H and all scalars Cy,C>

a(Cixy + Caxa,y1) = Cra(xi,y1) + Caa(xa,y1)

a(xy,Cry1 + Cay2) = Cra(xi,y1) + Caa(xa,y1)
(b) Bounded if there exists a constant » > 0 such that,

la(x, )| < bllx|| yllyll, forall x,y in H
(c) Continuous if x, — x, andy, — yin H, implies a(x,,y,) — a(x,y) inR
(d) Symmetric if a(x,y) = a(y,x) forallx,y in H
(e) Positive or coercive if there exists a C > 0 such that

a(x,x) > C|x||% forallxinH

It is not hard to show that for both linear functionals and bilinear forms, boundedness is
equivalent to continuity. If a(x,y) is a bilinear form on H x H, and F(x) is a linear functional
on H, then ®(x) = a(x,x)/2 — F(x) + Const is called a quadratic functional on H. In a
Euclidean space a quadratic functional has a unique extreme point located at the point
where the gradient of the functional vanishes. This result generalizes to the infinite
dimensional situation.

Lemma 3 Suppose a(x,y) is a positive, bounded and symmetric bilinear form on Hilbert
space H, and F(x) is a bounded linear functional on H. Consider the following problems

(@) minimize ®(x) = a(x,x)/2 — F(x) + Const over H
(b) find x in H satisfying a(x,y) = F(y) forallyin H.

Then
i) x in H solves (a) if and only if x solves (b)

ii) there is at most on x in H solving (a) and (b)



iii) there is at least one x in H solving (a) and (b)

Proof- Fortin R and x,y fixed in H, let f(r) = ®(x + ty) . Then {(t) is a real valued function of
the real variable t and it follows from the symmetry of a(x,y) that

ft) = 212 a(y,y) + tla(x,y) — F(y)]+1/2 a(x,x) — F(x) + Const
and

f (@) =ta(y,y) +[alx,y) - F(y)]

It follows that ®(x) has a global minimum at x in H if and only if f{(r) has a global minimum at
t=0;ie.,

O(x +ty) = O(x) + 1 (0) + 1*/2 a(x,x) > ®(x), Vt€ R and Vy e H

if and only if
f(0) =alx,y)-F(y) =0. VyeH.

This establishes the equivalence of (a) and (b).

To show that ®(x) has at most one minimum in H, suppose
a(xi,y) = F(y) and a(x2,y) = F(y) forallyinH.

Then a(xi,y) —a(x2,y) = a(x; —x2,y) = 0 forallyin H. In particular, for y = x; — x»
0 = a(x; —x2,x1 —x2) = Cllxi —x2l|3; i.e., x1 = x2

To show that ®(x) has at least one minimum in H, let o = inf,cy ®(x). Now
®(x) = 1/2 a(x,x) — F(x) > 1/2 C||x||4 - bllx]| 5

and it is evident that ®(x) tends to infinity as x|, tends to infinity. This means

a > - (i.e.,” the parabola opens upward rather than downward”). Moreover since « is an
infimum, there exists a sequence x, in H such that ®(x,) — a as n tends to infinity. Note
that

2la(xn,xn) + a(Xmy Xm)]= a(Xn — XmsXn — Xm) + a(Xm + Xy Xm + Xn)
which leads to the result,

DO(xy) + P(xy) = 1/4 alxm — xXn, Xm — Xn) + 2 O[ (X + x2)/2> 1/AC||xm — Xn ||%1 + 2a.



But ®(x,)+ ®(x,) tends to 2a as n tends to infinity and in view of the previous line, the
minimizing sequence {x,} must be a Cauchy sequence with limit x in the Hilbert space H.
Finally, since ®(x) is continuous, ®(x,) — ®(x) = .l

Applications of the lemma-
(i) This lemma can now be used to prove the Hilbert space projection theorem.
For M a closed subspace in H and for y a fixed but arbitrary element in H, note that

lx =yl = @=y.x=yu = lxI}-2y)u+llyl; forall xin M.

Since M is closed in H, it follows that M is itself a Hilbert space for the norm and inner
product inherited from H.

Define
a(z,x) = (z,X)u for x and z in M,
F(z) = 0,2)nu for zin M,

and D(z) = 1/2 a(z,z) — F(z) + 12|y 1% forzin M

Clearly a(z,x) is a positive, bounded and symmetric bilinear form on M, F is a bounded
linear functional on M. Then it follows from the lemma that there exists a unique element
xy € M which minimizes ®(z) over M. It follows also form the equivalence of problems (a)
and (b) that x, satisfies a(x,,z) = F(z), forall zin M; i.e., (xy,2)w = (y,z)u for all zin M. But
this is just the assertion that (x, —y,z)s = 0 for all zin M, thatis, x, —y L M. Finally, fory
in H, fixed, let the unique element x, in M be denoted by Py = x, € M. Then

y—Py L M,and z=y—-Py e M".

To see that this decomposition of elements of H is unique, suppose

y=xy+2z, Xy €M, ze M,
and yv=X,+Z7Z X, eM, Ze M,
Then
xy+z=X,+Z and x, - X, =Z-z.
But x,~X,eM, Z-zeM', MnOM" =0},

and it follows that x,-X, =Z-z=01

(ii) Recall that for U open and bounded in R*, H{(U) = M, is a closed subspace of
H'(U) = H. Then by the projection theorem, every y in H can be uniquely expressed as a
sum, y = x, +z, with x, € M, and z € M*. To characterize the subspace M*, choose
arbitrary ¢ € C3(U) and y € C*(U) and write

(@.W)u = [ v + Vo« Vyldx = [ [y ~Vyldx+ [ ponyds

= (¢,w —V2y)o + 0. (Recall that (u,v), denotes the H°(U) inner product).



Now suppose y € C*(U) N M*. Then (¢,y)n = 0, for all ¢ € C5(U),and since Cy(U) is
dense in M, (u,y)y = 0, for all uin M. That is, (u,y — V2y)o = 0 for all uin M. But this
implies that y € C*(U) N M* satisfies y — V?y = 0, in H°(U). Then, since C*(U) is dense in
H = H'(U) (cf. Theorem 2 pg 250 in the text) it follows that

M'={zeH:z-V?’2¢€ H(U), and z-V?’z=0}

The lemma requires that the bilinear form a(x,y) be symmetric. For application to existence
theorems for partial differential equations, this is an unacceptable restriction. Fortunately,
the most important part of the result remains true even when the form is not symmetric.

For A an n by n, not necessarily symmetric, but positive definite matrix, consider the
problem Ax = f. For any n by n matrix dimN, = dimN 4+, and for A positive definite,

dimN, = 0,which is to say that the solution of Ax = f is unique if it exists. Since

R" = R & N4, it follows that R" = R, which is to say, a solution for Ax = f exists for every f
in R". The situation in an abstract Hilbert space H is very close to this.

Lax-Milgram Lemma-  Suppose a(u,v) is a positive and bounded bilinear form on Hilbert
space H; i.e.,

@G < allull vl Vv e H
and
a(u,u) > Bllull?3 Yu e H.

Suppose also that F(v) is a bounded linear functional on H. Then there exists a unique U in
H such that

a(U,v) = F(v) Vv € H.

Proof- For each fixed u in H, the mapping v » a(u,v) is a bounded linear functional on H. It
follows that there exists a unique z, € H such that

Cl(u,V) = (Zu,v)H VV € H.

Let Au = z,; i.e., a(u,v) = (Au,v)y Vu € H. Clearly A is a linear mapping of H into H, and
since

|Au ||z = I(Au,Au) ul = la(u,Au)l < allull,||Aul
it is evident that A is also bounded. Note further, that
Bllullz; < a(u,u) = (Au,u)p < |Au|l yllull

ie., Pluly < llAull, Vu < H.



This estimate implies that A is one-to one and that R4, the range of A, is closed in H.

Finally, we will show that R4 = H. Since the range is closed, we can use the projection
theorem to write, H = R4 ® R;. If u € Rj, then

0 = (Au,u)y = a(u,u) > Bllullz; ie., Ri={0}.

Since F(v) is a bounded linear functional on H, it follows from the Riesz theorem that there
is a unique zr € H such that F(v) = (zr,v)n forall vin H. Then the equation
a(u,v) = F(v) can be expressed as

(Au,v)y = (zr,v)u Vv € H; i.e., Au = zf.

But A has been seen to be one-to-one and onto and it follows that there exists a unique
U € Hsuchthat AU =z

Convergence
In RN convergence of x, to x means

o = xllpr = [Z) [0 —0) e ei? ] — 0 @s n—
Here ¢; denotes the i-th vector in the standard basis.This is equivalent to,
(xn—x)ee; — 0 as n— oo, fori =1,...,N,
and to (x,—x)ez — 0 as n — oo, forevery z € RV

In an infinite dimensional Hilbert space H, convergence of x, to x means ||x, — x|, — 0 as
n — o. This is called strong convergence in H and it implies that
(xp—x,v)y 0 a@as n— o VveH.

This last mode of convergence is referred to as weak convergence and, in a general
Hilbert space, weak convergence does not imply strong convergence. Thus while there is
no distinction between weak and strong convergence in a finite dimensional space, the two
notions of convergence are not the same in a space of infinite dimensions.

In RY, a sequence {x,} is said to be bounded if there is a constant M such that Ix,| < M for
all n. Then the Bolzano-Weierstrass theorem asserts that every bounded sequence {x,}
contains a convergent subsequence. To see why this is true, note that {x, s e} is a
bounded sequence of real numbers and hence contains a subsequence {x, « ¢;} that is
convergent. Similarly, {x,1 * e2} is also a bounded sequence of real numbers and thus
contains a subsequence {x,» « ¢»} that is convergent. Proceeding in this way, we can
generate a sequence of subsequences, {x,x; < {x,} such that {x.  ¢;} is convergent for
Jj < k. Then the diagonal sequence {x..} is such that {x,, « ¢j} is convergent for



1 <j < N, which is to say, {x.. is convergent.
The analogue of this result in a Hilbert space is the following.

Lemma 4- Every bounded sequence in a separable Hilbert space contains a subsequence
that is weakly convergent.

Proof- Suppose that |x,| < M for all n and let {¢;} denote a complete orthonormal family
in H. Proceeding as we did in RY, let {x,x} < {x.} denote a subsequence such that
{(xnx ;) 1y is convergent (in R) for j < k. Then for each j, (x.,,¢;)n converges to a real
limit a; as n tends to infinity. It follows that the diagonal subsequence {x, .} is such that
(xnn,¢;)m  converges to a; forj > 1. Now define

F(v) = Lim, (x,,,v)g for vinH.
Then  IF(W)I < lim,(xpp, v)ul < M|v|

from which it follows that F is a continuous linear functional on H. By the Riesz theorem,
there exists an element, zr in H such that F(v) = (zr,v)g forallv in H.

But F(v) = F(Zi(V,‘pi)H‘pi) = 1im, (6, 22, (v, 61 i)
= Zilimn(xn,n,gbi)H(V,(ﬁi)H = Ziai(va(bi)H ;

Thatis, FW) = (zp,v)u = Ziai(v,qs,-)ﬂ forallv in H. Then by the
Parseval-Plancherel identity, it follows that

iFr = Ziai(]bi
and
(xXnnsV)u — (2r, V) forallvin H.H

We should point out that a sequence {x,} is H is said to be strongly bounded if there is an
M such that Ilx,1l,, < M for all n, and it is said to be weakly bounded if I(x,,v),l < M for all
n and all vin H. These two notions of boundedness coincide in a Hilbert space so it is
sufficient to use the term bounded for either case.

Lemma 5- A sequence in a Hilbert space is weakly bounded if and only if it is strongly
bounded.
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Definition 37 Two Hilbert spaces Hy and Hy are said to be isomorphic if
there is a unitary linear transformation U from Hy onto Hs.

Definition 38 Let Hy and Hy be Hilbert spaces. The direct sum Hy & Hs of
Hilbert spaces Hy and Hj is the set of ordered pairs z = (x,y) with x € Hy and
y € Hy with inner product

(21, 22) mem, = (T1,%2)m, + (Y1,Y2) H, (5.62)

6 Examples of Hilbert Spaces

1. Finite Dimensional Vectors. C% is the space of N-tuples x = (z1,...,7x)
of complex numbers. It is a Hilbert space with the inner product

N
(@,y) =Y whyn. (6.63)

2. Square Summable Sequences of Complex Numbers. (2 is the space
of sequences of complex numbers z = {z,,}°; such that

>zl < oo (6.64)

n=1

It is a Hilbert space with the inner product

(,9) =Y hyn- (6.65)
n=1

3. Square Integrable Functions on R. L?(R) is the space of complex
valued functions such that

/ If(2)]? dz < oo (6.66)
R
It is a Hilbert space with the inner product

(F.9) = [ £(@)gta) da (6.67

4. Square Integrable Functions on R™. Let © be an open set in R" (in
particular, Q can be the whole R™). The space L?({2) is the set of complex
valued functions such that

/ |f(z)|Pdz < oo, (6.68)
Q

where x = (z1,...,2,) € Q and dx = dx; - - - dx,,. It is a Hilbert space with the
inner product

(f.9) = /Q [ (@)g() de (6.69)
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5. Square Integrable Vector Valued Functions. Let ) be an open set in
R™ (in particular, 2 can be the whole R") and V be a finite-dimensional vector
space. The space L2(V, ) is the set of vector valued functions f = (f1,..., fv)
on ) such that

N
Z/Q Ifi(z)Pdz < 0o (6.70)

It is a Hilbert space with the inner product
N
(F.9) =3 [ £i@ai(o)de (6.71)
=17/

6. Sobolev Spaces. Let 2 be an open set in R™ (in particular,  can be
the whole R™) and V' a finite-dimensional complex vector space. Let C™(V, Q)
be the space of complex vector valued functions that have partial derivatives of
all orders less or equal to m. Let a = (aq,...,a,), @ € N, be a multiindex of
nonnegative integers, a; > 0, and let |a| = @y + - - - + a,. Define

olel

pof=——9 ¢
f ox{* -+ - Oxp™

(6.72)

Then f € C™(V,Q) iff
| D fi(x)] < o0 Vo, |a] <m, Vi=1,...,N, Yz € Q. (6.73)
The space H™(V, ) is the space of complex vector valued functions such that

Def e L3(V,Q) Vo, |a] <m, i.e. such that

N
Z/ |Dfi(z)|?de < 00 Va, o] <m. (6.74)
=179

It is a Hilbert space with the inner product
N
()= 3 3 [ (D) Do) do (6.75)
o, |af<m i=1 7S

Remark. More precisely, the Sobolev space H™(V, ) is the completion of the
space defined above.

7 Projection Theorem

Definition 39 Let M be a closed subspace of a Hilbert space H. The set, M=,
of vectors in H which are orthogonal to M is called the othogonal comple-
ment of M.
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1.6 Basic Definitions

Definition Isomorphism Formally, an isomorphism is bijective morphism. Informally, an isomorphism is a
map that preserves sets and relations among elements. “A is isomorphic to B” is written A = B. Unfortu-
nately, this symbol is also used to denote geometric congruence. An isomorphism from a set of elements
onto itself is called an automorphism.

Definition Homeomorphism A homeomorphism, also called a continuous transformation, is an equivalence
relation and one-to-one correspondence between points in two geometric figures or topological spaces that
is continuous in both directions. A homeomorphism which also preserves distances is called an isometry.
Affine transformations are another type of common geometric homeomorphism. The similarity in meaning
and form of the words "homomorphism" and "homeomorphism" is unfortunate and a common source of
confusion.

Definition Cardinality In formal set theory, a cardinal number (also called “the cardinality™) is a type of
number defined in such a way that any method of counting sets using it gives the same result. (This is not
true for the ordinal numbers.) In fact, the cardinal numbers are obtained by collecting all ordinal numbers
which are obtainable by counting a given set. The cardinality of a set is also frequently referred to as the
"power" of a set.

Definition I/mage If f: D — Y is a map (a.k.a. function, transformation, etc.) over a domain D, then the
image of f, also called the range of D under f, is defined as the set of all values that f can take as its
argument varies over D, i.e.,

Range(f) = f(D)={f(X): X € D}. (1.31)

Definition Surjection Let f be a function defined on a set A and taking values in a set B. Then f is said to
be a surjection (or surjective map) if, for any b € B, there exists an a € A for which b = f(a). A surjection
is sometimes referred to as being "onto."

Let the function be an operator which maps points in the domain to every point in the range and let V be
a vector space with A, B € V. Then a transformation 7" defined on V is a surjection if there is an A € V such
that 7(A) = BVYB.

Definition Injection Let f be a function defined on a set A and taking values in a set B. Then f is said to
be an injection (or injective map, or embedding) if, whenever f(x) = f(y), it must be the case that x = y.
Equivalently, x /=y implies f(x) # f(y). In other words, f is an injection if it maps distinct objects to
distinct objects. An injection is sometimes also called one-to-one.

A linear transformation is injective if the kernel of the function is zero, i.e., a function f(x) is injective
iff Ker(f) = 0. A function which is both an injection and a surjection is said to be a bijection.

Definition 7opology Topology is the mathematical study of the properties that are preserved through defor-
mations, twistings, and stretchings of objects. Tearing, however, is not allowed. A circle is topologically
equivalent to an ellipse (into which it can be deformed by stretching) and a sphere is equivalent to an ellip-
soid.

There is also a formal definition for a topology defined in terms of set operations. A set X along with a
collection T of subsets of it is said to be a topology if the subsets in 7" obey the following properties:

1. The (trivial) subsets X and the empty set @ are in 7.
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2. Whenever sets A and B arein T, thensois A N B.
3. Whenever two or more sets are in 7', then so is their union.

This definition can be used to enumerate the topologies on n symbols. For example, the unique topology of
order 1is {0,{1}}, while the four topologies of order 2 are {0,{1},{1,2}},{0,{1,2}},{0,{1,2},{2}}, and
{0,{1},{2},{1,2}}. The numbers of topologies on sets of cardinalities n =1,2,... are 1,4,29,355,6942,....

A set X for which a topology T has been specified is called a topological space. For example, the set
X ={1,2,3,4} together with the subsets 7' = {0,{1},{2,3,4},{1,2,3,4}} comprises a topology, and X is
a topological space.

Definition Vecror Space Span The span of subspace generated by vectors v and v, in V is span (vy,v;) =
{rvi+svy:r,s € R}.

Definition Dense A set A in a first-countable space is dense in B if B=A U L, where L is the set of limit
points of A. For example, the rational numbers are dense in the reals.

Definition Supremum

The supremum is the least upper bound of a set S, defined as a quantity M such that no member of
the set exceeds M, but if € is any positive quantity, however small, there is a member that exceeds M — €.
When it exists (which is not required by this definition, e.g., supR does not exist), it is denoted sup, ¢ x (or
sometimes simply supg for short).

More formally, the supremum sup,csx for S a (nonempty) subset of the affinely extended real numbers
R = RU{=co} is the smallest value y in R™ such that for all x in § we have x < y. Using this definition,
sup, g X always exists and, in particular, SUupR = oo,

Whenever a supremum exists, its value is unique. On the real line, the supremum of a set is the same as
the supremum of its set closure.

Consider the real numbers with their usual order. Then for any set M C R, the supremum sup M exists
(in R) if and only if M is bounded from above and nonempty.

Definition Gram-Schmidt Orthonormalization Gram-Schmidt orthogonalization, also called the Gram-Schmidt
process, is a procedure which takes a nonorthogonal set of linearly independent functions and constructs an
orthogonal basis over an arbitrary interval with respect to an arbitrary weighting function w(x).

Definition Operator Spectrum Let T be a linear operator on a separable Hilbert space. The spectrum ¢ (7)
of T is the set of A such that (T — A1) is not invertible on all of the Hilbert space, where the lambdas are
complex numbers and 1 is the identity operator. The definition can also be stated in terms of the resolvent of
an operator p(7T) = {A : (T — A1)is invertible}, and then the spectrum is defined to be the complement of
p(T) in the complex plane. It is easy to demonstrate that p(7') is an open set, which shows that the spectrum
o(T) is closed.

Definition Bounded operators Let V be a vector space. An operator on V is a linear map a: V xV (i.e.,
a(Av+uw) = Aa(v) + pa(w) forall A, u € K and v,w € V). We usually write av for a(v). If V is a normed
vector space, we call an operator a : V x V bounded when

lall =sup{[lav]|,v € V,|[v]| =1} <eoo. (1.32)
It easily follows that if a is bounded, then

a=inf{C > 0|||lav|| < C||v|Vv € V}. (1.33)
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Moreover, if a is bounded, then
fav] < Ilalllv]l (1.34)

for all v € V. Another useful property, which immediately follows, is
lab|l <l[al[[IZ]- (1.35)

When V is finite-dimensional, any operator is bounded. There are many ways to see this. Indeed, let V = C",
so that B(C") = M,,(C) is the space of all complex n x n matrices. The Hilbert space norm on C" is the usual
one, i.e., || z||> = ¥7_, Zx 2, and the induced norm on M, (C) is (1).

For example, a is not bounded when a(x) = x, and bounded when a(x) = exp —x°.

Definition Closed Operators A closed operator a : D(a) — H is a linear map from a dense subspace D(a) C
H to H for which either of the following equivalent conditions holds:

1. If f, — f in H for a sequence (f,) in D(a) and (af,) converges in H, then f € D(a) and af, — af in
H.

2. The graph of a is closed.
3. The domain D(a) is closed in the norm || f||2 = || 11>+ || af ||*.

Note that the || . ||, comes from the new inner product (f,g), = (f,&) + (af,ag) on D(a). Hence D(a) is
a Hilbert space in the new inner product when a is closed. An operator a that is not closed may often be
extended into a closed one. The condition for this to be possible is as follows.

Definition Closable Operator A closable operator a : D(a) — H is a linear map from a dense subspace
D(a) C H to H with the property that the closure G(a)~ of its graph is itself the graph G(a~) of some
operator a~ (called the closure of a). In other words, a™ is a closed extension of a. It is clear that a1 is

uniquely defined by its graph G(a™) = G(a) ™.
Definition Graph For any a : X — Y, we define the graph of a to be the set
{(x,y) eX XY |Tx=y}. (1.36)

If X is any topological space and Y is Hausdorff, then it is straightforward to show that the graph of a is
closed whenever a is continuous.

If X and Y are Banach spaces, and a is an everywhere-defined (i.e. the domain D(a) of a is X) linear
operator, then the converse is true as well. This is the content of the closed graph theorem: if the graph of
a is closed in X x Y (with the product topology), we say that a is a closed operator, and, in this setting, we
may conclude that a is continuous.

Definition Ortogonality We say that two vectors f,g € H are orthogonal, written f | g, when (f,g) = 0.
Similary, two subspaces10 K C H and L C H are said to be orthogonal (K L. L) when (f,g) =0forall f € K
and all g € L. A vector f is called orthogonal to a subspace K, written f | K, when (f,g) =0 forall g € K,
etc. We define the orthogonal complement K of a subspace K C H as

K*={fcH|f LK}. (1.37)

This set is automatically linear, so that the map K — K, called orthocomplementation, is an operation from
subspaces of H to subspaces of H. Clearly, H- = 0 and 0+ = H.
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Lokl

Lemma 1.6.1 For any subspace K C H one has KL=K
Definition The adjoint Let H be a Hilbert space, and let a : H — H be a bounded operator. The inner
product on H gives rise to a map a — a*, which is familiar from linear algebra: if H = C", so that, upon
choosing the standard basis (e;), a is a matrix a = (a;;) with a;; = (e;,ae;), then the adjoint is given by
a* = (aj;). In other words, one has

(af,8) = (f,ag) (1.38)

for all f,g € C". This equation defines the adjoint also in the general case, but to prove existence of a* a
theorem is needed.

Definition Banach Space A Banach space is a complete vector space V with a norm || . ||.

Hilbert spaces with their norm given by the inner product are examples of Banach spaces. While a
Hilbert space is always a Banach space, the converse need not hold. Therefore, it is possible for a Banach
space not to have a norm given by an inner product. For instance, the supremum norm cannot be given by
an inner product.

The supremum norm is the norm defined on V by || f || = sup,cx | f(x)

Definition C*-algebra A C*-algebra is a Banach algebra with an antiautomorphic involution * which satis-
fies

o (ex)* =cx*

where ¢ is the complex conjugate of ¢, and whose norm satisfies ||xx*| = ||x||%.

A Banach algebra is an algebra B over a field K endowed with a norm || . || such that B is a Banach
space under the norm and ||xy| < ||x|/||y]|. K is frequently taken to be the complex numbers in order to
ensure that the operator spectrum fully characterizes an operator (i.e., the spectral theorems for normal or
compact normal operators do not, in general, hold in the operator spectrum over the real numbers). If B is
commutative and has a unit, then x in B is invertible.

Definition Quotient Space The quotient space X/ ~? of a topological space X and an equivalence relation
~ on X is the set of equivalence classes of points in X (under the equivalence relation ~) together with the
following topology given to subsets of X/ ~: a subset U of X/ ~ is called open iff Ulglev @ is open in X.
Quotient spaces are also called factor spaces.

This can be stated in terms of maps as follows: if ¢ : X — X/ ~ denotes the map that sends each point
to its equivalence class in X/ ~, the topology on X / ~ can be specified by prescribing that a subset of X/ ~
is open iff ¢g{ — 1) [the set] is open.

Let D" be the closed n-dimensional disk and S(n — 1) its boundary, the (n — 1) -dimensional sphere. Then
D"/ St — 1) (which is homeomorphic to "), provides an example of a quotient space. Here, D"/ St — 1)
is interpreted as the space obtained when the boundary of the n-disk is collapsed to a point, and is formally
the “quotient space by the equivalence relation generated by the relations that all points in S(n — 1) are
equivalent.”



1.6. BASIC DEFINITIONS 41

Definition Let V be a vector space over a field K (where K = R or K = C). An inner product on V is a map
V xV — K, written as (f,g) — (f,g), satisfying, for all f,g,h €V andt € K:

L (f,f) € RT =[0,e0) (positivity);

2. (g,f) = (f,8) (symmetry);

3. (fitg) =t(f,g) (linearity 1);

4. (f,g+h)=(f,g)+ (f,h) (linearity 2);
5. (f,f) = 0= f =0 (positive definiteness).

A norm on V is a function ||.|| : V — R satisfying, for all f,g,h€V andt € K:
L [[f+g} <[ fIl+]gll (triangle inequality);
2. Jefl =It] || £]| (homogeneity):
3. || f]l =0= f =0 (positive definiteness).
A metric on V is a function d : V x V — R satisfying, for all f,g,h €V :
d(f,g) <d(f,h)+d(h,g) (triangle inequality);
2. d(f,g)=d(g,f) forall f,g €V (symmetry);
d(f,g) =0« f = g (definiteness).

The notion of a metric applies to any set, not necessarily to a vector space, like an inner product and a
norm. Apart from a norm, an inner product defines another structure called a transition probability, which
is of great importance to quantum mechanics. Abstractly, a transition probability on a set S is a function
p:SxS§—[0,1] satisfying p(x,y) = 1 < x =y (cf. Property 3 of a metric) and p(x,y) = p(y,x).

Now take the set S of all vectors in a complex inner product space that have norm 1, and define an
equivalence relation on S by f ~ g iff f = zg for some z € C with | z|= 1. (Without taking equivalence classes
the first axiom would not be satisfied). The set S =S/ ~ is then equipped with a transition probability defined
by p([f],[g]) =| (f,g) |*>. Here [f] is the equivalence class of f with f = 1, etc. In quantum mechanics
vectors of norm 1 are (pure) states, so that the transition probability between two states is determined by
their angle 6. (Recall the elementary formula from Euclidean geometry (x,y) = ||x||||y|| cos 6, where 6 is
the angle between x and y in R".)

These structures are related in the following way:

Proposition 1.6.2 1. An inner product on'V defines a norm on'V by means of || f|| = v/ (f, f)-
2. A normonV defines a metric on'V through d(f,g) =1/ f—g|l-
The proof of this claim is an easy exercise; part 1 is based on the Cauchy-Schwarz inequality

(£ 1= I1f g, (1.39)

whose proof in itself is an exercise, and part 2 is really trivial: the three axioms on a norm immediately
imply the corresponding properties of the metric. The question arises when a norm comes from an inner
product in the stated way: this question is answered by the Jordan-vonNeumann theorem:
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Theorem 1.6.3 A norm || .|| on a vector space comes from an inner product through || f || = \/(f, f) if and
only if
If+glP+1f—glP=2(171P+lgl?) (1.40)

Applied to the 17 and L? spaces this yields the result that the norm in these spaces comes from an inner
product if and only if p = 2. There is no (known) counterpart of this result for the transition from a norm
to a metric. It is very easy to find examples of metrics that do not come from a norm: on any vector space
(or indeed any set) V the formula d(f,g) = Jy, defines a metric not derived from a norm. Also, if d is any
metric on V, then d’ = d/(1+d) is a metric, too: since cleary d'(f,g) < 1 for all f,g, this metric can never
come from a norm.

Theorem 1.6.4 Riesz-Fischer A function is mblsintegrable iff its Fourier series is L* -convergent. The ap-
plication of this theorem requires use of the Lebesgue integral.

Theorem 1.6.5 Parseval If a function has a Fourier series given by

flx) = %ao + i a, cos(nx) + i by, sin(nx), (1.41)
n=1 n=1
then | oo
2 | UWPa= ¥ (142)

Any separable Hilbert space has an orthonormal basis. The proof is an exercise, based on the Gram-Schmidt
procedure. Let (e;) by an orthonormal basis of a separable Hilbert space H. By definition, any f € H can
be written as f = Y; cie;. Taking the inner product with a fixed e;, one has

N
(ej,f) = (ej,I\IIim Y ciei) :I\llim ci(ej,e) =cj. (1.43)

Here we have assumed N > k, and the limit may be taken outside the inner product since if f,, — f in H then
(g,fn) — (g, f) for fixed g € H, as follows from Cauchy-Schwarz. It follows that

f=Y(eif)ei (1.44)

from which one obtains Parseval’s equality

Yl NP =1rI* (1.45)

i
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2.1 Introduction
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Why are special functions special?

Michael Berry

According to legend, Leo Szilard's baths were ruined by his conversion to biology. F
had enjoyed soaking for hours while thinking about physics. But as a convert he
found this pleasure punctuated by the frequent need to leap out and search for a fac
In physics--particularly theoretical physics--we can get by with a few basic principles
without knowing many facts; that is why the subject attracts those of us cursed with
poor memory.

But there is a corpus of mathematical information that we do need. Much of this
consists of formulas for the "special” functions. How many of us remember the
expansion of cos 5X in terms of cos X and sin X, or whether an integral obtained in
the course of a calculation can be identified as one of the many representations of a
Bessel tunction, or whether the asymptotic expression for the gamma function
involves (N + 1/2) ot (n - 1/2)? For such knowledge, we theorists have traditionally
relied on compilations of formulas. When I started research, my peers were using
Jahnke and Emde's Tables of Functions with Formulae and Curves (J&E)! or

Erdélyi and coauthors' Higher Transcendental Functions.?

Then in 1964 came Abramowitz and Stegun's Handbook of Mathematical

Functions (A&S),? perhaps the most successful work of mathematical reference ev:
published. It has been on the desk of every theoretical physicist. Over the years, 1
have worn out three copies. Several years ago, I was invited to contemplate being
marooned on the proverbial desert island. What book would I most wish to have
there, in addition to the Bible and the complete works of Shakespeare? My immedia
answer was: A&S. If T could substitute for the Bible, T would choose Gradsteyn and
Ry~zhik's Table of Integrals, Series and Products.* Compounding the impiety, 1
would give up Shakespeare in favor of Prudnikov, Brychkov and Marichev's of
Integrals and Series.> On the island, there would be much time to think about
physics and much physics to think about: waves on the water that carve ridges on th
sand beneath and focus sunlight there; shapes of clouds; subtle tints in the sky. . ..
With the arrogance that keeps us theorists going, I harbor the delusion that it would
be not too ditficult to guess the underlying physics and formulate the governing

http://www.physicstoday.org/pt/vol-54/iss-4/p11.html 18/03/02
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equations. It is when contemplating how to solve these equations--to convert
formulations into explanations--that humility sets in. Then, compendia of formulas
become indispensable.

Nowadays the emphasis is shifting away from books towards computers. With a few
keystrokes, the expansion of cos 5X, the numerical values of Bessel functions, and
many analytical integrals can all be obtained easily using software such as Mathemati
and Maple. (In the spirit of the times, I must be even handed and refer to both the
competing religions.) A variety of resources is available online. The most ambitious
initiative in this direction is being prepared by NIST, the descendant of the US
National Bureau of Standards, which published A&S. NIST's forthcoming Digital
Library of Mathematical Functions (DLMF) will be a free Web-based collection of
formulas (http://dImf. nist.gov), cross-linked and with live graphics that can be
magnified and rotated. (Stripped-down versions of the project will be issued as a
book and 2 CD-ROM for people who prefer those media.)

The DILMF will reflect a substantial increase in our knowledge of special functions
since 1964, and will also include new families of functions. Some of these functions
were (with one class of exceptions) known to mathematicians in 1964, but they were
not well known to scientists, and had rarely been applied in physics. They are new i
the sense that, in the years since 1964, they have been found useful in several
branches of physics. For example, string theory and quantum chaology now make u:
of automorphic functions and zeta functions; in the theory of solitons and integrabl
dynamical systems, Painlevé transcendents are widely employed; and in optics and
quantum mechanics, a central role is played by "diffraction catastrophe" integrals,
generated by the polynomials of singularity theory--my own favorite, and the subject
of a chapter I am writing with Christopher Howls for the DILMF.

This continuing and indeed increasing reliance on

special functions is a surprising development in

the sociology of our profession. One of the

principal applications of these functions was in

the compact expression of approximations to

physical problems for which explicit analytical

solutions could not be found. But since the

1960s, when scientific computing became ,

widespread, direct and "exact" numerical solution
of the equations of physics has become available
in many cases. It was often claimed that this
would make the special functions redundant.

KELVIN'S SHIP-WAVE pattern,
calculated with the Airy

Similar skepticism came from some pure . function, the simplest special
mathematicians, whose ignorance about special function in the hierarchy
functions, and lack of interest in them, was of diffraction catastrophes.

almost total. I remember that when singularity

theory was being applied to optics in the 1970s, and I was seeking a graduate studen-
to pursue these investigations, a mathematician recommended somebody as being
very bright, very knowledgeable, and interested in applications. But this student had
never heard of Bessel functions (nor could he carry out the simplest integrations, bu
that is another story).

The persistence of special functions is puzzling as well
as surprising. What are they, other than just names for
mathematical objects that are useful only in situations
contrived simplicity? Why are we so pleased when a

http://www.physi cstoday.org/pt/vol-54/iss-4/p11.html 18/03/02
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complicated calculation "comes out" as a Bessel
tunction, or a Laguerre polynomial? What determines
which functions are "special"? These are slippery and
subtle questions to which I do not have clear answers.
Instead, I offer the following observations.

A CROSS SECTION of the Lhere are mathgmatical theories in which some classes
elliptic umbilic, a member  ©f special functions appear naturally. A familiar
of the hierarchy of classification is by increasing complexity, starting with
diffraction catastrophes.  polynomials and algebraic functions and progressing
through the "elementary" or "lower" transcendental
functions (logarithms, exponentials, sines and cosines, and so on) to the "higher"
transcendental functions (Bessel, parabolic cylinder, and so on). Functions of
hypergeometric type can be ordered by the behavior of singular points of the
differential equations representing them, or by a group-theoretical analysis of their
symmetries. But all these classifications are incomplete, in the sense of omitting whc
classes that we find useful. For example, Mathieu functions fall outside the
hypergeometric class, and gamma and zeta functions are not the solutions of simple
differential equations. Moreover, even when the classifications do apply, the
connections they provide often appear remote and unhelpful in our applications.

One reason for the continuing popularity of special functions could be that they
enshrine sets of recognizable and communicable patterns and so constitute a
common currency. Compilations like A&S and the DLMF assist the process of
standardization, much as a dictionary enshrines the words in common use at a given
time. Formal grammar, while interesting for its own sake, is rarely useful to those wt
use natural language to communicate. Arguing by analogy, I wonder if that is why th
formal classifications of special functions have not proved very useful in application:

Sometimes the patterns embodying special
functions are conjured up in the form of pictures.
I'wonder how useful sines and cosines would be
without the images, which we all share, of how
they oscillate. In 1960, the publication in J&F of a
three-dimensional graph showing the poles of the
gamma function in the complex plane acquired an
almost iconic status. With the more sophisticated
graphics available now, the far more complicated
behavior of functions of several variables can be
explored in a variety of two-dimensional sections
and three-dimensional plots, generating a large

THE CUSP, a member

o of the hierarchy of
class of new and shared insights. diffraction catastrgphes.

"New" 1s important here. Just as new words come into the language, so the set of
spectal functions increases. The increase is driven by more sophisticated applications
and by new technology that enables more functions to be depicted in forms that car
be readily assimilated.

Sometimes the patterns are associated with the asymptotic behavior of the function:
or of their singularities. Of the two Airy functions, Ai is the one that decays towards
infinity, while Bi grows; the ] Bessel functions are regular at the origin, the Y Bessel

tunctions have a pole or a branch point.

Perhaps standardization is simply a matter of establishing uniformity of definition ar

http://www.physi cstoday.org/pt/vol-54/iss-4/p11.html 18/03/02
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notation. Although simple, this is far from trivial. To emphasize the importance of
notation, Robert Dingle in his graduate lectures in theoretical physics at the
University of St. Andrews in Scotland would occasionally replace the letters
representing variables by nameless invented squiggles, thereby inducing instant
incomprehensibility. Extending this one level higher, to the names of functions, just
imagine how much confusion the physicist John Doe would cause if he insisted on
replacing sin x by doe(X), even with a definition helpfully provided at the start of eac

paper.

To paraphrase an aphorism attributed to the biochemist Albert Szent-Gyo6rgyi,
perhaps special functions provide an economical and shared culture analogous to
books: places to keep our knowledge in, so that we can use our heads for better

things.
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2.2. ELEMENTARY TRANSCENDENTAL FUNCTIONS

2.2 Elementary Transcendental Functions
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LECTURE 8

N Roots; Univalent Functions

With Euler’s formula in hand we are now able to define radicals of complex numbers.

h

DEFINITION 8.1. Let w # 0, n € N, a number z is called an n'" root of w if 2" = w.

PROPOSITION 8.2 (Formula for the n'* roots). Let w = |w|e? # 0 and n € N, then
w has n distinct n™* roots 21, 2z, ..., 2, given by

0+ 2m(k—1
2 = n |w|expi_+ T‘-( )’ k = 1’2"“771 (81)
n

Proor. Consider

2 = A, ]w|ei%.
By de Moivre’s formula

2 = |w|e? = w

and hence z; is a n* root of w.

Define now
Z»27r(lc—1)
2k =z n , kEN (8.2)
One has
ZI? — N 627rz‘(lc—1) —w
~

=w

h

Thus so-defined sequence {z;} gives n'" roots. It follows from (8.2) that

i 2T
R = Zp—1€

which implies (the details should be verified in Exercise 8.1) that all zy, 2o, ..., 2, are
distinct but 2,11 = 21, Zpao = 29, ... , Zop = Zp. O

EXAMPLE 8.3. Find the sixth roots of unity, i.e., find all solutions to 25 = 1.

By (8.1)
2n(k — 1)
6
which gives 21 = 1, 20 = 1/2 +iV3/2, z3 = —1/2+iV/3/2, 2z, = —1.
To find 25 and 24 notice that equation 2% = 1 is equivalent to z® = 1 and hence z3, Z3
are also solutions to 2% = 1. Thus 25 = 23 = —1/2—iv/3/2, and 25 = 73 = 1/2—i\/3/2.
Figure 1 shows the six sixth roots of unity on the complex plane.

2k = €expi , k=1,2,....6
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z3 22

wly

Z4 21

z5 26

FI1GURE 1. The sixth roots of the unity

REMARK 8.4. Proposition 8.2 says that the equation
L2008 _ |

has 2008 distinct solutions and if you mistakenly think that z = £1 then you lose 2006
solutions.

What we have discussed in this lecture so far suggests that defining the function
/2 will require some effort.

DEFINITION 8.5. An analytic function f: E — C s called univalent on E if
f(z1) = f(z) = 21 = 2.

Note that generic complex valued functions don’t like to be univalent. E.g. f(z) =
|z| maps any circle |z| = r onto one point {r} € R, and hence |z| is very non-univalent.

EXAMPLE 8.6. The linear function f(z) = az+b is univalent (if a #0) on C. The
function ¢(z) = z/a — b/a satisfies
fop=dof=I
and hence ¢ can be viewed as the inverse of f.

EXAMPLE 8.7. The function f(z) = 1/z is univalent on C\ {0} and its inverse is
o(z) =1/z.

EXAMPLE 8.8. The function f(z) = 2% is not univalent on C. But as in the real
valued case we can properly restrict 2> to make it univalent. To do so we consider z>
as a mapping on C.

We introduce a sector:

S(a, B) == {z| a <argz < (}.
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Let z € S(a, ). We have z = |z|e”,a < 0 < 3, and hence
22 = |z]2e* € S(2a,2).

In particular, if « =0 and 0 = 27 then
2?1 5(0,27) — S(0,4m).

That is, loosely speaking, 2> maps C onto two copies of C.
However if we take o = 0 and = 7 then

22 5(0,7) — S(0,27)

which is a univalent function. See Figure 2 for illustration.

232

T

FIGURE 2. Transformation of the upper half plane under 22

Exercises

Exercise 8.1 Let Q = {w;,ws, ...,w,} be the n'* roots of unity. Pick a fixed w € €.
Show
(1) wwy € Q.
(2) wwy # wwy, if k #m, e, {wwg}i_; = Q.

(3) ) wr=0.

n—1
(4) Zwk = 0 for any w # 1.
k=0

Exercise 8.2 Describe a linear function as a mapping, i.e., describe what geometric
transformation f(z) = az + b represents on C. Find the images f(€2) of 2 for
the following sets:

(1) Q ={z| argz = 6y}, where 6, is fixed. (A ray)
(2) Q@ ={z| |#| =10}, where rq is fixed. (A circle)

Exercise 8.3 Let f(z) = 1/z. Find the images f(2) of the following sets:
(1) Q is a straight line passing through 0.
(2) Q ={z] |z| = ro}, where ry is fixed.
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Describe the geometrical transformation the function f(z) does to point z
in Figure 3.

FIGURE 3. Transformation of z under 1/27?



LECTURE 9

2", /z, €%, log z and all that

In this lecture we continue to study elementary functions of a single complex vari-
able as mappings.

1. The Function z"

Let z = re®. Then
w = 2" = "™
and hence z™ maps a sector S(a, 3) onto the sector S(na,nf). In particular, if @ =0
and $ = 27, then 2™ maps C = S[0,27) onto n copies of C. In other words, 2" is an
n-valent function.

Now restrict 2" to S (O, 27“) Then w € S(0,27). Moreover, every ray
Ry := {z |z =re? rc R+} ,  where R, = [0,00),

in S (O, 27”) is mapped onto the ray R,;.

F1GURE 1. Mapping of a sector under z"

Observe that 2" : S (O, 27’7) — S(0,27) is univalent and we may now introduce the
inverse of z".

2. The Function /z

As we have seen in Lecture 8, the equation z” = w has n solutions {21, 22, ..., 2, }.
In order to define {/w we have to decide which of these solutions we want to pick up.
It is a personal choice, but common sense suggests that we choose z;. Doing so allows
/1 = 1, and has the nice property that our complex n* root function will correspond
to the usual positive n'® root function on the real number line (or on R, if n is even).
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DEFINITION 9.1. Let z = |z|e'®8% # () where argz € [0,27). The principal branch
of /= is defined by

\’7_: \ ’z‘@iar%_ (91)

REMARK 9.2. {/z can also be denoted as zn. In some books, they distinguish
between these two representations, using one to denote the multi-valued function and
the other to denote the principal branch. We choose not to do so in this course. Also,
note that the principal n'* root of z defined by (9.1) is 21 in the n'* root formula (given
in Lecture 8). If occasionally we choose a different branch of /z we must specify how
we define it.

Let us now look at (9.1) as a function of z. Formula (9.1) defines a one-to-one
function {/z,
Yz :8(0,27) — S (0,27 /n) . (9.2)

PROPOSITION 9.3. The function /= defined by (9.1) and (9.2) is analytic on C\R
but not analytic on C.

The proof is left as an exercise.

3. The Function e?
Consider a strip
o Ko={z:0<Imz < 27}.
Let 2 = z + iy € Ky. Then e = e%e™ maps Ky onto C \ R,. Moreover, every vertical
segment
ky ={2z=x+1iy : y € (0,2m)}
is mapped onto the circle Ce=(0) \ Ry, where

Ci(z0) ={z : |z — 20| =1}

______ i |2
€Z Ce“‘(o)
Ky k.
I
—————————————————————————— > et G Y
I 0 II

FiGURE 2. Mapping of a strip under e*
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Observe that e® is univalent on K. Let
Koy :={z : 2n <Imz < 47}.
It is clear that e* maps Ks, onto C \ R,. Similarly, for all n € Z,
exp Korp = C\ Ry,
which means that e* is an infinitely-valent (infinitely valued) function.

REMARK 9.4. We keep our strips open for a purpose which will be clear in the next
section. Of course, e* maps R onto R, \ {0} and maps

R+ 2ir :={z|z =2 +iy,v € R,y =27}
onto R, \ {0}.
4. The Function log z

Since the mapping
e”: KO — C \ R+
is one-to-one, we can formally define the complex logarithm.

DEFINITION 9.5. Let z = |z|e'®8% £ () where argz € [0,27). The principal branch
of log z is defined by

log z = log |z| + iarg z (9.3)
where log |z| is the usual natural logarithm of the positive real number |z|.

REMARK 9.6. In the literature, the complex natural logarithm is sometimes denoted
In or Log. In complex analysis log, In, and Log all refer to the logarithm base e, as
opposed to real analysis where log often denotes the logarithm base 10.

Let us now look at (9.3) as a function of z:
logz: C\ Ry — K. (9.4)
PROPOSITION 9.7. The function log z defined by (9.3) and (9.4) is the inverse of
e’ : Ky — C\R;.
The proof is left as an exercise.

PROPOSITION 9.8. The complex logarithm function log z is analytic on C\ R, but
is not analytic on C. Furthermore

(log 2)" = % , z€C\R;.
The proof is left as an exercise.
Exercises
Exercise 9.1 Prove Proposition 9.3.

Exercise 9.2 Prove Proposition 9.7.

Exercise 9.3 Prove Proposition 9.8.






LECTURE 10

log z continued; sin z, and cos z

1. log z continued

In this lecture we continue studying elementary functions. We start with an im-
portant remark.

REMARK 10.1. As we have seen, e* retains all of its original properties and on top
of that, €* also gains some new ones. (eg. Ran(e*) = C\ 0 not just Ry, and e* is
now periodic). On the contrary log z loses some of its common properties. E.g. the
property log(z122) = log 21 + log 23, alas, no longer holds in general. So watch out!

REMARK 10.2. Our definition of the principal branch of log z (Definition 9.5) is not
the only one. All depends on a particular situation. Another common way to choose
the principal branch is to let z = |z|e"*8* where arg z € [—7,m), (not [0,27)). Then

log z :=log |z| + iarg z. (10.1)

Le. this log is defined on C\ R_.

The log defined by (10.1) has the nice property log z = log z where as the one we
defined before did not.
Before we are done with logarithms, let us state and prove an important proposition.

PROPOSITION 10.3. Suppose f : E — C and g : f(E) — C are continuous and

9(f(2)) = = (10.2)
Then,
(1) if g is differentiable and ¢'(z) # 0, then f is differentiable and
f'z) = (g (f()) ™ (10.3)

(2) if g is analytic and ¢'(f(z)) # 0, then f is analytic.

PROOF. Assume that f is continuous and let z,z + Az € E. Then from (10.2) we
see that:

9UF(2)) = 2 g(f(z+A2)) = 2 + Az (104
=f(z) # f(z+Az)if Az#0

=Af(2) = [z +A2) = f(2) #0
=f(z+Az) = f(2) + Af(2).
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48 10. log z CONTINUED; sin z, AND cos z

9(f(z + A2)) — g(f(2))

id
Consider A

. We have by equation (10.4)

L= 92+ A2) — g(f(2)) _ 9(f(2) + Af(2)) — g(f(2)) Af(2)
Az . Af(2) Az '

L g (f(2)) as Af(z) — 0

Then by taking the limit as Az goes to zero we see that

g(f(z) +Af(2) —9(f(z) Af(2)

1= lim

Az—0 Af(z) Az
> =g Jm S8 (105)

(We have used Af(z) — 0 as Az — 0 due to continuity of f.) It now follows from
(10.5) that the limit on the right hand side exists and (10.3) follows. Statement (1) is
proven.

If g is analytic then ¢’ is continuous and so f’ is continuous. Then statement (2) is
also proven because f’ is continuous which implies that f is analytic.
Il

COROLLARY 10.4. The function log z is analytic on C\ Ry and

1
(log z)" = —. (10.6)
2
Proor. Using Proposition 10.3 f(z) =logz, £ = C\ R, and g(z) = €*. Since
explogz =z forall z € C\ R,

(10.2) holds and the conditions of Proposition 10.3 are satisfied since e® is analytic.
Thus, log z is also analytic and by (10.3)

/ d w o
(logz> = (%6 |w10gz)

1
— (plogz\—1 _ Z
(%) =

g

REMARK 10.5. Did you enjoy proving it by definition? Would Proposition 10.3
have helped prove Exercise 9.37
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2. The Functions sin z, cos z, and tan z

We restrict ourselves to sin z only. Then by definition,

. el — iz ei(achiy) _ 67i(:r+iy) e Vel _ pYp—iz
sin z = , = : = .
29 27 27

1
= ;(e’y(cosx +isinx) — e¥(cosz —isinx))
i

1 _ .

= —(eYcosx +ie Ysinz — e’ cosx — ie¥ sinx)
i
eVsinx +e Ysinwx  eYcosx —eYcosw

= +Z

2 2
= sin z cosh y + 7 cos x sinh y.

I told you once that it is almost never a good idea to separate the real and imaginary
parts of the function. This is a rare case of when it is needed. So we get

sin(z + 4y) = sinx coshy +icoswsinhy.

We have
) U v
sinx = cosSx =
coshy’ sinh y
and hence
U 2 v 2
1 = sin? 2r = . 10.7
S oSt <Coshy) * (sinhy> (107)

It follows from (10.7) that sin z maps a segment {z|z = x4 iy, x € [-F, ]}, where
Yo > 0 is fixed, onto the upper semiellipse

2 2
U N v _q
< cosh o ) (sinh Yo ) .
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sin z

/\ ___ﬁnha

—cosha / \ cosha

|
IMIE]
IR

FIGURE 1. Mapping of sin z for z = z +ia where z € [-7, 7] and a > 0

Similarly, one can see

Yy v
a
<in » sinh a
cosh a
T
_z by
2 2
—a

FIGURE 2. Mapping of sin z for z = x 4 iy where z € [-7, 7] and y € [—a, ]

Exercises

Exercise 10.1 Let 2, 29, ..., 2, € C* := {z| Imz > 0}. Show that if 2;-29-...-2, € CT

for all £ < n then,

logsz = Zlog 2k, (10.8)
k=1 k=1

where the log is defined on C\R,. Give a counterexample to equation (10.8) if
we remove the restriction on 21, 2o, ..., z,,. Note, in this respect, that in general

log 2™ # nlog z.

Exercise 10.2 Let log z be defined on C\ R;. Come up with reasonable conditional

statements regarding the basic properties of log z.
E.g. log 2129 = log 21 + log 29, if blah, blah, blah.

Exercise 10.3 Treat cos z in a way similar to what we did with sin z.
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2.3 More on Riemann Surfaces



Lecture 1

What are Riemann surfaces?

1.1 Problem: Natural algebraic expressions have ‘ambiguities’ in their solutions; that is, they
define multi-valued rather than single-valued functions.

In the real case, there is usually an obvious way to fix this ambiguity, by selecting one branch
of the function. For example, consider f(xz) = y/z. For real z, this is only defined for x > 0,
where we conventionally select the positive square root (Fig.1.1).

A

—

R { “}{‘Lf X ) sz‘ 1.4

-
=

- —_—

We get a continuous function [0,00) — R, analytic everywhere except at 0. Clearly, there is a
problem at 0, where the function is not differentiable; so this is the best we can do.

In the complex story, we take ‘w = /2’ to mean w? = z; but, to get a single-valued function of

z, we must make a choice, and a continuous choice requires a cut in the domain.

A standard way to do that is to define ‘\/2’ : C\R™ — C to be the square root with positive real
part. There is a unique such, for z away from the negative real axis. This function is continuous
and in fact complex-analytic, or holomorphic, away from the negative real axis.

A different choice for y/z is the square root with positive imaginary part. This is uniquely
defined away from the positive real axis, and determines a complex-analytic function on C\ R*.

In formulae: z = re? = \/z = \/re’?/2, but in the first case we take —7 < § < 7, and, in the
second, 0 < 6 < 2.

Either way, there is no continuous extension of the function over the missing half-line: when z
approaches a point on the half-line from opposite sides, the limits of the chosen values of 1/z
differ by a sign. A restatement of this familiar problem is: starting at a point zy # 0 in the
plane, any choice of /zp, followed continuously around the origin once, will lead to the opposite
choice of |/zp upon return; zp needs to travel around the origin twice, before \/zy travels once.

Clearly, there is a problem at 0, but the problem along the real axis is our own — there is
no discontinuity in the function, only in the choice of value. We could avoid this problem by
allowing multi-valued functions; but another point of view has proved more profitable.

The idea is to replace the complex plane, as domain of the multi-valued function, by the graph of
the function. In this picture, the function becomes projection to the w-axis, which is well-defined
single-valued! (Fig. 1.2)

In the case of w = /7, the graph of the function is a closed subset in C2,

S = {(z,w) € C*|w? = z}.



In this case, it is easy to see that the function w = w(z),
S — C, (z,w) — w

defines a homeomorphism (diffeomorphism, in fact) of the graph S with the w-plane. This is
exceptional; it will not happen with more complicated functions.

W N /_—»—""'—ﬂ nJ = = E. | \L(’ {-1!'\ \u o
= W=1{z (s
7 Y 3, ,r'\)Lg - \/(‘-\i e ek
[vn ,MA inoey S
. z 4 ] p &R AAD L )
v flvs ) = Eh e ) e
2,

\\\ Fia |. L.
T 9

N

The graph S is a very simple example of a (concrete, non-singular) Riemann surface. Thus, the
basic idea of Riemann surface theory is to replace the domain of a multi-valued function, e.g. a
function defined by a polynomial equation
P(z,w) = w" + pp_1(2)w™ " + -+ 4 p1(2)w + po(2)
by its graph
S ={(2,w) € C*| P(z,w) = 0},

and to study the function w as a function on the ‘Riemann surface’ S, rather than as a multi-
valued function of z.

This is all well, provided we understand

e what kind of objects Riemann surfaces are;

e how to do complex analysis on them (what are the analytic functions?)

The two questions are closely related, as will become clear when we start answering them
properly, in the next lecture; for now, we just note the moral definitions.

1.2 Moral definition. An abstract Riemann surface is a surface (a real, 2-dimensional mani-
fold) with a ‘good’ notion of complex-analytic functions.

The most important examples, and the first to arise, historically, were the graphs of multi-valued
analytic functions:

1.3 Moral definition: A (concrete) Riemann surface in C? is a locally closed subset which
is locally — near each of its points (29, wo) — the graph of a multi-valued complex-analytic
function.

1.4 Remarks:

(i) locally closed means closed in some open set. The reason for ‘locally closed’ and not ‘closed’
is that the domain of an analytic function is often an open set in C, and not all of C. For
instance, there is no sensible way to extend the definition of the function z — exp(1/z) to
z = 0; and its graph is not closed in C?.



(ii) Some of the literature uses a more restrictive definition of the term multi-valued function,
not including things such as y/z. But this need not concern us, as we shall not really be
using multi-valued functions in the course.

The Riemann surface S = {(z,w) € C? |z = w?} is identified with the complex w-plane by
projection. It is then clear what a holomorphic function on S should be: an analytic function
of w, regarded as a function on S. We won’t be so lucky in general, in the sense that Riemann
surfaces will not be identifiable with their w- or z-projections. However, a class of greatest
importance for us, that of non-singular Riemann surfaces, is defined by the following property:

1.5 Moral definition: A Riemann surface S in C? is non-singular if each point (zp,wp) has
the property that

e either the projection to the z-plane
e or the projection to the w-plane

e or both

can be used to identify a neighbourhood of (29, wg) on S homeomorphically with a disc in the
z-plane around zp, or with a disc in the w-plane around wyg.

We can then use this identification to define what it means for a function on S to be holomorphic
near (zg, wp).

1.6 Remark. We allowed concrete Riemann surfaces to be singular. In the literature, that is
usually disallowed (and our singular Riemann surfaces are called analytic sets). We are mostly
concerned with non-sigular surfaces, so this will not cause trouble.

An interesting example

Let us conclude the lecture with an example of a Riemann surface with an interesting shape,
which cannot be identified by projection (or in any other way) with the z-plane or the w-plane.

Start with the function w = /(22 — 1)(22 — k2) where k € C, k # +1, whose graph is the
Riemann surface
T ={(z,w) € C? |w? = (z* = 1)(z* = k?)}.

There are two values for w for every value of z, other than z = +1 and z = 4k, in which cases
w = 0. A real snapshot of the graph (when k € R) is indicated in Fig. (1.3), where the dotted
lines indicate that the values are imaginary.

AW




Near z = 1, 2 = 1 + ¢ and the function is expressible as

w=e2+e)1+et+k)(1+e—k)=vVev2+e /(1 +k)+e/(1 — k) +e

A choice of sign for 2(1+k)(1—k) leads to a holomorphic function
V2 + e/ (1+k)+ey/(1—k)+e for small ¢, so w = /e x (aholomorphic function of €), and
the qualitative behaviour of the function near w = 1 is like that of \/e = vz — 1.

Similarly, w behaves like the square root near —1, +k. The important thing is that there is no
continuous single-valued choice of w near these points: any choice of w, followed continuously
round any of the four points, leads to the opposite choice upon return.

Defining a continuous branch for the function necessitates some cuts. The simplest way is
to remove the open line segments joining 1 with k£ and —1 with —k. On the complement of
these segments, we can make a continuous choice of w, which gives an analytic function (for
z # +1,+k). The other ‘branch’ of the graph is obtained by a global change of sign.

Thus, ignoring the cut intervals for a moment, the graph of w breaks up into two pieces, each
of which can be identified, via projection, with the z-plane minus two intervals (Fig. 1.4).

. — r—
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Now over the said intervals, the function also takes two values, except at the endpoints where
those coincide. To understand how to assemble the two branches of the graph, recall that the
value of w jumps to its negative as we cross the cuts. Thus, if we start on the upper sheet and
travel that route, we find ourselves exiting on the lower sheet. Thus,

e the far edges of the cuts on the top sheet must be identified with the near edges of the
cuts on the lower sheet;

e the near edges of the cuts on the top sheet must be identified with the far edges on the
lower sheet;

e matching endpoints are identified;

e there are no other identifications.
A moment’s thought will convince us that we cannot do all this in R?, with the sheets positioned
as depicted, without introducing spurious crossings. To rescue something, we flip the bottom

sheet about the real axis. The matching edges of the cuts are now aligned, and we can perform
the identifications by stretching each of the surfaces around the cut to pull out a tube. We obtain



the following picture, representing two planes (ignore the boundaries) joined by two tubes (Fig.
1.5.a).

For another look at this surface, recall that the function
2z R?/z

identifies the exterior of the circle |z| < R with the punctured disc {|z] < R |z # 0}. (This
identification is even bi-holomorphic, but we don’t care about this yet.) Using that, we can pull
the exteriors of the discs, missing from the picture above, into the picture as punctured discs,
and obtain a torus with two missing points as the definitive form of our Riemann surface (Fig.

1.5.b).

.

Lecture 2

The example considered at the end of the Lecture 1 raises the first serious questions for the
course, which we plan to address once we define things properly: What shape can a Riemann
surface have? And, how can we tell the topological shape of a Riemann surface, other than by
creative cutting and pasting?

The answer to the first question (which will need some qualification) is that any orientable
surface can be given the structure of a Riemann surface. One answer to the second question, at
least for a large class of surfaces, will be the Riemann-Hurwitz theorem (Lecture 6).

2.1 Remark. Recall that a surface is orientable if there is a continuous choice of clockwise
rotations on it. (A non-orientable surface is the Mébius strip; a compact example without
boundary is the Klein bottle.) Orientability of Riemann surfaces will follow from our desire to
do complex analysis on them; notice that the complex plane carries a natural orientation, in
which multiplication by ¢ is counter-clockwise rotation.

Concrete Riemann Surfaces

Historically, Riemann surfaces arose as graphs of analytic functions, with multiple values, defined
over domains in C. Inspired by this, we now give a precise definition of a concrete Riemann
surface; but we need a preliminary notion.
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THE GAMMA FUNCTION

I.1. Definition of the Gamma Function

One of the simplest and most important special functions is the gamma
function, knowledge of whose properties is a prerequisite for the study of
many other special functions, notably the cylinder functions and the hyper-
geometric function. Since the gamma function is usually studied in courses
on complex variable theory, and even in advanced calculus,! the treatment
given here will be deliberately brief.

The gamma function is defined by the formula

I'(z) = on e 't*" 1 dt, Rez > 0, (1.1.1)
0

whenever the complex variable z has a positive real part Re z. We can write
(1.1.1) as a sum of two integrals, i.e.,

@

1
l"(z)=f e“tz‘ldt+f e~ trrm1dy, (1.1.2)
0

1

where it can easily be shown? that the first integral defines a function P(z)

1 See D. V. Widder, Advanced Calculus, second edition, Prentice-Hall, Inc., Englewood
Cliffs, N.J. (1961), Chap. 11.

2 See E. C. Titchmarsh, The Theory of Functions, second edition, Oxford University
Press, London (1939), p. 100, noting that the integrand e~ ‘>~ is analytic in z and con-
tinuous in z and ¢ for Re z > 0, 0 < ¢ < oo, while the first integral is uniformly
convergent for Re z > 8 > 0 and the second integral is uniformly convergent for
Re z < A < o0, since then

1 1 © ©
f e“tz‘ldtl < J. e % 1dt < oo, H etz dt\ < f e ttA-1dt < .
) 1 1
|

[
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which is analytic in the half-plane Re z > 0, while the second integral defines
an entire function. It follows that the function I'(z) = P(z) + Q(z) is analy-
tic in the half-plane Re z > 0.

The values of I'(z) in the rest of the complex plane can be found by
analytic continuation of the function defined by (1.1.1). First we replace the
exponential in the integral for P(z) by its power series expansion, and then
we integrate term by term, obtaining

1 x — 1k s — 1)k 1
P(2) =f -1 dt Z (kl‘) = Z (kl') f fere-l gy
0 : ©=o !

k=0 0
_ i (=1F_1
T4 kK zxK

where it is permissible to reverse the order of integration and summation
since®

f1|t2*1|dt i
0

k=0

(1.1.3)

_1\k
G

1 @ k 1
t
= t*-ldt 2 — = elr*-1dt < oo
o o k!

0

(the last integral converges for x = Re z > 0). The terms of the series (1.1.3)
are analytic functions of z, if z # 0, —1, —2,... Moreover, in the region*

lz+kl >8>0, k=01,2...,

(1.1.3) is majorized by the convergent series

N |

and hence is uniformly convergent in this region. Using Weierstrass’ theorem®
and the arbitrariness of 3, we conclude that the sum of the series (1.1.3) is a
meromorphic function with simple poles at the points z = 0, —1, =2, ...
For Re z > 0 this function coincides with the integral P(z), and hence is the
analytic continuation of P(z).

The function I'(z) differs from P(z) by the term Q(z), which, as just shown,
is an entire function. Therefore I'(z) is a meromorphic function of the com-
plex variable z, with simple poles at the points z = 0, —1, —2,... An

3 E. C. Titchmarsh, op. cit., p. 45.

* By a region we mean an open connected point set (of two or more dimensions)
together with some, all, or possibly none of its boundary points. In the latter case, we
often speak of an open region or domain, in the former case, of a closed region or closed
domain.

5See A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. 1
(translated by R. A. Silverman), Prentice-Hall, Inc., Englewood Cliffs, N.J. (1965),
Theorem 15.6, p. 326.



SEC 1.2 THE GAMMA FUNCTION 3
analytic expression for I'(z), suitable for defining I'(z) in the whole complex
plane, is given by

_ N (=D f“’ o -
r(z)_kZo TRt e z#0 1L -2 (L14)

It follows from (1.1.4) that I'(z) has the representation

_(=n 1
I'z) = PR + Q(z + n) (1.1.5)
in a neighborhood of the pole z = —n (n = 0, 1, 2,...), with regular part

Q(z + n).

1.2. Some Relations Satisfied by the Gamma Function

We now prove three basic relations satisfied by the gamma function:

I'z + 1) = zI'(2), (1.2.1)
P@T( ~ 2) = 5 (1.2.2)
222-10()0(z + 4) = Val(Q22). (1.2.3)

These formulas play an important role in various transformations and calcula-
tions involving I'(z).

To prove (1.2.1), we assume that Re z > 0 and use the integral repre-
sentation (1.1.1). An integration by parts gives

TG + 1) =f et dt = —e it
0

+ zf e 2=t dt = zI(2)

(] 0
The validity of this result for arbitrary complex z # 0, —1, —2,... is an
immediate consequence of the principle of analytic continuation,® since both
sides of the formula are analytic everywhere except at the points z = 0, —1,
-2,...

To derive (1.2.2), we temporarily assume that 0 < Rez < 1 and again
use (1.1.1), obtaining

r@ra - z) = J; fo e~ G+dg=22=1 dg dt,

¢ According to this principle, which we will use repeatedly, if f(z) and ¢(z) are
analytic in a domain D and if f(z) = ¢(z) for all z in a smaller domain D* contained in
D, then f(z) = ¢(z) for all z in D. The same is true if f(z) = ¢(z) for all z in any set of
points of D with a limit point in D, say, a line segment. See A. I. Markushevich, op. cit.,
Theorem 17.1, p. 369.
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Introducing the new variables

u=3s-+1, l]=£9
K}
we find that”
R du dv © -t T
— = —unz—1 — —
F@ra - z) L J; e 1+ fo 1+vdv sin 7tz

Using the principle of analytic continuation, we see that this formula remains
valid everywhere in the complex plane except at the pointsz = 0, +1, +2,...

To prove (1.2.3), known as the duplication formula, we assume that
Re z > 0 and then use (1.1.1) again, obtaining

2Tz + 3) = fw fw e~ +OQV/s1)? "1t~ 112 ds di
0 [

=4 fw fw e~ @ +BD(2uR)22 - 1g du dp,
o Jo

where we have introduced new variables « = Vs, B = V7. To this formula
we add the similar formula obtained by permuting « and 8. This gives the
more symmetric representation

2N + ) =2 [ [ e g+ ) e

—4 f f €+ 57 (2aB)% Yo + B) doc df,

where the last integral is over the sector 6:0 < « < 00, 0 < B < «. Intro-
ducing new variables
u=oao%+ p% v = 2aB,
we find that
et

22210 + ) = fo v do fo Vi

= 2'[ e“’v”‘lva- e~** dw = VrI'(2z).
0 0

As before, this result can be extended to arbitrary complex values z # 0, —4,
—1, —3%,..., by using the principle of analytic continuation.

We now use formula (1.2.1) to calculate I'(z) for some special values of the
variable z. Applying (1.2.1) and noting that I'(1) = 1, we find by mathe-
matical induction that

I'n+ 1) =n, n=0,1,2,... (1.24)

7 For the evaluation of the integral in the last step, see E. C. Titchmarsh, op. cit.,
p. 105.
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Moreover, setting z = 4 in (1.1.1), wg obtain

rg) = fm e~tt~124gr =2 Jw e ¥ du = V', 1.2.5)
0 0
and then (1.2.1) implies
Mw+p="222@ 2Dy 1o 29

Finally we use (1.2.2) to prove that the function I'(z) has no zeros in the
complex plane. First we note that the points z=n (n =0, £1, £2,...)
cannot be zeros of I'(z), since I'(n) =(n— 1)! if n=1,2, ..., while
I'(n) = wifn =0, —1, —2,... The fact that no other value of z can be a
zero of I'(z) is an immediate consequence of (1.2.2), since if a nonintegral
value of z were a zero of I'(z) it would have to be a pole of I'(1 — z), which is
impossible. It follows at once that [I'(z)]~?! is an entire function.

1.3. The Logarithmic Derivative of the Gamma Function

The theory of the gamma function is intimately related to the theory of
another special function, i.e., the logarithmic derivative of I'(z):

(1.3.1)

Since I'(z) is a meromorphic function with no zeros, §(z) can have no singular
points other than the polesz = —n(n = 0, 1, 2,...) of I'(z). It follows from
(1.1.5) that {(z) has the representation®

1
Y(2) = — py + Q(z + n) (1.3.2)
in a neighborhood of the point z = —n, and hence {§(z2), like I'(z), is a mero-
morphic function with simple poles at the points z = 0, —1, —2,...
The function {(z) satisfies relations obtained from formulas (1.2.1-3)° by
taking logarithmic derivatives. In this way, we find that

Yz +1) = % + ¥(2), (1.3.3)
Y(1 — 2) — Y(z2) = = cot nz, (1.3.4)
¥ + Yz + ) + 2log 2 = 2¢(22). (1.3.5)

8 Of course, the regular part Q(z + n) in (1.3.2) is not the same as in (1.1.5).
By (1.2.1-3) we mean formulas (1.2.1) through (1.2.3). Similarly, (1.2.1, 4, 6) means
formulas (1.2.1), (1.2.4) and (1.2.6), etc.
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These formulas can be used to calculate {(z) for special values of z. For
example, writing

' $(1) =I"(1) = —v, (1.3.6)
where y = 0.57721566 . . . is Euler’s constant, and using (1.3.3), we obtain

L
Y+ 1) = —y + ;Zf n=12... (1.3.7)

Moreover, substituting z = % into (1.3.5), we find that

() = —y — 2log2, (1.3.8)
and then (1.3.3) gives

Lol
¢(n+%)——y—210g2+2212k—_—1, n=12... (139

The function {(z) has simple representations in the form of definite
integrals involving the variable z as a parameter. To derive these representa-
tions, we first note that (1.1.1) implies *°

I'(z) = f e~tt*~1log t dt, Rez > 0. (1.3.10)
0

If we replace the logarithm in the integrand by its expression in terms of the
Frullani integral*!

© e~ % — e-—xt
logt = ——;——dx, Ret > 0, (1.3.11)
0

we find that 2
I'(z) = f ‘—iff (e7* — e e 21 dt
o X Jo

= fm a [e"‘f‘(z) - fm emtx bzl dt]-
o X 0

Introducing the new variable of integration u = #(x + 1), we find that the
integral in brackets equals (x + 1)~2I'(z). This leads to the following integral
representation of {(z):

Wz) = f: [e"" L ]d" Rez > 0. (1.3.12)

CE X

10 To justify differentiating behind the integral sign, see E. C. Titchmarsh, op. cit.,
pp. 99-100.

11 See H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, third edition,
Cambridge University Press, London (1956), p. 406, and D. V. Widder, op. cit., p. 357.

12 Here, as elsewhere in this chapter, we omit detailed justification of the reversal of
order of integration. An appropriate argument can always be supplied, usually by prov-
ing the absolute convergence of the double integral and then using Fubini’s theorem.
See H. Kestelman, Modern Theories of Integration, second revised edition, Dover Pub-
lications, Inc., New York (1960), Chap. 8, esp. Theorems 279 and 280.
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To obtain another integral representation of {(z), we write (1.3.12) in the
form

N I 1 dx .. e ©  dx
W =tim [ e - ] S =im [ e - | x|
and change the variable of integration in the second integral, by setting
x + 1 = ¢'. This gives

© ,—t © -tz
¥z) = lim U e ~f e—dt]
60 6 t 1

=
ga+n 1 — €

) o et et 5 et
([ (S e[ <]
6-0 LJiog a4y \ f l—e g+ !

and therefore, since the second integral approaches zero as § — 0,

@© e—t e—tz
Y(z) = f (7 - 1——;—,) dt, Rez > 0. (1.3.13)
. -

Setting z = 1 and subtracting the result from (1.3.13), we find that

© e—t —_ e—tz
W) = —y +f S, Rez>0, (1.3.14)
LT
or
11 — xz—l
W2) = —v + f o g dx, Rez > 0, (1.3.15)
Lo

where we have introduced the variable of integration x = e~

From formula (1.3.15) we can deduce an important representation of {(z)
as an analytic expression valid for all z # 0, —1, —2, ..., i.e., in the whole
domain of definition of {(z). To obtain this representation, we substitute the
power series expansion

Q-0"'=1+x+x>+ - +x"+--, 0<x<]l

into (1.3.15) and integrate term by term (this operation is easily justified).
The result is

& 1 1
W)= — v +,.Zo(n_+ LTS Z)- (1.3.16)
The series (1.3.16), whose terms are analytic functions forz # 0, —1, —2,...,
is uniformly convergent in the region defined by the inequalities
lz+n >8>0, n=0,1,2,... and |z] < g,
since

11 < a+1
n+1 n+z (n+ (@ — a)
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forn > N > a, and the series

0

a+1
x (n+ D —a)
converges. Therefore, since 3 is arbitrarily small and a arbitrarily large, both
sides of (1.3.16) are analytic functions except at the polesz =0, —1, —2, ...,
and hence, according to the principle of analytic continuation, the original
restriction Re z > 0 used to prove this formula can be dropped. If we replace
zby z + 1in (1.3.16), integrate the resulting series between the limits 0 and z,
and then take exponentials of both sides, we find the following infinite pro-
duct representation of the gamma function:

1 — 2 = —-2/n E .
F(Z—'f'l) = eY 1__[ e (1 + n) (1.3.17)

n=1

This formula can be made the starting point for the theory of the gamma
function, instead of the integral representation (1.1.1).

Finally we derive some formulas for Euler’s constant y. Setting z = 1 in
(1.3.12-13), we obtain

v= == [ (s -e) dx _ [ (= - )etar aam)

Moreover, (1.3.10) implies
Y= — f e tlogt dt, (1.3.19)
0
which, when integrated by parts, gives
1 © 1 1 — e-—t © e-t
y=f logtd(e~t — 1)+f logtd(e“')=f dt—f —dt.
0 1 0 t 1 t

Replacing ¢ by 1/t in the last integral on the right, we find that

1 — p—=t _ p-1/t
y = fo I—-et—" dt. (1.3.20)

1.4. Asymptotic Representation of the Gamma Function for
Large |z

To describe the behavior of a given function f(z) as |z| — co within a
sector a < arg z <f, it is in many cases sufficient to derive an expression of
the form

f@) = o1 + r(2)], (1.4.1)
where ¢(z) is a function of a simpler structure than f(z), and r(z) converges

uniformly to zero as |z| — co within the given sector. Formulas of this type
are called asymptotic representations of f(z) for large |z|. It follows from
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(1.4.1) that the ratio f(z)/p(z) converges to unity as |z| — oo, i.e., the two func-
tions f(z) and ¢(z) are “asymptotically equal,” a fact we indicate by writing

f@ = ez, |zl >, a<argz<B. (1.4.2)

An estimate of |r(z)| gives the size of the error committed when f(z) is replaced
by ¢(z) for large but finite |z|.

We now look for a description of the behavior of the function f(z) as
|z] = co which is more exact than that given by (1.4.1). Suppose we succeed
in deriving the formula

1) = <p(z)[ i az ™" + rN(z)], ag=1 N=12,..., (143)

where zVry(z) converges uniformly to zero as |z| — o0, « < arg z <B. [Note
that (1.4.3) reduces to (1.4.1) for N = 0.] Then we write

f@ x @) D az",  |z] >, a<argz<B, (1.4.4)
n=0

and the right-hand side is called an asymptotic series or asymptotic expansion
of f(z) for large |z|. It should be noted that this definition does not stipulate
that the given series converge in the ordinary sense, and on the contrary, the
series will usually diverge. Nevertheless, asymptotic series are very useful,
since, by taking a finite number of terms, we can obtain an arbitrarily good
approximation to the function f(z) for sufficiently large |z|. In this book,
the reader will find many examples of asymptotic representations and asymp-
totic series (see Secs. 1.4, 2.2, 3.2, 4.6, 4.14, 4.22, 5.11, etc.). For the general
theory of asymptotic series, we refer to the references cited in the Bibliography
on p. 300.

To obtain an asymptotic representation of the gamma function I'(z), it is
convenient to first derive an asymptotic representation of log I'(z). To this
end, let Re z > 0, and consider the integral representation (1.3.13), with z
replaced by z + 1, i.e.,

_Iz+ 1) [ (e e
wer 0= - [ (F-d =)«

_[Cet—e® 1[(* _,. © /1 1 1 s
_fo —t—dt+§foe dt fo (2 t+et_1)e d,

1 1 -tz
7 + o 1)e dt,

or

'z+1) 1 ”(1
——F(z+1)—10gz+ fo 3

2z
where we have used (1.3.11). Integrating the last equation between the limits
1 and z, and bearing in mind that

log'(z + 1) = log I'(z) + log z,
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we find that13

log I'(z) = (z—%) logz—z+1

(1.4.5)
+fm(l_l+ 1 )e—tz_e—tdt
o \2 ¢t -1 t ’
where Re z > 0. It should be noted that the function
1 1 1 1
£ = (5 — i+ e,—_—l) 5 (1.4.6)

appearing in the integrand in (1.4.5), is continuous for ¢ > 0, with f(0) = %,

as can easily be verified by expanding f(¢) in a power series in a neighbor-
hood of the point ¢ = 0.
To simplify (1.4.5), we evaluate the integral

s = f ® fet dt. (1.4.7)

This can be done by using the following trick: If

7= f * K i, (1.4.8)
then

s=s= [Jeelo-ysGl)a- [ (F-am) ¥

It follows that

e t2 — -t e“) dt

f=(f—f)+f=f:(——t———7

® dfe t2 — et e t— et
- at) ]«

et — gmt|e ] feemt _ gt2 1 1 1
i — 0+§f0 7 d=3tiley
(14.9)
On the other hand, substituting z = % into (1.4.5), we find that
F—F=%logn — 14 (1.4.10)
and hence
F =1-4%log2n. (1.4.11)

Using this result, we can write (1.4.5) in the form

logT'(z) = (z — $) logz — z + $log2n + w(2), (1.4.12)

13 The choice of the path of integration is unimportant. To justify integration behind
the integral sign, we use an absolute convergence argument (cf. footnote 12, p. 6).
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where
o(2) = f f(e-=dt, Rez > 0. (1.4.13)
0

Since f(¢) decreases monotonically as ¢ increases,'* the integral (1.4.13) also
converges for Re z = 0, Im z # 0.1°

Using (1.4.12) and (1.4.13), we can easily derive an asymptotic representa-
tion of I'(z). First let |arg z| < =/2, and integrate (1.4.13) by parts, obtaining

o@) =1 [ 70) + f " et dt]. (1.4.14)
0
Since () < 0, | '(1)] = —f'(¢), we have
1 ® 2f(0)
< — | f(0) — t dt] = ,
@ < g7 [70 - [ ro«] = 45
ie.,
0@ < 7 largz] < (14.15)
=< 6|zl =< 2 o T
Then, taking exponentials of both sides of (1.4.12), we find that
[(z) = ee-W s z-2+%los 2 [] 4 p(7)],  |argz| < g (1.4.16)
where

r(z) = e*® — 1.
According to (1.4.15),
C

L (1.4.17)

Ir@)| <

where C is an absolute constant (we assume that z is bounded away from
zero, i.e., |z| = a > 0). Thus r(z) is of order |z|~! as |z| = o0, a fact indi-
cated by writing ¢

r(z) = O(|z|~Y), (1.4.18)

and hence (1.4.16) is an asymptotic representation of I'(z) in the indicated
sector.
To derive an asymptotic representation of I'(z) which is valid in other

14 This follows at once from the expansion

= 1
[0 =22 g

See K. Knopp, Theory and Applications of Infinite Series (translated by R. C. H. Young),
Blackie and Son, Ltd., London (1963), p. 378.

15 E. C. Titchmarsh, op. cit., p. 21.

16 We say that f(z) is of order ¢(z) as z — zo, and write f(z) = O(p(2)) as z — z, if
the inequality | f(z)| < A4|¢(z)| holds in a neighborhood of z,, where A4 is some con-
stant. If z, is not explicitly mentioned, then z, = co.
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sectors of the complex plane, we proceed as follows: Let 3 be an arbitrarily
small fixed positive number, and let

Sargz< wm— 4. (1.4.19)

NI

Since arg (—z) = arg z — =, this implies

< arg(—z2) < 3.

Nl

It follows from (1.2.1-2) that

i
- N
—zI'(—z) sin wz

where, according to (1.4.16) and (1.4.18),
P(——z) = e~ (2+ )og z—wi)+z+ ¥ log 27:[1 + 0(|Z| -1)]‘ (1.4.21)

I'(z) = (1.4.20)

On the other hand, in the sector (1.4.19),

Wiz __ ,— Wiz —qiz
sinmz = £ 2ie = — eZi (1 — e2mi2)
i 1 - (1.4.22)
—_ - 27iz _ e e -1
- -5 (1 -5 7e) 1+ 0(|z| )]

since ze?™# is bounded in this sector. Substituting (1.4.21-22) into (1.4.20),
we again arrive at formula (1.4.16). A similar result is obtained for the sector

—(r—9% <argz< —

ME]

Finally, therefore, in any sector
largz] < = — 3,
we have the asymptotic representation
[(z) = e~ logz-2+hlos2n ] 4 O(|z]~Y)]. (1.4.23)

Considerations resembling those just given, but much more complicated,?
lead to the more exact formula

1 1 139 » ]
122 + 28852 ~ 51840 + O™
(1.4.24)

If z = x is a positive real number, then (1.4.16) becomes Stirling’s formula

F(Z) = e2— %) log z—2+; log 2 [1 +

I(x) = VZrx*=%e *[1 + r(x)], (1.4.25)

17 See G. N. Watson, An expansion related to Stirling’s formula, derived by the method
of steepest descents, Quart. J. Pure and Appl. Math., 48, 1 (1920).
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where for r(x) we have a sharper estimate than that given by (1.4.17). In fact,
if z = x > 0, then

® 1
—-xt = —
()] < £(0) L et di = 71— (1.4.26)
so that
|[r(x)| < et*?* — 1. (1.4.27)
Finally, we note that (1.2.4) and (1.4.25) imply the following asymptotic
representation of the factorial:

n! x~ V2rna't%e ", n—> 0. (1.4.28)

I.5. Definite Integrals Related to the Gamma Function

The class of integrals which can be expressed in terms of the gamma func-
tion is very large. Here we consider only a few examples, mainly with the
intent of deriving some formulas that will be needed later.

Our first result is the formula

f e P dr = F[Ef ) Rep >0, Rez >0, (1.5.1)
0

which is easily proved for positive real p by making the change of variables
s = pt, and then using the integral representation (1.1.1). The extension of
(1.5.1) to arbitrary complex p with Re p > 0 is accomplished by using the
principle of analytic continuation.

Next consider the integral

1
B(x, y) = fo Y1 — f-1di, Rex >0, Rey>0, (1.52)

known as the beta function. It is easy to see that (1.5.2) represents an analytic
function in each of the complex variables x and y. If we introduce the new
variable of integration u = t/(1 — ¢), then (1.5.2) becomes

© ux—l

B(x, y) = (1+—ll)x+y du, Rex >0, Rey > 0. (1.5.3)
0

Settingp = 1 + u, z = x + y in (1.5.1), we find that
1

— 1 ® “Q+wtpx+y—-1
TFar™ Tk + y)fo e t dt, (1.5.4)
and substituting the result into (1.5.3), we obtain
1 o ]
B(x, y) = ——f e~ixty-1 dtj e " =1 du
I'(x +
( »Jo 0 (1.5.5)

MG [* eyr s TOTO)
Tetnd € 4= Txry)
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Thus we have derived the formula

B(x,y) = Eg)—i(i)) (1.5.6)

relating the beta function to the gamma function, which can be used to derive
all the properties of the beta function.

PROBLEMS

1. Prove that

TGy = TG + iy)|? =

T kL
¥ sinh ©y’ cosh ©y
for real y.

2. Using (1.5.6), verify the identity

@ cosh2yt 5o, o Dlx + NI(x — y)
fo (cosh == 4 =2 T(2%) » Rex >0, Rex>[Reyl

3. Prove that

<

+

—
S~

_r(
/2 12 2
f cosvede=f" sinved0=ﬁ—, Rev > —1,

0o

w4+ 1 v+ 1
f’”z 1F( 2 )F( 2 )
w

cos* 0 sinY 6 d6

0 2 + v
I‘( 5— + 1)
4. Verify the formula
332-1 .
I'(3z) = = Tz + HIz + 3. @)

5. Derive the formula
3¢(32) = ¢(2) + Pz + 3 + Yz + %) + 3log3.

Hint. Calculate the logarithmic derivatives of both sides of (i).

6. Derive the following integral representation of the square of the gamma
function, where Ko(#) is Macdonald’s function (defined in Sec. 5.7):

I'2(z) = 22-22_’; £22-1K(f)d:, Rez > 0.

Hint. Use formulas (5.10.23), (1.5.1) and the integral in Problem 2.
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7. Derive the asymptotic formulas
I'(z + a) = e®+a—1p)logz-2z+], log Zn[l + O( [Z| —1)]’

Te+a) o[ . @—Ba+p—1 L
Terp 1+ r + 0(z]~?) |
where « and B are arbitrary constants, and |arg z| < © — 3.

Hint. Use the results of Sec. 1.4.

8. Derive the asymptotic formula
ITGx + iy)] = V2me %W y[*=%[1 + r(x, »)],

where as |t| — o, r(x, y) — 0 uniformly in the strip |x| < « (« is a constant).

9. Show that the integral representation

1 1 s
TZ) = 2_Tl'l J; et=2dt
holds for arbitrary complex z, where =2 = e~21°¢ ¢ |arg ¢t| < =, and C is the
contour shown in Figure 13, p. 117.

10. The incomplete gamma function v(z, «) and its complement I'(z, «) are
defined by the formulas

¥(z, 0) = f e~'t2"1 dt, Rez > 0, |arge| < m,

T(z,0) = f e~trr 1 dt, larg «| < m,

o

so that
Y(z, @) + I'(z, o) = T'(2).

Prove that for fixed «, I'(z, «) is an entire function of z, while y(z, «) is a mero-
morphic function of z, with poles at the points z = 0, —1, —2,...
11. Derive the formulas

Y(Z + 1) “) = ZY(Zy d) - e—aaz’

Tz + 1,0) = zI'(z, &) + e~ %>

12. Derive the following representation of y(z, «):
— l)k k+z

Y(z, 0) = Z ISR z#0,-1,-2,...
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THE PROBABILITY INTEGRAL
AND RELATED FUNCTIONS

2.1. The Probability Integral and Its Basic Properties

By the probability integral is meant the function defined for any complex
z by the integral

@) = = f -2 gy, @.1.1)

evaluated along an arbitrary path joining the origin to the point # = z. The
form of this path does not matter, since the integrand is an entire function of
the complex variable 7, and in fact we can assume that the integration is along
the line segment joining the points # = 0 and ¢ = z. According to a familiar
theorem of complex variable theory,! ®(z) is an entire function and hence
can be expanded in a convergent power series for any value of z. To find this
expansion, we need only replace e~** by its power series in (2.1.1), and then
integrate term by term (this is always permissible for power series 2), obtaining

- k 2k — k 2k +1
D(z) = J‘ Z (= 1)k l)t Z (k'él)c Tl < @12

1 If f(¢) is analytic in a simply connected domain D, then the integral

9(2) = f £ ar,

evaluated along any rectifiable path contained in D, defines an analytic function in D.
See A. 1. Markushevich, op. cit., Theorem 13.5, p. 282. The theorem remains true if
f(a) = o or a = o, provided that the improper integral exists.
2 Ibid., Theorems 16.3 and 15.4, pp. 348 and 325.
16
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2.5 Gamma Function: Applications
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ON THE GAMMA FUNCTION AND ITS APPLICATIONS

JOEL AZOSE

1. INTRODUCTION

The common method for determining the value of n! is naturally recursive, found
by multiplying 1% 2% 3% ...% (n —2) % (n — 1) *n, though this is terribly inefficient for
large n. So, in the early 18th century, the question was posed: As the definition for
the nth triangle number can be explicitly found, is there an explicit way to determine
the value of n! which uses elementary algebraic operations? In 1729, Euler proved no
such way exists, though he posited an integral formula for n!. Later, Legendre would
change the notation of Euler’s original formula into that of the gamma function that
we use today [1].

While the gamma function’s original intent was to model and interpolate the fac-
torial function, mathematicians and geometers have discovered and developed many
other interesting applications. In this paper, I plan to examine two of those appli-
cations. The first involves a formula for the n-dimensional ball with radius r. A
consequence of this formula is that it drastically simplifies the discussion of which
fits better: the n-ball in the n-cube or the n-cube in the n-ball. The second applica-
tion is creating the psi and polygamma functions, which will be described in more
depth later, and allow for an alternate method of computing infinite sums of rational
functions.

Let us begin with a few definitions: The gamma function is defined for {z €
C,z#0,—1,-2,...} to be:

o0

(1.1) [(z) = /sz_le_sds

Remember some important characteristics of the gamma function:
1) For z € {N\0},I'(2) = 2!
2) T (z+1)=zI(2)
3) In(T" (2)) is convex.

The beta function is defined for {z,y € C, Re(x) > 0, Re(y) > 0} to be:
1
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(1.2) Bla,y) = /0 L

Another identity yields:

/2
(1.3) B(z,y) = / sin** 10 cos®~0df
0
Additionally,
[(z)C(y)
1.4 B = ==
(1.4 O e

A thorough proof of this last identity appears in Folland’s Advanced Calculus [2] on

pages 345 and 346. To summarize, the argument relies primarily on manipulation

of I'(x) and T'(y) in their integral forms (1.1), converting to polar coordinates, and

separating the double integral. This identity will be particularly important in our

derivation for the formula for the volume of the n-dimensional ball later in the paper.
With these identities in our toolkit, let us begin.

2. BAaLLs AND THE GAMMA FUNCTION

2.1. Volume Of The N-Dimensional Ball. In his article, The Largest Unit Ball
in Any Euclidean Space, Jeffrey Nunemacher lays down the basis for one interesting
application of the gamma function, though he never explicitly uses the gamma func-
tion [3]. He first defines the open ball of radius r of dimenision n, B,(r), to be the
set of points such that, for 1 <7 <n,

(2.1) Zx? <7r?

Its volume will be referred to as V,,(r). In an argument that he describes as being
“accessible to a multivariable calculus class”, Nunemacher uses iterated integrals to
derive his formula. He notes that, by definition:

(2.2) v, (r) :///1 dzy dzs ... dz,

By (r)

By applying (2.1) to the limits of the iterated integral in (2.2) and performing
trigonometric substitutions, he gets the following - more relevant - identity, specific
to the unit ball, where r = 1:
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w/2
(2.3) V, =2V, /005"0 do
0

In the rest of The Largest Unit Ball in Any Fuclidean Space, Nunemacher goes on
to determine which unit ball in Euclidean space is the largest. (He ultimately shows
that the unit ball of dimension n = 5 has the greatest volume, and that the unit ball
of dimension n = 7 has the greatest surface area, as well as - curiously - noting that
V., goes to 0 as n gets large. While a surprising result, it is not immediately relevant
to the topics which I aim to pursue here. If interested, I would refer the reader to
Nunemacher’s article directly.) Notice, however, that this formula does not use the
gamma function. We begin the derivation from here of the Gamma function form.

2.2. Derivation. In his 1964 article, On Round Pegs In Square Holes And Square
Pegs In Round Holes [4], David Singmaster uses the following formula for the volume
of an n-dimensional ball:

7T.71/27,,71
(2.4) Va(r) = Tn/2+ 1)
However, he never shows the derivation of this formula, and other references to
Singmaster’s article claim that the derivation appears explicitly in Nunemacher’s
article. I feel this to be an important omission, and I have endeavored here to recreate
the derivation for the sake of completeness. We shall begin where Nunemacher left
off with equation (2.3).
Recall (1.3) and notice its similarity to (2.3). It quickly becomes apparent that
(2.3) may be rewritten as:

1 n 1
2. (D) =V, 1(1)B(=, =+ =
(25) V(1) = Vaa(1) B, 5+ 5)
Continuing the recursion, we note:
1 n
(2.6) V(1) = Va(1) 3(57 5)

Consequently,

27) V(1) = Vi) B(, ) . B(3, ) B(3, 5 +3)
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1
where Vi(1) =2 = B(ﬁ’ 1). Substituting Gamma for Beta using (1.4) gives:

1 1....3 1....n 1. . n+1
(=) =)= r(='(=) I'(=)r
25 V) [ (2)3( ) PHT(G) (2)+(12) (z)n( 5 ) |
rg) MO rds) rGHy
which telescopes to:
1

(2.9) V(1) = [2—

Since F(%) =/mand I'(1) =1,

(2.10) V(1) =

Now the heavy lifting is done. Consider again the recursion relation that we used
in (2.3). This recursion relation holds true for the unit ball - that is, when r = 1.
However, when » = 1, we do not see the r in this equation. Instead, when we take
the more general form, we get the modified recursion relation:

/2
(2.11) V., =2rV,_, / cos™8 db
0

Going through the derivation will be virtually identical, except we have dilated the
ball’s size by a factor of r, and its volume by a factor of ™. This finally yields:

n/2,.n
e
2.12 Vo(r) = ———,
( ) () ['(n/2+4+1)

which is consistent with with our original statement of (2.4). Now the derivation of
the n-ball’s volume using the gamma function is complete, and we may proceed to
an interesting application.
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2.3. The Packing Problem. In the motivation for his article, Singmaster explains
the purpose of his article: “Some time ago, the following problem occurred to me:
which fits better, a round peg in a square hole or a square peg in a round hole?
This can easily be solved once one arrives at the following mathematical formulation
of the problem. Which is larger: the ratio of the area of a circle to the area of
the circumscribed square or the ratio of the area of a square to the area of the
circumscribed circle?” [4]

The formula that we derived in the last section will prove invaluable in finding this.
Since he is focusing on ratios, Singmaster uses the unit ball in both cases, though it
would work similarly with any paired radius.

For the unit ball, the edge of the circumscribed cube is necessarily length 2, since
it is equal in length to a diameter of the unit ball. The edge of the n-cube inscribed
in the unit n-ball has length 2/y/n, since the diagonal of an n-cube is y/n times its
edge. (Remember that the diagonal of the n-cube inscribed in the unit n-ball is the
diameter of the n-ball.)

So, we construct formulas for the volume of the relevant balls and cubes using
(2.4) and the facts which we have just stated:

/2
(2.13) V(n) = NCES
(2.14) Ve(n) =27,
(2.15) Vi(n) = %

where V' (n) represents the volume of the unit n-ball (as derived), V.(n) the volume
of the circumscribed cube, and V;(n) the volume of the inscribed cube. We consider
now the ratios of (2.13) to (2.14) - that is, a round peg in a square hole - and that
of (2.15) to (2.13) - a square peg in a round hole.

V(n) /2
(2.16) Ri(n) = A
(n) on] <n + 2)
2
n—+ 2
2T
(2.17) Ro(n) — Vi) ( 2 )
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R
He then takes Rl ) and applies Stirling’s approximation for the gamma function:
2\ T
For z large,
(2.18) [(2) ~ 22727 V2r

Singmaster shows that as n goes to infinity, this ratio goes to zero. So, for large
enough n, Ry(n) is greater. By simple numerical evaluation, he determines the
tipping point to be when n = 9. The most important result of this article is the
following theorem:

Theorem. The n-ball fits better in the n-cube better than the n-cube fits in the n-ball
if and only if n < 8.

3. Pst AND PoLyGaAMMA FUNCTIONS

In addition to the earlier, more frequently used definitions for the gamma function,
Weierstrass proposed the following:

[e.9]

(3.1) F(lz) =ze” H (14 z/n)e™?/",

n=1

where 7 is the Euler-Mascheroni constant. Van der Laan and Temme reference
another proof of this by Hochstadt [1]. This will be useful in developing the new
gamma-related functions in the subsections to follow, as well as important identities.
Ultimately, we will provide definitions for the psi function - also known as the
digamma function - as well as the polygamma functions. We will then examine
how the psi function proves to be useful in the computation of infinite rational sums.

3.1. Definitions. Traditionally, ©(z) is defined to be the derivative of In(I'(z)) with
/

I'(2)
for {z € C,z#0,—1,-2,...}. Van der Laan and Temme provide several very useful
definitions for the psi function. The most well-known representation, derived from

(3.1) and the definition of ¥(z), is as follows:

respect to z, also denoted as . Just as with the gamma function, ¢ (2) is defined

o

(32) Y=y 3

2 “—n(z+n)

though the one that we will ultimately use in the following subsection to compute
sums is defined thusly:



ON THE GAMMA FUNCTION AND ITS APPLICATIONS 7

1
-1
(3.3) W(z)=—y— [ ——dt
=

This integral holds true for Re(z) > —1, and can be verified by expanding the
denominator of the integrand and comparing to (3.2). These two are the most
important definitions for the psi function, and they are the two that we will primarily
use.

We will now define the polygamma functions, ¢)*) This is a family of functions
stemming from the gamma and digamma functions. They are useful because they
lead to better- and better-converging series. As you might imagine from the notation,
the polygamma functions are the higher-order derivatives of 1(z). Consider these
examples from repeated differentiation of (3.2):

(3.4) ()= (z4+n)% W)= (DR (z4n)F

Again, we note that, as k increases, ¢*)(z) becomes more and more convergent.
Now, though, we will set aside the polygamma functions and turn our focus back to
the psi function and its utility in determining infinite sums.

3.2. Use In The Computation Of Infinite Sums. Late in their chapter on some
analytical applications of the gamma, digamma, and polygamma functions, van der
Laan and Temme state: “An infinite series whose general term is a rational function
in the index may always be reduced to a finite series of psi and polygamma functions”
[1].

Let us consider the following specific problem to motivate more general results
given at the end of this section.

. 1
3.5 Evaluat .
(35) Vauae;(n+1)(3n+1)
We begin b ing th d ting that ! !
€ Degin expressin € suminand as Uy, n10tin atl Uy, = — .
SHL DY CXPIESSIG s 3\ (n+ D(n+1/3)
1

Then we perform partial fraction decomposition to vield that =
P P P Y (n+ 1)(n+1/3)
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3/2 3/2 1 1 1

/ — / , SO Uy = — — . Remember the identity that, for
n+1 n+1/3 2\n+1 n+1/3
all A > 0,

(3.6) %: /e_A‘”dx
0

This identity can be applied, since both denominators of both fractions are necessarily
greater than 0. So the sum in (3.5) can be rewritten as:

- (n—i—l)zd i (n+1/3):vd
e x e x
— (n+1)(3n+1) 2 nz:; K / ]
= li — e ety — | e e (/37 y
2
n=1 1% 0
1 = | —nz(, —T —(1/3)z
= = e (e —e )dx
2.3
=t to
1 ~r
[ —nz( —x  —(1/3)x
- 2]\}1_1)%0<Z[/e (e e )dm])
n=1 0
N 1 — xN—i—l
Remember from the study of infinite series that > 2" = T When we
n=0 — T
subtract the first term of the series, 2° = 1, we get the following result:
N
(1 — V)
3.7 N —— 2
(3.7) ; * 1—=z
Plugging in e for x, we see:
N
B e—x(l _ e—Nx)
3.8 =
( ) Z € 1 — e

Consider the relevant summation. Due to appropriate convergences following from
the monotone convergence theorem, we can interchange the summation and integra-
tion and continue our manipulations of the sum.
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> 1 [e(1— e o)
= Z 1 -z _ —(1/3)x d
Z 3n+1) QNI_I&,[/ =l )dx

n=1 0

- —(1/3)z
/ (e7” ") g
1—e>*

0

Now we make use of a change of variables. Let ¢t = e™®. Consequently, —e™*dx = dt.
We will make this substitution. The negative sign due to this change of variable
cancels with the one created by switching the limits of the integral, to yield the
following;:

N —

1

> 1 [t—¢/3

E = —/ dt

— (n+1)( 3n+1) 2 1—t

= 0
: 1/3
1 —1)— _
_ _/(t 1) —(t 1)dt

2 1—-t

0
1 1 1/

1 [t-1 1 [t/7°—1
= = —dt——/ dt
2) 1—t 2 1—1

0 0

Compare the two integrals on the right hand side of the above equation to the formula
for ¢(2) in (3.3). It becomes obvious that the substitution can be made with the psi
function to yield our final result:

[e.9]

(3.9) > G =2V~ 5v)

Professor Efthimiou of Tel Aviv University puts forth a theorem regarding series of
the form

(3.10) Slab) =3 o a)l(n i

n=1

where a # b, and {a,b € C; Re(a), Re(b) > 0} that generalizes the result which we
have shown for a specific example above:
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wb+1)—(a+1)
b—a

Let it be noted that, at present, our utility of psi functions in the calculation
of infinite sums is relegated to strictly positive fractions. (Admittedly, even this is
handy in a pinch, though it is hardly ideal.) However, I hope that the thorough
calculation of this example is proof enough for the reader that this derivation can
be made, and that the same argument could be made for a similar - that is, strictly
positive - function with a denominator of degree 2. If a doubt persists, I urge the
reader to create a rational function of this form and follow the same steps as my
proof to derive an equivalence with a sum of psi and/or polygamma functions.

Theorem. S(a,b) = . 9]

4. FUTURE WORKS

Van der Laan and Temme propose that every infinite series of rational functions
may be reduced to a finite series of psi and polygamma functions. This seems plau-
sible, but the statement requires more rigorous examination to be taken as sound.
The subjects that I would like to delve the most deeply into are what I touched on
at the very end with Prof. Efthimiou’s theorem and the limits on the utility of the
psi function in the calculation of infinite sums. I think that it would be a worthwhile
endeavor to try to formulate an analogue of Efthimiou’s theorem for a function with
denominator of degree n. Finally, I would like to work on examining what could be
done with infinite sums of fractions that are not strictly positive. I would like to
determine if there is a similar formula for these series, as well.

5. CONCLUSION

In the first section of this paper, we provided definitions for the gamma function.
We then went through a gamma derivation for the formula of the volume of an n-ball
and used that in working with ratios involving inscribed and circumscribed cubes to
determine the following:

Theorem. The n-ball fits better in the n-cube better than the n-cube fits in the n-ball
if and only if n < 8.

In the second section, we presented the psi - also known as the digamma - function
and the family of polygamma functions. We expressed a specific infinite sum as the
finite sum of psi functions as motivation for the following more general result:

e 1
Theorem. For a # b, and {a,b € C;Re(a),Re(b) > 0}, > =

n=1 (n+a)(n+0b)
P(b+1) —Yla+1)
b—a '
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Lecture8

The Zeta Function of
Riemann

1 Elementary Propertiesof £(s) [16, pp.1-9]

We defineZ(s), for scomplex, by the relation 66
o i 1 11
{(S)—ngln—s,s—0'+lt,0'> . (1.1)

We definexs, for x > 0, ase®'°9%, where logx has its real determination.
Then|nS| = n?, and the series converges fer > 1, and uniformly
in any finite region in whicho- > 1+ 6§ > 1. Hence{(s) is regular
foroc = 1+ 6 > 1. Its derivatives may be calculated by termwise
differentiation of the series.

We could expresg(s) also as an infinite product called tliler

Product .
1\
= 1-—] , 1, 1.2
(9 1:[( ps) o> (1.2)

wherep runs through all the primes (known to be infinite in number!).
It is the Euler product which connects the properties with the prop-
erties of primesThe infinite product is absolutely convergentdor 1,

63
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since the corresponding series

PN = B

p p

1
P

Expanding each factor of the product, we can write it as
1 1
l_l(l+—s+—25+---)
b p> P

Multiplying out formally we get the expression (1.1) by the unique
factorization theorem. This expansion can be justified as follows:

1 1 1 1
1_[1+—S+—25+-~ =1l+—=+=+,
p<p P UL

whereny, ny, ... are those integers none of whose prime factors exceed
P. Since all integerg P are of this form, we get

> 1\ |1 1 1
Zn—s‘r[(l——z) Dl
n=1 p<P P n=1 1 2

1 1

SP+iy Pray

— 0,asP — oo, if o > 1.

Hence (1.2) has been establisheddor- 1, on the basis of (1.1).
As an immediate consequence of (1.2) we observe{isahas no zeros
for o > 1, since a convergent infinite product of non-zero factors is
non-zero.

We shall now obtain a few formulae involvirgs) which will be of
use in the sequel. We first have

1
logZ(s) = - Zp: Iog(l - F) o>1 (1.3)
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If we write 7(X) = Y, 1, then
p<X

= 1
0g¢(9) = - () - n(n - Dilog1.-

n=2

= —Zn’(ﬂ) [Iog(l - nis) —log (l - (n+—11)5)}

o n+1
S
=) n(n) f —> _dx
nZ:; ) X(xs—1)
68
Hence

(o]

log(s) = sf X()’(Tfi) % o> L (1.4)
2

It should be noted that the rearrangement of the series preceding the
above formula is permitted because

n(n) <nand Iog{l - niS) =0(n™7).
A slightly different version of (1.3) would be
1 /
logZ(9) :ZZmTins o>1 (13)
p m

where p runs through all primes, aneh through all positive integers.
Differentiating (1.3), we get

(9 _ N ptlogp _ logp
(9 44 1-p* pzmz pms’

or

(o8]

&'(s) _ AN
(9 _nz:; ns '

o>1| (1.5)
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whereA(n) = logp. if n.is a+ ve power of a primep o
0, otherwise
Again
1

, o>1 (1.6)

(1.6) whereu(1) = 1, u(n) = (-1)¥if nis the product ok different
primes,u(n) = 0 if n contains a factor to a power higher than the first.

We also have .
9= osg

S?
n=1 n

whered(n) denotes the number of divisorsmfincluding 1 anch. For
ol o1 1
2
ACRPIIDIEEDI-DIE

More generally

M9 = i @, o>1 (1.7)

n=1

wherek = 2,3,4,..., anddg(n) is the number of ways of expressing
as a product ok factors.

Further
{9-¢(s-2a)= Z ==
m=1 n=1
i 1.
,u mn=u
so that .
{9 d(s-a) = ), 22 18)

u=1
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whereo4(1z) denotes the sum of tr#¥" powers of the divisors qi.
If a # 0, we get, from expanding the respective terms of the Euler
products,

1+p 1+ p? + p?
_n = 4

- 1
ﬂ(lﬁa)
p
Using (1.8) we thus get

plm1+l)a 1- pgm, +1)a

oa(n) = —— T (1.9)
if n=p", p5Z...p/" by comparison of the cdicients ofé. 71
More generally, we have
{(s)-4(s-a)-{(s-b)-{(s—a-b) l—l 1- poeat
/(2s—a-h) (1-p A~ p=)(1-psh)
(1 _ p—s+a+b)

for o > max{l,Rea+ 1, Reb+ 1, Re@+ b) + 1}. Puttingp™S = z, we
get the general term in the right hand side equal to

1-— pa+b22
(1-2 1-p2 (- P2 P2
1 1 pa pb pa+b
T - pa>(1 ) {1_2— 1-pz 1-pz 1- pa+bz}

(1 pa)(l pb) Z p(rml)a (m+1)b + p(m+l)(a+b)}zm

1 . N
:mn;{l—D( Dal (1 _ 1} Zn
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Hence

{(9)-4(s—a)(s—b)-4(s—a-h)
/(2s—a-b)
1-— p(m+1)a 1- p(m+1)b 1

_HZ 1-pP p_ms

P m=0

Now using (1.9) we get

{(89)-4(s—a)-L(s-Db)i(s-a-b) _ i aa(N)op(N)
/(2s—a-b) ns

n=1
o>maxl,Rea+ 1 Reb+ 1 Re@+h)+1}
If a=b=0,then

W o dn)?
229 = nZ; , o>1

(1.10)

(1.11)

If « is real, andx # 0, we writeai for a and—ai for bin (1.10), and

get

CA(9L(s— ai)l(s+ai) O loei(M)?
£(29) - Z ns

whereo,i(n) = Y d*.
d/n

, o> 1,

(1.12)

72
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3 Analytic continuation of /(s). First method [16,

p.18]
We have, foir > 0,

I(s) = f xS te™Xdx
0

Writing nx for x, and summing ovem, we get

92
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if o > 1. Hence

(o8]

SIO [ gy [ 220
0

ns 1-eX T ) -1
n=1 0
or
P Xs—l
F(s)g(s):fex_ldx, o>1
0

In order to continue/(s) analytically all over thes-plane, consider
the complex integral
Zs—l
()= | ——dz
0- [

C

whereC is a contour consisting of the real axis fromo top, 0 < p <
93  2nr, the circle|z = p; and the real axis fror to . 1(9), if convergent,
is independent gb, by Cauchystheorem.
Now, on the circlgz = p, we have

|Zs—1| — |e(s—l) Iogzl — |e{(o-—1)+it}{log|zl+i argz}|

— e(zr—l) log|z-targz
= 77e,

while
e - 1] > AlZ;

Hence, for fixeds,

[Z=p

.01
|f|<2’mTf-e2“'—>0aSp—>o, if o> 1.

Thus, on letting — 0, we get, ifo- > 1,

Roys-1 P iys—1
I(s)=—fei(_ldx+ (X:'XZH—_)ldx
0 0
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= —T()4(s) + €71 (5)L(9)
= I(9)¢(s) (€7 - 1).

Using the result

rere-s = sir71T7rs
we get %
N {C) . ems_1
I(s) = T(1-s) ' 2ﬂ|'enis _gis
_ [(S) : is
“Ta-9 - 2mi - €9,

or

_e™r(l-9) (5 ldz
R il =
C

The integral on the right is uniformly convergent in any finite region of
the s-plane (by obvious majorization of the integrand), and so defines
an entire function. Hence the above formula, proved firstofor 1,
defines/(s), as a meromorphic function, all over teglane. This only
possible poles are the polesldfL - s), namelys= 1,2, 3,.... We know
that/(s) is regular fors = 2,3, ... (As a matter of fact| (s) vanishes at
these points). Hence the only possible pole isatl.

Hence
dz

M=) g1
C

= 2ni,

while

1
F(l—s):—a‘F

Hencethe residue of(s) at s=1is 1.
We see in passing, since

1 1 1 z z
A A TR TR
that 95
_ 1 _ _=)"Bm
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4 Functional Equation (First method) [16, p.18]

Consider the integral
zldz
e-1
taken alondC, as in the diagram.

(2n+ 1)m(—1+1) 2n+1)m(1+1)

A

Cn
c A
Y
() <
\\J 2n

—2n+ 1)m(1+44) (2n+1)m(1—1)

BetweenC andC,, the integrand has poles at
+2im, ..., +£2nim.

The residue at .

2mi is (2mre')st
while the residue at2mvi is (2mre®21)s-1; taken together they amount
to

(mn)e= D [eF (s— 1) + e 2D
= (2mm)s s D2 cosg(s— 1)

= —2(2mm)>ems sings
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Hence

I(s) = f i 1 Smﬂsems Z(zmﬂ')s 1

by the theorem of residues.
Now leto < 0, andn — o. Then, onCp,

7Y =027 1) = oY,

and 1
a1 O(1).

for

€ — 112 = |&*VY — 1)? = |e¥(cosy + i siny) — 12
= e~ 2e¥cosy + 1,
which, on the vertical lines, is (e* — 1)? and, on the horizontal lines,
= (&“+ 1)°. (since coy = —1 there).
Also the length of the square-path@gn). Hence the integral round

the square- 0 ash — oo.
Hence

I(9) = 4nie”i55i”—”S i(zmn)%l

= 4rie™s sm (27r)s‘1§(1 9), if o < 0.
or

HIT((E™ - 1) = (4ri)(27)> LS sin 2> g(l 9

(s
I'l-y9

= 2nie™®

Thus

() =T - 9)¢(1- 925251 sin%s,

97
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for o < 0, and hence, by analytic continuation, for all values ¢¢ach
side is regular except for poles!).
This is the functional equation.

Since
((r(52)- oo

we get, on writingx =1 -5,
1-s S
—S; - ° _ 2\ _ .
2 r( 5 )F(l 2) Va1 - s);

also s s x
r(=|r 1——): —
(2) ( 2} sinZ

Il-9= Zsr(%s) {r(g)}_l n{sin %S}*l

Hence

Thus

7 2I(s/2)¢(s) = n-“f)r(l%s) [(1-9)

£(9) = 3505~ L 2(s/2)(9
3 CRVC)

thenn(s) = n(1 - s) andé(s) = £(1-9). If = (2 = &(3 + i2), then
= (2 = (-2).

5 Functional Equation (Second Method) [16, p.13]

Consider the lemma given in Lecture 9, and write= n, a, = 1,
#(X) = x Sinit. We then get

X
dne=s [i]ldx+@, if X > 1.
n<x XS+ X
- 1
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X
S S X—[X] 1 X=[X]
:s—l_(s—l)xs—l_sf oL DT T s
1

1
Xs-1

Since

<1/X7,

=1/X°"1, and ‘

we deduce, on making — oo,

{9 ==

or

P 1

X - X+ 35
{(s):sf[ ]x5+1 2dx+Si'l+%,ifo->1
1

. 1. . . .
5.1 Since K] — x + = is bounded, the integral on the right hand sid®

converges for- > 0, and uniformly in any finite region to the right of
o = 0. Hence it represents an analytic functionsakgular foro- > 0,
and so provides the continuation&f) up too- = 0, ands = 1 is clearly
a simple pole with residue 1.

For 0< o < 1, we have, however,

1 : 1 1
x—x Csqo
f fx dx_—s_l,

0 0
(X)d B

T‘“
1

and

I\JIUJ

Hence
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52

g(s):sf[)j;lxdx O<o<1
0

We have seen that (5.1) gives the analytic continuation wp+a0.
By refining the argument dealing with the integral on the right-hand side
of (5.1) we can get the continuation all over thplane. For, if

f=04-x+5. 9= [ 1)y
1

n+1
then f1(x) is alsobounded, sincef f(y)dy = 0 for any integen.
Hence "
Fre . ho| F
X 1(X 1(X
fﬁdX: W +(S+ 1)[de
X1 X1 X1

— 0, asx; — 0, Xo — o0,

Hence the integral in (5.1) converges for> —1.
Further

1
[X] - x+3 1 1 '
sf Vo) dx= S_1+§,foro<0,
0

~ m[x]—x+%
{(S)—SdeX, -1<o0c<0 (53)
0

Now the function k] — x + % has the Fourier expansion

i sin 2nrx

= nr
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if X is notan integer. The series is boundedly convergent. If we substi-
tute itin (5.3), we get

s 1 [ sin2mx
g(S)Z;Zﬁfde
0

n=1

s v (2nr)3 smy
~x Z f sy
™A y

{9 = 2@%-T(A- 9)sin S L(L-9,

5.4 If termwise integration is permittefhr -1 < o < 0. The right 101
hand side is, however, analytic for all valuesssuch that- < 0. Hence
(5.4) provides the analytic continuation (not only fet < o < 0) all
over thes-plane.

The term-wise integration preceding (5.4) is certainly justified over
anyfinite range since the concerned series is boundedly convergent. We
have therefore only to prove that

X—00 xs+1

S 1 (sin
lim Zﬁfs'” X 4x=0,~1< o <0
X

Now

fsmznnx [ cosawx|® s+1 [ 2nax «
20t |y 2n7r Xs+2
X

1 r dx
O(nxo'+1) {ﬁfx(r+2]
X

1
O(nX(T+1)
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and hence

XS+1

lim Z%fsmmﬂxdx=0, if —1<o<0
X

This completes the analytic continuation and the proof of the Func-
tional equation by the second method.
As a consequence of (5.1), we get

K = x+ L
LiLnl{g(s)_Sill}:f[x] X+2dx+%

Ol ]

= lim

n—>oo

m+1

= lim ——Iogn+1

n—oo
Iogn}

lim {
n—oo

Hence, neas = 1, we have

102

(9= <=5 +7+0(s-1)
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2.7 Error Function and Applications



2

THE PROBABILITY INTEGRAL
AND RELATED FUNCTIONS

2.1. The Probability Integral and Its Basic Properties

By the probability integral is meant the function defined for any complex
z by the integral

@) = = f -2 gy, @.1.1)

evaluated along an arbitrary path joining the origin to the point # = z. The
form of this path does not matter, since the integrand is an entire function of
the complex variable 7, and in fact we can assume that the integration is along
the line segment joining the points # = 0 and ¢ = z. According to a familiar
theorem of complex variable theory,! ®(z) is an entire function and hence
can be expanded in a convergent power series for any value of z. To find this
expansion, we need only replace e~** by its power series in (2.1.1), and then
integrate term by term (this is always permissible for power series 2), obtaining

- k 2k — k 2k +1
D(z) = J‘ Z (= 1)k l)t Z (k'él)c Tl < @12

1 If f(¢) is analytic in a simply connected domain D, then the integral

9(2) = f £ ar,

evaluated along any rectifiable path contained in D, defines an analytic function in D.
See A. 1. Markushevich, op. cit., Theorem 13.5, p. 282. The theorem remains true if
f(a) = o or a = o, provided that the improper integral exists.
2 Ibid., Theorems 16.3 and 15.4, pp. 348 and 325.
16
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It follows from (2.1.2) that ®(z) is an odd function of z. For real values of its
argument, ®(z) is a real monotonically increasing function, whose graph is
shown in Figure 1. At zero we have ®(0) = 0, and as z increases, ®(z)
rapidly approaches the limiting value ®(c0) = 1, since

fw - gy = %‘ @2.1.3)

The difference between ®(z) and this limit can be written in the form

1-0@) =2 [T e ar - Tera =2 (Tt 214
el a2 =1

d(x)
10
051
1 1 1 1 | 1 X
0 05 10 15 20 25 30
FIGURE 1

The probability integral is encountered in many branches of applied
mathematics, e.g., probability theory, the theory of errors, the theory of heat
conduction, and various branches of mathematical physics (see Secs. 2.5-2.7).
In the literature, one often finds two functions related to the probability
integral, i.e., the error function

Erfz = fe—t* dt = ﬁcb(z) @.1.5)

and its complement

Erfc z = f e dt = ‘;’” [1 — O@)]. (2.1.6)

Many more complicated integrals can be expressed in terms of the probability
integral. For example, by differentiation of the parameter z it can be shown
that

2f 1 :tzz dt = ef[1 — O(V7Z)]. 2.1.7)
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2.2. Asymptotic Representation of the Probability Integral for
Large |Z]

To find an asymptotic representation of the function ®(z) for large |z,
we apply repeated integration by parts to the integral in (2.1.4), obtaining

© 1 ® 1 e—22 1 © e—t2
—t2 - - —t2 — -
Le dt———zL td(e ) 7 2J; - dt

e ? e 1.3 (et
=% st E ), w

2z

_2[1 1 1.3 1-3:5 ,1:3---2n=1)
=G gt T O

1.3.-.2n+ 1) (2 e ?®
+(_1)n+1 25+1 ) R t2n+2dt'

It follows that

1 — @) = i/r_:z [1 + é:l(—l)’f 1—3—(2(;2’)‘,6—_1) + rn(z)], @.2.1)
where
ra(z) = (=)**? w ze® f ;——i dr. (2.2.2)
Now let
larg 2| < 5 = 3,

where 3 is an arbitrarily small positive number, and choose the path of in-
tegration in (2.2.2) to be the infinite line segment beginning at the point 1 = z
and parallel to the real axis. If z = x + iy = re'®, then this segment has
the equation t = u + iy (x < u < ), and on the segment we have

Iezz—tzl — 6”2_“2, Itl—(2n+a) < |Zl—(2n+a)’ ltl < usec 0.
Therefore
@l < it Deecq [ e vuan = LBt Deco
which implies
@) < 3@t D o 13 -@nt D (2.2.3)

Qlz[H T (2|z|2)’“‘1sin8.
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It follows from (2.2.3) that as |z| — co the product z2"r,(z) converges uni-
formly to zero in the indicated sector, i.e.,

e S (e 3@ =1
t-o@ o [1e X o) 02

|z]| > 0, |argz] < 5 — 8.

T
2
Thus the series on the right is the asymptotic series (see Sec. 1.4) of the func-
tion 1 — ®(z), and a bound on the error committed in approximating
1 — ®(z) by the sum of a finite number of terms of the series is given by
(2.2.3). For positive real z this error does not exceed the first neglected term
in absolute value.
An asymptotic representation of the probability integral in the sector

3n

argz < =— — 3

+3 3

NI A
N

can be obtained from (2.2.1) by using the relation ®(z) = — ®(—z), but the
construction of an asymptotic representation in the sector

g

2 + 3

d<argz <

NI

requires a separate argument [cf. (2.3.5)].

2.3. The Probability Integral of Imaginary Argument.
The Function F(z)

In the applications, one often encounters the case where the argument of
the probability integral is a complex number. We now examine the parti-
cularly stmple case where z = ix is a pure imaginary. Choosing a segment of
the imaginary axis as the path of integration, and making the substitution
t = iu, we find from (2.1.1) that

(i 2 (%

_(f)_c) = —..f e*” du. (2.3.1)
l VrJo

The integral in the right increases without limit as x — co, and therefore it is

more convenient to consider the function

F(z) = e"zzf e*” du, (2.3.2)
0

which remains bounded for all real z. In the general case of complex z, F(z)

is an entire function, and the choice of the path of integration in (2.3.2) is

completely arbitrary.
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To expand F(z) in power series, we note that F(z) satisfies the linear dif-
ferential equation
F'(z) + 2zF(z) = 1, (2.3.3)

with initial condition F(0) = 0. Substituting the series
Fz) = Z a,z*
k=0

into (2.3.3), and comparing coefficients of identical powers of z, we obtain the
recurrence relation

a, =0, a; =1, (k+ Dag,r + 2a,_, =0.
After some simple calculations, this leads to the expansion

2 (—1)kkg2e+1

F(Z) = P m’ |Z| < 0. (2.34)
Flx)
0.6
04+
0.2
1 L 1 1 1 1 X
0 02 04 06 08 10 20

FIGURE 2

To study the behavior of F(z) as z —oo for real z, we apply L’Hospital’s
rule twice to the ratio

2z f e du
—vo_
e
and then use (2.3.2) to deduce that
lim 2zF(z) = 1,
ie.,
1
F2) ~ 3 z — o0, (2.3.5)

In Figure 2 we show the graph of the function F(z) for real z > 0. The maxi-
mum of the function occurs at z = 0.924... and equals Fox = 0.541....
The function F(z) comes up in the theory of propagation of electromagnetic
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waves along the earth’s surface, and in other problems of mathematical
physics.

2.4. The Probability Integral of Argument V/ix.
The Fresnel Integrals

Another interesting case from the standpoint of the applications occurs
when the argument of the probability integral is the complex number

z=\/;'x='\?/c—§(l+i),

where x is real. In this case, we choose the path of integration in (2.1.1) to be
a segment of the bisector of the angle between the real and imaginary axes.
Then, using the formula r = V/ju to introduce the new real variable u, we find
from (1.1.1) that

ﬂ\‘_/{;_’f_) = :/%;J; e du = %fo cos u? du — i:/g;fo sin u2 du.
(24.1)
The integrals on the right can be expressed in terms of the functions
2 T:tz 2 Trt2
C(2) = f cos — dt, S(z) = f sin — dt, 2.4.2)
0 2 0 2

where the integration is along any path joining the origin to the point ¢t = z.
The functions C(z) and S(z) are known as the Fresnel integrals. Since the
integrands in (2.4.2) are entire functions of the complex variable #, the choice
of the path of integration does not matter, and both C(z) and S(z) are entire
functions of z.

For real z = x, the Fresnel integrals are real, with the graphs shown in
Figure 3. Both C(x) and S(x) vanish for x = 0, and have an oscillatory char-
acter, as follows from the formulas
mx? mx?

2 2

which show that C(x) has extrema at x = +V2n + 1, while S(x) has extrema
atx = + \/ﬂ(n =0,1,2,...). The largest maxima are C(1) = 0.779893...
and S(V2) = 0.713972.. . ., respectively. As x — oo, each of the functions
approaches the limit

C'(x) = cos S’(x) = sin

C(c0) = S(0) = 4,
as implied by the familiar formula?

® ® V'
cos t2dt = f sin 2 dt = ——- 2.4.3
fo s 0 32 (24.3)

3 D. V. Widder, op. cit., p. 382.
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Clx)

S(x)

L 1 I X

0 1.0 20 30

FIGURE 3

Replacing the trigonometric functions in the integrands in (2.4.2) by their
power series expansions, and integrating term by term, we obtain the following
series expansions for the Fresnel integrals, which converge for arbitrary z:

o=, Z ‘@if () -5 G )
(2.4.49)

The relation between the Fresnel integrals and the probability integral is
given by the formula

V2 ze Fuile

C(2) + iS(z) = fo eEmitI2 Jp @ etmil4 fo p-utdu

_ (2.4.5)
et mile T eFnilt),
\/2 ®(~/ 2% )

which implies

@ = é - [em,.,q,( /§ ze_,m) N e_md,( J’;‘ Zew)],
1 T T s
S(Z) 2 vz [em/‘i(b( E ze m/4) e ni/4(D( 2 zenl )

Using (2.4.6), we can derive the properties of C(z) and S(z) from the cor-
responding properties of the probability integral. In particular, the results of

(2.4.6)



SEC. 2.5 THE PROBABILITY INTEGRAL AND RELATED FUNCTIONS 23

Sec. 2.2 lead to the following asymptotic reprcsentations of the Fresnel

integrals, valid for large |z| in the sector |arg z| < im — §,
1 mz2 . TZ
C(2) = 37> [B(z) cos — — A(z) sin 7],
L1 2.4.7)
S =73 - [A(z) cos - * ¢ Bz)sin ™ Z ]

where
N

A2) = Z 1Z)Z‘,f"+0(|zl-*"-4),

y 1)fa
B = > Clmaea 4 g(j)--s),
o (72%)
o, =132k =1), o =1
The Fresnel integrals come up in various branches of physics and engineer-
ing, e.g., diffraction theory, theory of vibrations (see Sec. 2.7), etc. Many

integrals of a more complicated type can be expressed in terms of the func-
tions C(z) and S(2).

2.5. Application to Probability Theory

By a normal (or Gaussian) random variable with mean m and standard
deviation ¢ is meant a random variable & such that the probability of
€ lying in the interval [x, x + dx] is given by the expression*®

1 - (x~m)2/202
— x=m?2120% gy, 2.5.1
V2ro ¢ x ( )
Then the probability
Pla<&—m<b} (2.5.2)

that £ — m lies in the interval [a, b] is just the integral
1 b+m 1 b/¥20
f e~ x-m20% gy — ___ f et dt

V2ro Jasn Vo dopvio
-3 [o(75) - o5

4 As usual, [a, b] denotes the closed interval a < x < b, and (a, b) the open interval
a<x<b

5 See W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1,
second edition, John Wiley and Sons, Inc., New York (1957). If x,,..., x, are the
results of measurements of &, where # is large, then

%Z %g(x—m)"’.

(2.5.3)
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where @(x) is the probability integral. As one would expect, (2.5.2) equals 1
ifa= —o0, b = 0.

Setting a = —3, b = 3, we obtain the probability that |£ — m| does not
exceed §:
3
(18— m < 3} = o = 25.4)

Then the probability that £ — m| exceeds & is just

3
P{E — m| > 3 =1—<1>(—_)- 2.5.5
{|€ [ > 3} V3o (2.5.5)
The value 8 = 3, for which (2.5.4) and (2.5.5) are equal is called the probable
error, and clearly satisfies the equation

Using a table of the function ®(x) to solve this equation,® we find that
3, = 0.67449c.

Example. With standard deviation 1 mm, a machine produces parts of
average length 10 cm. Find the probability that a part is of length 10 cm to
within a tolerance of 1 mm.

The required probability is

1
P(|Z — 10| < 0.1} = cp(__) ~ 0.683,
(I - 10] < 0.1} = o
i.e., some 68 percent of the parts satisfy the specified tolerance. In this case,
the probable error is approximately 0.7 mm.

2.6. Application to the Theory of Heat Conduction. Cooling of
the Surface of a Heated Object

Consider the following problem in the theory of heat conduction: An object
occupying the half-space x > 0 is initially heated to temperature T,. It then
cools off by radiating heat through its surface x = 0 into the surrounding
medium which is at zero temperature. We want to find the temperature
T(x, t) of the object as a function of position x and time ¢.

Let the object have thermal conductivity k, heat capacity c, density p and

¢ See E. Jahnke and F. Emde, Tables of Higher Functions, sixth edition, revised by F.
Lo6sch, McGraw-Hill Book Co., New York (1960), p. 31.
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emissivity A, and let = = kt/cp. Then our problem reduces to the solution of
the equation of heat conduction

oT o°T
i 4 (2.6.1)
subject to the initial condition
Tlieo =To (2.6.2)
and the boundary conditions”
oT
(a_x - hT) =0 Thea=T 2.6.3)

where & = Ak > 0.
To solve the problem, we introduce the Laplace transform T = T{(x, p) of
T = T(x, 7), defined by the formula

7= f e-"Tdr, Rep> 0. (2.6.4)
0

A system of equations determining 7 can be obtained from (2.6.1-3) if we
multiply the first and third equations by e~?* and integrate from 0 to co, taking
the second equation into account. The result is

d*T -
Tz =T — T,
~ 2.6.5)
ar T (
2~ Mo =0, Tlewo =2
The system (2.6.5) has the solution
T — .5 _ _____h . —*/z?x)
r-2 (1 e ) Rep>o, ReVp > 0. (2.6.6)

We can now solve for T by inverting (2.6.4). This can be done either by using
a table of Laplace transforms,® or by applying the Fourier-Mellin inversion
theorem,® which states that

a+io
1 e’ Tdp, (2.6.7)

h 27" a—io

where a is a constant greater than the real part of all the singular points of 7.

7 For the derivation of equations (2.6.1, 3), see G. P. Tolstov, Fourier Series (trans-
lated by R. A. Silverman), Prentice-Hall, Inc., Englewood Cliffs, N.J. (1962), Chap. 9,
Secs. 20 and 24.

8 See A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral
Transforms, Volume 1 (of two volumes), Chaps. 4-5, McGraw-Hill Book Co., New
York (1954). This two-volume set (based, in part, on notes left by Harry Bateman)
will henceforth be referred to as the Bateman Manuscript Project, Tables of Integral
Transforms.

® H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics,
second edition, Oxford University Press, London (1953), Chap. 4, Secs. 28-31.
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The quantity of greatest interest is the surface temperature of the object.
Setting x = 0 in (2.6.6), we find that

- _ To _ 1 _ h L
Moo= ot = M=~ =) 269

The simplest way to solve (2.6.8) for the original function T, is to use the
convolution theorem,'® which states that if f; and f, are the Laplace trans-
forms of f; and f,, then f = f, f, is the Laplace transform of the function

ﬂﬁ=fmmm—ow (2.69)

Since it is easily verified that

h , 1
.fl = \/E’ f2 = P — h2
are the Laplace transforms of
h h2t
= — = e ,
h=vm F

(2.6.9) implies
2e M [P ey dt . 2 (R
Tlezo = To(e" T — \—/ifo ertt=n 7;) = Tye" T(1 - —f e s ds),
ie.,

Tlueo = Toe" 1 — OV 7)], (2.6.10)

where ®(x) is the probability integral. It follows from the asymptotic formula
(2.2.1) that for large = the surface temperature falls off like 1/V'<:

T — 00, (2.6.11)

Tle-o X

L
h/7x
The temperature inside the object (x # 0) can also be expressed in closed
form in terms of the probability integral.

2.7. Application to the Theory of Vibrations. Transverse Vibra-
tions of an Infinite Rod under the Action of a Suddenly
Applied Concentrated Force

Consider an infinite rod of linear density p and Young’s modulus E, lying
along the positive x-axis. Let I be the moment of inertia of a cross section of
the rod about a horizontal axis through the center of mass of the section, and

let = = VEIJpt. Suppose the end x = 0 satisfies a sliding condition, while

10 H. S. Carslaw and J. C. Jaeger, op. cit., Chap. 4, Sec. 33.
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the end x = oo is clamped, and suppose a constant force Q is suddenly
applied at the end x = 0. Then the displacement u = u(x, t) at an arbitrary
point x > 0 of the rod is described by the system of equations !

Pu  0*tu
2 T =0
ou
oo = I 0, .7.1)
ou o%u [0) ou
é;x=0 7 6_x3x=0 h F], ulx—tw B O’ a:::—ow =0

To solve this system, we use the Laplace transform, as in the preceding
section. Writing

& = f e-"uds, Rep >0, 2.1.2)
we obtain the following equations for :
371: +piai =0
%M -0, Z_;’ZM - E_%, 2.7.3)
ilyew =0, gg“w = 0.

Simple calculations then show that

Q e-’/—_Pix e—“/Ex
sz V=pi  Vpi )
To find u, we again use the convolution theorem. Since!?2

A o1 (___ _ _)
hempr e a\V= T Va

are the Laplace transforms of

i = Rep >0, ReVxpi>0. (2.7.4)

e—*/—plx e—‘/ﬁx

_2 -l (s s )
fl_EIT’ fo= e 51n4T+cos4T’

T

(2.6.9) implies
0 J"(x_2 x_2)‘r—t _ Oxt (x)
u= Ve Jo sin 7 + cos @) Vi dt = T f Vel A (2.7.5)

11 See R. E. D. Bishop and D. C. Johnson, The Mechanics of Vibration, Cambridge
University Press, London (1960), p. 285.

12 Bateman Manuscript Project, Tables of Integral Transforms, Vol. 1, formula (27),
p. 146 or formula (6), p. 246.
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where
1 j PR o 1 = (/Y%
X) = — sin y? + cos y?) ————~dy. 2.7.6

The function f(x) can be expressed in terms of the Fresnel integrals C(z) and
S(2), introduced in Sec. 2.4. In fact, integrating (2.7.6) by parts twice, we find

0 = (1+ x)[——C(fz = (-5 (2]

2
LS x7) S ]. 2.1.7)

3\/2 [(l A

PROBLEMS

1. Show that the functions

,\/
3(2) = =5 €00

satisfies the differential equation ¢’ — 2z¢ = 1, and use this fact to derive the
expansion
& 2z2)%
(o) = = -2 ———( ’
@) v ¢ ,CZO 1-3---Qk + D)
2. Using formula (2.4.5) and the result of Problem 1, derive the following
expansions of the Fresnel integrals

|z| < co.

Cx) = X[u(x) cos E’iz- + B(x) sin ”—"2]

S(x) = xl:oc(x) sin = -5 - B(x) cos —:]

where

_ & (=) RN Gl VG2 el
a(x) = kz T3.@k+D PO= Z 1-3---(4k + 3)

3. Use integration by parts to show that

f(D(x) dx = x®(x) + L_e""" + C.
T

4. Let ® be the Laplace transform of the probability integral, i.e.,

B(p) = f: ¢~7% B(x) dx.

B(p) = ieﬂzﬂ[l - (p(%)].

Prove that
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5. Derive the integral representations
F(2) = f e~ sin 2zt dt, O(2) = Zf e
0 T Jo

Hint. Replace sin 2zt by its power series expansion and integrate term by
term.

_2 Sin 2zt
t

dt.

6. Derive the following integral representations for the square of the prob-

ability integral:
4 (1 8—22(1+t2)
2 =1=2 z
P3(z) =1 ﬁfo T+ 2 dt,

4 (= e—22(1+t2) T
— 2 - P —
[1 — ©(2)] T:fl s dt, larg z| < 7

Hint. Represent ®2%(z) as a double integral over the region 0 <s <z,
0 <t < z, and transform to polar coordinates.

7. Derive the formulas

1 - @) = T/Z:e“z2 J; et -2t gy,
T

1 — @) = .ﬁ:e—zﬁ fw e—12—2~/§th)(t) dr.
vV 0

Hint. The second formula is obtained from the first after introducing new
variables « = s + ¢, B = st in the double integral over the region 0 < s < oo,
0<t<s.

8. Prove that

5 [1 sin
@) + 5%0) = 2 |
T Jo
9. Prove that
nx2/2

nx2/2
C(x) = L I J_1/2(t) dt, S(.x) = fo J1/2(’) dt,

where J,(x) is the Bessel function of order v (see Sec. 5.8).
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2.8 Cylinder Functions



5

CYLINDER FUNCTIONS: THEORY

5.1. Introductory Remarks

By a cylinder function we mean a solution of the second-order linear
differential equation

u"+1’+(1—"—2-) =0 (5.1.1)
S ¥ )4 =0 1.

where z is a complex variable and v is a parameter which can take arbitrary
real or complex values. Equation (5.1.1), called Bessel’s equation of order v,
is encountered in studying the boundary value problems of potential theory
for cylindrical domains (see Sec. 6.3), which explains the origin of the term
cylinder function. Certain special kinds of cylinder functions are known in the
literature as Bessel functions, and this term is sometimes applied to the whole
class of cylinder functions.

The cylinder functions, with their manifold applications, have been
studied in great detail, and extensive tables of such functions are available.
These functions are among the most important special functions, with very
diverse applications to physics, engineering and mathematical analysis itself,
ranging from abstract number theory and theoretical astronomy to concrete
problems of physics and engineering. Some of these applications, mainly
from the field of mathematical physics, will be considered in Chapter 6. The
present chapter is devoted to a brief exposition of the elementary theory of
cylinder functions. The reader who wishes to go further in his study of these
functions should consult the special literature devoted to the subject (see the
Bibliography on p. 300), notably the classic treatise by Watson,! to which
we will make frequent reference.

' G. N. Watson, A Treatise on the Theory of Bessel Functions, second edition,

Cambridge University Press, London (1962).
98
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5.2. Bessel Functions of Nonnegative Integral Order

In many applied problems, one need only consider a special class of
cylinder functions, corresponding to the case where the parameter v in equa-
tion (5.1.1) is a nonnegative integer n. This case is much simpler than the case
of arbitrary v, and will serve to introduce the general theory.

We begin by showing that one of the solutions of Bessel’s equation

2

u” +l§ul + (1 - er_z)u =0, n=0,1,2,... (521)

is the function u; = J,(z), known as the Bessel function of the first kind of
order n, and defined for arbitrary z by the series

_ & e
Jn(Z) = kzo W, [Zl < oo. (52.2)

Using the ratio test, we easily verify that this series converges in the whole
complex plane, and hence represents an entire function of z. Suppose we
denote the left-hand side of (5.2.1) by /(u), and introduce the abbreviated
notation

_ (=DF
M= EEL 1 k)

for the coefficients of the series (5.2.2). Then we have

) = > [(n+ 2K)(n + 2k — 1) + (n + 2k) — n?Joy 2"+ 2672 4 3 a2+ 2
k=0 k=0

I
NMs

Qo k(n + k)zn+2-2 4 Z ozt 2
k=0

x
n

1

= 2 Mtk + Do+ k + 1) + o]z,
k=0

and therefore l(u,) = 0, since the expression in brackets vanishes. Thus
J.(2) satisfies Bessel’s equation (5.2.1), i.e., J,(2) is a cylinder function. The
simplest functions of this kind are the Bessel functions of orders zero and one:

@2 | @2 @[2)°
Tay teyr T eyt

22 24 26
Jl(z)=:§_[1 _(ﬂz? +(22/23)! '(3/243 +]

Jo(2) = 1

(5.2.3)

We now show that the Bessel functions of higher order can be expressed
in terms of the two functions Jo(z) and J,(z). Assuming that »n is a positive
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integer, we multiply the series (5.2.2) by z" and then differentiate with respect
to z. This gives

din S :_Mz_"_tik_) 2n+2k -1
& 71 = Z 2 (n + k)

_l)k z n—1+2k N
=z Z K — 1+ k)'( ) = 2",-4(2),

or
d
A [2MT.(2)] = 2", _1(2), n=12... (5.2.4)
Similarly, multiplying (5.2.2) by z~", we find that
diz[z‘" (2] = — 27, 14(2), n=0,1,2,... (5.2.5)

Performing the differentiation in (5.2.4-5) and dividing by the factors z*",
we arrive at the formulas

T+ 2@ = Ts@, D) = 2D = —Si@, (5:26)

which immediately imply the following recurrence relations satisfied by the
Bessel functions:

Jaos@) + Joii@ = 202,  n=12... (5.2.7)

Jn—l(z) - Jn+ 1(2) = 2’,’,(2), n = 1, 2, N (528)

Repeated application of (5.2.7) allows us to express a Bessel function of
arbitrary order v =n (n = 0,1,2...) in terms of Jy(z) and J,(z), thereby
greatly simplifying the effort needed to calculate tables of Bessel functions.
Formula (5.2.8) allows us to express derivatives of Bessel functions in terms
of other Bessel functions. For n = 0, (5.2.8) should be replaced by

Ji2) = —Ji(2) (5.2.9)

[in keeping with (5.2.5)], which is an immediate consequence of the formulas
(5.2.3).

The Bessel functions of the first kind J,(z) are simply related to the coeffi-
cients of the Laurent expansion of the function?

Wz, f) = et = S @, 0< | <o (5210)

n=-o

2 Regarded as a function of ¢, w(z, ¢) is analytic in the annulus 0 < § <t < 4 <
and therefore this expansion exists.
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To calculate the coefficients ¢,(z), we multiply the power series

et =1 + @t + X (2/2)2

24,
A1, L

—-z2/2t __ — LA
et =1-r7 21 2 ’

and then combine terms containing identical powers of . As a result, we
obtain

a(z) =Tz, n=012...,

(5.2.11)
c(z) = (=D, (2), n=-1,-2,....,

which implies

w(z, t) = e%¥-t"H = J(z) + i L@ + (=) "], 0< |tf] < 0.
_ (5.2.12)

The function w(z, ?) is called the generating function of the Bessel functions
of integral order, and formula (5.2.12) plays an important role in the theory
of these functions.

To find a general solution of Bessel’s equation (5.2.1), thereby obtaining
an arbitrary cylinder function of integral orderv=n(n =0, 1,2,...), we
must construct a second solution of (5.2.1) which is linearly independent of
J.(z). For such a solution we choose u, = Y,(z), called the Bessel function
of the second kind, which will be defined in Sec. 5.4. It will be shown in Sec.
5.5 that this definition leads to the series expansion

Y,(2) = = n( )log— -2 Z (ﬁi__—l)' (2)2k—n
(5.2.13)
Z : kl'zn(z-{-zzc)v [k + 1) + Wk + n + 1],
where

1

Y+ D)=~y + 1 4g 44 WD) = -,

2
v is Euler’s constant (see Sec. 1.3), and in the case n = 0, the first sum in
(5.2.13) should be set equal to zero. The function Y,(z) is analytic in the
complex plane cut along the segment [ — oo, 0], and becomes infinite as z — 0.
Thus, the general expression for the cylinder function of order v=nis a
linear combination of Bessel functions of the first and second kinds, i.e.,

u=27Zy2) = AJ(z) + BY.(z), n=0,12..., (5214

where A and B are constants.
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5.3. Bessel Functions of Arbitrary Order

The Bessel functions considered in the preceding section are a special
case of the more general Bessel functions of the first kind of arbitrary order v.
To define these functions, consider the series

Sy
LTk + DTk +v + 1)

where z is a complex variable belonging to the plane cut along the segment
[—o0,0], and v is a parameter which can take arbitrary real or complex
values.?® It is easily seen that (5.3.1) converges for all z and v, and that the
convergence is uniform in each variable in the region |z| < R, |v| < N (where
R and N are arbitrarily large). This follows from the fact that starting from
some sufficiently large k, the ratio of the absolute value of the (k + 1)th term
to that of the kth term equals
|zl2 < R2
4k + Dk + 1+ 4k + Dk +1 - NY

where the right-hand side is positive, independent of z and v, and approaches
zero as k — c0.* Since the terms of (5.3.1) are analytic functions of z in the
plane cut along [ — oo, 0], the sum of the series is an analytic function of z in
the same region. We call this function the Bessel function of the first kind of
order v, and denote it by J.(2), i.e.,

2 (= 1)*(z/2)v+2*
J2) = ,Zo Tk + DIk +v+ D)

To show that the function (5.3.2) satisfies Bessel’s equation with para-
meter v, we write

(5.3.1)

|z] < o0, argz| <= (5.3.2)

2
Iw) = u" + %u’ + (1 - %)u 0, u =J)
and repeat the derivation given in Sec. 5.2,° obtaining

l(u,) = Z [Ao i1k + Dk + v + 1) + o, ]zv 2%,
K=0

3 In general, the condition imposed on z is necessary for the function z" to be single-
valued, but can be omitted if v is an integer.
4 A series of functions
«©
> ux@)
k=0

converges uniformly in a domain D if
Uy +1(2)
u(2)
for all zin D and k > M, where g is independent of z. See E. C. Titchmarsh, op. cit., p. 4.
5 Recall that a uniformly convergent series of analytic functions can be differentiated
term by term.

<g<l1
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where
_ (=D*
T2 ET(k + DIk + v + 1)

O

Using (1.2.1), we see at once that /(u;) = 0.

Since for fixed z in the plane cut along the segment [ — oo, 0], the terms of
the series (5.3.2) are analytic functions of the variable v (see Sec. 1.1), the fact
that (5.3.2) is uniformly convergent implies that the Bessel function of the
first kind is an entire function of its order v. For integral v=n (n =0, 1,
2,...), 'k + v+ 1) = (n + k)! and (5.3.2) reduces to (5.2.2). Therefore
the functions defined in this section are the natural generalizations of those
studied in the preceding section. For negative integral v= —n (n = 1,
2,....), the first n terms of the series (5.3.2) vanish (see Sec. 1.2), and the
series becomes

_ J (_l)k(z/z)-n+2k _ b (_1)n+s(z/2)n+2s
T = 2 g = 2 T o

and hence

J @) = (=), n=12,... (5.3.3)

Thus, the Bessel functions of negative integral order differ only by sign from
the corresponding functions of positive integral order. It follows that the ex-
pansion (5.2.12) can be written in the form

w(z, t) = ehxt-t™H = z T2 (5.3.4)

n=—

Many of the formulas derived earlier for Bessel functions of nonnegative
integral order remain the same for Bessel functions of arbitrary order. For
example,

LoD = 202, A ERE] =~z @ (539)
as@ 4 Jen@ = 20D, Fs) = Sy = 274), (536

generalize formulas (5.2.4-5, 7-8), and are proved in exactly the same way.
We also have

(%) e = 2,
(5.3.7)

((Z) @1 = (— 1)

which are proved by repeated application of (5.3.6).
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5.4. General Cylinder Functions. Bessel Functions of the
Second Kind

By definition, a cylinder function is an arbitrary solution of the second-
order linear differential equation
V2

” 1 ’ j—
lw) = u" + —u' + (1 - Z—2)u =0, (54.1)

and hence has the general form
u=2Z,2) = Cuuy(2) + Cauy(2), (5.4.2)

where u, and u, are arbitrary linearly independent solutions of (5.4.1), and
C,, C, are constants which, in general, are arbitrary functions of the para-
meter v. It is easy to obtain an expression for the general cylinder function in
the case where v is not an integer. In fact, choosing u, = J(z), where J,(z)
is the Bessel function defined in Sec. 5.3, we take the second function to be
u, = J_,(z), which is also a solution of (5.4.1), since (5.4.1) does not change
if v is replaced by —v. For nonintegral v, the asymptotic behavior of these
solutions as z — 0 is given by

~ 2 ~ &)
U < F(l—'f'\’), Uy R -F(I——V), (543)

and therefore these solutions are linearly independent.® Thus, the desired
expression for the general cylinder function can be written as

u=2702) = CJf2) + CoJ_[2), v#O0,+1, +2,... (544

If vis an integer, then, because of (5.3.3), the particular solutions u; and u,
are linearly dependent, and (5.4.4) is no longer a general solution of Bessel’s
equation (5.4.1). To obtain an expression for the general cylinder function
which is suitable for arbitrary v, we introduce the Bessel functions of the
second kind, denoted by Y,(z) and defined by the formula

Jy(2) cos v — J_(2)
sin vr

Y(2) = (5.4.5)
for arbitrary z belonging to the plane cut along the segment [— o, 0].7 For
integral v, the right-hand side of (5.4.5) becomes indeterminate [cf. (5.3.3)],
and in this case we define Y,(z) as the limit

Y.(z) = lim Yy(2). (5.4.6)
v—n
¢ This argument breaks down if v is an integer (including zero).

7 The function we denote by Y,(z) is sometimes denoted by N,(z) in the literature on
Bessel functions.
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Since both the numerator and denominator are entire functions of v, and
since

d . .
‘—i;smwr=7ccosvn:;é0 if v=mn,

this limit exists and can be calculated by L’Hospital’s rule, application of
which gives

aJ(2)
o

e -z Y

— (- ==

N ] : (5.4.7)

It follows from its definition that Y,(z) is an analytic function of z in the plane
cut along [— o, 0], and an entire function of the parameter v for fixed z.

In view of (5.4.4), the fact that Y,(z) is a cylinder function, i.e., satisfies
Bessel’s equation (5.4.1), is obvious for nonintegral v. To show that Y.(z)
is a cylinder function for integral v, we use the principle of analytic continua-
tion, noting that since /(Y,) is an entire function of v, (Y,) = 0 for v # n
implies /(Y,) for all v. The fact that the solutions u;, = J,(z) and u, = Y,(2)
are linearly independent follows from the linear independence of the solutions
J(2) and J_,(z) for nonintegral v, and from a comparison of the behavior of
u; and u, as z — 0 [cf. (5.4.3) and (5.5.4), proved below] for integral v. Thus,
finally, the expression

u =Z2) = CiJ(2) + C,Y(2) (5.4.8)

for the general cylinder function Z,(z) is suitable for arbitrary v.
The Bessel functions of the second kind satisfy the same recurrence rela-
tions as the functions of the first kind, e.g.,

L EN@ = %@ 2 RE] = K,
(5.4.9)

Vork@ + Y@ = 2K, Yos@ = Fraa(d) = 2Xi().
For nonintegral v, the validity of these formulas follows from the definition
(5.4.5) and the corresponding formulas for J(z). To obtain the same formulas
for integral v, we need only pass to the limit v — n, observing that all the
functions involved are continuous with respect to the index v. We also note
that (5.4.7) implies the relation

Y_u2) = (=1)"Ys(z), n=012,... (5.4.10)

which allows us to reduce the calculation of functions of negative integral
order to that of functions of positive integral order.

By making changes of variables in Bessel’s equation (5.4.1), we can easily
obtain a number of other differential equations whose general solutions can
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be expressed in terms of cylinder functions. Of the various equations ob-
tained in this way, those of greatest practical interest are

1-2 2 _ 2.2
u” + u o+ [(Byz”‘l)2 + a—z—z,v—y]u =0,
(5.4.11)
u" + az'u = 0,
with solutions
o ¥ 1/2 2612
u = z°Z,(32Y), u=72"2Z 19 (Y 37 ), (5.4.12)

where Z,(z) denotes an arbitrary cylinder function.

5.5. Series Expansion of the Function Y,(z)

To derive a series expansion of the function Y,(z), we use the expansion
(5.3.2) to calculate the derivatives with respect to the index v which appear in
(5.4.7). Because of (5.4.10), we need only consider the case v=n (n = 0,
1, 2,...). Since, as already shown, the series (5.3.1) converges uniformly in v,
we can differentiate it term by term, obtaining®

aJV ) _ 1 k, 2 n+2k
where
Yo = 1

is the logarithmic derivative of the gamma function (see Sec. 1.3). Similarly,
we have

oI_2) | & (= D(2) vt z .
& = 2 Wk —v T [' log + 4k —v + 1)]

Fork=0,1,2,...,n—1,
' I'k —v + 1) — oo, Yk —v+1)—> 0

as v — n, so that the first n terms of the last series become indeterminate.

However, using familiar formulas from the theory of the gamma function

[see (1.2.2, 4) and (1.3.4)], we find that
Yk — v+ 1)

=(=1)*n—k-1, k=01,...,n-1,

— k) + mcot (v — k)]

i

8 The passage to the limit v — n behind the summation sign is legitimate, since a
series obtained by term-by-term differentiation of a uniformly convergent series of
analytic functions is itself uniformly convergent.



SEC. 5.6 CYLINDER FUNCTIONS: THEORY 107

- (- l)nz ‘eok-U H
2p+n

+ (=1 z (n(+ 2 [~ 102+ 4 + ] ()7

where we have introduced the new summation index p = k — n.
It now follows from (5.4.7) that the desired expansion of the function

Y.(2) is
(n — k - 1)v( )2k-"
3

3
© l)k(z/z)n+2k
Z CET

and therefore

oJ_\(2)
v

v =1

[2log§ Yk + 1) -k + 1)]
largz| <=, n=0,1,2,..., (55.1)

where the first sum should be set equal to zero if n = 0 [cf. (5.2.13)]. Accord-
ing to (1.3.6-7), the values of the logarithmic derivative of the gamma func-
tion are given by

+1
T

D =-v, dm+1)=-y+1 +%+-~+%’ m=12,...,

(5.5.2)

where y = 0.57721566. .. is Euler’s constant. Using (5.2.2), we can write
the expansion (5.5.1) in a somewhat different form:

Y.(2) = 'n(z) log— -z z (n_—_k_—_l)_' (2)2k—n

‘Tlr i 112:(123:):% [Wk + 1) + $(k + n + D).

Finally, we note that (5.5.1) implies the asymptotic representations

(5.5.3)

Yo(2) & 1% log g 70
5.5.4
(n—-1 ( )

™

Y2~ — (g)_ 20, n=1,2,...,

which show that Y,(z) becomes infinite as z — 0.

5.6. Bessel Functions of the Third Kind

Next we discuss still another class of cylinder functions, i.e., the Bessel
functions of the third kind or Hankel functions, denoted by H{V(z) and H{?(z).
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These functions are defined in terms of the Bessel functions of the first and
second kinds by the formulas

H®(z) = J(2) + iY(2), HP() =J(2) —iY(2), (56.1)

where v is arbitrary and z is any point of the plane cut along the segment
[— o0, 0]. The motivation for introducing the functions (5.6.1) is that these
linear combinations of J,(z) and Y,(z) have very simple asymptotic expres-
sions for large |z| (see Sec. 5.11) and are frequently encountered in the
applications.

It follows from (5.6.1) that the Hankel functions are entire functions of v,
and analytic functions of z in the plane cut along [— o, 0]. Clearly, the
functions H*(z) and H{?(z) are linearly independent of each other, and each
is linearly independent of J,(z). Therefore we can write the general solution
of Bessel’s equation (5.4.1) in any of the forms

u=2Z/(2) = AJ(2) + 4.H{(2)
= B\(2) + BH®(z) = D H"(2) + D,H{®(2),
where A, ..., D, are arbitrary constants, as well as in the form (5.4.8).

Since the Hankel functions are linear combinations of the functions J(z)
and Y,(z), they satisfy the same recurrence relations as these functions, e.g.,

(5.6.2)

4 oHPE) = 2HPA@), L HPE) = 2 HELC)

dH{P(2)
dz
(5.6.3)

where p = 1, 2. Using (5.4.5) to eliminate Y,(z) from (5.6.1), we obtain
J_[(2) — e V™I (2) e"™J(2) — J_(2)

>

HP\(@) + HEA@) = 2 HPE, HP:(@) — HEA) = 2

() = @)(7) =
H() = isin v HP®() isin vr (.6:4)
which imply the important formulas
H®Y) (2) = e™HM(2), H?2(2) = e "™H(2). (5.6.5)

5.7. Bessel Functions of Imaginary Argument

In the applications, one frequently encounters two functions 7,(z) and
K,(z), which are closely related to the Bessel functions. Let D be the complex
plane cut along the negative real axis. Then, for all z in D, I(z) and K(z)
are defined by the formulas

(2/2)v+2k

I(2) = kZo NS CETES) |z| < o0, |argz] <=, (5.7.1)

_T1.\(2 - I
KV(Z) = ESII’IT, |arg ZI <, v#0, +1, i2, oo (5.7.2)
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where, for integral v = n,

Ki(2) =limKy(z), n=0,+1, +2,... (5.7.3)

Repeating the considerations of Secs. 5.3-4, we find that I(z) and K,(z) are
analytic functions of z for all z in D, and entire functions of v.

The functions /,(z) and K,(z) are simply related to the Bessel functions of
argument ze*™/2, If
T

T
1 1/2
> le, 5 < arg (ze"?) < m,

—rn < argz <
g 2

then (5.3.2) implies

nI2) _ a2 S (z/2)v+2* — vmi/2
JV(Ze ) e kZo I\(k + I)P(k + v + 1) e Iv(z)s
so that
I(2) = e~V™2](z¢™?), —x < argz < g (5.7.4)
Similarly, according to (5.6.4), for the same values of z we have
H(l)(zeni/2) _ J_ v(zem/2) — e—vav(zeni/2)
v . isinvm
_ e—vmlzl_v(z) — e-vn’il21v(z) _ 2 vz
N isin vr - ;ie TEK(),
and hence
K/(2) = %’ e"™2H (M (ze™12), —m<argz < g (5.7.5)
On the other hand, if
—g <argz<m, —n < arg (ze”™?) < 7-23,

then it is easily verified that
I(2) = e™12] (ze~™I2), K(2) = — _7;_’ e~ VHZHP(ze=™12).  (5.7.6)

Because of (5.7.4-6), I(z) and K,(z) are often called Bessel functions of
imaginary argument. However, this term is not too fortunate, and instead we
will usually refer to I(z) as the modified Bessel function of the first kind and
to K,(z) as Macdonald’s function.®

® K.(z) is called the modified Bessel function of the third kind in the Bateman Manu-
script Project, Higher Transcendental Functions, Vol. 2, p. 5.
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It is an immediate consequence of the formulas just derived that I,(z) and
K,(z) are linearly independent solutions of the differential equation

”+1'—(1+f)u—0 517
u zu Z2 ] (")

which differs from Bessel’s equation only by the sign of one term, and goes
into Bessel’s equation if we make the substitution z = +it. Equation (5.7.7)
is often encountered in mathematical physics, and its general solution, for
arbitrary v, can be written in the form

u = CI(2) + C.K\(2). (5.7.8)

The functions /,(z) and K,(z) satisfy simple recurrence relations, e.g.
d v o v d -V —_ -V
ZEL@] = 2La@), L RE@] = 27 a),

4 K] = ~7Kees@D K] = —2 K2
(5.7.9)
Los@ + Ls@ = 26, Ls(@) = Loas(@) = % 1),

K@ + Kos@) = —2Ki2), Kyms(d) = Kina(?) = — 2 K2,

The recurrence relations involving I,(z) are proved by substituting from
(5.7.1). Then, using these formulas and (5.7.2), we derive the corresponding
formulas involving K,(z) for nonintegral v. Finally, we extend the results to
the case of integral v by using the continuity of K,(z) with respect to the
index v.

Two other useful formulas are

I_.(2) = L(2), n=0,+1, +2,...,
K—v(z) = KV(Z),
where the first follows from (5.7.1) if we note that the first n terms of the
expansion vanish if v = —n, while the second is an immediate consequence
of the definition (5.7.2).

Using (5.7.3) and the method of Sec. 5.5, we can derive a series expansion
of the function K,(z). The result of the calculations is

1S (=D — k= 1! (22"
K,,(z)=§kzo( )(nk! )(g)

(5.7.10)

1 @ 2k +n
(-1 > I%Jr—n), [2log§ S Uk + 1) — Yk +n o+ 1)],

largz] <w®, n=0,1,2,..., (57.11)
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where {§(z) is the logarithmic derivative of the gamma function [whose values
can be found from (5.5.2)], and the first sum should be set equal to zero if
n = 0. We note that (5.7.11) implies the asymptotic representations

Ko(2) ~ log %, z—>0,
1 . (5.7.12)
K,,(z)zi(n—l)!(g) L 250, n=1,2,...,

which show that K,(z) becomes infinite as z — 0.

5.8. Cylinder Functions of Half-Integral Order

We now consider the special class of cylinder functions of order n + }
(n=0, +1, +2,...). In this case, the cylinder functions can be expressed
in terms of elementary functions. To see this, we first find the values of the
functions J.,,5(z). Setting v = +% in (5.3.1) and using the duplication
formula (1.2.3) for the gamma function, we obtain

2 (DGR
Ji2(2) = ;0 m

_ (%)1/2 i (_l)kzz;, B (-2_ 1/2 S.n (581)
“\%) &T@k+2 " nz) nz
and similarly,
1/2
J_12(2) = (T%) Cos z. (5.8.2)

The fact that any Bessel function of the first kind of half-integral order
can be expressed in terms of elementary functions now follows from the
recurrence relation

2
Joo1(@) + Jyas(2) = T I0)
[see (5.3.6)], repeated application of which gives

1 2\12[sin
Ja9(2) = 211/2(2) - J—1/2(Z) = (—) [1__2 — COS z],

Tz z

1/2
J_3/2(Z) = - (;&2;) [Sin z + Cozs 2]9

and so on. Using (5.3.7), we can write the general expression for J, ,1,(z) in
terms of elementary functions. For example, setting v = % in the second of
the formulas (5.3.7) and taking account of (5.8.1), we find that

d) Iz _0,1,2,... (583)

21/2 .
Bon@ = (-0(2) " ()
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To derive the corresponding formulas for Bessel functions of the second
and third kinds, we start from the expressions (5.4.5) and (5.6.4) of these
functions in terms of Bessel functions of the first kind, and use (5.8.1-2).
For example,

2 1/2
Yia(2) = —J_12(2) = — (TC_Z) Cos z,
HO(Z) = —i 2\ . @y — 2\ i (58.4)
118 = _l(n_z) €’ Hi)(2) = l(rc_z) e,
and so on.
Finally, we note that
1/2

x\ 12
coshz, Kj;(2) = (2—2) e”?,

(5.8.5)

2\12 . 2
L@ = (2) sinhz, 1@ = (2)

where the formulas for general index » + 4 are obtained from (5.8.5) and
the recurrence relations (5.7.9). It has been shown by Liouville that the case
of half-integral order is the only case where the cylinder functions reduce to
elementary functions.

5.9. Wronskians of Pairs of Solutions of Bessel’s Equation

By the Wronskian of a pair u,(z), uy(z) of solutions of a linear homo-
geneous second-order differential equation is meant the determinant

u(z)  uy(2)
ui(z) ux(2)

where the prime denotes differentiation with respect to the independent
variable z. The solutions u#; and u, are linearly independent if and only if
the Wronskian does not vanish identically.’® We now calculate the Wron-
skians of various pairs of solutions of Bessel’s equation

Wiur(2), ux(2)} =

>

2
u”+lu’+(1—v—2)u=0,
z z

thereby obtaining a number of formulas which are useful in the applications.
In particular, these formulas show that the solutions in question are linearly
independent, a fact proved earlier by other means.

To calculate the Wronskian, we write the equations for u; and u, in the
form

d , 2 d , 2
2 (aup) + (z - “;)m =0, L+ (z - “;)uz ~ o,

10 E. A. Coddington, op. cit., Theorem 6, p. 111.
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and then subtract the first equation multiplied by u, from the second equation
multiplied by u,. The result is

2 W), wa()] = 0,
which implies
Wia(2), ua(2)) =

where C is a constant, independent of z, whose value can be determined, for
example, from the relation

C = lim zW{u,(2), uy(2)}.
z=0
In particular, choosing u; = J(z2), u, = J_,(z), where v is not an integer,

and using the expansion (5.3.2) and formulas (1.2.1-2) from the theory of the
gamma function, we find that

= i —2 21 _ _ 2sinvm
C=lim o=yl + 0@1= - ——
which implies
W), T D) = — 230, (59.1)

The validity of (5.9.1) for integral v follows by continuity, and we have
W = 0, as must be expected. The Wronskians of other pairs of solutions of
Bessel’s equation can be found in the same way, or else they can be deduced
from (5.9.1) and the relations (5.4.5), (5.6.4). We always begin by considering
the case of nonintegral v, and then use continuity to extend the result to
arbitrary values of v. In this way, we find that

Wi(2), Y(2)} = ;22 (59.2)
W@, HP@) = - 2 (593
WHSE), BE) = - = (59.4)

and so on. For the Bessel functions of imaginary argument we have

W{l(2), K(2)} = — = (5.9.5)

N |-

5.10. Integral Representations of the Cylinder Functions

The cylinder functions have simple integral representations in terms of
definite integrals and contour integrals containing z as a parameter. The
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representations by contour integrals have greater generality, and are usually
valid in larger regions of values of the argument z and parameter v than the
representations by definite integrals, but the latter are more frequently en-
countered in the applications. Therefore we will be primarily concerned with
representations by definite integrals.!!

One of the simplest integral representations of the Bessel functions is due
to Poisson. Consider the identity

1 1
Tk+v+1) TK+DIG+D

1
f (1 — 2)v=%dt, Rev> —1,
-1
(5.10.1)

implied by (1.5.6). Substituting (5.10.1) into the expansion (5.3.2) and
reversing the order of integration and summation,'? we obtain

x (_I)k(z/z)v+2k 1 1
kzo Pk +1) Tk+HIe+3) f_l

I C77) M PR (= D)¥(zt)?*
“T6+D f_l (1 — oyt ,Zo 2Tk + DIk + 1)

Jy(2) 21 — 2)yY-"%dt

SN G2 N e R
- TATE + ) f_l(l £%)" % cos zt dt, (5.10.2)

where we have used the duplication formula (1.2.3) for the gamma function:

2Tk + )k + 3) = TGTQk + 1) = TE)QK)L.

Thus
— (2/2)v ! P PAVES YA
A= ryre rp ), T R eos s (5.10.3)
Rev > —14, larg z| < m,
or equivalently,
(z/2) " .
= 0) sin2" 6 46 -

J(2) TG 73 J, cos (z cos 0) sin?' 6 db, Rev > — 3, Iarg(zjl- 1<0-:;

where we have made the substitution ¢ = cos 0.

11 The reader with a special interest in integral representations of cylinder functions
should consult G. N. Watson, op. cit., Chap. 6.
12 To justify reversing the order of integration and summation, we note that

© Iz/2|v+2k 1 1 o oaee%
,Zo Tk+ DTG + DG+ D' (1 — =" dr

_ e ’z/2|v+2k _
= 2 FET i v D = Mzh <

if Rev > —4.
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To obtain another important integral representation of J,(z), we start
from the formula

1

—(k+v+1)
T 2mf &s ds, (5.10.5)

proved in Problem 9, p. 15, where C is the contour shown in Fig. 13. Sub-
stituting (5.10.5) into (5.3.2), we find that

lk 2v+2k 1 _ .
J(2) = Z ( sz(zi )1) o cess Ge+v+1) o

= (3) g [ ese Z (—}I&(Z%ff) (5.10.6)

= (E) 3 f s~ (22149 g -V = 1ds,

where reversing the order of integration and summation is again easily justi-
fied by an absolute convergence argument.
Assuming temporarily that z is a positive real
number and setting s = z¢/2, we can write
(5.10.6) in the form

——/-\C
1

- Yot =t~ 1)p—v—1

1) = 5 fc' e t-v-1dr, (5.10.7) _—\O_J
where C’ is a contour resembling C. By the
principle of analytic continuation, this result
is valid in the whole region |arg z| < =/2.

Writing ¢ = pe®® and choosing the radius
of the circular part of C’ to be 1, we have

FIGURE 13

sin vr

J(2) =7—1t‘£) cos (zsin 6 — v0) d6 — f e~ %22P-P T Ho-v-1 go
1

which, after the substitution p = &%, becomes

sin vt

T @
T2 = T—ltf cos (z sin 6 — v6) @6 — f e-ssmha-vidy  Rez > 0,
0 0

(5.10.8)

where v is arbitrary. Inthecasev =n(n =0, £1, +2,...), the second term
on the right vanishes, and (5.10.8) takes a simpler form.

In many cases, one can derive integral representations of Bessel functions
of the second and third kinds from the corresponding integral representations
of Bessel functions of the first kind, by using formulas (5.4.5) and (5.6.4).
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For example, if Re z > 0 and v is nonintegral, it follows from (5.4.5) and
(5.10.8) that

cotvw COS VT

T

Yv(z ) =

J. cos (z sin 6 — v0) do — f e—zsinha—va g
0 0

_ ssevm Wf cos (z sin 6 + v0) d6 — lf e #stmhatva gy
i 0 T Jo

Replacing 6 by = — 0 in the third integral on the right, we find after some
simple calculations that

Yy = L J' " sin (zsin 0 — v6) @6 — f =2 SInG(p | o=Ve Cog yr) dl,
7 Jo T Jo
(5.10.9)
In proving (5.10.9), it was assumed that v is nonintegral, but the formula
holds for arbitrary v by the principle of analytic continuation, since both
sides are entire functions of v.

Integral representations of the Hankel functions can be obtained by using
(5.10.8-9) and the definitions (5.6.1). For example, if Re z > 0,

HPGE) = 1@) + iYa) = 1 [ s oo do
0

o
;li e~? sinh a[eva + e—v(a+m)] do
0

0 n
— _L e? sinh o — ve da + _1_ e? sinh 16 — vi@ d(zO)
Tl ) - Tl Jo=0

i L

2 sinh (¢ +7h) — v(a +mt) d(OC + TCi)
Tl Ja=0 ’

which, after the substitution ¢t = « + i0, reduces to

HP(z) = L[ gsmmi-vg  Rezso, (5.10.10)
ni Jo,
where C; is the contour shown in Fig. 14(a). Similarly,
HOG) = — L[ esmmt-vg  Rez>0 (51010
wi Jo,

where C, is the contour shown in Fig. 14(b). Thus (5.10.10) and (5.10.11)
are the same, except for the choice of the contour of integration. Substituting
t = u + =i into (5.10.10-11), we find that

—vni/2
HY(2) = e — fD iz coshu=vu gy Rez > 0, (5.10.12)
1
H) - evmlz —iz cosh u—vu d R 0 5.10.13
v(Z)——m.De u, ez >0, (510.13)
2

where the paths of integration D, and D, are shown in Figure 15.
To further transform these integrals, we assume temporarily that z is a
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positive real number and that the parameter v is confined to the strip
—1 < Rev < 1. Then, according to Cauchy’s integral theorem, the integral

T/ e

=/ f———

2
(a) (b)

FIGURE 14

along the left-hand part of the broken line D; (or D,), up to the point u = 0,
can be replaced by an integral along the negative real axis, and the integral

m/ T/
) e /), —_—
0 0
- _T
e 2
(a) (b)
FIGURE 15

along the right-hand part of the broken line can be replaced by an integral
along the positive real axis.'® Thus formulas (5.10.12-13) become

e~ Vnil2 po )
H\(']_)(Z) - — f ez cosh u—vu du’ (5 10]4)
eVmil2 ~: )
H52>(z) - — f ez cosh u—vu gy (51015)

13 1t is easily verified that the integral along the vertical segment needed to complete
each contour to which we apply Cauchy’s integral theorem approaches zero as the seg-
ment is moved indefinitely far to the left (or to the right) of the imaginary axis. To show
that the condition —1 < Rev < 1 guarantees the convergence of (5.10, 14-15), con-
sider the substitution y = e".
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where z > 0, —1 < Re z < 1. Using the principle of analytic continuation,
we easily see that (5.10.14) remains valid for 0 < arg z < =, while (5.10.15)
remains valid for —n < arg z <0, since in each case both sides of (5.10.14-15)
are analytic functions of z in the indicated region. Moreover, the condition
—1 < Rev < 1 can be dropped if Im z > 0 in (5.10.14), or if Imz < 0 in
(5.10.15). Finally, therefore, we have the integral representations

—vni/2 @©
H,ED(Z) — e — f iz coshu—vu gy Imz > 0, (5.10.16)

—

evm‘l 2

HP@) = -

[ ey, mz <o, s100)
where v is arbitrary.

Formulas (5.10.16-17) are the basic integral representations of the Hankel
functions. Other integral representations of the Hankel functions, useful in
the applications, can be derived by making suitable transformations of the
integrals in (5.10.16-17). For example, consider formula (5.10.16), let
Rev > —14, and for the time being assume that arg z = =/2, so that —iz is
positive. According to (1.5.1),

yvh = F(v_il)f e~ixv-% dx, Rev> —% (5.10.18)
2 0

and hence, setting y = e* in (5.10.16), we have

e—vmlz LI _1
H{,l)(z)= _ f etz +y )y—-v—ldy

i 0

e—vm’/2 © ) B ©
= — Yelz(y +y = 1)y,—-1/2 -XY yV- 1
ST T D ), e 'y dyf0 e ¥ x dx
e—vuilz © y © iZ iZ
= —— ~% — — = -2
=l + D Jo “L“ﬁ)@ ﬁ*ﬂy P,

where the reversal of the order of integration is easily justified by proving the
absolute convergence of the double integral. To calculate the inner integral,
we use the formula 4
f e~ -y — Lﬁ e~ 27e, a>0, b>0. (5.10.19)
0 2va
This gives

e Vail2 © e—2~/—1z/2~’z—(iz/2)

iValev + ) Jo  Vx = (iz]2)

H®(z) = x¥~% dx,

14 After making the transformation = = v2, the integral (5.10.19) becomes the Laplace
transform of the function 47-1/2 ¢~?/*, evaluated at p = a.
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or
2e—vni z\V ©
HY(z =_—(—) f L (A lv_l/zdt, Rev > — y
V(2) Ware 1D 2 ( ) v 3
(5.10.20)
where we introduce the new variable of integration
Vx — (iz]2)
NS il hal
vV Ziz]2

By the principle of analytic continuation, this formula, proved under the
assumption that —iz > 0, remains valid for arbitrary complex z belonging
to the sector 0 < arg z < =. In just the same way, we have the formula
__2evm‘ (Z)VJ-w —istren -
—— e~ — 1)~ % 4t
Vel + 3 \2) L ( )

Rev> -1, —m<argz<0
2

HP(z) =
(5.10.21)

for the second Hankel function. The integral representations (5.10.20-21)
play an important role in the derivation of asymptotic representations of the
cylinder functions as |z| — co.

Integral representations for the Bessel functions of imaginary argument
can either be obtained directly by a slight modification of the considerations
of this section, or else deduced from (5.7.4-6) and the corresponding integral
representations of the Bessel functions and Hankel functions. Thus, it
follows from (5.10.3) that

\ 1
LG = 2 f (1 = 2~ % cosh zt dt,
Val(ev + ) J-1 (5.10.22)
largz| < ®, Rev> —14,
and from (5.10.16, 20) that

KV(Z) = lf e—zcosh U=V dy — J‘ e—zcoshucosh yu du’
2).. 0 (5.10.23)
Re z > 0, v arbitrary,
Vo (z\ [® £ 2
- " |z - 21 _ V-1
KO - rorpl) |, e - v
Rez >0, Rev> — 3.

(5.10.24)

We also call attention to another integral representation

T
-

Kv(z)=%(§)v L emtmeLdy  fargz] <5 (5.10.29)
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which is useful in the applications, and is obtained from (5.10.23) by changing
the variable of integration.

Some other useful integral representations of the cylinder functions and
their products are given in Problems 1-9, p. 139.

5.11. Asymptotic Representations of the Cylinder Functions for
Large |z

There are simple asymptotic formulas which allow us to approximate the
cylinder functions for large |z| and fixed v. The leading terms of these
asymptotic expansions can be derived starting from the differential equations
satisfied by the cylinder functions, but to obtain more exact expressions, it is
preferable to use the integral representations found in the preceding section.

Asymptotic representations of the cylinder functions for large |v| and
fixed z can be obtained rather simply from formulas (5.3.2), (5.4.5), (5.6.4)
and (5.7.1.-2) by using Stirling’s formula (1.4.22). The problem of approxi-
mating the cylinder functions when both |z| and |v| are large is one of the
most difficult problems of the theory. Some basic results along these lines can
be found in Chapter 8 of Watson’s treatise, and new formulas of this type
have been obtained in recent years by Langer!® and Cherry.!®

Of all the cylinder functions, the Hankel functions have the simplest
asymptotic representations. We now derive an asymptotic representation of
the function H{¥(z), starting from formula (5.10.20). Making the substitution
t =1 + 2s, we find that

2v + lei(z - vn)zv

e —— ezaissv—i/2 1 + Sv_x/2 dS,
Vel + 3 4+

HPG) = (.11.1)
Rev > —%, O0>argz <.

Replacing (1 + s)¥~ % by its binomial expansion

(1 + s)v_l/z _ z (_'1) (2’ - V)k §*

— n+1 — 1
+ b (n’, “)"”s"“f (I =)™ + st~ % dt
0
(5.11.2)

15 R. E. Langer, On the asymptotic solutions of ordinary differential equations, with an
application to the Bessel functions of large order, Trans. Amer. Math. Soc., 33, 23 (1931);
On the asymptotic solutions of differential equations, with an application to the Bessel
functions of large complex order, ibid., 34, 447 (1942).

16 T, M. Cherry, Uniform asymptotic expansions, J. Lond. Math. Soc., 24, 121 (1949).
On expansion in eigenfunctions, particularly in Bessel functions, Proc. Lond. Math. Soc.,
51, 14 (1949); Uniform asymptotic formulae for functions with transition points, Trans.
Amer. Math. Soc., 68, 224 (1950).
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with remainder,'” and integrating term by term, we obtain

1/2 n —
H(z) = (2) et(z—l/zvn—l/m)[ Z _(%-———V)’;c('% + Ve (2zi)~* + rn(z)]‘
k=0 ¢

Tz

Here
(=DM = Vaea(—2zi) R
r(?) = AT + 3)

© 1
x f e"’z“s"*""%dsf (1 = (1 + sty ="% dr,
0 0
and we have used the formula

f e2zisgk+v—1% Jo — F(V + 21_)(\, + %)k(_2zi)—(k+v+ Vz)’
0
Rev> —%, O<argz<m, £k=0,1,2,...,
implied by (1.5.1).
Now suppose that § < argz < ® — 3, where 3 is an arbitrarily small

positive number, and for the time being, assume that Rev — n — 3 < 0.
Then, estimating |r,(z)|, we find that'®

G = Vu sl Gzl v s m
@ < PTG + D)

© 1
x f e—2|z|s sinﬁsRe v+n+l, dsf (1 —_ t)" dt
0 0

_ 13 = Vnaa|Qfz)Re v+ % e MIT(Re v + 1 + )

(n + DTG T D@ sin oy~ — o™

for fixed v. Therefore

H®(z) = (;22)1/2 ef(z—‘/zvu—‘/u!)[i M%’)E (zi)~* + O(IZI—n—l)]’

k=0
Rev> —1, d<argz<n—3§, n>Rev—3 (511.3)
for large |z|. Actually, the condition imposed on n can be dropped, since if

Rev—n—-%>0
17 Note that
" < — )k " n+ (_' )7\+1 n+ ! n u-n-1
a0 = 3 o e iy Eeeron [P - aya + oy,
where
larg (1 + 0l <m  (o=1, ()= “}T;)"’ =20+ DO+ K — D).

18 For complex a and b we have
|ab| - lalneb e~ Imbrarga,
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we can always find an integer m > n such that

Rev—m—3<0.
Then, representing H{V(z) by (5.11.3) with n replaced by m, and noting that

m

S w0ty =5 S oy

k=n+1

= > ...+ 0(|z]""Y),

k=0
we again arrive at (5.11.3). Moreover, the relation
Hél)(z) . e_va(_le(Z)

[cf. (5.6.5)] allows us to eliminate the condition imposed on the parameter v,
and in fact, by using an integral representation of a somewhat more general
type than (5.10.20), it can be shown that the asymptotic formula (5.11.3)
remains valid in the larger sector |arg z| < = — 3.1° Finally, therefore, we
have

1/2
H) = (2

il i(2 — Yovn— Yym) < — 1)k, -k -n-1)],
=) e [ 2, (1@ + o(lzl 0]

largz| < 7 — & (5.11.4)
for large |z|, where we introduce the notation

(=1 (42— D) — 3)). (42 — 2k — 1))
0B = B = DG+ Ve = S ’

©,0) = 1.

An asymptotic representation of the function H{®(z) can be obtained in
the same way, starting from formula (5.10.21). The result is

2 1/2 n
HO() = (_) e“(z"/*"""/*")[ > 0 K)Qiz) 7 + 0(|z|-n-1)],
k=0

7z
largz| < © — 3, (5.11.5)

which differs from (5.11.4) only by the sign of i.

Asymptotic representations for the Bessel functions of the first and
second kinds can be deduced from formulas (5.11.4-5) and the relations
(5.6.1). Thus we find that?2°

M) = (i)m c0s (2 = dm = %ﬂ)[zo (=14, 20022)% + O(J2]~-3)]

Tz

Tz

- (—2-)112 sin (z — 4y — 4xn)

X [i (__l)k(v’ 2k + 1)(22)_'2""1 + 0(|z|-2n—3)]’
k=0
largz| < = — 8, (5.11.6)

1% G. N. Watson, op. cit., p. 196.
20 In (5.11.6-8) the integer » need not be the same in both sums.
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and
Y.(2) = (7722)1/2 cos (z — dvr — 4n)
X [i (= DX, 2k + 1)(22)~2%-1 + o(lzl—zn-a)]

+ (;22)“2 sin (z — dvr — gn)[kzno (— 1), 26)(22)~* + 0(1z|-2"-2)],
largz| < = — 3. (5.11.7)

Similarly, asymptotic formulas for the Bessel functions of imaginary argu-
ment can be derived from the integral representations (5.10.22, 24), or else by
using the relations given in Sec. 5.7, in conjunction with formulas (5.11.4-5).
In this way, we find that

L&) = eCr) 2 [ 3 (=17, b2 + 0(1z] )]

+ e nQm) ] S (6,02 + o(lz4=-)-
k=0

largz| < © — 3§, (5.11.8)

and

K(2) = (22)12 e~2[§o (o, K)(22)~* + 0(|z])-n-1], largz] < = — 8,
(5.11.9)

where in (5.11.8) we choose the plus sign if Im z > 0 and the minus sign if
Im z < 0. The second term in (5.11.8) will be small if |arg z| < 3= — 3, and
then

I(z) = e2(27cz)‘”2[§j: (= D*O, k)(22)~* + 0(|z|“"‘1)], |arg z| < g - 3.
(5.11.10)

The divergent series obtained by formally setting n = oo in each of the
formulas (5.11.4-10) is the asymptotic series (see Sec. 1.4) of the function
appearing in the left-hand side.

The method used here to derive asymptotic expansions gives only the
order of magnitude of the remainder term r,(z), and does not furnish more
exact information about the size of |r,(z)|. With suitable assumptions con-
cerning z and v, the considerations given above can be modified to yield
much more exact results. For example, it can be shown?! that if z and v are

21 G. N. Watson, op. cit., p. 206.
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positive real numbers, and if » is so large that 2n > v — 4, then the remainder
in the asymptotic expansion of J,(z) or Y,(z) is smaller in absolute value than
the first neglected term, while the same is true of the asymptotic expansion of
K@) ifn>=v—3.

5.12. Addition Theorems for the Cylinder Functions

Given an arbitrary triangle with sides r, r, and R, let 6 and ¢ be the angles
opposite the sides R and r,, respectively (see Figure 16), so that

R=Vr}+ri—2rrycos6, sing = %sin 0.

By an addition theorem for cylinder functions we mean an identity of the form
ZOR) = flrs, 12, 0) > OPORFPOr)OMO),  (5.12.1)

m
where A is an arbitrary complex number with |arg A| < = (for integral v, this
condition can be dropped), and m ranges

over some set of indices. Formula
(5.12.1) is an expansion of the general

g d cylinder function Z,(AR) in a series
whose terms are obtained by multiply-
g Y ing some function f(r,, r,, 0), which is
Iy independent of the summation index
m, by three factors, each of which de-

FIGURE 16

pends on only one of the variables r,,
ra, 0.

Formulas of this kind play an important role in the applications, espe-
cially in mathematical physics. The simplest such formula is the following
addition theorem for the Bessel function of the first kind of order zero:

Jo(AR) = i Ja(\r ) m(Ar)etm®
= (5.12.2)

= Jo(\r)Jo(Wr) + 2 D Ju(Ary)Ju(Ars) cos mo.

1

To prove (5.12.2), we first note that
1 -
— Yoz(t—t~1)p—n~1 = i 12,
J.(2) = i fc e t dt, n=0,+1, +2,... (512.3)

where C is an arbitrary closed contour surrounding the point ¢ = 0.22 Intro-
ducing a new variable of integration u by writing
_ rlele — I

t=2_ "2y
R

22 Formula (5.12.3) is a special case of (5.10.7) and can be proved immediately by
using residues, after recalling the expansion (5.3.4).
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and using the fact that
R? = (ri€® — ry)(rie™® — ryp),

1 Ary (4 1 ) Ar, 1\1 du
Jo(AR) = %fc' exp[ > (ue )~ 3 (u - ;)] >
where the integration is along a contour C’ resembling C. Moreover, accord-

ing to (5.3.4),
exp[% (ue“’ L)] = > JOwemun, (5.12.4)

YR
ue me~w

we have

where the convergence is uniform in u on the contour C’. Therefore, sub-
stituting (5.12.4) into (5.12.3) and integrating term by term, we find that

il N | Ar 1
Jo(AR) = ,,.:Zm Jn(Ary)eime 3= fc‘ exp[—— —23 (u - &)] u™=1dy

S T n(—r)em = > T )n(Arg)e™,

m=—c m= —
which proves (5.12.2).
We now give two generalizations of formula (5.12.2) to the case of Bessel
functions of arbitrary order v, referring the reader elsewhere for proofs.23
The first generalization is of the form2*

LRSS S g e SO

sinvg & sin m0’ (.12.5)

where ¢ is shown in Figure 16, and r, > r, if v is nonintegral (for integral v,
this restriction can be dropped, i.e., r; and r, can be interchanged). The
second generalization of (5.12.2) is given by the formula

Jv()‘R) IV < Jv + m()‘rl)"v + mO\"z) v
Ry = 2T0) 2 (v + m) 2HEERTEE=E G (cos 6),

v#0,—-1,-2,..., (5.12.6)

where r; and r, are arbitrary. Here the functions Cy(x),m =0,1,2,...,
known as the Gegenbauer polynomials, are defined as the coefficients in the
expansion

(1 -2x+ )™= > Cy)m, (5.12.7)
m=0

[so that the function on the left is the generating function of the polynomials
Cy(x)], and have the following explicit expressions:

v & m— e+ —k m—2k
) = > (=2 kax 2 (5.12.8)

k=0

23 G. N. Watson, op. cit., Chap. 11.
24 Formula (5.12.5) is an abbreviated way of writing two formulas, one involving

cosines in both sides, the other sines.
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[C¥(x) = 1]. For v =} the expansion (5.12.7) reduces to formula (4.2.3),
and then the Gegenbauer polynomials coincide with the Legendre poly-
nomials:
Cr2(x) = Pp(x). (5.12.9)
For v = 0 we have
Ci(x) =0, m=12,...,

but the product I'(v) Cy.(x) approaches a finite limit as v — 0:

lim I'(v)(v + m)CY(x) = 2 cos (m arc cos x), m=12 ... (5.12.10)

v—=0

Therefore both formulas (5.12.5-6) reduce to (5.12.2) in the limit v — 0.
For cylinder functions of other kinds, we have similar addition theorems,
among which we cite the following:

Z,OR) %Y = > Zoenr)nr) o s

sinvg & sin mf

Z,(AR)
(AR)Y

= 2'T'(v) i ~ + m) Z”'E‘f\::;?éri’)"v(nl) Cy, (cos 0), (5.12.12)

LOR Y S (L) S (5.12.13)

. -_— . b
sinvg &, sin mf

Iv()‘R) v < m, Iv+m A 2 Iv+m A 1 v
Ry ~ 2T "Zo(—l) o+ m)_w Cy, (cos ), (5.12.14)

KOR S = 5 Kyunrdlar)

cos mb

oo (51219

m= —

KV(XR) v < Kv+ m()‘rZ)[v + m()‘rl) v
Ry " 2T () mzo ~ + m) Or) Or )" Cy, (cos 6). (5.12.16)
In formulas (5.12.11-13, 15-16), it is assumed that r, > r; unless v is an
integer or Z, ., = Jy 4 in (5.12.12).

An important special case of these addition theorems, encountered in
mathematical physics, occurs when v = 4. The formulas corresponding to
this case are easily obtained by using (5.12.9), together with the results of
Sec. 5.8.%°

5.13. Zeros of the Cylinder Functions

In solving many applied problems, one needs information about the loca-
tion of the zeros of cylinder functions in the complex plane, and in particular,

25 G. N. Watson, op. cit., p. 368.
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one must be able to make approximate calculations of the values of these
zeros. Here we cite without proof some important results along these lines.2¢
We begin by considering the distribution of zeros of the Bessel functions of
the first kind, i.e., roots of the equation

J(2) = 0. (5.13.1)

Theorem 1 deals with the case of nonnegative integral v, and Theorem 2 with
the case of arbitrary real v:

THEOREM 1. The function J,(z),n = 0, 1, 2,... has no complex zeros,
and has an infinite number of real zeros symmetrically located with respect
to the point z = 0, which is itself a zero if n > 0. All the zeros of J,(z) are
simple, except the point z = 0, which is a zero of order n if n > 0.

THEOREM 2. Let v be an arbitrary real number, and suppose that
|arg z| < w. Then the function J(z) has an infinite number of positive real
zeros, and a finite number 2N(v) of conjugate complex zeros, where

1. N0) =0ifv> —lorv=—1,-2,...;

2. NV)=mif —-m+1)<v< —m m=12...

(In the second case, if [ —v] is odd, there is a pair of purely imaginary zeros
among the conjugate complex zeros.) Moreover, all the zeros are simple,
except possibly the zero at the point z = 0.

The following generalization of equation (5.13.1) is often encountered in
mathematical physics (4 and B are real):

AJ(z) + BzJ(z) = 0, v> —1, larg z| < m. (5.13.2)

It can be shown that this equation has infinitely many positive real roots and
no complex roots, unless

% +v<0,
in which case (5.13.2) also has two purely imaginary roots.2?

The distribution of zeros of the function I,(z) can be deduced from
Theorem 2 and the relations of Sec. 5.7. In particular, it should be noted that
all the zeros of 1,(z) are purely imaginary ifv > —1. If v is real, Macdonald’s
function K,(z) has no zeros in the region |arg z| < =/2. In the rest of the
z-plane cut along the segment [— oo, 0], K(z) has a finite number of zeros.2®

26 The problem of the distribution of the zeros of cylinder functions is also of con-
siderable theoretical interest, but lies outside the scope of this book. We again refer the
reader interested in details to the specialized literature, e.g., Chap. 15 of Watson’s
treatise. It should be noted that some of the results on zeros of cylinder functions can
be derived by arguments of a completely elementary character.

27 G. N. Watson, op. cit., p. 482.

28 Jbid., p. 511.
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To make approximate calculations of the roots of equations involving
cylinder functions, one can use the method of successive approximations,
where in many cases a good first approximation is given by the roots of the
equations obtained when the cylinder functions are replaced by their asymp-
totic representations.

5.14. Expansions in Series and Integrals Involving
Cylinder Functions

In mathematical physics, it is often necessary to expand a given function
in terms of cylinder functions, where the form of the expansion depends on
the specific nature of the problem (see Secs. 6.3-6.7). We now consider the
most important of these expansions, whose role in various problems involving
cylinder functions resembles that of Fourier series and Fourier integrals in
problems involving trigonometric functions. Foremost among such expan-
sions are series of the form

e r
=3 chv(x\,,,, 5), O<r<a v>—4 (5141

where f(r) is a given real function defined in the interval (0, @), J.(x) is a
Bessel function of the first kind of real order v > —3, and

0 <Xy < - < Xy <+

are the positive roots of the equation J,(x) = 0. The expansion coefficients
¢, can be determined by using an orthogonality property of the system of
functions

Jv(xvm g) m=1,2,..., (5.14.2)

which is proved as follows: Let « and B be distinct nonzero real numbers, and

let
” 1 V2 ” 1 ’ V2
ua+—ru;+(a2—r—2)ua=0, ug+-;u6+((52—;§)uﬂ=0

be the equations satisfied by the functions u, = Jy(ar) and uy; = J,(Br).
Subtracting the second equation multiplied by ru, from the first equation
multiplied by rug, and integrating the result from 0 to a, we find that

a a
(e — B?) L rugug dr = r(ugug — Ugly) 0,

which implies

fa rJv(ocr)Jv(Br) dr = GBJv(aa)J\;(ﬁsz : g‘:Jv(Ba)J\;(aa) (514.3)
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if v > —1. Setting « = x,./a, B = xy,/a in (5.14.3), we obtain the formula

f rJv(xvm 5)Jv(xv,, -’) dr=0 if m#n, (5.14.4)
0 a a
which shows that the system (5.14.2) is orthogonal with weight r on the

interval [0, a] (see Sec. 4.1).
Taking the limit of (5.14.3) as § — «, with the aid of L’Hospital’s rule,
and using Bessel’s equation to eliminate Jy, we find that?®

a 2 2
f rT3ary dr = & [J\’,"’(oca) + (1 - %)J\",’(aa)], (5.14.5)
0 2 «2a
or, using the relations (5.3.5),

a r a2 a2
[ r3(x 2} dr = 5 T200) = 5 st (5.14.6)
Then, assuming that an expansion of the form (5.14.1) is possible, multiplying
by rJy(xy, r/a) and integrating term by term from O to a, we obtain the fol-
lowing formal values of the coefficients c,,:

2 @ r
= fo rf(r)Jv(xvm 5) dr,  m=1,2,... (5147

The series (5.14.1), with coefficients calculated from (5.14.7), is called the

Fourier-Bessel series of the function f(r).
We now cite a theorem which gives conditions under which the Fourier-
Bessel series of the function f(r) actually converges and has the sum f(r):

THEOREM 3.2° Suppose the real function f(r) is piecewise continuous in
(0, @) and of bounded variation in every subinterval [ry, r;),3' where
0 < r; < ry < a. Then, if the integral

f: V£ ()| dr

is finite, the Fourier-Bessel series (5.14.1) converges to f(r) at every con-
tinuity point of f(r), and to

3+ 0) + f(r — 0)]

at every discontinuity point of f(r).
Next, we consider an important generalization of the concept of a
Fourier-Bessel series. Suppose the function f(r) is expanded in a series of the
form (5.14.1), where this time the numbers

O0< Xy < < Xy <+
29 The details are given in G. P. Tolstov, op. cit., p. 218.

30 For the proof, see G. N. Watson, op. cit., p. 591.
31 Concerning functions of bounded variation, see E. C. Titchmarsh, op. cit., p. 355.
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are the roots of the equation
AJ(x) + BxJy(x) = 0, (5.14.8)

instead of the equation Jy(x) = 0. Then it is an immediate consequence of
formulas (5.14.3, 5, 8) that

. 0 if m # n,
r r
vl Xvm ~ v Xvn ~ dr = 2 2 .
fo & (x a)J (x a) r %[J?(xm) + (1 - ;T)Jf(xvn)] it m=n
(5.14.9)
and therefore the coefficients ¢, are now given by

2 a r
U o SR § G T P TV £ | f SO xon Zz) dr. (5.14.10)

The series (5.14.1), with coefficients calculated from (5.14.10), is called the
Dini series3? of the function f(r). If f(r) satisfies the conditions of Theorem 3,
and if AB~* + v > 0, then the Dini series of f(r) actually converges to f(r) at
every continuity point.3® Both Fourier-Bessel series and Dini series play an
important role in problems of mathematical physics, and examples of such
expansions will be given in Secs. 6.3 and 6.7.

We now turn to expansions of a function f(r) defined in the infinite
interval (0, o), in terms of integrals involving Bessel functions. Among such
expansions, the one of greatest practical importance is the Fourier-Bessel
integral, defined by

Cp =

fr) = fo " ML) d L T o0 fe)de, O <r<oo, v> —}
(5.14.11)

Formula (5.14.11) is sometimes called Hankel’s integral theorem, and is valid
at every continuity point of f(r) provided that

1. The function f(r), defined in the infinite interval (0, ), is piecewise
continuous and of bounded variation in every finite subinterval
[ry, r3], where 0 < r; < ry < 0;

2. The integral

[ vasonar

is finite.3*

32 Called a Fourier-Bessel series of the second type in G. P. Tolstov, op. cit., p. 237.

33 For the proof, see G. N. Watson, op. cit., p. 596 ff., where one will also find the
modifications that must be made in the Dini series if AB~* + v < 0.

34 For the proof, see G. N. Watson, op. cit., p. 456 ff. At discontinuity points, the
integral in the right-hand side of (5.4.11) equals

e+ 0) + f(r — O
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As examples of Fourier-Bessel integrals, consider the expansions

22\/1—'.—-'_"2 = fo e“"'zlJo()\r) dh, (5.14.12)
e KFET e A Jo(W)
— —12]VA2 + K2 0 141
V22 1 72 fo ¢ VA ¥k d)\ (5.14.13)

(with real z and r), implied by formulas (5.15.1, 7) below.

The author has studied another integral expansion of a completely different
type, involving integration with respect to the order of the cylinder function.?®
This expansion, which turns out to be very useful in solving certain problems
of mathematical physics (see Secs. 6.5-6) is of the form

6 =2 f " tsinh v "(")d f X8 oo, 51414
72 Jo VE

where K,(x) is Macdonald’s function of imaginary order v = it. Formula
(5.14.14) is valid at every continuity point of f(x) provided that

1. The function f(x), defined in the infinite interval (0, o), is piecewise
continuous and of bounded variation in every finite subinterval
[x1,x5], where 0 < x; < x, < ©0;

2. The integrals

1/2 ©
f £ (Olx-172 log L ax, f |f(9)dx (5.14.15)
0 X 1/2
are finite.

Example. An expansion of this type is 3¢

— ——xcsa__z MKH:(-’C)
f(x) = Vxe*xco _—f TR dr. (5.14.16)

5.15. Definite Integrals Involving Cylinder Functions

In the applications, it is often necessary to evaluate integrals involving
cylinder functions in combination with various elementary functions or special

35 N. N. Lebedev, Sur une formule d’inversion, Dokl. Akad. Nauk SSSR, 52, 655
(1946); Expansion of an arbitrary function in an integral with respect to cylinder functions
of imaginary order and argument (in Russian), Prikl. Mat. Mekh., 13, 465 (1949); Some
Integral Transformations of Mathematical Physics (in Russian), Dissertation, Izd.
Leningrad. Gos. Univ. (1951). At discontinuity points, the integral in the right-hand side
of (5.14.14) equals

Hf(x + 0) + f(x — 0)].

38 To derive (5.14.16), use (5.14.14) and the Bateman Manuscript Project, Tables of

Integral Transforms, Vol. 1, formula (24), p. 197.
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functions of other kinds. Such integrals are usually evaluated by replacing
the cylinder function by a series or by a suitable integral representation, and
then reversing the order in which the operations are carried out. Since an
extremely detailed treatment of this whole topic is available in the literature,3”
we confine ourselves here to a few examples which illustrate the method and
lead to some results needed later in the book.

Example 1. Evaluate the integral
f e~ J(bx) dx, a>0 b>0.
0

Replacing Jo(bx) by its integral representation (5.10.8), we find that

© © w2
f e~ %Jy(bx) dx = f e % dx 2 f cos (bx sin ¢) do
0 0 T Jo

2 n/2 © .
=;f dcpf e~ %% cos (bx sin ¢) dx

_2 J‘ __adp
a® + b?sin’ ¢’
where the absolute convergence of the double integral justifies reversing the
order of integration. Evaluating the last integral, we have
1
Va® + b2

Example 2. Evaluate Weber’s integral

. a>0, b>0. (5151)

f ® emex) (bx) dx =
1]

f e~ 2 J (bx)x'*'dx, a>0, b>0, Rev> —1.

0

Replacing J,(bx) by its series expansion (5.3.2) and integrating term by term,
we find that

© —a272 © 252 < (_l)k(bx/z)v+2k
a2z v+1 — a2x2,v+1 —
fo e Ju(bx)x"+t1 dx = fo e xV*1dx kZO RT(k + v £ 1)

_l)k b vk fo —a2x2 2v+2k+1dx
KTk +v + D\2 ¢

_l)lc b\V+2k 1 © ik
k'F(k + v+ 1)( ) 2a2v+2k+2J; et dr

_ bY ( b2/4a2)k
- (2a2)v+1 Z

Il

37 G. N. Watson, op. cit., Chaps. 12-13, the Bateman Manuscript Project, Higher
Transcendental Functions, Vol. 2, Chap. 7, and ibid., Tables of Integral Transforms,
Vols. 1, 2. See also F. Oberhettinger, Tabellen zur Fourier Transformation, Springer-
Verlag, Berlin (1957).
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where reversing the order of integration and summation is again justified by
an absolute convergence argument. Summing the last series, we have

—b2/4a2

® b’
—a2x2 V41 _
fo e” Y (bx)x"* dx = QaAy+1¢ ’ (5.15.2)
a>0,b>0, Rev > -1

Example 3. Evaluate the integral

xV*+1J(bx)
f & +a2)u+1a’x a>0, b>0, —1<Rev<2Rep+3,
often encountered in the applications. First we replace the function
(x? + a*~*~! by an integral of the type (1.5.1), i.e.,

1
@+ T+ D

assuming temporarily that —1 < Rev < 2 Re p. +  (this guarantees abso-
lute convergence of the relevant double integral). Then, using (5.15.2) and
the integral representation (5.10.25) of Macdonald’s function, we find that

e~Ptatimgy Rep > —1, (5.15.3)

I (7 g [ e
, G s, e [ e e

P — fw e—azt—(bzl‘it) dt
2v+11"(p‘ + 1) o tv+1—u
_ bvazv—2u © e—u—[(ab)2/4u] du
2v+11"(P‘ + 1) o uv-u+1
av—ubu-
= (e + 1) Kv-ulab)-

The extension of this result to values of the parameter p. satisfying the weaker
condition —1 < Rev < 2Re p. + 3 is accomplished by using the principle
of analytic continuation. Thus we have

© xv+1JV(bx) . av—u.bu
o (x%* + a?#t? = 2T'(w + 1) Ky -u(ab), (5.15.9)
a>0,b>0, —1 <Rev<2Rep+3
In particular, setting . = —%, v = 0 and using (5.8.5), we obtain the integral
xJ()(b.x) e~
dx ) a=0, b>0. 5.15.5
f Vxr ¥ a? b ( )

Example 4. Evaluate the integral

K (aV*® + y?)
[ SR o

a>0, b>0, y>0, Rev> —1,
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which also has numerous applications to mathematical physics. Using the
integral representation (5.10.25) and formula (5.15.2), we find that

*© K| aVx? + )2 +
R ) e as

_dr

tu+1

L v+l P —t-1a2Ge2 +y2yan)
= 5uri J(bx)x¥+1 dx e
1]

= e+l PTES

Ll R P d’ ® a2t Vi1
e"t-@ e J(bx)x¥*+1 dx
0 0

© dt
= QV-Hgh—2V-2phv et +b2/a?) - (a%y?/4t)
0 tu-v
—ubv © du
2 2\u—-v—1 —u—[y2(a2 +b2)/4u]
— (@® + b?) fo e e
b (V@ + P\t —_—
2 2
=zl Kuov(pVa? + B2,

By choosing various values of the parameters in the identity

Ku(a\/x + )
(x +y2)u/2

Va® + b
Yy
a>0, b>0, y>0, Rev> —1, (515.6)

u-v-1
J(b ) vtidx = au( ) u-v—l(y\/az + bz)’

we can derive a number of useful formulas encountered in the applications.
For example, setting o = 4, v = 0, we have

Yx2 +y2 -yYa2 + 2

e —-a
Jo(bx)x dx = \/m~

o Ve (5.15.7)

5.16. Cylinder Functions of Nonnegative Argument and Order

We now collect some elementary and easily verified results pertaining to
the very important case of cylinder functions where both the argument x and
the order v are nonnegative real numbers:

1. Bessel functions of the first kind. For x > 0 and v > 0, the function
J(x) is real and bounded, and has an oscillatory character. Its be-
havior for small and large values of x is described by the asymptotic
formulas

xV
JV(X) ~ m: X —> 0,
(5.16.1)

Ju(x) = Jﬂzx cos (x — $vr — im), X — oo.
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J,(x) has infinitely many zeros, including the point x = 0 if v > 0.
The graphs of Jo(x) and Jy(x) are shown in Figure 17.

+1

5/1(1)

VAN

0 5 10 15 20 25
FIGURE 17
2. Bessel functions of the second kind. For x > 0 and v > 0, the function

Y,(x) is an oscillatory real function, which is bounded at infinity. Its
behavior for small and large values of x is described by the asymptotic

formulas
v
Yv(x)z—-znl;—sv) x—0, v>0,
2 .
Y.(x) = /Esm x — v — in), X — 0, (5.16.2)

Yo(x) & — Tz-r-log;zc, x—0,

which show, in particular, that Y,(x) - —oo as x — 0.

3. Bessel functions of the third kind. For x > 0 and v > 0, the Hankei
functions H{P(x) and H{®(x) are conjugate complex functions, which
are bounded at infinity. Their behavior for small and large values of
x is described by the asymptotic formulas

HP(x) = xi(%) ETE—V) x>0, v>0,
H®(x) ~ A/%x e*ix=Yve-H%m X —> 00, (5.16.3)

_.2. 2
HP(x) ~ +tT—Clog Py x—0,



136  CYLINDER FUNCTIONS: THEORY CHAP. 5

where the upper sign corresponds to the case p = 1, and the lower sign
to the case p = 2. Obviously, H{P(x) — o as x — 0.

4. Bessel functions of imaginary argument. For x > 0 and v > 0, I,(x) is
a positive function which increases monotonically as x — oo, while
K (x) is a positive function which decreases monotonically as x — 00,38
For small x we have the asymptotic formulas

xV
IV(X) ~ m’ X —> 0,
v-1
K%)= @ x>0, (5.16.4)
Ky(x) = log )—26, x—0,

and therefore
I(0) =0 ifv > 0, I,0) =1, K/(0) = oo.
The asymptotic behavior of these functions as x — co is given by

ex
I\,(x) R X —> 00,
Vomx (5.16.5)

K(x) =~ A/%‘ e %, X —> 0.

Clearly, neither function has any zeros for x > 0.

5.17. Airy Functions

The solutions of the second-order linear differential equation
u —zu=0 (5.17.1)

are called Airy functions. These functions are closely related to the cylinder
functions, and play an important role in the theory of asymptotic representa-
tions of various special functions arising as solutions of linear differential
equations.?® In particular, the Airy functions turn out to be useful in deriving
asymptotic representations of the cylinder functions for large values of |z|
and |v|, valid in an extended region of values of z and v. The Airy functions
also have a variety of applications to mathematical physics, e.g., the theory
of diffraction of radio waves around the earth’s surface.*°

38 This fact about K,(x) follows from the integral representation (5.10.23).

39 See R. E. Langer, op. cit., T. M. Cherry, op. cit., and V. A. Fock, Tables of the
Airy Fuctions (in Russian), Izd. Inform. Otdel. Nauchno-Issled. Inst., Moscow (1946).

40 See V. A. Fock, Diffraction of Radio Waves Around the Earth’s Surface (in Rus-
sian), Izd. Akad. Nauk SSSR, Moscow (1946).
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We now present the rudiments of the theory of Airy functions. Choosing
o« = —1,y = 1 in the second of the equations (5.4.11-12), and using the re-
sults of Sec. 5.7, we find that the general solution of (5.17.1) can be expressed
in terms of Bessel functions of imaginary argument of order v = +3%. In parti-
cular, two linearly independent solutions of (5.17.1) are

1/2 2 3/2 2 3/2
U=u = AI(Z) = [I 1/3( 23 ) - 11/3(—23—)]
l z 1/2 223/2 27'5
= ;C (3) Kl/a(_3_)’ |arg ZI < —3—;

. 1/2 2 3/2 2 3/2 2
u = u, = Bi(z) = (%) [1_1,3(%) + 11,3( 23 )], larg z| < ?n,

(5.17.2)

called the Airy functions of the first and second kind, respectively. Replacing
I.4,3 by the series expansion (5.7.1), we obtain the expansions

© o 3k+1
Al = Z 32"+%k'I‘(k n %) - 2 ey
X X 23k+1
Bi(z) = 312 I:z 32k+’-‘/3kyp(k + 3) z 32k+%k!r\(k T %)]’ !zl < ©,

(5.17.3)

which show that the Airy functions are entire functions of z.
We can also write (5.17.3) in another, somewhat more concise form. For
example, the first expansion is equivalent to

5 o sin[%"(kﬂ] .
AIG) = 525 3 (39)
378 & I‘(k + Z)P(k + 3) 3 |z]| < 00. (5.17.4)
3 3
Using the “triplication formula” for the gamma function [Problem 4, formula

(i), p. 14] we can transform (5.17.4) into

(M i T+ 1
JURSE Sl S 3
@) = — 2 x

It follows from (5.17.3) that the Airy functions Ai(z) and Bi(z) can be
defined as the solutions of equation (5.17.1) satisfying the initial conditions

(B2),  |z| < w. (5.17.5)

3 —-4/3
(0) = Ai(0) = Fé WO = ATO) =~ .
-5/6 B
w0 = BiO) = 30 10) = BO) = Tz
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The Wronskian of this pair of solutions is
W{Ai(z), Bi(z)} = W{Ai(z), Bi(2)},=0 = %, (5.17.7)

where we again use the triplication formula for the gamma function.** We
can also calculate (5.17.7) directly from (5.17.2) and (5.9.5).

Asymptotic representations of the Airy functions for large |z| can be
deduced from the corresponding results of Sec. 5.11. In particular, we have

. m2 , 2n
Ai(z) = 3 z7 W= %2"[1 4 O(|z| %)), larg z| < T - 3, (5.17.8)
Bi(z) = =~ 12z~ 14e%="[1 + O(|z|-%72)), |arg z| < ’5“ -3 (5179

It follows at once from (5.17.3), (5.7.1) and (5.3.2) that the Airy functions of
argument —z can be expressed in terms of Bessel functions of the first kind
of orderv = +14:

2,

1/2
Ai(=2) = T V153257 + NG, largz] < 3

(5.17.10)

1/2
Bi(=2) = (5) 1-162°) = 1sG223),  larez| < 3
Then, using the asymptotic representation (5.11.6), we find that

Ai(—x) & ©~12x~ % cos (:—:;'- x32 — g), X — 00,
(5.17.11)

. . (2 T
Bi(—x) ¥ — n~Y2x~1tgin (§ X812 — i) X

which shows that the Airy functions have an oscillatory character for large
negative values of the argument.

Finally, we note that the definition of Ai(x) and the integral representation
of Macdonald’s function given in Problem 6, formula (ii), p. 140, imply

X 2x1/2 © 2x3/2 . y
Ai(x) = P fo cos (—3 sinh y)cosh 3 dy, x> 0.

After making the substitution

D S
smh3—2x t

this gives the following integral representation of Ai(x):

Ai(x) =

™

f cos (322 + x1) dt, x> 0. (5.17.12)
0

41 For a proof of the first equality in (5.17.7), cf. E. A. Coddington, op. cit., Theorem
8, p. 113.



PROBLEMS CYLINDER FUNCTIONS: THEORY |39

A somewhat more complicated argument gives the following integral repre-
sentation of Bi(x): 42

Bi(x) = % fo [e-%°+% 4 sin (33 + x)]d1, x> 0.

For an integral representation of [Ai(x)]?, see Problem 22, p. 142.

PROBLEMS

1. Derive the integral representation*3

no -1’

o

/2 w2
Jon(2z cos 0) dO = (—1)* %J‘ Jo(2z cos 6) cos 2n6 d6,

o
n=0,1,2,...
2. Derive the following formula involving products of Bessel functions: **

w2
Ju(2)J(2) = %J; Jy+v(2z cos 0) cos (1 — v)6 db, Re(w +v) > —1.

3. Prove that

(2= %J‘ Jo(V 2% + 2’2 — 2zz’ cos 6) cos nb do, n=20,1,2,...
o

Hint. Use the addition theorem (5.12.2).
4. Derive the integral representations

Ju(x) = %f sin (xcosht - %) cosh vt dt, —1 <Rev<l x>0,
0
2 (= v
Y(x) = - cos xcosht—j coshvtdt, —1 < Rev<l x>0
[

Hint. Use formulas (5.10.14, 15).

5. Derive the formulas

1/2 iz - =1 -%
HP(2) = (i) P eETATTID [ s (1 - i)V " ds,

nz Tev+4%) Jo 2iz
Rev > —14, —-g < argz < m,
2\1/2 e-l(z—yzvn—%n) © s v-Y%
@(,) = (£ S —sgv—Y =
B (nz) IOEEY) fo e ’(1 + 2iz) ds,

Rev> —4, —m<argz< g

42 H, Jeffreys and B. S. Jeffreys, op. cit., p. 510.
43 G. N. Watson, op. cit., p. 32.
44 Ibid., p. 150.
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6. Prove the following integral representations of Macdonald’s function:*®

VrzY © .
K(z) = fVI‘(v_nﬂz-%) e~2coshitginh?Y ¢ df, Rez >0, Rev> —1,
2T'(v + cos xt .
K(x) = x(v\/;’z)f i t2)V+l/2 x>0, Rev> —1, @

K(x) =

1 nf cos (x sinh £) cosh vz dt, x>0, [Rev| <1, (ii)
cos > 0

Uz gz S $\v-%
K\(2) = (22) Torp, <" L+ ds,

largz|] < w, Rev> —1.

7. Prove the following formulas involving products of Macdonald functions :4¢

K,(x)K,(y) = %fw e~ it + 2 +y2)/nKv(Z‘tZ) th
o

= f Ko(Vx2 + y2 + 2xycosh t)coshvtdt, x>0, y >0,
(]

p— 1r © — 2 _ 2 .
K(x)K\(y) = Tsnvn J; oo Jo(V2xy cosht — x> — y? )sinh vt dt,

x>0, y>0, |Rev| <% (iii)

8. Derive the integral representation

LOK(y) = %J; w )Jo(\/ 2xycosht — x2 — y?) eV dt,
og (y/z,
x>0, y>0, Rev> —1%

9. Derive the integral representation
K,(x)K\(x) = f Ku_v(Zx cosh %) cosh
o

10. Derive the following asymptotic representations for large values of the
order |v|:

“+vtdt, x>0, y>0.

Jv(z) ~ 1__ ev+vlog(z/2)-(v+‘/2)log‘v’ M — o, [arg Vl <7 - 3,
g

2\ 1/2
Ki:(x) ir) e~™2gin (T + tlogt — v — -rlogf ) T — 00,
T 4 2
(In the second formula, x is a fixed positive number.)

45 G. N. Watson, op. cit., 172, 183.

46 Concerning Problems 7-9, see ibid., p. 439. The most detailed investigation of
various integral representations of products of cylinder functions is due to A. L. Dixon
and W. L. Ferrar, Integrals for the product of two Bessel functions, Quart. J. Math. Oxford
Ser., 4, 193 (1933); Part 11, ibid., 4, 297 (1933).
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11. Prove the formulas
J(—x + i0) — Jy(—x — i0) = 2isin v Jy(x),
Y(—x + i0) — Yy(—x — i0) = 2i[J.(x) cos vir + J_(x)],
HP(—x + i0) — HY(—x — i0) = —2[J_(x) + e~ "™ J(x)],
HP(—x + i0) — H®(—x — i0) = 2[J(x) + e"J(x)],

where x > 0, characterizing the behavior of the cylinder functions on the
cut [— o0, 0].

12. Verify that
I(—x + i0) — I,(—x — i0) = 2isin vrt I(x),
K(—x + i0) — K(—x — i0) = —mill-(x) + L(x)],

where x > 0.
Comment. The formulas given in Problems 11-12 take a particularly

simple formifv=nn =0, + 1, + 2,...).

13. Verify the expansion
f Jo(@®)dt =2 3 Josoes1(2),  Rev> —1.
0 k=0

Hint. Use the recurrence relation (5.3.6) to show that both sides have the
same derivative.

14. Derive the recurrence relation
2 2
f I dt = 20y 11(2) — (. — v — l)f #7,a() dt, Re(p +v) > —1.
[ o
Hint. Apply (5.3.5) in the form
d
tv+ IJv(t) = E[tv"-l]v-fl(t)]y

and then integrate by parts.

15. Using the result of Problem 14, show that the evaluation of integrals of
the form

2
f mJ(0) dt, Rev> -1, m=0,1,2,...
4]
reduces to the evaluation of the integral

f T dt,
0

whose value was found in Problem 13.

Comment. If v= +(m —1), +(m — 3), +(m — 5),..., then the co-
efficient of the last integral vanishes, and the original integral can be
expressed in closed form in terms of Bessel functions.
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16. Verify the formula*”

v+1—up
( F( 2 )
f Ty 4 = Rep >4, Re(v— ) > —1.
o

X+ 2“1‘(\' + 1+ u)’
2
17. Verify the formula
© 2 _ v
f ey dx = YETE —al pel s 1 4s0, bso.
0 bVa® + b?

18. Show that the Bessel function Jo(x) satisfies the following integral equal
tion:

Jo(x) = %f WJo(y)dy, 0<x <o
o

19. The integral Bessel function of order v is defined by the formula

Ji, (2) = fz J“EI) dt, larg z| < m.

Show that Ji,(z) is an entire function of v and an analytic function of z in the
plane cut along the segment [— o0, 0] (in fact, an entire function of z for
v= + 1, + 2...). Verify the formulas

vJifz) = vfziv(—’) dr — 1, (iv)
o ¢

vJiz) = f Jv1()dt — I, - 1, Rev > 0, |argz| < .
(1]

Hint. Use the results of Problems 14 and 16.
20. Prove the following expansions of the integral Bessel functions:

Tio(2) = log—; +y+ i —1)k(z/2)2k’ 2] < o, arga] <

2k (kY2
L1 e (=D _
Jln(Z) = - ;l + kZO ma ]Zl < 0, n= 1, 2, .

Hint. Substitute (5.3.2) into Problem 19, formula (iv).

21. Derive the asymptotic formula

R

X pe

22. Prove the integral representation

1
—_— J —t+xt)tdt x=0
4V3 f ° (
for the square of the Airy function of the first kind.
Hint. Use Problem 7, formula (iii).

[Aix)]?* =

47 G. N. Watson, op. cit., p. 391.
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2.9 Cylinder Functions: Aplications



6

CYLINDER FUNCTIONS: APPLICATIONS

6.1. Introductory Remarks

As already noted in Sec. 5.1, the cylinder functions have a very wide
range of applications to physics and engineering, which cannot even be
touched upon in a book of this size. Instead, we confine ourselves to a dis-
cussion of a few selected problems of mathematical physics involving cylinder
functions,® where the selection has been made with the aim of illustrating
the application of the theory of Chapter 6. We are mainly concerned with
the solution of boundary value problems for various special domains. In
addition to several examples of an elementary character, we include some that
are more complicated, e.g., the Dirichlet problem for a wedge (see Sec. 6.5).

6.2. Separation of Variables in Cylindrical Coordinates

Consider the partial differential equation

1 2%u ou

2y = — = =
u=—5zz t b Fr + cu, (6.2.1)
where V2 is the Laplacian (operator), ¢ is the time, and q, b, ¢ are given con-
stants. A variety of important differential equations occurring in mathe-
matical physics (e.g., in electrodynamics, the theory of vibrations, the theory
of heat conduction) are special cases of (6.2.1). The boundary conditions im-

posed on the function u often require the use of a system of cylindrical

1 We assume that the reader has already encountered the simplest problems of this
type in a first course on mathematical physics.
143
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coordinates r, ¢, z, related to the rectangular coordinates x, y,z by the
formulas

X =rcose, y=rsing, z=z,
where
0<r<ow —-rnT<p<gL®, —00<2z< 00
In cylindrical coordinates, equation (6.2.1) becomes

10 ( ou 102w 0*u 1 0% ou
al %) trit byt (622

and has infinitely many solutions of the form
u = R(r)Z(z)Q(e)T(2), (6.2.3)

where each of the functions on the right depends on only one variable. Sub-
stituting (6.2.3) into (6.2.2) and dividing by RZ®T, we obtain

1 d [ dR 1 d*® 1d2Z 1(14d*T

i 1F) o tz o= (@ +oT) 629
Since the variables r, ¢, z and ¢ are independent, both sides of (6.2.4) must

equal a constant, which we denote by —x2. This leads to two equations

1 d°T dr

— —— — 2 =
St b T =0 (6.2.5)
and
_l_i(d_R)+2 1ae _14Z
Rrar\" dr r? do? Z dz?

The same reasoning shows that both sides of the last equation must equal a
constant, which this time we denote by — A2, obtaining the equations

2
‘;Tf — 02+ Z=0 (6.2.6)
and
1 d( dR | d°®
2| - =% it 2 2 _ e ——.
r [err(’ dr) + 0 +”)] ® do?

Again, both sides of the last equation must equal a constant, denoted by p2,
which implies

d?o od
W + 20 =0 6.2.7)
and
1d( dR 2, w2 B\ p _

The process just described is called separation of variables, and leads to
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infinitely many solutions of the form (6.2.3), depending on the parameters
x, A, i, which can take real or complex values.?

Thus, determining the factors in the product (6.2.3) reduces to the rela-
tively simple problem of solving the ordinary differential equations (6.2.5-8).
The first three of these equations can be solved in terms of elementary func-
tions, but if we introduce a new variable proportional to r, the fourth equation
becomes Bessel’s equation, whose solutions involve cylinder functions. The
required solution of the given physical problem is obtained by superposition
of the particular solutions (6.2.3), where the specific conditions of the problem
dictate the choice of the parameters x, A, n. and the corresponding solutions
of (6.2.5-8).

Finally, we call attention to two important special cases of equation
(6.2.1), obtained by making certain choices of the constants @, b and c:

1. Laplace’s equation V?u = 0 (corresponding to the choice a = b = ¢ = 0).
This equation has particular solutions of the form

u = R(Z(z)0(p), (6.2.9)
where
1d( dR 2
L (4R (o),
2z 220 (6.2.10)
44 _ 27 - a> 20 —
= 2z =0, e + p20

In the special case where the conditions of the problem are such that u
is independent of the angular coordinate ¢, we have

u = R(r)Z(z) (6.2.11)

where

2
) +2R=0, 9Z_jz-o (6.2.12)

1 d( dR
dz?

var\"dr
2. Helmholtz’s equation V?u + k?u = 0 (corresponding to the choice

a=b=0, c= —k?. In this case, application of the method of
separation of variables leads to particular solutions of the form

u = R(rZ(z)®(e), (6.2.13)
where
1d( dR P T
;E(VE)'F()\ '—F)R—O,
e 220 (6.2.14)
4L _n2_r2y7 = a °h —
e (03 k»Z =0, do? + p20 = 0.

2 Without loss of generality, we can assume that each of the parameters x, A, u. belongs
to an arbitrarily chosen half-plane, since changing the sign of %, A, u. does not affect the
‘““separation constants” —x?, —A2, u?



146  CYLINDER FUNCTIONS: APPLICATIONS CHAP. 6

6.3. The Boundary Value Problems of Potential Theory.
The Dirichlet Problem for a Cylinder

A function u = u(x, y, z) is said to be harmonic in a domain ~ if u and its
first and second partial derivatives with respect to x, y and z are continuous
and satisfy Laplace’s equation V24 = 0in t. Consider the problem of finding
a function # which is harmonic in t and satisfies one of the three boundary

conditions
uls = f, (6.3.1a)
ou
. = FA (6.3.1b)
ou
(51 + hu)q —f >0 (6.3.1¢)

where o is the boundary of <, fis a given function of a variable point of 5,3
and 0/on denotes the derivative with respect to the exterior normal to o.
This problem is called the first boundary value problem of potential theory or
the Dirichlet problem if the boundary condition is of the form (6.3.1a), the
second boundary value problem of potential theory or the Neumann problem if
it is of the form (6.3.1b), and the third or mixed boundary value problem of
potential theory if it is of the form (6.3.1c). These problems play a very im-
portant role in mathematical physics.* We now consider the Dirichlet prob-
lem for the case where  is a cylinder of length / and radius a.

Let r, ¢, z be a cylindrical coordinate system, with z-axis along the axis of
the cylinder and origin in one face of the cylinder (see Figure 18). To satisfy
the boundary condition (6.3.1a), we first solve two simpler problems cor-
responding to the boundary conditions

Ulreq =0, Ul,e0 = fo U, = f (6.3.2a)

Ul,=q = F, |0 = |-, = 0. (6.3.2b)

(In the first case, f vanishes on the lateral surface of the cylinder, and in the

second case, f vanishes on the ends of the cylinder.) Obviously, the sum of

the solutions satisfying the boundary conditions (6.3.2a) and (6.3.2b) will
then satisfy the more general boundary condition (6.3.1a).%

3 If f = 0, the boundary condition is said to be homogeneous, and otherwise inhomo-
geneous. Here it is assumed that « is continuous in the closed domain = + ¢ (cf. Sec.
8.1).

4 For a more detailed formulation of boundary value problems, and for conditions
guaranteeing the existence and uniqueness of solutions under various assumptions con-
cerning the domain 7 and the boundary function f, see the books by Frank and von Mises,
Tikhonov and Samarski, Courant and Hilbert, and Smirnov (Vol. IV), cited in the Biblio-
graphy on p. 300.

5 It should be noted that in many problems involving inhomogeneous boundary
conditions, repeated use of the superposition method leads to solutions of excessively
complicated form. This can often be avoided by using another method, due to G. A.
Grinberg. Selected Topics in the Mathematical Theory of Electric and Magnetic Phenomena
(in Russian), Izd. Akad. Nauk SSSR, Moscow (1948).
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For simplicity, we temporarily assume that the boundary conditions are
independent of the angular coordinate ¢, so that

fO =f0(r)9 ﬁ = ﬁ(r)’ F = F(Z).
Then the solution u will also be independent of ¢, and therefore, according
to (6.2.11, 12) the particular solutions of Laplace’s equation take the form
u = R(r)Z(z), where R(r) and Z(z) satisfy the differential equations

1d [ dR\ . .0 _ P2z
;E(r,g;)+x1z~o, &2 _ ez —o, (6.3.3)

dz*?
Solving these equations, we find that
R = AJy(Ar) + BY,(ar), Z = Ccosh Az + Dsinh Az, (6.3.4)

where Jo(x) and Y,(x) are Bessel functions of order
zero, of the first and second kinds, respectively. z
First we consider the boundary conditions (6.3.2a).
Since Jo(Ar) = 1, Yo(Ar) > o as r— 0, and since the CD
solution R must satisfy the physical requirement of being
bounded on the axis of the cylinder, the constant B must T
equal zero. Then the homogeneous boundary condition /
becomes

AJ,(Aa) = 0,

and hence the admissible values of the parameter A are =T T5
A = Xp/a, where the x, are the positive zeros of the

Bessel function Jy(x) [see Sec. 5.13]. Thus we obtain the FIGURE 18
following set of particular solutions of Laplace’s equation:

U=u, = [Mn cosh (x,l E) + N, sinh (x,, f)]Jo(x,l 1), n=12...
a a a
(6.3.5)

By superposition of these solutions, we can construct a solution of our
problem. In fact, suppose each of the functions fy(r) and fi(r) can be ex-
panded in a Fourier-Bessel series (see Sec. 5.14), i.e.,

0 = 3 fow(5u2) S0 = 3 fuho(m L) 630

where

fon = ;2%)‘) f: rf,,(r)Jo(x,, ;Z) dr, p=0,1L (6.3.7)

Then the series
sinh (x,, _z_)
a

sinh (x,, i)
a

u=

sinh (x,.l ; Z)
fon

11" sinh (x,l £)
a

[\%t

+ fin Ioxn CEEY

n
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whose terms are of the form (6.3.5), clearly satisfies both Laplace’s equation
and the boundary conditions (6.3.2a).°

Next we consider the boundary conditions (6.3.2b). In this case, we must
set C = 0 and choose

if the homogeneous boundary conditions are to be satisfied. Then the solu-
tions of (6.3.3) take the form

nwr nwr

R= AIO(T) + BKO(—I),

Z = Dsin (”-—’;Z)

(6.3.9)

where Iy(x) and K,(x) are Bessel functions of imaginary argument (see Sec.
5.7). Since Ky(nnr/l) — oo as r — 0, we must also set B = 0. Therefore the
particular solutions of Laplace’s equation are now

u=u, = M,,Io($) sin (i’;_z) n=1,2...  (63.10)
Applying the superposition method just described,” we find that the solution
of Laplace’s equation satisfying the boundary conditions (6.3.2b) is given by

the series
nrr
’0(7) nmz

sin 7%, (6.3.11)

‘= nZl i I (mra) ]

where the F, are the Fourier coefficients of F(z) in a series expansion with
respect to the functions sin (nrz/l):

l
F, = % f F() sin"—’l‘z dz. (6.3.12)
0

Remark 1. The solution of the Neumann problem and the mixed prob-
lem, involving the boundary conditions (6.3.1b) and (6.3.1c), is obtained in
the same way, but now we must use Dini series (see Sec. 5.14) instead of
Fourier-Bessel series.

Remark 2. To generalize our results to the case of boundary conditions
involving the angular coordinate ¢, we construct particular solutions of the

6 Here we have in mind formal solutions, whose validity needs subsequent verifica-
tion. A somewhat more rigorous point of view is adopted in Chap. 8 (cf. p. 208).
7 Often called the Fourier method, or the eigenfunction method.
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more general form (6.2.9), satisfying the equations (6.2.10). The values of the
parameter p are now determined by imposing the continuity conditions

ou ou
Ulo= -z = Ulo-w 70 = 7%
o=-xn

(6.3.13)

o=n

This is equivalent to the physical requirement that the solutions be periodic
in ¢, and givesu = m(m = 0, 1, 2,...). The rest of the analysis differs only
slightly from that just given, and leads to the following particular solutions
of Laplace’s equation

r\ cos me

. [M,,m cosh(x,,m 5)+ Ny sinh(x,,m 5)]Jm(xm -) OS M%P_ 6 3.14)
a a al sin mo
w=u,, = Mmlm(ﬂ) sin 172 COS Mo, (6.3.15)
] I sin me

corresponding to (6.3.2a) and (6.3.2b), respectively, where the numbers
Xmn (m=0,1,2,...;n=1,2,...) denote the positive zeros of the Bessel
function J,(x). Then the boundary value problems are solved by super-
positions of these solutions in the form of double series, with coefficients ob-
tained by expanding the functions

.fEJ:fO(r’(P)’ f,=f,(r,<p), F=F(27(P)
in appropriate double series.

Example. Find the stationary distribution of temperature u in a cylinder of
length | and radius a, with one end held at temperature u,, while the rest of the
surface is held at temperature zero.

The desired solution is found at once from (6.3.8) by setting f, = u,,
fi = 0, and using (5.3.5) to evaluate the integral (6.3.7):

» Sinh (xn ! ; z) Jo(x,, ‘—;)
=2
“ o nZJ sinh (xn 1) XnJ1(%n)
a

(6.3.16)

6.4 The Dirichlet Problem for a Domain Bounded by Two
Parallel Planes

Using the superposition method, we can also solve the boundary value
problems of potential theory for the domain consisting of the layer between
two parallel planes (see Figure 19). Let the boundary conditions be of the
form (6.3.1a), and consider the case of rotational symmetry, where the func-
tions f; and f; appearing in the conditions

om0 =foo  ulmi=f (6.4.1)



150 CYLINDER FUNCTIONS: APPLICATIONS CHAP. 6

depend only on the variable r. A function which is harmonic in the domain
0 < z < [ and satisfies the conditions (6.4.1) can be found by integration
with respect to A of the following particular solutions of Laplace’s equation:

u = u, = [M, cosh Az + N, sinh Az]Jy(Ar), A= 0. (6.4.2)

In fact, assuming that each of the functions f; and f; can be represented as a
Fourier-Bessel integral (5.14.11), we find that the formal solution of the
problem is given by

R sinh A/ — 2) sinh Az
"= fo M) [ for TN =Dy p, 20 M] D, (643)
where
for = L O dr,  p =0, 1. (6.4.4)
zZ
/
0 r
FIGURE 19

The boundary value problem for the half-space z > 0 can be solved in
the same way. In fact, the solution turns out to be

u= fo Mo(Ar)fae =2 da,
where
fio= [ rwon a,

if the boundary condition is of the form

ulz=0 = S(r).

6.5. The Dirichlet Problem for a Wedge

In the case of a wedge-shaped domain, bounded by two intersecting planes
(see Figure 20), the boundary value problems of potential theory can also be
solved by the superposition method, with the help of cylinder functions. To
obtain a suitable set of particular solutions of Laplace’s equation VZu = 0,
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we introduce a cylindrical coordinate system whose z-axis coincides with the
line in which the two planes intersect, and we set

A = io, 0< o< oo,

w =i, 0<t< 4
in the differential equations (6.2.10). Then,
according to Sec. 5.7, the solutions of
these equations become

R = Al (or) + BK;(or), ¢,

® = Ccosh t¢ + D sinh o, ry

Z = Ecosoz + Fsinoz,
where I,(x) and K,(x) are the Bessel FiGure 20
functions of imaginary argument, and
A, B, ..., F are arbitrary constants. Because of the asymptotic behavior of

the functions /;.(cr) and K;.(or) as r — oo (see Sec. 5.11), we must set 4 = 0,
which leads to the following set of particular solutions:

cos o6z
. ’

sin 6z (6.5.1)

0<o<o, 0K 1< o0

U= s, = [M,,cosh t¢ + N, sinh t¢]K;.(or)

We now show how to use (6.5.1) to solve the Dirichlet problem for the
domain between the two planes ¢ = ¢, and ¢ = ¢,.8 For simplicity, suppose
the functions f, = f,(r, z) appearing in the boundary conditions

Ulo=0, = fos p=12 (6.5.2)

are even functions of z, which implies that the same is true of the solution
= u(r, 9, z).* Assuming that each of the functions f, can be expanded in a
Fourier integral

fo =Lor 2) = f ’ &x(o, 1) cos oz do, (6.5.3)

where 1°
2 [
gu(o, 1) = ;‘L So(r, 2) cos 6z dz, (6.5.4)

8 It will be assumed that indices are assigned to ¢,, ¢, in such a way that the domain
under consideration corresponds to the interval ¢; < ¢ < @,.

¢ The case where the f, are odd functions of z is handled in the same way. Then the
solution in the general case is represented as the sum of the solutions of the two simpler
problems with the following even and odd boundary conditions:

Ulo=op = 311, 2) £ folr, —2)].
10 G. P. Tolstov, op. cit., p. 190.
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we try to represent the solution of our problem as a double integral
© ® sinh -
u= J. cos oz do f [Gl(c, T) sinh (¢, — 9)7
0

sinh -
0 (P2 — @17 (6.5.5)

sinh (¢ — @)t
+Gy(o, 1) Sinh (o = <P1)T] Ki.(or) dr,

formed by integrating solutions of the type (6.5.1) with respect to the para-
meters ¢ and 7. Clearly, the functions G,(s, T) must satisfy the relation

&(o, F) = f " Gy(o, VKn(or)ds, 0 <r < oo, (6.5.6)
0

and hence are the coefficients of the functions g,(s, r), expanded as integrals
with respect to the function K;.(or).

In some cases, we can use formula (5.14.14) to find the functions G,(o, ).
In fact, if we write

x=or, E=op, Vxf(x) =gl
(5.14.14) becomes

2@, 1) = n—zz fo + Kio(or) sinh mx dr fo 2(o, p)f“gL") do.  (6.5.7)

The expansion theorem (6.5.7) is valid if g(o, r), regarded as a function of r,
is piecewise continuous and of bounded variation in every finite subinterval
[ry, r2], where 0 < r; < r, < o0, and if the integrals

1/2 )
f |g(o, r)|r* loglr dr, f |g(o, P)|r=2dr (6.5.8)
0 1/2

are finite [cf. (5.14.15)]. Provided that the functions g,(c, r) has these
properties, a comparison of (6.5.6) and (6.5.7) shows that

Gy, %) = 2 = sinh =z f 2,6, 1) %"’) dr, (6.5.9)
0

and then (6.5.5) gives a formal solution of the problem. However, it often
happens that the first of the integrals (6.5.8) is not finite, since g,(o, r)
generally approaches a nonzero limit g,(s, 0) as r — 0. To avoid this diffi-
culty, we introduce the modified functions

&r(o, 1) = g0, 1) — 80,0,  p=12 (6.5.10)

and assume, as is usually the case in physical problems, that the conditions
for applying formula (6.5.7) are satisfied by g¥(s, r). We then have

g¥(o,r) = f " G¥(o, D)Kn(or) d-, (6.5.11)
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where
GH(0, %) = = sinh == f: g, r) w dar. (6.5.12)
On the other hand, it is easy to prove the formula !
% f: Ka(¥) dr = e-%, x>0, (6.5.13)
which implies
(s, 0)e—o" = T% 2,(, 0) fo * Ki(or) dr. (6.5.14)

Adding (6.5.11) and (6.5.14), we find the desired representation of g,(c, r)
as an integral with respect to K;.(cr). Comparing the result with (6.5.6), we
finally obtain

Gy(5, %) = G¥(o, %) + 2 £,(0, 0. (6.5.15)

and then the solution is given by (6.5.5), as before.

6.6. The Field of a Point Charge near the Edge of a
Conducting Sheet

We now illustrate the method developed in the preceding section, by
finding the electrostatic field due to a point charge g located near the straight
line edge of a thin conducting sheet held at zero potential. To avoid com-
plicating the calculations, we assume that the charge g is at a point A4 in the
same plane as the conducting sheet. Choosing a coordinate system whose
z-axis coincides with the edge of the sheet and whose x-axis passes through
the point A (see Figure 21), we represent the potential ¢ of the electrostatic
field as the sum of the potential ¢, due to the source and the potential # due
to the induced charges:

q
=Y + u, = . 6.6.1
v=to bo Vr? + a® + 2arcos ¢ + 22 66D

Then the problem reduces to the special case of the general problem of Sec.
6.5 which corresponds to the following choice of angles and boundary condi-
tions:

¢1=0, ¢3=2m  fi(r,2) =for,2) = — —\#—W‘ (6.6.2)

11 Use (5.10.23) to expand the function e ~* °°s® * in a Fourier integral with respect
to cos T, obtaining

2 «©
e xcoshe — Ef Ki-(x) cos ta dr, x>0,
0

and then set « = 0.
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y

FIGURE 21

Using the integral representation given in Problem 6, formula (i), p. 140,
we find that

2q (® cos oz

_d= 3
B =T dz ! Kolo(r + @), (6.63)

gp(o" r) = -
where Ky(x) is Macdonald’s function. In the present case,

2
2:(0,0) = — =L Ky(ca),

and hence, according to the method of Sec. 6.5, we must first determine the
quantity

G*(, 7) = — 2 < sinh =x f * Kolo(r + a)] — Ko(o@e™ (o oy dr. (6.6.4)
0

3 r

Since the evaluation of the integral in (6.6.4) is quite complicated, we omit the
details and merely give the final result:

G* (0, %) = ;‘g [Ko(oa) — Ki(Ga)]. (6.6.5)
Substituting (6.6.5) into (6.5.15), we obtain
G0, 1) = — :—Z Ki(ca), (6.6.6)
and then formula (6.5.5) gives

_ 4 (" ® cosh (m — @)t : d 6.6.7

u=-— fo cos 6z do fo T — K.(ca)Ki(or) dv. (6.6.7)
The integral in (6.6.7) can be expressed in closed form in terms of ele-

mentary functions, and the final result of the calculations turns out to be

q

u= —
Vr® + a® + 2arcos ¢ + 22

(6.6.8)

2V ar sin ¢ )

2
x(l — —arc tan
T V'r® + a® + 2arcos ¢ + 22
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(we omit the details).*? It follows from (6.6.8) that
_ 2q arc tan 2V ar sin 1¢
nVr? + a® + 2arcos ¢ + z* V2 + a® + 2arcos ¢ + 22
(6.6.9)

Finally, we observe that the surface charge density on the sheet is given by
the quantity *3
1 &

_ra __ 4 JE_I_
pr s (6.6.10)

om0 20NT(r +aP + 22

6.7. Cooling of a Heated Cylinder

As an example of the application of cylinder functions to the nonstation-
ary problems of mathematical physics, we now consider the problem of the
cooling of an infinitely long cylinder of radius a, heated to the temperature
uy = f(r) [r is the distance from the axis] and radiating heat into the sur-
rounding medium at zero temperature. From a mathematical point of view,
the problem reduces to solving the equation of heat conduction

ou _ 2
i kVau, 6.7.1)
subject to the boundary condition
ou
and the initial condition
Uli=o = uo = f(r) (6.7.3)

where k, ¢, p, Aand 4 = A/k have the same meaning as in Sec. 2.6. Separating
variables in (6.7.1) by writing u = R(r)7(¢), we find the equations

/A 1d ( dR
b'd—t+xT—~0, 7‘%("%

where —x%? is the separation constant and b = cp/k, with solutions

)+x2R=O,

R = AJy(xr) + BY,(r), T = Ce~**th
12 It should be noted that in the present case, the formula
Ky[o(r + a)] = ;—2‘_ f Ki(ca)K.(or) dt
)

allows us to derive the solution (6.6.7) without recourse to the general method of expan-
sion as an integral with respect to the functions Ki.(cr). To obtain this formula, set
¢ = = in formula (42), p. 55 of the Bateman Manuscript Project, Higher Transcendental
Functions, Vol. 2.

13 G. Joos, op. cit., p. 267.
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Since Jo(xr) — 1, Yo(xr) — co as r — 0, and since R must satisfy the physical
requirement of being bounded on the axis of the cylinder, the constant B
must equal zero.

It follows from (6.7.2) that the parameter x must satisfy the equation

hJy(xa) — »Jy(xa) = 0. (6.7.4)
If we write x = xa, then (6.7.4) becomes
haJy(x) — xJy(x) = 0, (6.7.5)

which has only real roots, symmetrically located with respect to the origin
(see Sec. 5.13). Let0 < x; <--- < X, <--- be the positive roots of equation
(6.7.5). Then the admissible values of the parameter x are x, = x,/a, and
hence the appropriate set of particular solutions of (6.7.1) is

r
u=u,= MnJo(xn a)e"‘ﬁt"‘z”, n=12...
Superposition of these solutions gives

d r
‘= gl MnJo(xn z)e"‘ﬁ"“%, (6.7.6)

where, because of the initial condition (6.7.3), the coefficients M, must be
chosen to satisfy the relation

fr) = 2 M,,Jo(x,, g) 0<r<a 6.1.7)

This is just the problem of expanding f(r) in a Dini series, which can be solved
by using formulas (5.14.9-10). Thus we have

2 a y
M = e + J%(xn)]ﬁ o ('Vo(xn ) a (6.7.8)

and the solution of our heat conduction problem is given by the series (6.7.6),
with these values of the coefficients.

6.8 Diffraction by a Cylinder

Finally, we give an example illustrating the application of Bessel functions
of the third kind. Consider the diffraction of a plane electromagnetic wave
by an infinite conducting cylinder of radius a. Let (r, ¢, z) be a system of
cylindrical coordinates such that the z-axis coincides with the axis of the
cylinder and the angle ¢ is measured from the direction of propagation of the
incident wave. We assume that the time dependence is described by the
factor e'“!, where o is the angular frequency of the incident radiation, and
that the electric vector of the incident wave is parallel to the axis of the
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cylinder. Then the problem reduces to finding the complex amplitude of the
secondary field E satisfying Helmholtz’s equation

18 0E\ 18&E
rer(5F> Figg T RE=0, (6.8.1)

the boundary condition
E|r=a + Eoe—ikacos =0 (6.8.2)

and the radiation conditions

E= 0( \/_) lim \/,( + zkE) (6.8.3)

where k = o/c is the wave number, and E, is the amplitude of the incident
plane wave.*

Applying the method of separation of variables, we find that the parti-
cular solutions of (6.8.1), which must also be periodic in ¢, are of the form

COs ny
sin ng’
where H{V(kr), H{®(kr) are the Hankel functions introduced in Sec. 5.6. It
follows from the symmetry condition that E is an even function of ¢, and
hence we need only consider solutions containing cos ng. Moreover, examin-
ing the asymptotic behavior of the Hankel functions at infinity, we see that
the radiation conditions will be satisfied only if M, = 0 (no incoming waves).
Therefore the solution of our problem must have the form

E = E, = [M,H®(kr) + N,H®(kr)] n=012..., (68.4)

E = 2 N,H@(kr)cos ngp. (6.8.5)

n=0

It follows from the boundary condition (6.8.2) that

> NH@(ka) cos ne + Ege™"°® = 0, (6.8.6)
n=0
Setting z = ka and t = —ie*® in formula (6.8.4), we obtain
e kacos o = Ji(ka) + 2 > (—i)*Ju(ka) cos ng, (6.8.7)
n=1

which, together with (6.8.5), implies
NoH{(ka) = —EoJo(ka), — N.H;P(ka) = —2Eq(—i)"J(ka).

Therefore the required solution is given by

E= [ff?z({((:)) HGkr) +2 2 (- }fé,’(‘,‘jf,) H@(kr) cos mp]. (6.8.9)

14 See A. N. Tikhonov and A. A. Samarski, Differentialgleichungen der Mathe-
matischen Physik, VEB Deutscher Verlag der Wissenschaften, Berlin (1959), p. 497.
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2.10 Hypergeometric Functions



9

HYPERGEOMETRIC FUNCTIONS

9.1. The Hypergeometric Series and Its Analytic Continuation

By the hypergeometric series (already introduced in Sec. 7.2) is meant the
power series

i (‘l)k(ﬁ)k 2k, ©9.1.1)

where z is a complex variable, «, B and y are parameters which can take
arbitrary real or complex values (provided that y ¢ 0, —1, —2,...), and the
symbol (}), denotes the quantity

Mo=1, Me=0%0 641 0tk=1, k=12 ...
T(V) .
If either « or B is zero or a negative integer, the series terminates after a finite
number of terms, and its sum is then a polynomial in z. Except for this case,
the radius of convergence of the hypergeometric series is 1, as is easily seen by
using the ratio test.!
The sum of the series (9.1.1), i.e., the function

< (kB
Flo, B;v;2) = k 1, 9.1.2
(o 8575 2) ,Zo ot = < .12
! Writing
_ (a)k(p)k k
h e = (Vik! i
we have Up 41 @+ k@ + k)

z|—> |z]

Uy ( + kA + k)
as k — o, so that the hypergeometric series converges for |z| < 1 and diverges for
z| > 1.

238
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is called the hypergeometric function, but this definition is only suitable when
z lies inside the unit circle. We now show that there exists a complex function
which is analytic in the z-plane cut along the segment [1, o] and coincides
with F(a, B;v; 2) for |z] < 1. This function is the analytic continuation of
F(«, B; v; z) into the cut plane, and will be denoted by the same symbol. To
carry out this analytic continuation, we first assume that Rey > Ref > 0
and use the integral representation

®) I'(y) ,a L+k(] — f)v=B-1y, k=0,1,2,.

@ TETG -8 Jo
implied by the formulas of Sec. 1.5. Substitution of (9.1.3) into (9.1.2) gives

., (9.1.3)

Fla, B5v;2) = F(B)g((YY)— 5 . z (“)"z fo (e-1tE(L — p)YB-1 gt
—_ F(Y) -1 — Yy-B-1 (a)lc K
- T |, P o Z (zr),

where, as usual, reversing the order of summation and integration is justified
by an absolute convergence argument.? According to the binomial expansion
(cf. footnote 17, p. 121),

Z (“)"( =1 -12)" 0<t<1, |2z <1,
and hence F(«, B; v; z) has the representation

Flo, B5v;2) = Tt Y1 = P11 — tz)" % dr
B F@re -8 Jo ’
Rey >ReB >0, |z] <1. (9.1.4)
The next step is to show that the integral in (9.1.4) has meaning and repre-
sents an analytic function of z in the plane cut along [1, o]. If z belongs to
the closed domain

e<|z—-1| <R larg(l — 2)| < = = 3, 9.1.5)

where R > 0 is arbitrarily large and p > 0, 8 > 0 are arbitrarily small, and
if 0 < ¢ < 1, then the integrand

Y1 = B — gz)

is continuous in ¢ for every z and analytic in z for every ¢, and we need only

2 In fact, if Rey > ReB > 0 and |z| < I, then

@ 1
Z |Iz'kf [£8-14k(1 — £)~ B-1|dr < Z ( a‘)”zl"f tReB-1+k(] — f)ReY-ReB-1 gy
= 0

_ T(Re )T (Re (v —
B T'(Re )

B) F(jul, Re B; Re v [2]).
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show that the integral is uniformly convergent in the indicated region.® But
this follows at once from the estimate

Itﬁ—l(l — t)Y—B—l(I — tz)—tx| < MtRe B—l(l _ t)Re Y-Re -1

where M is the maximum value of the continuous function |(1 — z)| ~* for ¢
in [0, 1] and z in the domain (9.1.5), and from the fact that the integral

Mfl tRB B—l(l — I)Re Yy-Re -1 dt
0

converges for Rey > Re > B > 0. Therefore the condition |z| < 1 can be
dropped in (9.1.4), and the desired analytic continuation of the hypergeo-
metric function is given by the formula

I'y) YLl 81 — fo)-c
MG ), £ e

Rey > Rep >0, |arg(l — z)| <= (9.1.6)

Fo, B5v;2) =

In the general case where the parameters have arbitrary values, the analy-
tic continuation of F(e, 8; v; z) into the plane cut along [1, o] can be written
as a contour integral obtained by using residue theory to sum the series
(9.1.2).* A more elementary method of carrying out the analytic continuation,
which, however, does not lead to a general analytic expression for the hyper-
geometric function in explicit form, involves the use of the recurrence rela-
tion®

Yy + DF(e, B3 v;2) = v(y — « + DF(e, B + 157 + 2; 2)

+oly = (r = B2IF + LB + Ly + 2,2, &P

By repeated application of this identity, we can represent the function
F(x, B; v; z) with arbitrary parameters (y # 0, —1, —2,...) as a sum

FooB37i2) = > e 573 DFx + 5,8 + piy + 2032), (9.18)

s=0

where p is a positive integer and the ag,(«, B; v; z) are polynomials in z. If we

3 E. C. Titchmarsh, op. cit., pp. 99-100.

4+ E. T. Whittaker and G. N. Watson, op. cit., p. 288.

5 To verify (9.1.7), we substitute from (9.1.2), noting that the coefficient of z* in the
right-hand side of (9.1.7) becomes

(@)@ + 1 (@ + D@ + 1) (@ 4+ Di-aB + D=1

Woet D T g r o BTk )
O e 0wt gkl
_ (@)e(B)i (@) (B

N Y+ +k+1)=yx+ I)W’
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choose p so large that Re > —p, Re(y — B8) > —p, then we can use
formula (9.1.6) to make the analytic continuation of each of the functions
F(o + 5,8 + p;y + 2p; z) appearing in the right-hand side of (9.1.8). Sub-
stituting the corresponding expressions into (9.1.8), we obtain the desired
analytic continuation of F(x, B; v; z), since the resulting function is analytic
in the plane cut along [1, co] and coincides with (9.1.2) for |z] < 1.

The hypergeometric function F(x, 8;y; z) plays an important role in
mathematical analysis and its applications. Introduction of this function
allows us to solve many interesting problems, such as conformal mapping of
triangular domains bounded by line segments or circular arcs, various prob-
lems of quantum mechanics, etc. Moreover, as will be seen in Sec. 9.8, a
number of special functions can be expressed in terms of the hypergeometric
function, so that the theory of these functions can be regarded as a special
case of the general theory developed in this chapter (cf. footnote 20, p. 176).

9.2. Elementary Properties of the Hypergeometric Function

In this section we consider some properties of the hypergeometric function
which are immediate consequences of its definition by the series (9.1.2).6 First
of all, observing that the terms of the series do not change if the parameters «
and B are permuted, we obtain the symmetry property

K, B;v;2) = FB, «;v; 2). (9.2.1)
Next, differentiating (9.2.1) with respect to z, we find that

S (“)k(ﬁ)k S (“)k + I(B)k +1 0k
Z Z (Y)k +1k!

d . —_
‘EF(a’B’Y9Z)'—

and hence”
d B
aF(oc,ﬁ;y;z)=:—F(a+l,B+l;‘Y+1;2). 9.2.2)
i

Repeated application of (9.2.2) leads to the formula

" C _(“)m(ﬁ)m . . _
a?nF(aaBsY’z)_m_F(a'}'m’B'i'm’Y+m’z)9 m—1,2,...

(9.2.3)

¢ It follows from the principle of analytic continuation that all the formulas proved
here, under the assumption that |z| < 1, remain valid in the whole domain of definition
of F(x, B;y;2).

7 Cf. formula (7.12.25), p. 197.
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From now on, to simplify the notation, we write

Fle,B;v;2)=F,  Fot1,85v;2) = Fla £ 1),
Flo,p + L;yv;2)=FB £ 1), FoB;vy+1;2)=Fy+1).
Then the functions F(« + 1), F(8 + 1) and F(y * 1) are said to be contiguous
to F. The function F and any two functions contiguous to F are connected

by recurrence relations whose coefficients are linear functions of the variable
2.2 Among the relations of this type we cite the formulas

F—ae—BF+ul —2)Fa+1)-(-PBFR-1)=0, (924
(y—a—DF+aFa+1)—(y—DFy—1)=0, (9.2.5)
Y1 —2)F —yFla — 1) + (y — B)zF(y + 1) =0,  (9.2.6)

which can be verified by direct substitution of the series (9.1.2). For example,
substituting (9.1.2) into (9.2.4), we obtain

Gr—e=PF+al —2)Fe+1)-(G-BFE-1

< (“)k(B) (0C + l)k(B)k
=2, [ = N oy
0 (@B — )k (“ + Dy 1(Be—1
S W sk — 1) I

=Z(°‘)k(ﬁ)k1 —a—BB+k-D+@+bB+k-1

(k! )
— (=B - D - (¢ +k — Dkl* =

and similarly for (9.2.5-6). Three other formulas are an immediate conse-
quence of (9.2.4-6) and the symmetry condition (9.2.1):

G-—a—PBF+B0-2FR+1) - (—-9Fx—-1)=0 (927

Gh—B-DF+BFE+ 1D —-(-DFAy—-1) =0 (928

Yyl —2)F—yFB -1+ (y —)zF(y + 1) = 0. 9.2.9)

The rest of the recurrence relations can be obtained from (9.2.4-9) by

eliminating a common contiguous function from an appropriate pair of

formulas. For example, combining (9.2.5) and (9.2.8), or (9.2.6) and (9.2.9),

we obtain
(¢ — B)F — aF(a + 1) + BFB + 1) =0, (9.2.10)

@—=PA=-2)F+ (K —Fla—-1) —(—-PFB—-1)=0, (9.2.11)
and so on.®

8 Obviously, the total number of such relations is

(g) = 15.

® The list of all fifteen recurrence relations involving F and its contiguous functions
is given in the Bateman Manuscript Project, Higher Transcendental Functions, Vol. 1,
p. 103.
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Besides the recurrence relations just given, there exist similar relations
between the function F(x, B; v; z) and any pair of functions of the form
Flo + I,B + m;y + n;z), where I, m and n are arbitrary integers. Some
simple relations of this type are°

Fla, B;v52) — Flo, B3y — 15 2)

afz
= ———Fa+ LB+ 1;y+1;2), (9.212
o v— (o B Y 2), ( )
Flo, B+ 1;v;2) — Flo, 8575 2)
=%F(a+l,ﬁ+1;y+l;2), (9.2.13)

Flo,B+ 15y + 152) — Flx, B;v; 2)

=Bz o : :
=T fetLE+Ly+20, 0214

Fo— 1,8+ 1;v;2) — Fl, B; v; 2)
- (ii%ﬁ?m,ﬁ + Ly 4132, (9.2.15)

Formulas (9.2.12-15) are proved by direct substitution of (9.1.2), or by re-
peated use of the relations between F(«, B; v; z) and its contiguous functions.

Finally, we recall from Sec. 7.2 that the hypergeometric function
u = F(«, B; v; z) is a solution of the hypergeometric equation

z1 —2u" + [y — (@ + B + Dz]u’ — «Pu =0, (9.2.16)

which is analytic in a neighborhood of the point z = 0.

9.3. Evaluation of lim F(x, 8;y;z)for Re(y —a« — B) >0

z—| —

In developing the theory of the hypergeometric function, it is important
to know the limit as z — 1 — of the function (9.1.2), where the parameters
satisfy the condition Re (y — « — B) > 0.}! Suppose that besides this condi-
tion, Rey > Re p > 0 as well. Then the desired result can be obtained by
passing to the limit behind the integral sign in (9.1.6), which gives

T 1
zl_i}il’l_ F(a’ B’Y; Z) = m . t-1 (1 - t)V_“—B—l dt,

10 Formula (9.1.7) is also a relation of this type.
11 Jt can be shown that if this condition is not satisfied, then, with certain exceptions,
the sum of the hypergeometric series becomes infinite as z — 1—.
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or, in view of (1.5.2, 6),

lim Fo,B5vi2) = p2n 2= 8 ©3.1)

where, for the time being, we assume that
Re(y —a—B) >0, Rey > ReB > 0. 9.3.2)

To justify the passage to the limit, it is sufficient to prove that the conditions
(9.3.2) imply that the integral (9.1.6) is uniformly convergent for 0 < z < 1.
To this end, we note that

l-1<|1 -1z <1
for0 < z<1,0<t<1,and hence

[271(1 - P11 - 12)7% < BBl — MY (9.3.3)
where
_fRe(y —a—p) if Rea >0,
Re(y — B) if Rea < 0.

The estimate (9.3.3) shows that the integral (9.1.6) is uniformly convergent
for 0 < z < 1, since the integral

1
f {Re B—1(l _ t)A—l dt,
0
which majorizes (9.1.6), is convergent if the conditions (9.3.2) hold.

We now show that the second of the conditions (9.3.2) is not essential.
Suppose that instead of (9.3.2), the parameters of the hypergeometric func-
tions satisfy the weaker inequalities

Re(y —a«a—B)>0, Re(y —B) > —1, Ref > —1.

Then the restrictions under which we proved (9.3.1) are satisfied by each of
the hypergeometric functions in the right-hand side of the recurrence relation
(9.1.7). It follows that

; ey Y-+ TG+ T —a—B+ 1

AP = T Ny = et AT — B+ D)
B Ity + 0y — « — B)

Yy+ DIy —a+ DIy —=B + 1
IO — = — B)
Iy — Ty — B)
which is just the previous result. Repeating this argument, we can prove by
induction that

+

1l

F'(Iy — « — )
T — Tty = 8 ©-34)

lim Fa, B;y;2) =
21—
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provided only that Re (y — « — @) > 0. Formula (9.3.4) plays an important
role in the derivation of various relations satisfied by the hypergeometric
function.

9.4 F(«, B; v; z) as a Function of its Parameters

In this section we show that the function
Sl Bsv;z) = r( ) Ko, B5v; 2) 9.4.1)

is an entire function of «, B and v, for fixed z. If |z| < 1, the proof is an im-
mediate consequence of the expansion

flo, B v; 2) = 2 F(g)l(%kv 2 z] <1, 9.4.2)
obtained by substituting (9.1.2) into (9.4.1). In fact, since the terms of the
series (9.4.2) are entire functions of «, B, v, and since the series is uniformly
convergent in the region |a| < 4, |B| < B, |y| < C (where 4, B and C are
arbitrarily large),*? it follows that f(«, 8; v; z) is an entire function of its para-
meters.

Now let z be an arbitrary point in the complex plane cut along [1, o], and
consider the formulas

Sl Bsy;2) = W)I“T—-E)f P — PN — t2) " d,
Rey > Rep >0, [arg(l —z)| <,
Sl B3v;2) =v(r —a+ Df(@ B + 15y +'2;Z)
tofy =@ = Pfle+ LB+ Ly +2;2),

which are the analogues of (9.1.6) and (9.1.7). Since the integrand in the
right-hand side of (9.4.3) is an entire function of the parameters «, 3, y for any
tin (0, 1), and since the integral is uniformly convergent in the region

(9.4.3)

(9.4.4)

x| <4, §<ReB<B, §<Re(y—-B)<C

12 Use the criterion given in footnote 4, p. 102, noting that if
_ @@,
TG+ bk “
then
less| _ |+ R@ + ) | _ (4 + K)B + k)
[ | G +d+h |~ &k=-00d+h
for |z] < 1 and sufficiently large k.

lzl <g <1
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where 8 > 0 is arbitrarily small, it follows that f(«, 8;y; z) is an analytic
function of its parameters in the region

|| < o, Rep >0, Re(y —p) > 0.

By repeated application of the recurrence relation (9.4.4), we can represent
the function f(«, B; v; z) as a sum

f@ 83752) = 2 bulos B3 v; Df (0 + 5,8 + piy + 2p52), (9459)

where the bg,(«, B; v; z) are polynomials in «, B, v and z, and p is a positive
integer. As just shown, each term of this sum is an analytic function in the
region || < oo, Rep > —p, Re (y — B) > —p, and hence f(«, B; v; ) is an
entire function of its parameters. It follows that for fixed z in the plane cut
along [1, oo], the hypergeometric function F(a, B; v; z) is an entire function
of « and B, and a meromorphie function of v, with simple poles at the points
v=0,-1,-2,...

9.5. Linear Transformations of the Hypergeometric Function

Consider the class of all fractional linear transformations

, _az+b
T cz+d

carrying the points z = 0, 1, co into the points z' = 0, 1, co chosen in any
order. It is easy to see that besides the identity transformation z’ = z, this
class consists of the following five transformations:

We now derive various linear relations connecting the hypergeometric func-
tions with variables z and z’. Relations of this kind are among the most im-
portant in the theory of the hypergeometric function, and are known as linear
transformations of the hypergeometric function. In particular, these formulas
enable us to make the analytic continuation of F(«, B; v; z) into any part of
the plane cut along [1, o0].}3

We begin by deriving a relation which is useful in the case where one
requires the analytic continuation of the hypergeometric function into the
half-plane Re z < 1. Suppose z belongs to the plane cut along [1, o], and
assume for the time being that Rey > Re 8 > 0. Then, using the integral

13 The theoretical possibility of such an analytic continuation has already been
proved in Sec. 9.1.
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representation (9.1.6), and introducing the new variable of integration
s = 1 — ¢, we find that

o, Bsyv;2) = IT[:}TII‘%Y)T{%) 01 STTETHL — $)PY1 — z + s2)7% ds
= — —“i_ ! ~1(1 _ oyY-B -1(1 __ or
(-2 @y = ) fo s8I — s 8 Y1 — s2') ds,
where
’=Y—B’ ZI=Z_Z_1’

and our assumptions imply that Re y > Re B’ > 0, while z’ belongs to the
plane cut along [1, o©0].1* According to (9.1.6), the expression on the right is
just

(I = 2)7*F, B'; v; 2),
and hence

Fo8ivid) = (L= Doy = Bivi =) larg(1 = 2)] <=
(9.5.1)

Formula (9.5.1) was proved under the temporary assumption that
Rey > Re B > 0, but, as we know from Sec. 9.4, after dividing by I'(y), both
sides become entire functions of $ and v.'® Therefore, by the principle of
analytic continuation, (9.5.1) remains valid for arbitrary 8 and vy, with the
exception of the values y = 0, —1, —2, ... for which F(«, 8; v; 2) is not de-
fined. Moreover, if Re z < 4, then

z
z—1

<1,

and the hypergeometric function in the right-hand side of (9.5.1) can be re-
placed by the sum of the hypergeometric series, i.e., (9.5.1) gives the analytic
continuation of F(«, 8; v; z) into the half-plane Re z < 3.

Permuting « and B in (9.5.1), and*using the symmetry property (9.2.1),
we arrive at the relation

Flo, B;y;2) = (1 — Z)_BF(Y - B; Y;Z—i—l)’ larg (1 — 2)| < =,
9.5.2)

which can also be used to make the analytic continuation of the hypergeo-
metric function into the half-plane Re z < 4. To obtain another important

14 Note that under the transformation z’ = z/(1 — z), the plane cut along [1, «]
goes into itself.

15 The expression F[f(x, B, v,...), &, B,¥,...),...] is an entire function of
o, B,Y,... if F, f, g, ... are entire functions of their arguments.
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result, we perform the transformations (9.5.1) and (9.5.2) consecutively, ob-
taining

Flo B3v32) = (1 = 27(1 = ==

)R = a v - 8w 2,

larg (1 — 2)| < =,
or
Flo, B5v;2) = (1 — 20" BFy — &,y — B v; 2), 9.5.3)
larg (1 — 2)| < .

To derive a relation between the hypergeometric function with variable z
and the hypergeometric function with variable z’ = 1 — z, we use a general
method from the theory of linear differential equations. First we note that
the general solution of the hypergeometric equation

zZ(l —2w" + [y — (@ + B8+ Dzl — aPu=0 9.5.4)
can be written in the form¢
U= AyF@, B5752) + A (L — v+ o 1=y + 832 - 3 2),
larg(1 — 2)] <=, |argz| <=, v #0,+1, £2,... (9.5.5
Under the transformation z’' =1 — z, the domain |arg(l — z)| < =,
|arg z| < = goes into the domain |arg (1 — z')| < m, |arg z’| < =, and equa-
tion (9.5.4) goes into the hypergeometric equation with parameters o’ = «,
B"=8,¥ =1+ a + B — y. Therefore the expression
U= BFo,B;1 +a+p—v;1—2)+ By(l —2z)¥"%8
XF(Y—O(,Y—-ﬁ;I —"Z_B'*'Y;l —'Z)y (9'5'6)
larg (1 — 2)| <=, |argz| <=m, a+B—y#0, +1, +2,...

is also a general solution of equation (9.5.4). In particular, this implies the
existence of a linear relation of the form

Fla, B5v;2) = G, B3 1 +a+ B —v; 1 — 2)
+ C(1 =2 PFy —o,y = Bl —a =B +v;1 —2),
a+B—v#0, x1, £2,...
To determine the constants C; and C,, we assume temporarily that

Re (x + B) < Rey < 1, and then take the limit of the last equality, first as
z—1— and then as z— 0+. Using (9.3.4), we obtain

_ IOty — o« — B).

Py —l'(y — B)
PQ+oa+p -9l -7 ~TAd-a-B+d -y _,
P +a—-yIA+B8-17) z P — ol - B) '

16 See Sec. 7.2, noting that by the principle of analytic continuation, formula (7.2.6)
remains valid in the whole domain |arg (1 — 2)| < =, |arg z| < m.

G

G
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It follows that
c. _ Dl + 8 — v)
2 TOI'E

after some simple calculations involving the identity (1.2.2). Therefore the
required formula is

I'I'y — « —
Flo,8132) = R o = D Fa B 1+ o+ B = 131 = )
F'MT( + B —v)
NGNS
X Fly —oa,y =851 —a =B +v;1 —2),
largz| < =, |arg(l —z)| <=, a«+B—v#0,+1,+2,...

+ (1 —z)>*? 9.5.7)

To get rid of the superfluous restrictions imposed on the parameters «, 8
and vy, we note that after multiplication by sin n(y — « — B8)/I'(y), both sides
of (9.5.7) are entire functions of the parameters.’” Therefore, according to the
principle of analytic continuation, the relation (9.5.7) is valid for all values of
the parameters except those for which « + 8 — vy =0, +1, +2,... For-
mula (9.5.7) gives the analytic continuation of the hypergeometric function
into the domain |z — 1] < 1, larg(1 — 2)| < .

The remaining relations between the hypergeometric functions with
variables z and z’ can be obtained by combining the formulas just derived.
For example, consecutive application of (9.5.1) and (9.5.7) leads to the rela-
tion 8

o= (1 — -2 LOOT@ — ) ) ..
F(%B,Y,Z)—(l Z) mF(a,Y_ﬁ’l+a_B’l——-Z)
POl (= — B) ( Rl — .
e O R U “t 87

larg(=2)| < m, Jarg(l—2z)| <=m, «—B#0, +1, +2,... (9.5.8)
which enables us to make the analytic continuation of F(«, 8; v; z) into the
domain |z — 1| > 1, |arg(l — z)| < =. Then, combining (9.5.8) with
(9.5.1-2), we obtain

+(1—-2)"

Fo, 819 = (-9 g Fla 1 4o — vl + 0 = 83 )

s TG — B Ctas_ D)
+ D ST F(B 1 + B — il + B — i)

larg(—=2)| <= Jarg(l —2z)| <m «a—P#0, +1,+2,..., (9.59)

17 Here we again make use of (1.2.2).

18 Note that under the transformation z’ = z/(z — 1), the domain |arg (—z)| < m,
|arg (1 — z)| < = goes into the domain |arg z’| < =, |arg (1 — z’)| < w, which guaran-
tees that (9.5.1) and (9.5.7) can be applied consecutively.
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which gives the analytic continuation of F(«, 8; v; z) into the domain |z| > 1,
larg (1 — z)| < =. Finally, consecutive application of (9.5.7) and (9.5.1)
gives

oy — g LONGr — 2 — B)
Fo,B5v;2) =z mF

I+ 8 —v)

(a,1+a—y;l+a+ﬁ—v;z;1)

+ 21 — Z)rmes

ININE)
xF(y—a,l—m;l-{-y—a—B;Z—;—l),
largz| <=, Jarg(l —z)| <®,, a+P—v#0,+1,+2,..., (9.5.10)

which can be used to make the analytic continuation of F(«, B; v; z) into the
domain Re z > 4, |arg (1 — 2)| < =

The problem of the analytic continuation of the hypergeometric function
into the z-plane cut along [1, oo] is solved by using formulas (9.5.1-3) and
(9.5.7-10). Some exceptional cases, where these formulas are not applicable,
will be considered in Sec. 9.7.

9.6. Quadratic Transformations of the Hypergeometric Function

The relations between hypergeometric functions derived in the preceding
section are valid for arbitrary values of the parameters «, B, y (apart from
certain exceptional values). One can also consider relations where the para-
meters satisfy certain constraints; although less general, relations of this type
are also useful in making various transformations and carrying out analytic
continuation. Among such relations, the most interesting involve hypergeo-
metric functions with two arbitrary parameters. As will be seen below, they
also contain expressions like

1+Vi-z 1-V1-: -4z
2 1+V1i—z (1-272

and hence are called quadratic transformations of the hypergeometric function.
As an example of a formula belonging to this class, consider the relation

1 - V1 —z)
2 T 9.6.1)
larg(l — 2)| <®, a+B+3+#0, —-1,-2,...,

which can be proved as follows: The left-hand side is a solution of the hyper-
geometric equation (9.5.4) with parameter y = « +  + %, which is analytic
in the domain |arg (1 — z)| < =. Under the substitution!®

z'=%(l—\/1—z),

F(a,ﬁ;a+B+%;2)=F(2a,2ﬁ;a+ﬁ+%;

19 By VT — z is meant the branch which is positive for real z in the interval (0, 1).
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this equation goes into an equation of the same form with parameters
o =2a B =28, Y=a+B+13

and the domain |arg (1 — z)| < = goes into the domain Re z’ < 4, which is
part of the domain |arg (1 — z')| < =. Butaccording to (7.2.6), the hypergeo-
metric equation cannot have two linearly independent solutions which are
analytic in a neighborhood of the point z = 0, and hence there must exist a
relation of the form
Flo, B0+ B+ 3;2) = AF(2a, 2850 + B + %;*I_Z),

where 4 is a constant. Setting z = 0, we find that 4 = 1, thereby proving
(9.6.1).

A large number of other relations of the same type can be deduced by
applying the linear transformations of Sec. 9.5 to formula (9.6.1) and changing
the independent variable or the parameters. For example, using (9.5.3) and
(9.5.1) to transform the right-hand side of (9.6.1), we find that

Flo, B30 + B + 3;2)

=(1+\gl_—z

% ~z—1)
VI=—z+1
larg(1 —z)] <®, a+B8+3%#0,—-1,-2,..., (9.6.2)

-2a
) F(2oc,ot—ﬁ+—21;oc+{3+-%

Flo,B;0 + B + %;2)

=(1+«/m

. 1- VE)’

2
larg(1 = 2)| <=®, a+B+3#0,—-1,-2,... (9.6.3)

Yo—a—B
) Fla—g+4.8-a+ba+p+y

Using (9.5.1) to transform the left-hand sides of (9.6.1) and (9.6.2), and then
making the substitution

z
z—1

— Z, a+ B+ 31—y,
we obtain two other useful relations:

F(a,a+%;“{;z) = (1 —z)“"F(Za, 2'Y— 20 — I’Y;%_E'\/ll——),
— 2

larg (1 — 2)| < =, (9.6.4)

1+ VI =2\~ 1-vV1—z
(o & + %575 2) > % 20 — IV

larg (1 — 2)| < = (9.6.5)
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Finally, using (9.5.3) to transform the left-hand sides of (9.6.1) and (9.6.2),
and then making the substitution

a—>a—3% BB -3
we arrive at the relations
Fo, B0+ B — %5 2)

Y g
2 )
larg(l —2)| <® a«a+B—3%+#0 —-1,-2,..., (9.6.6)
F(a’B;a+B_12';z)
R Y A T
—\/l—z( 2 )

= F(2a—1,2 —lL;a+B—1;
V1=z ¥ P2

Vi—z-1
xF(z —La—f+ 30+ —l;——_),
* i PVi—z+1

larg(l = 2)] <m, a+B—3%#0,—-1,-2,,.. (9.6.7)
It is interesting to note that formulas (9.6.2, 5, 7) continue the corresponding
hypergeometric functions into the plane cut along [1, c]. In fact,
1-vV1-—2z
1+VI-z
if |arg (1 — z)| < =, and hence the hypergeometric function in the right-hand
side of each of these formulas can be replaced by the sum of the corresponding
hypergeometric series.
Further results can be obtained by taking inverses of the formulas just
derived. For example, inversion of (9.6.1-3) gives°
Flo, B5 3 + B + 1}; 2) = F{3o, 38; 3@ + B + 1);42(1 — 2)},
Rez< 4, $a+B+1)#0,-1,-2,..., (9.6.8)

<1

Flo, B0 — B + 15 2)
— - F{fed e+ D-Bia -+ - o)
lzZ] <1, a=B+1%£0,—-1,-2,..., (9.69)
Flo,1 —a;v;2) =1 =2 'FE (v — 0 3 (v + o = 1);y; 42(1 — 2))
Rez < 4. (9.6.10)

20 In particular, (9.6.8) is obtained from (9.6.1) by making the substitution

— V1=
200 —oa, 28—, 1——l—%—>z.

2
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Moreover, combining these formulas with the linear transformations given in
Sec. 9.5, we can obtain still another group of formulas. For example, apply-
ing the transformation (9.5.7) to the right-hand side of (9.6.8) and making the
substitution

o—> 20, [ —26, z—>1 ;Z,
we find that?!
F(2oc, 28 0+ B+ %,1——;—5)
_Tle+8+PHr@) D12
"D+ )@+ %) Fe Bi 32 29 9.6.11)
T (-1
PG %‘2;1,2) D a4 4,8 + 135 29,

larg(1 + 2)] <m a+B+3%#0,—1,-2,...

Formula (9.6.11) plays an important role in the theory of spherical harmonics.
For example, the relation (7.6.9) is an immediate consequence of (9.6.11).

We conclude this section by deriving a few formulas of a more compli-
cated nature. The first result is

Fa, 8; 2B; 2)

e B O e e I

larg(1 — 2)] < m, 28 # —1, =3, =5,..., (9.6.12)

which is proved in the same way as (9.6.1), by noting that under the change
of variables

, (1 - \/1Tz)2’

B (1 + V1 —~z)“2°‘v
1+VI-z ’

2

equation (9.5.4) goes into the hypergeometric equation with the new para-
meters

«=a B=a—B+} Y =p+h
Since the verification of this fact is quite tedious, we supply some intermediate
21 In the course of the derivation, it is convenient to assume temporarily that

larg (1 — z)| < w, Rez > 0. The result can then be extended the whole domain
larg (1 + z)| < = by using the principle of analytic continuation.
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steps which will serve to keep the reader on the right track during the course
of the calculation:

ZZI_(\/Z'—1)2 dz _ (V7 +1)°
vz +1) 20VZ —1)
u= Wz + 1)y, (9.6.13)

du _dz du (V7 + 1)=+2

PN ) dv
=T = T =) [aw+ VZ(VZ + D 0619

z(1 — 2) Z;;
- vE7 e s 1 -3 s vavT £ 0 8]

+\/—(\/z+l)[(oc+l+ )d,+\/(\/z+1) ]}

9.6.15)

After using (9.6.13-15) to write the hypergeometric equation satisfied by u,
we multiply the result by

2V7

1 - V7 ,
VZ'(1 + V7))
obtaining
1 - V7 l\/z +1
+ V7 - \/?)[(a +14 2\/;) Z”, FVIWT 4 ) ,2]
L Y741 2V7 =T 1y A
T [ —(a+s+1)m][au+x/z(x/z+1) ]
«B(1 — V7 b0
\/z(1+\/z) ’

which can now be reduced quite easily to the hypergeometric equation
’ ’ d2 ’ d
P01 — ) an+ (B+D — Qe — B+ —ala— B+ Ho=0,

satisfied by ». Making the substitution

1—\/1—2_)2
14+V1—z:
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in (9.6.12), we obtain the formula

. . 4Z — 20 — . . 52
F{o 83285 oy gpf = (L+ 9°Faa = B+ 118 + 4.2,
|zl <1, 2B # —1, =3, =5,... (9.6.16)
Our final result is
AN z \?
Fou 6269 = (1-3) " Ffdod + D + 4 (755)
-z
larg(1 = 2)] <=, 28 # —1, =3, =5,..., (9.6.17)
which can be derived as follows: Applying the transformation (9.5.1) to the
right-hand side of (9.6.9) and replacing g by « — B + %, we obtain
4z
_ . © ) — - 1y, . . R
Fawu =6+ 38+ 40 = (L + 9 Fllo i + Dip + i o)
lz] <1, 2B # —1, =3, -5,... (9.6.18)
Then, comparing (9.6.13) and (9.6.15), we find that

Can. | 4z (1 + ™ . . . 42
Fla 83285 i} = D b 4 + 03B + b i

and the desired result is obtained by making the substitution

_4
(1 + z)? ’
which implies
1+22_)2—-z 472 z \*
1+ 22 2 (1+z2)2_’2—z)

The theory of quadratic transformations of the hypergeometric function
was developed by Gauss, Kummer and Goursat, and also from a more general
point of view in Riemann’s investigations of a class of differential equations
including the hypergeometric equation as a special case.?? We refer the
reader to these sources for a more detailed treatment of the subject.?®

22 See E. Goursat, Sur I’équation différentielle linéaire, qui admet pour intégrale la
série hypergéometrique, Ann. Sci. Ecole Norm. Sup. (2), 10, 3 (1881). The relevant
references by Gauss, Kummer and Riemann are given on p. 296 of the book by Whittaker
and Watson (op. cit.).

23 See also the Bateman Manuscript Project, Higher Transcendental Functions,
Vol. 1, p. 110 ff., for an extensive list of quadratic transformations of the hypergeometric
function.
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9.7. Formulas for Analytic Continuation of F(x, 8; v; z) in
Exceptional Cases

The formulas derived in Sec. 9.5 allow us to obtain the analytic con-
tinuation of the hypergeometric function into any part of the z-plane cut
along [1, co]. However, some of these formulas are no longer meaningful for
certain values of the parameters, and must therefore be modified in a way we
now indicate. The general approach is to start from the formulas of Sec. 9.5
and then carry out appropriate passages to the limit.

For example, suppose we want to find the analytic continuation of the
function F(«, 8;y;z) into the domain |z — 1| < 1, |arg(l — 2)| < =. If
«a+B—vy#0, +£1, +2,..., we can use (9.5.7), but this formula is not
applicable if y =« + f + n(n =0, 1,2,...). To derive a formula allowing
us to carry out the analytic continuation in the latter case, we replace the
hypergeometric functions in the right-hand side of (9.5.7) by the correspond-
ing series, and use (1.2.2) to transform the result, obtaining

1

WF(“, Bsv;2)

_ T [ 1 < (@) (B)r (1 = 2)*
R ey ] |y ey oy IR v ey

- 1 S G —oly =B (1 — Z)kH_“_BjI
F@Ire@) s I'd —a«—-p+y+ k) k!

S nnG —a—p & &) 9.7.1)

T

It is easily verified that

: . 1 B, e
Jim = M= ore 2 G ol 4D

and hence the right-hand side of (9.7.1) becomes indeterminate for y =
o + B + n. Using L’Hospital’s rule to eliminate this indeterminacy, we have

1 0g: 082 ]
_ : 2 7) = (=222 — 22 .
Pla + B+n)F(oc,{3,a+[3+n,z) =D I:aY Y=a+B+n OY ly=a+p+n

9.7.2)
After some calculations resembling those made in Sec. 5.5, we find that2*
o8, _ 1 D eV Gl S VTGO (O PSS
O ly=aspsn L@+ I + n) L k!

1 > (« + )B4 n)
T T@r® ,Zo (n + k)k!

X[k + 1) = dla@ + n) — B + nI1 — 2)**", (9.7.3)
24 In differentiating g,, we use the formula
£ 09 = OIO + B ~ 400

From now on, we assume that e, 8 # 0, —1, —2,...
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983 __ 1 i(a+n)k(ﬁ+n)k
aY y=a+B+n F(Q)F(B)k=o (n + k)'k'

X [l +n+k)— Yo+ n + B +n+ k)

— YR +n -9 +n+k)+log(l — 20 — 2)k*, (9.7.4)
where {(z) = I"(z)/T'(2) is the logarithmic derivative of the gamma function.
Substituting (9.7.3-4) into (9.7.2), we obtain
Fla, B30+ B + n;2)

_ Tatbtn D= k= DI g _

D(a + mT (B + n) %, k!
(=D'T( + B +n) < (= + ni(B + 1)y
. D()T(R) = (m+ k!

— Y(a+n+k)—YB+n+k) —log(l — 2)J(1—z)"*¥%,
z—1] <1, |arg(l—2)|<®, n=0,1,2,..., o B#0,—1,-2,...
9.7.5)

[We+D+dn+k+1)

+

As usual, the meaningless sum
-1

ceey
k=0

which appears when n = 0, is set equal to zero.

Formula (9.7.5) is no longer applicable if « or B equals 0, —1, —2, ..., but
then F(o, B; « + B + n; z) reduces to a polynomial, and there is no need for
analytic continuation. Moreover, the case Y = « +  — n reduces to that
just considered by using the transformation (9.5.3), which becomes

Flo,B;0+B—n;2) =0 —2)""Fa, 350 + B+ n;z) (9.7.6)
ifa =a—n,p' =p—n

Similar considerations apply to the other formulas of Secs. 9.5-6. To give
another example, we derive a formula suitable for making the analytic con-
tinuation of F(«, B;v;z) into the domain |z] > 1, |arg(—z)| < = in the
case where « — B =0, +1, +2,... Here we have to pass to the limit
B—>a+tn(m=0,1,2,...)in (9.5.9). A calculation like that given above
leads to the following formula (for the case 8 = o + n):2°

Fo, o + n;v; 2)
Dy(—2)~* "S-k =Dl —y+ D (_ 5~k

T TG = Ol + n) &, k!
F'()(=2)~* S (e + m(l + o« — v + n)
F@T — « — n) % (n + k!

X Wk +1)+d(m+k+1)— Yo +n+ k)
— Wy —a—n=—k)+log(—2))z"""%
|z] > 1, |larg(l = 2)] <=~ n=0,1,2,..., a«a#0,—-1,-2,...,
v —a#0, 1, £2,..., v#0,—1,-2,... (9.7.7)

25 In the last step of the calculation, use formula (1.3.4).
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We now examine the cases where formula (9.7.7) is not applicable. If
a=0,—-1, =2,..., the function F(«, « + n;v; z) reduces to a polynomial,
and there is no need for analytic continuation. According to (9.5.3),

Flo,o + n5v;2) =1 — 2" "Fy —a,y — a« — n;v;2), (9.7.8)

and therefore F(«, « + n; v; z) reduces to an algebraic function if y — « = 0,
-1, —-2,...0ory —a«=1,2,...,n, and analytic continuation is again un-
necessary. If y —a=n+1,n+2,... and « # 0, £1, £2,..., then the
hypergeometric function in the right-hand side of (9.7.8) satisfies the condi-
tions allowing it to be continued by using formula (9.7.7). If y — « = n + 1,
n+2,...and « = 1,2, ..., the hypergeometric function can be represented
by an integral of the type (9.1.6) with a rational integrand, i.e., F(x, « + n;¥; z)
can be expressed in finite form in terms of rational functions. Finally, we
note that the case 3 = « — n reduces to that just considered if we again use
the transformation (9.5.3).

9.8. Representation of Various Functions in Terms of the
Hypergeometric Function

As we now show, various familiar functions of mathematical analysis are
special cases of the hypergeometric function F(a, B; v; z), corresponding to
suitable choices of the parameters «, 8, y and the variable z:2¢

1. Elementary functions. The hypergeometric function F(«, B;y; z) re-
duces to a polynomial if « =0, —1, =2,... or =0, -1, =2,...
For example,

ale + 1) ,

Fo,0;v;2) =1, Fla, —2; ;z=1—252+ z2,

and so on. The transformation
Fla,8;v;2) = (1 = 2)"* PFy —a,y — B;v;2), larg(l —2)[ <=
[cf. (9.5.3)] shows that F(«, B; v; z) reduces to an algebraic function if
y—a=0—-1,-2,...0ory—B =0, —1, —2,... In particular,
Fl,B;B;2)=(1 — 2)7% larg(1 — 2)] < = (9.8.1)
for any value of B, and
(I -2=H-v1;1;2, (1-2""=F3}1;1;2),

(9.8.2)
"= F(—-n1;1;1 — 2), n=20,1,2, ...

26 Further examples are given in the Bateman Manuscript Project, Higher Trans-
cendental Functions, Vol. 1, pp. 89, 101.
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Other representations of this type can be derived from the formulas of
Sec. 9.6. Thus, setting B = « + % in (9.6.2) and (9.6.7), we obtain

T -2
F(a,oc+%;2oc+1;z)=(l-*——\/2—l——z) ) larg (1 — 2)| < =,
T — ,\1-2«
Fla, o0 + 45205 2) = \/11— z(l + \21 Z) s larg (1 — 2)| < =

(9.8.3)

By starting from the series expansion
@ k +1 1 1
g~ 9= = 5 o= - 2 s k<l

of the logarithm, we find that

log(1 — z) = —zF(1, 1; 2; 2), larg(1 — z)| < =. (9.8.4)

Similarly, we deduce the following formulas for the inverse trigono-
metric functions:
arctan z = zF(3, 1;3; —2%), |arg(l + zi)| < m,

. (9.8.5)
arcsin z = zF(3, §; 3; %), larg (1 + 2)| < .

2. Elliptic integrals. The complete elliptic integrals
n/2 n/2
K(@z) = f (1 — z%sin? ¢)~Y2 do, E(2) = f (1 — z2%sin? @)% do
0 0

of the first and second kinds [cf. (7.10.11)], where z is a complex
variable belonging to the domain |arg (1 + z)| < =, can also be repre-
sented in terms of the hypergeometric function. Assuming temporarily
that |z] < 1 and using the binomial expansion, we find that

K(z) = kzo% 7%k J-omz sin?* ¢ dop = gkz (%il)cfjc)'k 22k

which implies
K@) = gF(H; 1;2%, larg(l £ 2)| < = (9.8.6)

Similarly, we have the following representation of the elliptic integral of
the second kind:

EQ) =JF-4% 12, lag(l 2| <= (987)

Starting from these formulas, one can develop the theory of elliptic
integrals, regarded as functions of the modulus z.
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3. Spherical harmonics. One of the most important classes of functions
which can be expressed in terms of the hypergeometric function consists
of the spherical harmonics studied in Chapter 7. In fact, formulas
(7.12.27) and (7.12.29) immediately imply the following representations
of the associated Legendre functions:

IO+ m+ 1) (22 — )2

P& = 50— m 1) 2Tom + 1)
x F(m—v,m+v +1;m+ 1;1—_2—'2),
larg (z £ D] < =, m=20,1,2, ..., (9.8.8)
n (=D™V=D( + m + 1) n
@) = 2VHIT(y + 3)zvFml @ -
XFm+v+2m+v+1 él)
2 2 t3 )
larg z| < m, larg (z £ 1)| < =, =0,1 (9.8.9)

In particular, the Legendre polynomials (see Sec. 4.2) are given by the
formula

Py(2) = F(—n,n +1; 1;1—;—5), n=0,1,2,... (98.10)

By regarding (9.8.8-10) as definitions and using the general theory of
the hypergeometric function, it is a simple matter to develop the theory
of spherical harmonics. This approach is especially convenient for
deriving the relations of Sec. 7.6 and their generalizations to the case
of arbitrary m.

9.9 The Confluent Hypergeometric Function

Besides the hypergeometric function F(«, B;y; z), an important role is
played in the theory of special functions by a related function

< (@) 2
Do, v; 2) = — z| < oo, #0,—-1,-2,..., (99.1
@y =Yt Y ©9.1)
known as the confluent hypergeometric function. Here z is a complex variable,
« and y are parameters which can take arbitrary real or complex values (except
thaty # 0, —1, —2,...), and, as always,

Mo =1, (A)k=F(%(J;)ﬁ=m+ DA+ k=1, k=12,...
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As indicated, the series (9.9.1) converges for all finite z,27 and therefore repre-
sents an entire function of z.
If we set

(“)k z*
P2, v;2) = ( 5 03 2) = Z Wi BE 9.9.2)

then ¢(a, v; z) is an entire function of « and v, for fixed z. In fact, the terms of
the series (9.9.2) are entire functions of « and v, and the series is uniformly
convergent in the region |«|< 4, |y| < C (where 4 and C are arbitrarily
large).2® Therefore, for fixed z, ®(a, v; z) is an entire function of « and a
meromorphic function of y, with simple poles at the points vy =0, —1,
-2,...

A comparison of (9.1.2) and (9.1.3) shows at once that

O(a, v; 2) =Bli32 F (a, Bsv; g) 9.9.3)

The function ®(«, v; z) is very frequently encountered in analysis, mainly
because of the fact that a large number of special functions can be obtained
from ®(x, v; z) by making suitable choices of the parameters «, v and the
variable z (see Sec. 9.13). This makes it possible to develop the general theory
of these functions in a simple and compact form.

The definition of the confluent hypergeometric function immediately
implies the identities

d «
e D(a, v; 2) = 7 Do + 1,y + 15 2), 9.9.4)

31"' D(a, v; 2) = Ea;’" Do + myy +m;z), m=1,2,..., (9.9.5)

27 Use the ratio test, noting that if

u (“)k z*
* (Y)k kv
then
Ura| _ o+ k
wl| - lxTha+oi
as k — .
28 Use the criterion given in footnote 4, p. 102, noting that if
o = () Z_k
FTTy + OE
then
Ve+a| | o+ k A+ k

q<1,

“leFearpi<a-oarm s
for sufficiently large k.
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and the recurrence relations

F—a—DO+a®a+1)—(—-DP(y—-1)=0, (9.9.6)

YO — yO(x — 1) — zO(y + 1) =0, (9.9.7)

a=—14+20+(F—0)x—-—1)—-F-—-DOH-1)=0, (9.9.8)

Yo+ 2)P — ay®(ax + 1) — (v — )zO(y + 1) =0, (9.9.9)

-0 —1)+Qx—y+ 20— ad(x + 1) =0, (9.9.10)

Yy —DO(y—1) —y(y =1+ 200+ (y — 0)z0(y + 1) =0, (9.9.11)

connecting the function ® = ®(«, v; z) with any two contiguous func-

tions P(x + 1) = ®(x + 1,v;z) and O(y + 1) = O(«, v + 1; 2z). Formulas

(9.9.6-7) can be verified by direct substitution of the series (9.9.1), and then

the other recurrence relations can be obtained by simple transformations of

(9.9.6-7).
Besides the recurrence relations just given, there exist similar relations
between the function ®(«, y;z) and any pair of functions of the form

®(« + m, vy + n; z), where m and n are arbitrary integers. Two simple rela-
tions of this kind are?®

D, v;2) = Do + 1,v;2) — fcb(a +1L,y+ 12, (9912

Do, v; 2) = T@(a,y +1;2) + 2 <I>(a + 1,y +1;2), (9.9.13)

as can be verified by direct substitution of (9.9.1), or by repeated use of the
relations between ®(«, v; z) and its contiguous functions.

9.10. The Differential Equation for the Confluent Hypergeometric
Function and Its Solutions. The Confluent Hypergeometric
Function of the Second Kind

It is easy to see that the confluent hypergeometric function is a particular
solution of the linear differential equation
2" + (v — 2 — oau =0, (9.10.1)

where v # 0, —1, —2,... In fact, denoting the left-hand side of this equa-
tion by /(u), and setting u = u; = ®(«, v; z), we have

I(u1=§:]f(k—1)(“)kk1+(Y )Z(“)kkkl_aki (“)k

M)ek! Wk! 2 k7
(), = (W)z* [, « + k o+ k _
[ (y)l““] +k21(y)2k!["v+k”v+k"‘“°‘] =0

29 Note the similarity between formulas (9.9.6-13) and formulas (9.2.4-15).
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To obtain a second linearly independent solution of (9.10.1), we assume
that |argz| < = and make the substitution u = z'~"v. Then equation
(9.10.1) goes into an equation of the same form, i.e.,
2"+ { — 2 - o'v =0,
with new parameters«’ = 1 + « — v, y' = 2 — y. It follows that the function
u=u=22""0(l + a« — v,2 — v;2)

is also a solution of (9.10.1) if v # 2,3,.... Thus, if y # 0, £1, +2, ...,
both solutions u,, u, are meaningful and are linearly independent of each
other,3° so that the general solution of (9.10.1) can be written in the form
u=A0(x,v;z) + Bz2'7YO(1 + a« — v;2 — v; 2),
largz| <=, v #0, £1, £2,... (9.10.2)
With a view to obtaining an expression for the general solution of (9.10.1)

which is suitable for arbitrary vy # 0, —1, —2, ... [see (9.10.11) below], we
introduce a new function

'¢-1
()

largz| <m, y#0, £1, +2, ..., (9.10.3)

W, v;2) = A =D G,y 2) 4 20 + o — v, 2 — v;2),

F'aA+o«—v)

called the confluent hypergeometric function of the second kind. Formula
(9.10.3) defines the function ¥(e, v; z) for arbitrary nonintegral v, and more-
over, as we now show, the right-hand side of (9.10.3) approaches a definite
limitasy—>n+1(n =0,1,2,...). Replacing the ® functions in (9.10.3) by
the appropriate series, and using formula (1.2.2) from the theory of the
gamma function, we obtain

1 = (@), Zz*
Y0 = o | z
sin I'a+a«— ~ DI'(y + k) k!
oy LI'( a Y)k—o (v ) (9.10.4)
N SNCT SN e S
T@ 2T v+ 0 & |~ smmy &~ 8
Since

1 < (@) z 1 S (@) ¥
2

lim & n+ Rk

voni18r T D@ —n) 2Tk +n+ Dk~ D(x — n) &
i LS _=m
Im & =t 2 Th—n+ D &

y-on+1

ol = 2 < (o ZF
= W),Zo Tk+1) n+ k! Ta—nS@®+ ki’

3% Note that u; = ug if y = 1.
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the right-hand side of (9.10.4) becomes indeterminate as y —n + 1, and
approaches a limit whose value can be found by using L’Hospital’s rule, i.e.,
. g1 _ 98
Y, n+ 1;2) = lim Y(, v;2) = —1"“[— ]
( ) yon+l (@ y:2) = (=1) OY [y=n+1 aY y=n+1
largz] <=, n=0,1,2,... (9.10.5)

Calculations like those made in Sec. 5.5 show that3!

s = TG 2, G o = ) = 400+ K+ D)
g 1 & (@
O lyenss D@ = 1) 20 (0 + ORI

x [ + k) — P(o + k) + (e — n) — log z]
| (=D ¥n — k — D« — n), 2
o 2,

k!

which leads to the following series expansion:

Y(x,n + 1;2)
['(—alin;; Z (n(:—)kli;!k! [ + k) — $(1 + k) — d(n + 1 + k) + log z]
1 "J(=1)¢n — k — D« — n) on (9.10.6)
* szo k! *
largz| <m n=0,1,2..., a#0, -1, =2,...

Here {(z) = I'"(z)/T'(z) is the logarithmic derivative of the gamma function,
and the meaningless sum

-

.oy
K

L}
(=)

which appears when n = 0, is set equal to zero.
Ifao=—-m@m=0,1,2,...), passage to the limity -n + 1 (n =0, 1,
2,...) in (9.10.3) leads to the expression 32

!
¥(omn 4 12) = () O ot 13,
n! (9.10.7)
m=20,1,2,..., n=0,1,2,...

31 In differentiating g,, we use the formula
d
75 0% = OXLY0 + B = O

From now on, we assume that « # 0, —1, —2,...
32 Here we again use formula (1.2.2).
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Moreover, it is an immediate consequence of (9.10.3) that the confluent hyper-
geometric function of the second kind satisfies the relation

Y@, v;2)=2""Y1 + « — v,2 — v; 2), larg z| < = (9.10.8)

Using this formula, we can define the function W(«, v; z) fory = 0, —1, —2,
..., obtaining
Y, 1—n;z) = lim Y(a,v;z) =2"¥(x + n,n + 1; 2),
y>l-n 9.10.9
largz| <=®, n=12,... ( )
Thus we see that W'(«, v; z) is meaningful for arbitrary values of the para-
meters « and y. It follows from the definition (9.10.3) and the properties of
D(a, v; z) that W(e, v; 2) is an analytic function of z in the plane cut along
[— 0, 0], and an entire function of « and ¥.

Next we show that W(e, v; z) is a solution of the differential equation
(9.10.1). For v # 0, +1, £2,..., this is an immediate consequence of
(9.10.3), and for integral vy, the result follows from the principle of analytic
continuation (cf. footnote 12, p. 167). For « # 0, —1, —2,.. ., the solutions
D(a, v; z) and W(a, v; ) are linearly independent, as can easily be verified by
calculating the Wronskian 32

WO, 1, 2), ¥ia v; 2) = — R0 277,
@ (9.10.10)
largz| < m, Yy #0,—1,-2,...,
and then the general solution of (9.10.1) can be written in the form
u= Ad(x, v;z) + BY(x, v; 2),
(@13 2) (@ : 2) (9.10.11)
largz| < =m, o,y #0,—1,-2,...

The function ¥(a, v; z) has a number of properties analogous to those of
®(«, v; z). For example, we have the differentiation formulas

I W, v 2) = —a¥a+ Ly + 1;2),

qn (9.10.12)
V@YD) = (CD@R¥ e+ my +mi2),  m=12.,
the recurrence relations
¥—-—a¥a+1)—¥H-1=0, (9.10.13)
- +¥e—-1)—-z¥+1) =0, (9.10.14)

33 Equation (9.10.1) implies
W{®, ¥} = Cz~Ye>.

Comparing both sides of this identity as z — 0, we find that
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(@—1+2¥ —Pa—1)+ (@—v+ D¥G —1) =0, (9.10.15)
@+ 2)F +aly —a— DF@+1) — 2% + 1) =0, (9.10.16)
Yo —1)—Qu—y+ ¥ +ale—v+ DP@x+ 1) =0, (9.10.17)
G—a—D¥x =)= —=1+2¥ +2¥(y+1)=0, (9.10.18)

¥ =%y;2), Ye+t )=¥@+1,v;2), Yy £ 1) =¥(e,y £ 1;2)

and so on, whose validity follows from the definition of the ¥ function and
the corresponding properties of the @ function.

9.11. Integral Representations of the Confluent
Hypergeometric Functions

The functions ®(a, v; z) and ¥(«, v; z) have simple integral representa-
tions which play an important role in the theory and applications of confluent
hypergeometric functions. Here we consider only the basic representations in
terms of integrals evaluated along an interval of the real axis, referring the
reader elsewhere for more general representations in terms of contour
integrals.3*

The simplest integral representation of the function ®(«, v; z) can be ob-
tained by summing the series (9.9.1) with the help of formula (9.1.2):

(“)k I'(y) 1+k
B N B 1dt,
O TG @ )y D
Rey>Rea >0, £k=0,1,2,...

This gives
. F(Y) ! oa—-1+k —a-1
(o, v; 2) = T@G = ; Z k'f em1HR(] — vl gy
I'(y) -1 (@0
= e ——— t°‘ 1 —fre-ide )
P@I'(y — @) Jo ( ) kZO
or
1

O(a, v;2) = T et*~1(1 — t)»" %14, Rey > Rea >0,

@Iy = «) Jo
(9.11.1)

where reversing the order of integration and summation is justified by the
usual absolute convergence argument (cf. footnote 2, p. 239).

3¢ See the Bateman Manuscript Project, Higher Transcendental Functions, Vol. 1,
pp. 256, 271 ff.
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We can use the integral representation (9.11.1) to deduce an important
relation satisfied by the function ®(e, v;z). Assuming temporarily that
Rey > Re « > 0, we make the change of variable t = 1 — 5. Then (9.11.1)
becomes

. — F(Y) J‘I -2 —a-1 —_ o—1
(D(as Ys Z) - F((X)F(Y _ d) e o e s (1 S) dsa

which implies
D(x, v; 2) = EQ(y — a,7; 2), (9.11.2)

since Re y > Re (y — «). The relation (9.11.2) was proved under the assump-
tion that Rey > Re « > 0, but after dividing by I'(y), both sides become
entire functions of « and y. Therefore, according to the principle of analytic
continuation, (9.11.2) remains valid for arbitrary « and vy, provided that
vy#0,—-1,-2,...

To obtain an integral representation of ¥(«, v; z), we first note that the
function u, defined by

= 1 ® —2tpo—1 y—a—1
u—mfo e =1 + 1) dt, Rea >0, Rez >0, (9.11.3)

is a solution of the differential equation (9.10.1). In fact, denoting the left-
hand side of (9.11.3) by /(u), we have?3®

Iu) = F_(lgjfow e~ (1 + 1)1 zf2 — (y — 2)t — o] dt

1 J‘m d ot _ 1 B B t=o0
= —=— | Sle (1 + )" %)dt = — ==—=e (1 +1)% =0
T@Jo ale "+ 07 e R
According to (9.10.2), the solution u can be written in the form
U= AD(s, v; 2) + B + « — 1,2 — v; 2),
9.11.4)

largz| < m, y#0, £1, +2,...

Assuming temporarily that 0 < Rey < 1 and z > 0, we take the limit of
(9.11.3) as z— 0+. This gives

' -y |
'l 4+ «—v)

z2=0+

1 -}
A = lim u=—f oY1+ )i d =
: ), A

where we have used formulas (1.5.3) and (1.5.6) from the theory of the
gamma function, and the passage to the limit behind the integral sign is easily

35 With our restrictions on « and z, the differentiation behind the integral sign is
justified.
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justified. Moreover, differentiating (9.11.4) with respect to z, multiplying by
z¥ and then taking the limit as z — 0+, we obtain

1 1 @
_ ¥ — 2t —ax—1
B= 1—yzll’on+” —1F(a)zlﬁn+zfoe S
1
—(Y —e z—oo+ f e~ s*(s + z)Y" " lds
ey 'b—-1)
= — e S lds =
(y - l)F(a) fo T
It follows that
__I'd-v
u= T + = _Y)CD(oc Y; 2)

+1‘(}()1) vl +a— v, 2 — v;2) = P, v; 2). (9.11.5)

Since both sides are entire functions of the parameter v and analytic functions
of the variable z in the half-plane Re z > 0 (see Sec. 9.10), the temporary
restrictions imposed on y and z can be dropped, and we arrive at the integral
representation

Y, v;2) = T—(L—)f: e #==1(1 + f)*"*"'ds, Rea >0, Rez> 0.
(9.11.6)

Some other integral representations of the functions ®(«, v;z) and
W(a, v; z) are given in Problems 11-13, p. 278.

9.12. Asymptotic Representations of the Confluent
Hypergeometric Functions for Large |z]

We begin by deriving the asymptotic representation of ¥'(«, v; z) for large
|z], which turns out to be simpler than the corresponding representation of
®(«, v; z). Suppose that

Rea > 0, |argz|<g—8,

where 8 > 0 is arbitrarily small. According to (5.11.2),

(1 + ===t = z (=D + %= Vi e

=0

—1yn+1 — 1
+ (-1 (ln'+ & — Yo tn+1f (1 — s)"(1 + st)*—*~"=24s.
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Substituting this expansion into the integral representation (9.11.6) and inte-
grating term by term, we obtain 3¢

lP(a, Y; Z) = Z—a[kgo (_l)k(a)k(}('—l— oK — Y)k 7=k + rn(z)]’

where

_ (__l)n+1(1 +“_Y)nzafw —ztmn+o fl Y y—a—-n-2
ry(z) = AT () . e~mte gt . (I =™ + s2) ds.

Estimating |r,(z)| we find that

(1+a_Y)nza

In@l <

=]
f e~ 12ltsin 6 m+Re « gy
0

1
X f (1 — S)"(l + st)Re (Y-a)-n-2 ds.
0

If we choose n so large that Re (y — «) — n — 2 < 0, then
(1 + styfe rmo-n=2 < 1,
and hence?®’

l"(n + Rea + l)llee apn|Im o
(lzl sin d)n*Re a¥1

(1 + - Y)n
(n + DIT(a)

It follows that

Y(a, v;2) = z‘“[kzo (_l)k(“)k(}c!'i' @ = Yk -k + 0(|z|‘"’1)],

= 0(|z|="-1).

ra(2)] <

Rea >0, |argz| <5 -8, n>Re(y—a) —2 (9.12.1)

T
2
for large |z|.

We now show that the conditions under which this formula has
been proved can be considerably weakened. First we note that even if
Re(y — @) —n — 2 > 0, an integer m > n can always be found such that
Re (y — «) — m — 2 < 0. Since the expansion (9.12.1) certainly holds with
n replaced by m, we have

éo et 0(|Zl-m—1) = kz:o...+ k=§m:+l...+ 0(|z|-m~1)
= 3 4 oz

b
"
(=]

38 According to (1.5.1),

T‘_(la—)fo ekl 4t = (o)ez %"k, Rea >0, Rez > 0, k=0,1,2,...

37 For complex a and b we have
labl = |alae be—lm b-arg a < la|ne benllm bl.
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which again gives (9.12.1). Therefore the condition imposed on n can be
dropped, and (9.12.1) is valid for arbitrary n.

Next we get rid of the restriction imposed on the parameter «. Suppose «
satisfies the weaker condition Rea > —1. Then Re(« + 1) > 0, and
formula (9.12.1) can be applied to each of the hypergeometric functions in the
right-hand side of the identity

Y, v;2) =z¥(@+ L,y + 1;2) + (1 + « —y)¥(x + 1,v;2), (9.12.2)
obtained by replacing « by « + 1 in (9.10.14). Carrying out the necessary
calculations, we again arrive at the asymptotic representation (9.12.1), but this
time with the condition Re « > —1. Repeating this argument, we see that
(9.12.1) holds for arbitrary values of «. Moreover, by slightly niodifying the
method used to prove (9.12.1), we can replace the condition |arg z| < 3 — &
by the weaker condition |arg z| < = — 3.%® Thus, finally, we arrive at the
following asymptotic representation of W(x, v; z) for large |z|:

Vo, vs2) = oo 3 SR L= Doy (e o)

largz| < @ — 8. (9.12.3)

The corresponding asymptotic representation of the function ®(«, v; z)
can be deduced from (9.12.3) and the relation

(o, v; 2) = [‘(5(1) ” e i W(a, v; 2) + % et (@=migz Yy — o v; —2),

largz| < wx, —z=1ze™™, y#0,-1,-2,..., (9.12.4)
which is the inverse of (9.10.3), where the plus sign is chosen if Im z > 0 and
the minus sign if Im z < 0. To prove (9.12.4), we assume that v # 0, +1,
+2,... and use (9.10.3):

R A i ?) ) Pe=1 ,_, D
Ve, v;2) = W—Y——MQ(“’Y’Z)+ Ty - o1 +a—v,2-7v;2).
9.12.5)
Replacing « by vy — « and z by —z = ze¥™, we obtain
ra -
W = 73 =2) = =3 0, 13 2)
_M 1-v,+ymi .
Ty = o()z e Ol + o — v,2 — v; 2), (9.12.6)

38 Instead of (9.11.6), use the integral representation

w-elf
W(a, v;2) = F(IE')L e~ =11 + £)"*~1d,  Rea > 0,

where

T . T
o 3 if —(w—298 <argz< —(5—8),
—; —d<argz<m-—3d.

jid
2
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where we have used (9.11.2). Eliminating ®(1 + « — v,2 — v; z) from
(9.12.5-6), we arrive at (9.12.4) after some simple calculations, where the
validity of the result for positive integral values of v follows from the prin-
ciple of analytic continuation. Substituting (9.12.3) into (9.12.4), we find the
desired asymptotic representation of ®(«, v; z) for large |z|:

®(a, v; 2)
F(Y) exomiz—ot[i ("'l)k(a)k(l + o — Y)kz_k + 0(|Z|_n_1):|

“Th - o) P k!
largz] <= —8  y#0,—1,-2,... (9.12.7)

As before, the plus sign corresponds to Im z > 0 and the minus sign to
Imz < 0. If |arg z| < 4= — 3, the first term is small compared to the second,
and (9.12.7) takes the form

013 2) = g o500 3 I o)

largz| <= — 8, ay#0,—1, —2,... (9.12.8)

[STR ]

9.13. Representation of Various Functions in Terms of the
Confluent Hypergeometric Functions

As we now show, various familiar functions of mathematical analysis are
special cases of the confluent hypergeometric functions ®(«, v;z) and
Y(«, v; 2), corresponding to suitable choices of the parameters «, v and the
variable z. Particular attention will be devoted to the special functions intro-
duced in Chapters 2-5.

1. Elementary functions. Some typical relations involving elementary
functions are

Do, a; 2) = =07€—!=e,
2 z et — 1
O(1.2: 2) = =

D(-2,1;2) =1 — 2z + }2%
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2. Error functions. It follows from (2.1.5) and (2.1.2) that the error func-
tion has the expansion

(Dt () (=2
Erfz =2z - )
Z o K2k + 1) kZO Gk K
and hence
Erf z = z0(}, 35 —2%). (9.13.1)
Similarly, the complementary error function (2.1.6) can be written in
the form
Erfc z = fw e~ dt = yze ? v et ds
z 0 \/1 + s ’

if we set 1 = zV'T + s5. Then, according to the integral representa-
tion (9.11.6),%°

Erfc z = 1ze=2*¥(l, %; 22),
or

Erfc z = Je~ Y, §; 2?), larg z| < (9.13.2)

T
2’
where we have used (9.10.8).

3. The function F(z). Next we consider the function F(z), related to the
probability integral of imaginary argument (see Sec. 2.3). It follows
from (2.3.4) that

S (—1)"2k e z(l)k( z%)

Fo =213 @+~ k'(z)k

and hence
F(z) = z@(1, 3; —2%). (9.13.3)

4. Fresnel integrals. Combining (2.4.6), (2.1.5) and (9.13.1), we find that

13 =iz 13 miz?

@ = [ (z 2’7) + ‘D(z’z’ ‘T)]’
z 1 3 miz? 13 miz?

s0 =4 [°G35) - oG53 -5

5. The exponential integral. By definition,

(9.13.4)

0 -t
Ei(—z) = —f Sa, Jargz] <=

2

3% In the derivation we assume that z > 0, and then use analytic continuation to
extend (9.13.2) into the domain |arg z| < wt/2.
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[cf. (3.1.2)], and hence, setting ¢ = z(1 + 5) and using the integral
representation (9.11.6), we have

. B . ® p-zs e .
Ei(—2z) = —e J;1+sds— e *¥(1,1;2),

or

Ei(z) = —e*¥(1,1; —2), larg (—2)| < . (9.13.5)

6. The sine and cosine integrals. Combining (3.3.6) and (9.13.5), we find
that

Ci(z) = —%e“‘z ¥(l1, 1; ze™'?) —%e’z‘l"(l, 1; ze~™/2), |argz| < ;,

1

% e 2W(1,1;ze™?) — 1 ‘“P'(l 1;ze~"2), |arg z| <—

SI(Z) = 5 + =
(9.13.6)

7. The logarithmic integral. 1t is an immediate consequence of (3.4.3) and
(9.13.5) that
li(z) = —z®(1, 1; — log 2), larg z| < =, larg (1 — 2)| < =
9.13.7)

8. Hermite polynomials. According to (4.9.2), the even Hermite poly-
nomials can be written in the form

Han(@) = 2. (=1)* k,(z(nz”) 252 = (= 1r@n)! z—( l)k)(v?:)_z/)c)’:
2n)! < «(22)2* m)! & (22
l)n( n)! Z (= 75)215)!2) ( n) z ( (Z;kgcz‘) ,
since
(2k)! = 2%%(3).k!,
and therefore
Han@) = (=17 S 0 3 22, 0.138)

For the odd Hermite polynomials we have the analogous formula
2n + 1)!
Hypr@ = (- &3 Dnson 30, 0139)

9. Laguerre polynomials. It follows from (4.17.2) that

« Fn+a+1) (=2F  (e+ 1), < (—n)z*
L) = 2 TE T DR =R = W 2 F D

and hence

L¥(z) = ("‘Ln,”- O(—n, o + 1; 2). (9.13.10)
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10. Cylinder functions. Assuming temporarily that Rev > —1%, we set
s = 3(1 + ?) in the integral representation (5.10.3), obtaining
22v(z/2)ve—iz 1
FPATC + 5 Jo
Therefore, according to (9.11.1),

22(z/2)%e~“T(v + ¥)
T2 + D)

J(2) = eV =A(1 — 5)v="% ds.

J(z2) = Ovv + 4, 2v + 1; 2i2),

J(2) = (—\‘2/2)— e 2O + 4, 2v + 1;2iz), larg z| < =, (9.13.11)

where we have used the duplication formula (1.2.3) for the gamma
function. Then we use the principle of analytic continuation to show
that (9.13.11) holds for arbitrary v.

Similar representations can be obtained for the other cylinder func-
tions. For example, it follows from (5.6.4), (9.13.11) and (9.10.3) that *°

HV(z) = — \2/—1_ e MY (v + 4, 2v + 1; 2ze~™3),
™

_ g <argz <=, (9.13.12)

H®(2) = % e~ =LV (y + 3, 2 + 1; 2zem2),
T

3

S (013.13)

—nm < argz <

Then, using (5.7.6), we obtain the following representations of the
Bessel functions of imaginary argument:

B 77 M 1 :
IV(Z) = m e (D(V + 3, 2v + 1; 22), |arg Zl < T, (91314)

K (2) = VrQ2)%e ¥ + 4, 2v + 1;22), largz| < = (9.13.15)
11. Whittaker functions. A class of functions related to the confluent

hypergeometric functions, and often encountered in the applications,

consists of the Whittaker functions, defined by the formulas*!

M, (2) = 2**%e 20 — k + p,2p + 1;2), |argz| < m, 9.13.16)

Wiei2) = 2#+ e #2W(E — k + u,2u + 1;2), |argz] <=

40 We also use formulas (9.11.2) and (1.2.2-3).
41 E. T. Whittaker and G. N. Watson, op. cit., Chap. 16.
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9.14. Generalized Hypergeometric Functions

Consider the power series

H (“r)k

S < (@) (“p)kz
2 "(Ys)k = 2GR @141

where p and ¢ are nonnegative integers (p,g = 0, 1, 2,...) satisfying the
condition p < g + 1, z is a complex variable, «, and v, are arbitrary para-
meters (except that v, # 0, —1, —2,...), and (A), = I'(x + k)/T'(¥).%2
Using the ratio test, we see at once that the radius of convergence of the series
(9.14.1) equals 0 if p < gand 1 if p = ¢ + 1. The sum of the series (9.14.1)
is called the generalized hypergeometric function, and is denoted by the symbol

Ry vy Ups Z
qu( s b P )’
Yis o v es Yaq
or more concisely, by ,F(a,; ¥s; 2), i.€.,
P

53 I_I(ar)k: k
oFot; 153 2) = Z =1 2 = (9.14.2)

*TT G

s=1

Clearly, ,F,(o;Ys;z) is an entire function of z if p < g¢. The function
o+ 1F (@3 vs; 2) is originally defined only in the disk |z| < 1, but can be ex-
tended outside this disk by using analytic continuation.

The following are the simplest generalized hypergeometric functions:

8

Ic

Foo3vs32) = D = = &,
of o0 s & k'

i) = > s (1= ),

k=0
oFi(%; vs5 z) = z W = F(Yl)z_(YI_1)/21“_1(221/2),

1Fi(eys vss 2) = Z 83: 2, D(ay, Y15 2),

k=0

)2

2F1(°‘r9 Yss Z) Z ( ] = F(ala %25 Y15 Z)'
(Yl)kk

42 As usual, the meaningless products
0

r=1 s=1

which appear when p = 0 or ¢ = 0, are set equal to 1.
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The last two examples show that the hypergeometric functions considered in
this chapter are special cases of the more general function (9.14.2).

Some features of the theory of ordinary hypergeometric functions can be
carried over to the case of generalized hypergeometric functions. For ex-
ample, it is easily seen that the function u = ,F(«,; y,; z) is a particular
solution of the linear differential equation

[sﬁ Gave—)—z[10G+ oc,)]u ~0 (9.14.3)

of order ¢ + 1, where 3 denotes the operator z(d/dz).*3 This equation reduces
to (9.10.1) if p = g =1, and to the hypergeometric equation (9.2.16) of
p = 2,q = 1. Thereis a well-developed theory of generalized hypergeometric
functions, with appropriate recurrence relations, integral representations,
etc.**

PROBLEMS

1. Starting from the integral representation (9.1.6), prove that
F(a, B;v; x + i0) — F(x, B; v; x — i0)

_ 2nil'(y)

T T@IEIT( +y—o—

B)(x—])V‘“'BF(Y—oz,Y—B;l+Y—oc—(3;1——x),
x>1, vy#0,-1,-2,...

Hint. During the proof, assume that Re« < 1, Rey > Rep > 0, and
then use analytic continuation.

Comment. This formula shows why the cut [1, o] is necessary in defining
F(x,B;v;2z)for e, B #0, —1, —2,...

2. Derive the formulas

d o — o—1 i y-1 — — Y -2 —

dz (2 F) = oz F(EX + 1)’ dz (Z F) - (Y 1)2 F(Y 1)9
where the notation is the same as in Sec. 9.2.

3. Prove the following identities:

I(x + 8 + PTG
T + DIG + 3

I'd + « = Pr3) .
I‘(l o ;)F(% + %)

1 +a—-8#0—-1,-2,...

FQ2e, 2850 + B + 359 = a+B+1£0,—-1,-2,...,

Flo,B51 + o — B; —1) = 27

43 Note that applying 8 to u corresponds to multiplying u by k.

44 For a summary of the theory and references for further reading, see the Bateman
Manuscript Project, Higher Transcendental Functions, Vol. 1, Chap. 4. Some new results
are given by N. E. Norlund, Sur les fonctions hypergéométriques d’ordre supérieur, Mat.-
Fys. Skr. Danske Vid. Selsk., 1, no. 2 (1956).
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4. Show that the hypergeometric polynomials F(—n,B;v;z) (n = 0,1,2,...,
Yy#0,—1,—-2,...) can be defined as the expansion coefficients of the

generating function
wiz,) =0 -1 —t + zt)"P = Z (Y)"F( n, B;v; 2)tm,
|t < min{1, [z — 1|~ 1.

5. Derive the integral representation

T'()I'(B) _ 1 ette Tla + s)T'B + s)T'(—s) R
WF( ,Bsvs2) = 3mi ) (—2z)y ds,

Rea > 0, ReB>0, larg(=2)| < ® Yy#0,—-1,-2,...,
where min {Re o, Re B} < ¢ < 0.

Hint. Complete the contour of integration on the right with the arc of a
circle of radius R, = n + 4 (n — ), and then use residue theory.

Comment. The restrictions imposed on the parameters can be eliminated
by suitably deforming the contour of integration.*®

6. Using term-by-term integration, verify the following formulas:
Fa 83732 = oo [ et = py=e-1F(a, b e 2ty i,
Ty — <) Jo
Rey > Rec > 0, |arg(l — 2)| < =,

1
Fo,B;vy + 1;2) = yf F(o,B;y;z0t""1dt, Rey >0, |arg(l — 2)| < m.
0

7. By analogy with Sec. 9.10, the hypergeometric function of the second kind
G(e, B; v; 2) can be defined as

gy = I'd — v .
G(Ol, By sz) - r(a [ + I)F(ﬁ — v + 1) F(a’ By Ys Z)
+ - D

1—1( )F(B) zl—VF(l + 0(-Y,1 +B—Y:2_Y;Z)y

largz| <=, [arg(l —2)| <m=m y#0,+1, £2,...
Prove that G(«, B; v; z) satisfies the relation
G, B5v;2) =2""Gle -y + LB — v + 152 — v;2).
8. Repeating the considerations of Sec. 9.10, show that G(«, B; v; z) is an
entire function of «, B, v, and derive the formula

(‘l)n“ Z (“)k(ﬁ)k 7k
D@ — Wl — n) &y + O *

X [P+ k) + 9B + k) — d(1 + k) —d(n + 1 + k) + logz]
1 "D = k= D — n)d — n)e 2,
I’(oc)l"(ﬂ)k ) k!
largz| < m |zl <1, n=0,1,2, ..., B #0,—1,=2,...

G(e, B;n + 1;2) =

45 E. T. Whittaker and G. N. Watson, op. cit., p. 286.
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9. Prove that the functions F(«, B; v; z) and G(«, B; v; z) are a pair of solu-
tions of the hypergeometric equation (9.2.16) with Wronskian

WiF(, 8;v: 2), G, Biv; 2)) = — %z-vu — Zyrmen-y,

larg(1 — 2)] < m, Jargz] <= y#0,—1,-2,...
Comment. 1t follows that the two solutions are linearly independent if
o, B #0,—1,-2,...

10. Find differentiation formulas and recurrence relations for the function
G(o, B5v;5 2).

Hint. Use the corresponding relations for the function F(e, B; v; 2).
11. Derive the integral representation

F(a) . _L c+tww .
m@(a,*{,z) =5 )ee TS (—2)* ds,

Rea >0, —Reax<c<0, y#0,—1,-2,... larg(-2)| < g
Hint. Use residue theory.

12. Derive the integral representation

T @ —
D(x, v;2) = —L)a) ezt~ M2 L e~teho-V-ay 2V 21) dt.

'y -
Re(y —«) >0, |argz| <= y#0,—1,-2,...
Hint. Expand the Bessel function in power series, and then integrate term

by term.

13. Derive the integral representation
27a -2 @
Tl -y + 1) Jo
Rea >0, Re(x —v) > —1, Jargz] <,

W(a, v;2) = et BATVK, 1(2V 70 dt,

where K,(z) is Macdonald’s function.

14. Prove the formulas

r 1
(D(on,y; Z) = ﬁﬁ 16—1(1 - t)v—c—ld)(a’ C, Zt) dt,

Rey > Rec > 0,
1
O,y + 1;2) = Yf Do, v; zO) "1 dt, Rey > 0.
o
15. Show that the Laplace transform of ®(«, v; x) is

= 1 1
(o, v; x) = = Flo, 1575~
v x) =2 (a Yp)
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16. Verify that the Whittaker functions M .(z) and Wi .(z) are a pair of
solutions of Whittaker’s equation

, 1k d—u?)
u+(—-4+z+ 2 )u—O,

with Wronskian
T'QQu + 1
W(Mesla), Weal)) = = Tt 2w+ 1 %0, -1, =2,

Hinr. Use the definitions (9.13.16).

17. Derive the integral representation ¢
k,—-2/2

Wia(@) = e ) e"t“"“‘/Z(l + i‘)Mk_% dt
T T -k + D)o z ’

Re(w —k+%) >0, J|argz| <=
18. Using the result of the preceding problem, prove the asymptotic formula

Wiu(2) & e™22 z¥, |z] >, largz] <m — 3.

19. Using the results of Sec. 9.13, derive the following representations of
various special functions in terms of W ,(z2):

_ 1 -22/2 2 bid
Erfc z = ki FR2W_y (2, larg z| < 3
Ei(z) = — \/1_; e2W _y, o(—2), larg (—2)| < =,
li(z) = —A/ 2 W_y.o(—log2), largz| < =, |arg(1 — 2)| < m,
—log z

K(z) = A/zfiz Wo.(22), |arg z| < .

20. Prove that

.

al’
d =
E,,Fq(a,;ys;z) = ql oFolor + 15 vs + 15 2).
1T
s=1
21. Prove that
p+1Fq+1(%; ¥s; 2)
F 1
(fo+1) For1 (1 = avs % 1L Fyla 14; 20) db,

T T DT (ar1 — %20 Jo
Reyq+1 > Reayyy > 0,
where |arg (1 — 2)| < wifp =g + 1.
22. Derive the formula

) . _ 20,28, 0 + B3z )
[F(a,ﬁaa+B+%’z)]2_aF2(a+B+%,2“+zﬁ)

46 E. T. Whittaker and G. N. Watson, op. cit., p. 340.
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Hint. Find a third-order linear differential equation satisfied by the square
of the function F(x, 8; « + B + %; 2),*” and show that the function

F 20, 2B, ¢ + B; z )
8% at+ B+ 3520 + 28

is the solution of this equation which is analytic in a neighborhood of the
point z = 0.

*7 E. T. Whittaker and G. N. Watson, op. cit., Problems 10-11, p. 298.
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2.11 Asymptotic Expansion and Mellin-Barnes transform



Barnes’ integral representation

The Mellin transform of a function is given by
o0
F(s) := /0 257 f(2) da.
The inversion formula is given by
flz) = = /CHOO x °F(s)ds, ¢>0.
2mi c—100

Note that the definition of the gamma function,
oo
I'(s) = / " e ™®dx, Res >0,
0

implies that I'(s) is the Mellin transform of e~*. The inversion formula reads

1 c+1i00
e =— x °T'(s)ds, ¢>0. (1)
2mi c—100
This can be proved directly by using Cauchy’s residue theorem. Consider the rectangular
contour C with vertices ¢ £ iR (¢ > 0) and —(IN 4+ 1/2) £ iR, where N is a positive integer.
Then the poles of I'(s) inside this contour are at 0, —1, -2, ..., —N with residues (—1)7 /5! for
j=0,1,2,..., N respectively. Hence, Cauchy’s residue theorem implies that

1 -1y
— [ 27°T(s)ds = (=1) xl.
21

c 3=0

Now we let R and N tend to infinity. Then Stirling’s asymptotic formula for the gamma
function implies that the integral on C minus the line joining ¢ — iR and ¢+ iR tends to zero.
Hence we have

1 ctioco N o1y © NG
— 2 °T(s)ds = lim Z ( - ) ) = Z ( m) =e 7.

278 Je—ioo N—oo = 4! = g!

This proves (1).

Another example of a Mellin transform is:
1
B(s,t) = / 2711 —2)"'dz, Res>0, Ret>0.
0

This implies that the beta function B(s,t) is de Mellin transform of the function

1—2)1 0<z<1
f(x):{( o ees

0, x> 1.



The inversion formula then reads

1 c+ioo F(t) c+ioo F(S)
=— “*B(s,t)ds = —— - d t>0 0.
f(x) 27TZ vllOO r (87 ) 5 27T'L vll()@ v F(S + t) 5 Re = ’ c>

Another representation of the beta function is:

[e] 33'5_1
B(s,t) = —d R 0, Ret>0.
(s,t) /0 52+ T, es >0, et >

This implies that the beta function B(s,t — s) is the Mellin transform of the function

() = —
xTr) =
g 1+ 2)
The inversion formula then reads
1 ( ) 1 /c+ioo _SB( . )d
= Xr) = —— X S — S S
(1 + x)t g 2mi c—1i00 ’
L1 /CHOO TI(s)I'(t —s)ds, 0<c<Ret
= — — T s —s)ds c .
2mi F(t) c—100 ’

These examples suggest that we might obtain a complex integral representation for the hy-
pergeometric function 9 F; by finding its Mellin transform:

> s—1 a, b > s—1 F(C) ! b—1 c—b—1 —a
Y ] ( ; —x) dx / T t 1-—1¢ 1+ axt) dtdx
| c o T Jy b0

_ L'(c) Yot peper [ a! .
= F(b)l“(cb)/ot -1 /0 TR s

Here we used Euler’s integral representation for the o Fy. The substitution xt = u now gives

< as! v =18 < w! w=t""% s a—g)=1""% F(S)F(a’_s)
/0 (ot =1 /0 (A u=t " Blsa—s) =t Ta)

Hence we have

/OO ey ) (a, b ; _m> dr — ['(c) L'(s)l'(a —s) /1 tbfsfl(l . t)cfbfl dt
0

c L'®)T(c—10) I'(a) 0
T(c)T'(s)T'(a—s)
T (e — b)) 2P~ %¢ =0
_ T(e)T'(s)T'(a—s) T'(b—s)I'(c—b)
L'(b)C(c—b)I'(a) L(c—s)
_ I'(c) T(s)I'(a—s)I'(b—s)
T'(a)T(b) I(c—s) '



Here we assumed that min (Rea,Rebd) > Res > 0. Applying the inversion formula for the
Mellin transform we might expect that

['(a)I'(b) a, b 1 [ r(s)(a — s)T(b - s) .
to 2 () = o L T s

for min (Rea,Reb) >k >0and c#0,—1,-2,....
In fact, this is Barnes’ integral representation for the o F; which is usually written as:

~ omi

Theorem 1.

I'(a)T(b) (a,b. > 1 /’AOo Lla+s)(b+s)(=s),
— 2o L0 F (—2)%ds,

= — arg(—z)| <m. (2

T'(c) 21 ) i T(c+s) |arg(=2)] < (2)
The path of integration is curved, if necessary, to separate the poles s = —a—n and s = —b—n
from the poles s = n with n € {0,1,2,...}. Such a contour always exists if a and b are not
negative integers.

Proof. Let C be the closed contour formed by a part of the curve used in the theorem from
—(N +1/2)i to (N + 1/2)i together with the semicircle of radius N + 1/2 to the right of the
imaginary axis with 0 as center. We first show that the above integral defines an analytic
function for |arg(—z)| < 7 — ¢ with 6 > 0. By using Euler’s reflection formula and Stirling’s
asymptotic formula for the gamma function we find for the integrand:

F(a+8)r(b+s)r(_8) (_Z)s _ _F(CL-I-S)F(b-f—S) 7T o )s ~ _Saerfcfl m —Z)S.
L(c+s) ['(c+ s)I'(1+s) sinns sin s
For s = it we have
_Sa+b7c71 T _Z)s _ _(Z-t)aerfcfl 2i eit(ln|z|+iarg(fz)) _ O(|t|a+b7c71€7\t\6)

sin7s e~ Tt — et

for |arg(—z)] < m — 0. This shows that the integral represents an analytic function in
|arg(—z)| <7 — 4§ for every 6 > 0, which implies that it is analytic for |arg(—z)| < =.
On the semicircular part of the contour C the integrand is

O(Na—i-b—c—l) (_Z)s

sin s

for large N. For s = (N +1/2)e? and |z| < 1 we have

(.*Z)S _0 [e(N-H/Q)(cos@ In |z|—sin 0 arg(—z)—wlsin@\)} )
S 7Ts

Since —m 4 ¢ < arg(—z) < 7 — ¢, the last expression is

o |:6(N+1/2)((:059 1n\z\—5\sin9|)] .

Now we have cosf > £1/2 for 0 < |0 < 7/4 and [sin6| > $v/2 for 7/4 < |0 < m/2. Hence,
since In|z| < 0, the integrand is

o (Na+b—c—16%\/§(N+1/2) ln\z\) L 0< |0l <7/4
O (NotbmemlemaVANHID0) | rja < 0] < m/2.

3



This implies that the integral on the semicircle tends to zero for N — co. The residue theorem
then implies that the integral tends to the limit of the sums of the residues at s = n with
ne€{0,1,2,...}, id est

o) F(a+n)'(b+n) , B T'(a)T'(b) OO (a)n(b)nﬁ B T'(a)T'(b) a, b ;
ng() I'(c+ n)n! = T'(c) nZ:O () n!'  T(c) 2F1< c '’ )

This proves Barnes’ integral representation (2).

The Mellin transform has a convolution property, which can be obtained as follows. Assume
that

F(s) = /000 2 f(x)de and G(s) = /000 ¥ 1g(x) de,

then we have

flz) = — /CHOO F(s)z™®ds and g(x) 1 /CHOO G(s)z™*ds.

oo 27 Joioo

This implies that

/OO 57 (2)g(x) de = 1 000 25 g(x) (/:—HOO F(t)z™" dt> dx

0 2mi —100
B L c+1i00 F(t) /oo i ( )d "
B 2mi c—100 0 ! g
1 c+1i00
As an application we consider
x? b+ s)I'(a—b—ys)
= F =
@)= FO o
e d (d+3)0(c—d—s)
T I'(d+s)I'(c—d—s

which leads to

1 (M Tb+s)a—b—s)T(d+1—-s)T(c—d—1+s) ds

270 J—ioo I'(a)l'(c)
L[ ree g = [T = [T
= — S — S S = X s T = Xz
270 J—ioo 0 g o (14 mz)ate
r DT —bh—d—1
_Bb+d+late—bod—1)= LFIF )F((Zi; b-d-1)



for a suitable k. By renaming the parameters, this can be written as

1 jéFw+QFw+ﬁF@_ﬁrw_@ds FW*®£$¢ZE?:$FW+@

2mi ’
which holds for Rea > 0, Reb > 0, Rec > 0 and Red > 0, shortly for Re(a, b, ¢, d) > 0. This
integral is called the Mellin-Barnes integral. More general we have

Theorem 2. If the path of integration is curved to separate the poles of T'(a+ s)['(b+s) from
the poles of T'(c — s)T'(d — s), then we have

: OO T(a+ s)0(b+ 5)T(c — $)T(d — 5) ds F<a+C>£<(2:Z>£<f:§)>r<b+d>.

2mi
Proof. Again we use Euler’s reflection formula to write the integrand as

(a4 s)T'(b+ s) _ 2
I'l—c+s)'(1—d+s) sinm(c—s)sinm(d—s)

Let C be the closed contour formed by a part of the curve used in the theorem from —iR to
iR together with a semicircle of radius R to the right of the imaginary axis with 0 as center.
By Stirling’s asymptotic formula the integrand is

O<Sa+b+c+d—2€—27r\lms\> for |S|~>OO on C.

Since Im s can be arbitrarily small when |s| is large, we assume that Re(a+b+c+d) < 1 to
ensure that the integral on the semicircle tends to zero for R — oco. Then, by Cauchy’s residue
theorem (poles in s = c+n and s =d+n with n € {0,1,2,...} with residues (—1)"/nl!), the
integral equals

i IFa+c+n)'(b+c+n)(d—c—n) (—nl')"
n=0
+if(a+d+n)F(b+d+n)F(c—d—n)(_nll)n.
n=0
Note that for n € {0,1,2,...} we have
B I'(d—c¢)
Pld=c=n) = G Th@=c—2) {@d=cn)
I'(d—c) B I'(d—¢)

(-1)"(1+c—d)2+c—d)---(n+c—d) (-D)"(1+c—d),

This implies that the integral equals

d (a4 )n(b+ )y
I'(a+ )b+ c)I'(d —c) ngzo The—dunl
2 (a4 d)n(b+d),
+T(a+ T+ dI'(c—d) nE:O Atd—cnnl "



Finally we use Gauss’s summation formula and Euler’s reflection formula to find that the
integral equals

a+c,b+c
F(CL+C)F(b+C>F(d—C)2F1< ldtc—d ' >

+T(a+dT(b+d)I(c—d)F (al"‘f,db—zd; 1)

Idl+c—dll-a-b-c—d)
Fl-a-d'(1-b-d)

PA+d-oll—a-b-c—d)
Fl-a—-cl(1-b-c)

I(a+c)T'(b+c)T'(d—c)

+T(a+d)T(b+ d)(c—d)

I'la+ )b+ c)T'(a+d)T(b+d)

T(a+b+c+d)
" s sinm(a + d) sinm(b+ d) ™
sinm(d — ¢) ™ ™ sinm(a+b+4+c+d)
Ta+ )T+ d)T(a+ c)I'(b+c)
T(a+b+c+d)
" v sinm(a + ¢) sinm(b+ ¢) T
sinm(c—d) ™ v sinm(a+ b+ c+ d)
~ Tla+ol(a+d)T(b+c)L'(b+d)
N F'(a+b+c+d)

" sinm(a+ ¢)sinm(b+ ¢) —sinnw(a + d) sinw(b + d)
sinm(c—d)sinm(a+b+c+d) ’

By using trigonometric relations it can be shown that

sinm(a + ¢)sinw(b+ ¢) —sinw(a + d) sinw(b + d)

=1.
sinm(c —d)sinm(a+b+c+d)

This proves the theorem for Re(a 4+ b + ¢ + d) < 1. This condition can be removed by using
analytic continuation of the parameters.
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We thus find that*

L)l'c—a-b)
I'c—a)F(c-0)
r (c),E(f +b—c)

F(a) L' (b)

1.5. A definite integral for F(a, b; c; z). Consider the
tegral

(1) F(a, b; c; 2)= F(a,b;a+b+1—c; 1-2)

(l—z)-abF(c—a,c—b; 1+c—a—b; 1—2z).

1
I= f £o-1(1 — g)e0-1(1 — tz)-2dt,
0

here, for convergence, R(c)> R(b)>0, and |z|<1. It is sup-
»sed that the branch of (1 —¢2)~¢ is chosen so that (1 —#z)~¢—>1
s >0, Then

I= j @ o ngan (1 f)e-b-1dt

O0n=0
ST
_n-On' (C+’n)

_TOP=b) 2 @,0),
L) azo nl(o),
1e change in the order of integration and summation being easily
1stified. We therefore have, under the given conditions,
T

()T (c—b)

‘When z=1, the integral on the right reduces to a beta function
nd we are led again to Gauss’s theorem.

Again, if 2= — 1, =1 +b—c, the integral in (1) becomes

1
j -1 (1 — tz)c—b—l dt,
0

hich can be evaluated in terms of gamma functions. This sug-
ests that probably the sum of the series F (6, 1+b—¢; ¢; — 1) can
e found.

Finally, if b=1—a, 2=4, we are led to the integral

(1) F(a,b;c; z)=F f 1o-1(1 —g)e-0-1(1 — )~ dt.

1
J (2t —t2)=a (1 —t)e-b-142,
[]

* See also Barnes 1 where another method is used to obtain this formula. The
ethod is reproduced in Whittaker and Watson, Modern Analysis (ed. 4, 1927},
14.53.
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and, taking (1—t)2 as the new variable, this becomes a beta
function. We can thusevaluate F (a,1—a;¢; 1) in terms of gamma
functions. The actual formulae will be given in Chapter I1.

1.6. Barnes' contour integral for F(a, b; c¢; 2).* Consider
the contour integral

1 D) PO+l (=8 _ oo

2m Flc+s)
where |arg(—z)|<m, and the path of integration is curved,
if necessary, to separate the poles s=-—a—n, s=—-b—n,

(n=0,1, 2, ...) from the poles s=0, 1, 2, .... This contour can
always be drawn if @ and & are not negative integers, as then
none of the decreasing sequences of poles coincides with one of
the increasing sequence.
Now,T if |arg(s+a)|<n—38, |args| <7 —3J, then
logI'(s+a)=(s+a—1)logs—s+Llog(2m)+0(1),
when |s|—>c0.
Thus, the integrand, which can be written
Ta+s8)Lb+s) m(—2)
"Te+s) T (1+s) sinsn’
is asymptotically equal to

(=~
_En:s_ exp[(a+b—c—l)logs]

Putting s=1v on the contour, we see that, for large values of v,
the integrand is
O [ve+b—c-lexp{—varg (—2)—=|v|}].

Thus the integral is an analytic function of z throughout the
domain | arg(—2) | < 7~ 8, where 3 is any positive number.

Now let C denote the semi-circle of radius N + } on the right of
the imaginary axis with centre at the origin, ¥ being an integer.
As before the integrand is )

( Va+b c—-l) ( i)
sin s
for large values of N, the implied constant being independent of
arg s when s is on the semi-circle.
* Barnes 1. 1 Whittaker and Watson, Modern Analysis, § 13.6.
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Ifs=(N+})e? and |z| <1, we have

(=2

sinsm

=0[exp{(N +})cosflog|z|— (N +3)sinfarg(—2)
—(N+})m]sind )]

=O[exp{(N+%)cosflog|z|— (N +3)3|sinb|}],
d this is

Olexp{2H(N+1)log|z]}] if 0<|8]<}m,
d  Ofexp{—278(N+1)]  if }n<|0]<im
Hence, if log|z] is negative, that is if |z| < 1, the integrand
nds to zero sufficiently rapidly to ensure that | — 0 as N —o0.
By using Cauchy’s theorem for the contour fo(;med by C and
e part of the imaginary axis from ¢ (N +3) to —¢(N +3), and
len making N ->o00, we see that, when |arg(—z)|<m—38 and
<1,

1 (= T{a+s)I'(b+s)I'(—¢)

27 ) _in T'(c+s) (—z)yds
N
— lim > L@+ To+n)

’

N—>on=0 n'F(c+n)
nce I' (—s) has a simple pole at s=n, (=0, 1, 2, ...) with residue
- 1)*~1fn!. Thus the integral represents an analytic function in
e region | arg (—2) | <, and when | z | < 1 this analytic function
ay be represented by the series

F@)F ()
F'(e)
The symbol F(a,b;c;z) may therefore be used to denote the
ore general function defined by the integral when divided by
@ T (6)/T' (c).
1.7. Barnes’ lemma.* If the path of integration is curved so as
separate the tncreasing and decreasing sequences of poles, then

L P las8) P (B+8)T(y=s)T (5—s)ds

20
T+ T{a+3)T(B+y) T (B+38)
F'(a+B+y+3) )

* Barnes 1.

F(a, b;c; 2).
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Write I for the expression on the left. Let C be the semi-circle
of radius p on the right of the imaginary axis with its centre at the
origin, and suppose that p - o0 in such a way that the lower bound
of the distance of C from the poles of I' (y —s) I" (8 — 8) is definitely
positive. Then

L(a+s)T(B+38)T (y—s)T (3-3)

_ Ta+s)T(B+9) 2
T3+ T(1=8+3) sin(y—s)msin(o—s)m
=O0[sx+B+rHd-2exp{-2n| I(s)|}]
as | 8| >0 on the imaginary axis or on €. Thus the original
integral converges, and the integral round C tends to zero as
p—>0 when R(x+B+y+8—1)<0. The integral is therefore
equal to minus 2 times the sum of the residues of the integrand
at the poles on the right of the contour. Thus

I= gjﬂ[‘(cc+'y+n)F(B+y+n)P(8—y—n)(—l)”/n!
+ %Or(a+8+n)r(fz+s+n)r(y-8-n)(-1)n/n!

=Tle+y) P (B+y) (@ —y) Flaty, B+y; 1+y—38; 1)
+ a similar expression with y and & interchanged.

Using Gauss’s theorem we obtain the required result after a

little reduction. The formula has been proved only when
R(zx+B+y+8—-1)<0,

but by the theory of analytic continuation it is true for all
values of «, B, y, 8 for which none of the poles of I" (x +8) I' (B + 8)
coincide with any of the poles of ' (y — ) I' (6 — ).

By writing s —k, a+ k&, B+ k, y—£k, 8-k fors, a, 8, y, 3, we sce
that the result is still true when the limits of integration are
k + ico, where k is any real constant.



CHAPTER VI

"HODS OF OBTAINING TRANSFORMATIONS
OF HYPERGEOMETRIC SERIES; (3) BY
BARNES’ CONTOUR INTEGRALS

. Introductory remarks. In Chapter V we saw how
formations of non-terminating series can sometimes be
ed by a use of Carlson’s theorem, and in §4.4 some trans-
ations of such series were obtained by a limiting process from
formations connecting terminating series of higher orders.
is chapter a direct method* is given in which free use is made
ntour integrals of Barnes’ type.

. Barnes' second lemma. We now prove the formulat

J‘l"(aﬁs)l" (o +8) T (a3 +8) T (1 -, —8) ' (—9)ds
F(ﬂz"'s)

F(al F(“z F(“a)F(l—ﬁ1+°‘1)P(1—Bl+°‘2)r(l ﬂ1+°‘3
Bz_al P(Bz ) I'(By—otg)

ided that 8, + B, =, + «; + o3+ 1. The path of integration is
e parallel to the imaginary axis except that it is curved, if
ssary, so that the decreasing sequences of poles lie to the left,
the increasing sequences of poles to the right of the contour.{
he integrals in this chapter are of this type.

v Barnes’ lemma (§ 1.7) we have

%fr(a,+s) F(a,+s)T(n—8)T (B —x,—a,—3)ds

P(“1+n271:(°‘2+" (81— o) F(ﬁl““z
I'(g+n)

Jailey 8.

3arnes 2.

[he intogral is taken from ¢ —iw to c+ie. In some papers the integrals are
 in the opposite direction, and so variations in sign occur.
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Thus

.F “1»“2:°‘3§j|= F(8)
: Bi, B, F(By—oy) T (By—ag) I (o)) I' ()

My +8) Tag+8) T (n—8) T (B, — 2y —ay—8)ds

- (a3}

% n.ZO 2‘”2 n'(ﬁ )

_ I8,
l(ﬁ — ) P(ﬂl az)r(“l)r( )

% gri | Pl 1Dy + )T (B = 2y =2 =) T (= s)zFi[““"“’]ds

and so
(2) 3F2 Xy Ky, Ag; ﬁl P(Bz

:BI)BZ:I P(ﬁl—“l P (B — ) T (By—g) T (o) ' (exy)
. 'F(“ﬁ‘s)P(“z"'s)r(!gx—“l—%—s)P(ﬁz‘“af\"@
27 '

o —s)ds
(B, +s)

The interchange in the order of summation and integration can
easily be justified if R(B,—~a;+39)>0. Now take B,=ay; the
series on the left can be summed by Gauss’s theorem, and the
lemma is proved.

If the integral in (1) is evaluated in terms of hypergeometric
series by considering the residues at poles on the right of the
contour, we obtain a relation which reduces to Saalschiitz’s
theorem when one of the parameters «;, x,, «; is a negative
integer.*

6.3. Integrals representing well-poised series. From
Barnes’ second lemma it is easily verified that
Ty +n) (e +7) T (a5+7)
Ck—ax;+2) T (k—ag+n) [ (x—ag+n)
Tl (e—ap—ay) Dlk—ay—o) I (k— o, — )
[{x, +8)T{ay +8) Moy +8) T (k — oty ~aty — ot — ) ' (e — s)ds
2m T(c+n+s)

* The relation similarly obtained from (2) is equivalent to § 3.8 (1).



Asymptotic expansions and analytic continuations
for a class of Barnes-integrals

by

B. L. J. Braaksma

§ 1. Introduction

§ 1.1. Asymptotic expansions for [z| - c0 and analytic con-
tinuations will be derived for the function H(z) defined by

1

(1.1) H(z) = —f h(s)z*ds
271 c

where 2z is not equal to zero and

(1.2) 2* = exp {s (Log |z|+7 arg 2)}

in which Log [z| denotes the natural logarithm of |z| and arg z
is not necessarily the principal value. Further

TI I'(1—a,+0a;) TT T(b,—B;5)

(1.8) h(s) = - - ,
’;]L.:Ll; I'(1—b;+8;s) 1;.[111(“5"'“53)

where p, g, n, m are integers satisfying
(1.4) 0=n=p l=m=y,

a;(j=1,...,p) B;(j=1,...,q) are positive numbers and
a,j.=1,...,p), b;(j =1,...,q) are complex numbers such that

(1.5)  o;(bp+v) #~ Bu(a;—1—2A) for »,A=0,1,...;
h=1,...,m; j=1,...,m.

C is a contour in the complex s-plane such that the points

(1.6) s=(b,+»)B;, (@G=1...,m;»=0,1,...)
resp.
(1.7) s = (a,—1—v)/a, G=1,..,n »=0,1,...)

lie to the right resp. left of C, while further C runs from
s = 0—ik tos = oco-+ik. Here k is a constant with &k > | Im b,|/8,
(7 =1, ..., m). The conditions for the contour C can be fulfilled
on account of (1.5). Contours like C and also contours like C but

239
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with endpoints s = —¢ c0+¢ and s = 1c0-}0 (o real) instead of
s = oo—tk and s = c0+1k are called Barnes-contours and the
corresponding integrals are called Barnes-integrals.

In the following we always assume (1.4) and (1.5).

In § 6.1, theorem 1, we show that H(z) makes sense in the
following cases:

I. for every z # 0 if u is positive where

[’} »
(1'8) M= ;ﬁj_ ;“5’
II. if 4 =0 and
(1.9) 0 < 3| <p?
where
? q
(1.10) p =11 116"

In general H(z) is a multiple-valued function of z.

§ 1.2. The function H(z) and special cases of it occur at
various places in the literature. A first systematic study of the
function H(z) has been made in a recent paper by C. Fox [18]. 1)
In the case that some special relations between the constants
a;, B, a;, b, are satisfied Fox derives theorems about H(z) as a
symmetrical Fourier kernel and a theorem about the asymptotic
behaviour of H(z) for 2 - o0 and 2 > 0.

The function defined by (1.1) but with the contour C replaced
by another contour C’ has been considered by A. L. Dixon and
W. L. Ferrar [12]. C’' is a contour like C but with endpoints
§= —t+oc and s = wi+o (o real). Their investigation
concerns the convergence of the integrals, discontinuities and
analytic continuations (not for all values of 2) and integrals in
whose integrands the function defined by (1.1) with C || C’
(]l means: replaced by) occurs.

Special cases of the function H(z) occur in papers on functional
equations with multiple gamma-factors and on the average order
of arithmetical functions by S. Bochner [5], [5a], [6] and K.
Chandrasekharan and Raghavan Narasimhan [9]. In these papers
in some cases the analytic continuation resp. an estimation for
H(z) has been derived.

A large number of special functions are special cases of the

1) Numbers between brackets refer to the bibliography. In each paragraph the
footnotes are numbered anew.
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function H(z). In the first place the G-function and all special
cases of it as for instance Bessel-, Legendre-, Whittaker-, Struve-
functions, the ordinary generalized hypergeometric functions
(cf. [15] pp. 216-222) and a function considered by J. Boersma
[7]. The G-function is the special case of the function H(z) in (1.1)
with ¢; =1(j=1,...,p) ;=1 =1,...,¢). The ordinary
generalized hypergeometric function is a special case of the
G-function with m = 1, n = p among others.

Further H(z) contains as special cases the function of G. Mittag-
Leffler (cf. G. Sansone-J. C. H. Gerretsen [28], p. 845), the
generalized Bessel-function considered by E. M. Wright [31], [85]
and the generalization of the hypergeometric function considered
by C. Fox [17] and E. M. Wright [82], [34].

The results about the function H(z) which will be derived here
contain the asymptotic expansions for [z| — c0 and the analytic
continuations of the functions mentioned above. The latter
expansions and continuations have been derived by various
methods among others by E. W. Barnes [2], [8], [4] (cf. a correc-
tion in F. W. J. Olver [25]), G. N. Watson [29], D. Wrinch [38],
[89], [40], C. Fox [17], [18], W. B. Ford [16], E. M. Wright
[81]-[86], C. V. Newsom [23], [24], H. K. Hughes [19], [20],
T. M. MacRobert [21], C. S. Meijer [22] and J. Boersma [7]. The
most important papers in this connection are those of Barnes,
Wright and Meijer.

In [38] Barnes considered the asymptotic expansion of a number
of G-functions. In the first place he derived algebraic asymptotic
expansions (cf. § 4.6) for a class of G-functions. These expansions
are derived by means of a simple method involving Barnes-
integrals and the theorem of residues. In the second place he
derived exponentially small and exponentially infinite asymptotic
expansions (cf. § 4.4 for a definition) for another G-function. The
derivation of these expansions is difficult and complicated. The
G-function is written as a suitable exponential function multiplied
by a contour integral. The integrand in this integral is a series of
which the analytic continuation and the residues in the singular
points are derived by means of an ingenious, complicated method
involving among others zeta-functions and other fuuctions con-
sidered previously by Barnes. The contour integral mentioned
before has an algebraic asymptotic expansion which can be
deduced by means of the theorem of residues. The investigation
in [3] yields among others the asymptotic expansions of the
ordinary generalized hypergeometric functions. Barnes also
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obtained the analytic continuation of a special case of the G-
function by means of Barnes-integrals (cf. [4]).

In [22] Meijer has derived all asymptotic expansions and
analytic continuations of the G-function. The method depends
upon the fact that the G-function satisfies a homogeneous linear
differential equation of which the G-functions considered by
Barnes constitute a fundamental system of solutions. So every
G-function can be expressed linearly in these G-functions of
Barnes and from the asymptotic behaviour of these functions the
asymptotic behaviour of arbitrary G-functions can be derived.

In [81], [82], [84] and [85] Wright considered the asymptotic
expansions of generalizations of Bessel- and hypergeometric
functions. The majority of his results are derived by a method
which is based on the theorem of Cauchy and an adapted and
simplified version of the method of steepest descents. In [33] and
[86] these methods are applied to a class of more general integral
functions. However, these methods do not yield all asymptotic
expansions: any exponentially small asymptotic expansion has
to be established by different methods (cf. [82], [84], [85]). The
results of Wright have as an advantage over the results of the
other authors mentioned before that his asymptotic expansions
hold uniformly on sectors which cover the entire z-plane. Further
the results of Wright — and also those of H. K. Hughes [19] —
contain more information about the coefficients occurring in the
asymptotic expansions.

§ 1.3. A description of the methods which we use to obtain the
asymptotic expansions and analytic continuations of the function
H(z) is given in § 2. The results cannot be derived in the same
manner as in the case of the G-function in [22] because in general
the functions H(z) do not satisfy expansion-formulae which ex-
press H(z) in terms of some special functions H(z) (if this would
be the case then we should have to consider in detail only these
latter functions as in the case of the G-function).

The analytic continuations of H(z) in the case u = 0 can be
found by bending parallel to the imaginary axis the contour
in the integral (1.1) in which from the integrand some suitable
analytic functions have been subtracted. This method is an
extension of the method of Barnes in [4].

This method can be applied also in a number of cases to the
determination of the asymptotic expansion of H(z) for |3] —
if 4 > 0. Then algebraic asymptotic expansions are obtained.
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However, in some cases all coefficients in these expansions are
equal to zero (‘“dummy” expansions) and in these cases H(z) has
an exponentially small asymptotic expansion. This expansion will
be derived by approximating the integrand in (1.1) by means of
lemma 8 in § 8.8. In this way the difficulties in the researches of
Barnes and Wright (cf. [8], [84], [85]) about special cases of these
expansions are avoided. Contrary to their proofs here the deri-
vation of the exponentially small expansions is easier than the
derivation of the exponentially infinite expansions.

The remaining asymptotic expansions of H(z) in the case
u > 0 are derived by splitting in (1.1) the integrand into parts
so that in the integral of some of these parts the contour can be
bended parallel to the imaginary axis while the integrals of the
other parts can be estimated by a method similar to the method
which yields the exponentially small expansions. Some aspects of
this method have been borrowed from Wright [33].

In the derivation of the asymptotic expansions of H(z) the
estimation of the remainder-terms is the most difficult part. The
method used here depends upon the lemmas in § 5 which contain
analytic continuations and estimates for a class of integrals
related to Barnes-integrals. This method is related to the indirect
Abelian asymptotics of Laplace transforms.

The remainder-terms can also be estimated by a direct method
viz. the method of steepest descents. This will be sketched in
§ 10. In the case of the exponentially infinite expansions
of H(z) this method is analogous to the method of Wright
in [33].

The asymptotic expansions of H(z) are given in such a way that
given a certain closed sector in the z-plane this sector can be
divided into a finite number of closed subsectors on each of
which the expansion of H(z) for |z| — oo holds uniformly in arg .
Moreover it is indicated how the coefficients in the asymptotic
expansions can be found.

§ 1.4. The results concerning H(z) are contained in theorem 1
in §6.1 (behaviour near z = 0), theorem 2 in §6.2 (analytic
continuations and behaviour near 2 = oo in the case u = 0),
theorem 8 in § 6.8 (algebraic behaviour near 2 = o in the case
4 > 0), theorem 4 in § 7.8 (exponentially small expansions in the
case 4 > 0), theorems 5 and 6 in §9.1 (exponentially infinite
expansions in the case u > 0) and theorems 7-9 (expansions in
the remaining barrier-regions for u > 0). In these theorems the
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notations introduced in (1.8), (1.10) and the definitions I-IV in
§ 4 are used. The terminology of asymptotic expansions is given
in § 4.4 and § 4.6. In § 9.3 we have given a survey from which one
may deduce which theorem contains the asymptotic expansion
for |2| — oo of a given function H(z) on a given sector. In § 10.2
and § 10.8 some supplements on the theorems in § 6 and § 9 are
given. :

In § 11 the results about the function H(z) are applied to the
G-function: see the theorems 10-17. The asymptotic expansions
and analytic continuations given in [22] are derived again. An
advantage is that the asymptotic expansions are formulated in
such a way that they hold uniformly on closed sectors — also in
transitional regions — while moreover the coefficients of the
expansions can be found by means of recurrence formulae. The
notations used in the theorems and a survey of the theorems are
given in §11.3.

In §12.1 and § 12.2 the results concerning H(z) are applied to
the generalized hypergeometric functions considered by Wright
(cf. theorems 18-22). A survey of the theorems and the notations
are given at the end of § 12.1 and in § 12.2. In § 12.3 a general
class of series which possess exponentially small asymptotic
expansions is considered. In § 12.4 the generalized Bessel-function
is considered. The results are formulated in the theorems 24-26.
The notations used in these theorems are given in (12.45).

§ 2. Description of the methods

§ 2.1. In this section we sketch the method by which the
algebraic asymptotic expansions for |3| — oo resp. the analytic
continuation of the function H(z) in case I resp. II of §1 will be
derived. First we consider the simplest cases which are analogous
to the simplest cases considered by Barnes in [8] and [4].

To that end we replace the contour C in (1.1) by two other paths
L and L,. L resp. L, runs from s = w to s = w1l resp. w—il
and then to s = oo--il resp. co —il, while both parts of L resp. L,
are rectilinear. Here w and ! are real numbers so that

(2.1) w # Re(a,—1—»)/a; G=1..,p; »=0,1, 2,...)
(2.2) w < Reb,/B; G=1,...,m)
| =14max{|Im a,;/0;|(j =1, ..., p), Imb,/B,|(j =1, ..., 9),
(2.8) { |Im a/u|} (cf. (8.24) for a) if u is positive, while for u = 0
l=14max{|Ima;/o;|(j =1,...,p), | Imb,/B,/(1=1,...,9)}
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Then we easily deduce from (1.1) and the theorem of residues that

(2.4) H(z) = Q,()+ Q%Lh(s)zsds— i h(s)z*ds

2m1 L,
where

Q.(2) = 3 residues of h(s)z* in those points (1.7) where

(2.5) Res > w.

Formula (2.4) holds in case I and also in case II of § 1. For the
consideration of the integrals in (2.4) we need approximations for
the function hk(s). Therefore we write k(s) as a product of two
other functions. Using

(2.6) I'(s) = =/{sin wsI'(1—s)}

we see that

(2.7) h(s) = hy(s)hy(s)

where if

(2.8) 8 # (a;—1—v)/a; G=1,..,p;»=0,1,2,...)
resp.

(2.9) s (b +nB;, (G=1,...m;»=0, £1, +2,...)
we define

(210)  hy(s) = fi] r(1—a,+a,s)/[:1 T(1—b,+8,5)

resp.

(211)  hy(s) = mmn— Ii[1 sin n(a,.—oc,-s)/fl sin 71(b;—B,5).

For hy(s) resp. h(s) approximation formulae are formulated in the
lemmas 2 and 2a in § 8.2 resp. 4a in § 4.8. From these formulae
estimates for h(s) can be obtained.

Now define ¢, by

m P

(2.12) 8o = (3 Bi—3 o).
1 n+l

Consider the case that

(2.13) 0y > Sum.

Then we may derive from the estimates for k(s) mentioned above
that the lemmas 6-7a from § 5 can be applied to the integrals in
(2.4) for certain values of z; the path of integration L resp. L, in
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(2.4) may be replaced by the half-line from s = w to s = w700
resp. w—100:

1 w4100
(2.14) H(x) = Qu() + fw_m h(s)z*ds
if 4 =0, (1.9) and
(2.15) larg 2| < 8g—Fun

holds and also if u is positive and (2.15) is satisfied. The integral
in (2.14) is absolutely convergent if 4 = 0 and (2.15) holds. If
u = 0 then H(z) can be continued analytically by means of (2.14)
into the domain (2.15). If u is positive then

H(z) = Qu(2)+0(2")

for |z| - oo uniformly on every closed subsector of (2.15) with
the vertex in 2 = 0. Hence by definition IV in § 4.6

(2.16) H(z) ~ Q(2)

for |2| — oo uniformly on every closed subsector of (2.15) with the
vertex in 2 = 0, if u is positive. The asymptotic expansion (2.16) is
algebraic.

In the case that 4 = 0 another application of the lemmas 6
and 6a shows that the integral in (2.14) — and so H(z) — can be
continued analytically for |z| > 1.

Next we drop the assumption (2.18) and we extend the method
used above to obtain the analytic continuation of H(z) if u = 0
and the algebraic asymptotic expansion of H(z) for |z| — oo if
# > 0 in the general case. Therefore we define (cf. (2.10) for ky(s)):

P,(z) = > residues of hy(s)z* in those points s for which
Res>w as well as s = (a,—1—)fo; (j =1,...,P;
v=20,1, 2,...).

(2.17)

Let r be an arbitrary integer and let é;, x, C; and D, be given by
the definitions I and II in § 4.2. Then it easily follows from (1.1),
the theorem of residues, the definition of L, L,, Q,(z) and P,(2)
(cf. (2.5) and (2.17)) and (2.7) that

r—1

(218) H(z) = Qu(®) + 3 D,Pulae™) — 3 C,P, ()

r—1

s ( f - f Ll) ho(s) :hl(s)-{— irD,-e"”"— s c,.e“ﬂ} a*ds

in case I and also in case II of § 1. Like in (2.4) we want to stretch
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the path of integration L and L, in (2.18) to the straight line
Re s = w. This is possible if u > 0,

(2.19) 8,—8, 1 > un
and
(2.20) —06,+Fun < argz < —0,_,—tun

hold and also if g = 0, (1.9), (2.19) and (2.20) hold. The proof
depends on the lemmas 6-7a from § 5. The assumptions con-
cerning the integrands in these lemmas can be verified with the
help of the estimates in the lemmas 2, 2a and 4a from § 8.2 and
§ 4.8 for the factors of the integrand in (2.18). Moreover the
lemmas 6-7a applied to the integrals in (2.18) furnish the analytic
continuation of H(z) into (2.20), if x = 0 and (2.19) holds, and
the algebraic asymptotic expansion of H(z) on subsectors of (2.20)
if (2.19) is satisfied and x is positive. The results are formulated in
theorem 2 and theorem 38 in § 6 where also the complete proof is
given. The case with (2.18) appears to be contained in theorem 2
(cf. remark 1 after theorem 2) and theorem 3.

§ 2.2. In this section we consider the exponentially small
asymptotic expansions of H(z). A condition for the occurrence
of these expansions is that n = 0. If » = 0 then Q,(z) =0 by
(2.5) and Q(z) represents a formal series of zeros (cf. (4.26)). So if
n =0, u > 0 and (2.18) are fulfilled then by (2.14)

1 w400
(2.21) H(z) = — h(s)x*ds
2m w—i00

on (2.15) where the integral in (2.21) converges absolutely on
(2.15), and moreover by (2.16) and the definitions in § 4.6 we have
H(z) = O(z*) for |z| = oo uniformly on closed subsectors of (2.15)
with the vertex in 2 = 0 and where w is an arbitrary negative
number. Hence in this case better estimates for H(z) have to be
obtained. It appears that H(z) has an exponentially small asymp-
totic expansion in this case.

To derive this expansion we first treat the special case that
n =0, m = ¢, u > 0. Then §, = un by (1.8) and (2.12). So the
sector (2.15) can be written as

(2.22) larg 2| < Zum.

We temporarily denote the function H(z) for which the assump-
tions above are satisfied by H,(z). Further we denote h(s) by
hy(s) in this case. So by (1.8), if
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(2.28) s # (b;4 )/, G=1,..,¢v=0,1,2,...)
then
q b4
(2.24) ho(s) = 11 I"(bj—ﬁa-s)/l:[ I(a;—a;s).
1
Hence if (2.22) is satisfied then by (2.21)
1 w100
(2.25) Hy(z) = — hy(s)z*ds
2m w—1i00

where the integral is absolutely convergent.

To the factor hy(s) of the integrand in (2.25) we want to apply
lemma 38 in § 8.3. Therefore we choose an arbitrary non-negative
mteger N and next the real number w so that besides (2.1) and
(2.2) also

(2.26) w < (1—Rea—N)/p
is satisfied. Then we derive from lemma 8 and (2.25):

(2.27) Hy(p~p"z)
N-1 w4300

=2 (—1)Y4,(2n)*?1 — I'(l—us—oa—1j)z*ds
0 2701 J p—ioo
w100
—i(2n)‘1—”“2f pn(8) (1 —us—a—N)z*ds

on (2.22); all integrals in (2.27) converge absolutely (cf. § 7.1 for
details of the proof). To the first N integrals in (2.27) we apply
(cf. §7.1)

1 w4100 1 .
(2.28) 2_mf I'l—us—a—j)z*ds = ;z(l—“"’/”exp (—=1/#)
w—1i00

for j=0,...,N—1 and (2.22). So the first N terms at the
righthand side of (2.27) vanish exponentially on closed subsectors
of (2.22) with the vertex in z = 0.

Next we have to estimate the last integral in (2.27) which we
denote by o(z). So if (2.22) is fulfilled

w4100
(2.29) a(2) =f pn(8)'(1—us—a—N)z*ds
wioo I'8—us—a—N
=f . pn(s) (B—ps—a )

¢d
(I—ps—a—N), =

(cf. (8.11) for the notation (4),). These integrals converge abso-
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lutely as this is also the case with the integrals in (2.27). We
estimate o(z) in a crude manner with the method of indirect
Abelian asymptotics (cf. G. Doetsch [18] I p. 41). An alternative
approach will be sketched in § 10.1; there we use the method of
steepest descents.

Here we start with the formula

(2.80) I'(B8—pus—a—N)z* = z6-2—N/n J' = pr-m—a—Nexp (—zl/kt)dt

for Re s = w and (2.22); on account of (2.26) the integral is
absolutely convergent. In the last integrand in (2.29) we replace
the lefthand side of (2.80) by the righthand side of (2.80) and
next we revert the order of integration (justification in §7.2);
then we obtain

(2.81) o(z) = 2B/ j:" p(t) exp (—zV/#t)dt
for (2.22) where for t > 0:

ds
(1—ps—a—N),

w+4ioo
(2.82) p(?) —_—J PN(S)tz——/ts—az—-N
w—100

So o(2*) and p(t) are related to each other by the Laplace trans-
formation. By (8.33)

(2.83) P (s)/(1—ps—a—N), = O(s7?)

for |s| — oo uniformly on Re s < w (cf. § 7.2 for all details of the
proofs of (2.88)—(2.86)). Then it is easy to deduce that

(2:84) Ip(@)l = [ |y (s)Em=N | (1 —ps—a—N)y| - |ds|
< Kt2—,uw—Re a—N
for >0 and some constant K independent of t. Further it

appears that p(t) = 0 for 0 < ¢ < 1. From this, (2.84) and (2.81)
we derive

(2.85) o(z) = z@¥—2=N/kexp (—z1/*)O(1)

for |z| — co uniformly on every closed sector with vertex z = 0
which is contained in (2.22). From (2.27), (2.28), (2.29) and (2.85)
we may derive

(2.36) Ho(z) = (2n)q—1’ e(:!:“—%)”iEN(ze:I:/lﬂi)

for |3] — oo uniformly on every closed sector with vertex in 3 = 0
and which is contained in (2.22). Here N is an arbitrary non-
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negative integer, the lower resp. upper signs belong together and
Ey(z) is defined in definition III in § 4.4. From (2.36) we im-
mediately derive the exponentially small asymptotic expansions
of H(z) (or Hy(z)) in the case considered above. This will be
formulated in theorem 4 in §7.8.

Now we consider the case that u > 0, n =0, 0 < m < ¢ and
(2.18) hold. Then by (2.6), (2.24) and (1.3)

g
(2.87) h(s) = hy(s)n™ I sin =(b;—p;s)
m-+1
if (2.28) is fulfilled. The factor of h,(s) in (2.87) satisfies
q M .
(2.88) a1 sinw(b,—f;s) = > 7€'
m+1 0

where M is a positive integer, w,, . . ., wys are real and independent
of s with

q
(289) wp <oy <...<awy, oy =7 f;=pur—08 = —wp
m+4-1
(cf. (1.8) and (2.12)) while 7, . . ., 75, are complex and independent
of s with
q
7o = (2n1)™ % exp (7t 2. b;),
(2.40) m

g
Ty = (—2n8)" %exp (—nz > b;).
m+4-1

By (2.839) we have if (2.15) holds:
(2.41) —dun <argz+d8,—un <argztow; <arg x+un— 8y < Fum

for j = 0,..., M. Since further (2.25) holds for (2.22), now also
(2.25) with z || z¢** is valid on (2.15) by (2.41). From this, (2.21),
(2.87) and (2.88) we deduce

(2.42) H(z) = %rj H(ze*1).

This implies on account of (2.86) and (2.41)

(2.43) H(z) = (2n)*? % 7,6 E DT E (geitertam)

for |3| —> co uniformly on closed subsectors of (2.15) with vertex

% = 0 and for every non-negative integer N. In (2.48) the upper
resp. lower signs in the products belong together but for different
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values of j the terms may be taken with different signs. With the
help of lemma 5 from § 4.5 we can now derive the asymptotic
expansion of H(z) in the case we consider here. These expansions
which are again exponentially small are given in theorem 4 in
§7.8.

§ 2.3. We have to consider now the methods which can be
used to obtain the asymptotic expansions of H(z) which are not
algebraic and not exponentially small in the case 4 > 0. Therefore
we consider a sector

(2'4‘4‘) 80_%(6r+6r+1) é arg z é 80_%(6r—l+6r)

where 7 is an integer, J; is defined in definition I in § 4.2 and ¢,
is a positive number independent of z.

Let N be a non-negative integer and w a real number satisfying
(2.1), (2.2). (2.26) and

(2.45) w #= —(v+Rea)lp (»=0, +1, 4+2,...)

while I is defined by (2.8). Then we have to approximate the
integrals in (2.4) on the sector (2.44). This will be done by using
(2.7) for h(s) and approximating h,(s). However, in the general
case it appears that we have to use different approximations for
hy(s) on L and on L, contrary to the case where (2.19) holds and
where we could use the same approximation on L and on L, (cf.
§2.1: (2.18)). Here we introduce integers 4 and # so that

6v+1 g %(/‘n+6r+6r+1)’ 6/\—1 é %( _/"7‘+6f+6r—1)‘280’
A0y, Ay, A<r Z

(2.46) {

Here « is given by definition IT in § 4.2 and r and ¢, are the same
as in (2.44). Then we may deduce from lemma 7 and lemma 7a
from § 5, (4.8), (4.9) and lemma 2 in § 3.2 that

f ho(s) {hy(s) + iD,.ei"J’—iCjei"f’}zsds = 0(2Y)
(2.47) g v o
fL ho(s) {hl(s)-l—;D,-e"”f’— Y C,e“ }ztds = O(2")
1 0

for [3| — co uniformly on (2.44).
Now define for z % 0 and u > 0:

(2.48) F(z) = 2im f ho(s)z"ds.
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Then by (2.17) and the definition of L and L,:
1
(2.49) F(z) = —P,(z)+ %J’leo(s)z’ds.

From (2.4) and (2.47)-(2.49) we may deduce

(2.50)  H(z) = Qu(2)+ }i:D,-PAze"‘f)Jr g_ (C,+D,)F(z)+0(2*)

for |3| - oo uniformly on (2.44). Hence it is sufficient to derive
estimates for F(z) for then we deduce by means of (2.50) estimates
for H(z).

To derive the estimates for F(z) we choose a constant & such
that 0 < ¢ < }un. Then by (2.48), lemma 7 in § 5.2 and lemma 2
in § 3.2 we have
(2.51) F(z) = 0(z*)
for |3| - oo uniformly on (5.14). In the same way using (2.49) and
lemma 7a in § 5.8 we obtain
(2.52) F(z) = —P,(z)+0(z°)

for |2| - oo uniformly on (5.29).
For the consideration of F(z) on the sector

(2.58) larg 2| < dun+e
we use the property
(2.54)  |e7*™*/sin n(us+a)| is bounded for + Im s = I,

where the upper resp. lower signs belong together. Using lemma 7
from § 5.2, the property (2.54) and lemma 2 from § 8.2 we may
deduce

) ds
2.55 S HUTi8 — w
(2.55) [ mtayterns s — 0a2)
and

) ds
2. 8 p— U8 — W
(2.56) i ho(s)zfe Sl " 0(z¥)

for |z| - oo uniformly on (2.53). In view of
1 . . .

(2.57) 5 (emitrsta) —e—milksta) ) sin p(usta) = 1,
i

the definition of F(z) in (2.48) and (2.55), (2.56) imply
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1 —mia _ —pTL\S dS‘ w
(2.58) F(z)_——ae (J.L le) ho(s)(ze—#m) sin 7 (a0 +0(z*)

for |z| - oo uniformly on (2.58). By (8.25) and (2.6) we may
write instead of (2.58)

(2.59) F(B-'uz)

N-1

=4Ln2e—m > (-1 )"A,.( L— L) T —ps—o—f)(ze-57) ds

1 )
—I—;j—z—z-e 7(2)+0(z")

for |2| — oo uniformly on (2.53) where

o ds
(2.60) z(z)=n= (fz, —fz,l) T (s)(ze7) sinz(us+o ) (us+oa+N)

— (=1 (L _Ll) rar(s) (1 — s —a—N ) (ze—#3)sds.

Using (2.59) and (7.1) we infer

N-1

2.61 F(lu+*z) = ——1, A ;302=E exp (214
2 j P
27‘[’&/1 0

1 )
+ 5 () + 0 (=)

for |2} - oo uniformly on (2.58). So we have to estimate the
analytic function z(z) on (2.58).

From (2.60), (8.27), (2.54) and the lemmas 7 and 7a from § 5
wé deduce that if arg 2z = Jun+e

w-ico F —_ —a——N
(2.62) z(z) = (—1)Nf T (s) (i.?,—/z/:id—N)z)

w—100

(ze=#7%)%ds.

The last integral is of the same type as that in (2.29); the only
difference is that almost all poles of ry(s) are lying to the left of
Re s = w while all poles of py(s) are lying to the right of Re s = w.
The integral in (2.62) can be rewritten using (2.30) as a multiple
integral; in this multiple integral we revert the order of integration
like at (2.29) and (2.81). Then we obtain for arg z = Jun+e

(2.68) T(2) = (e—#7t)B—a—N)/k foco r(t) exp (2'/4t)dt

where for ¢ > 0
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w--ioo dS
o) rl)= (1" [ oot E s

w—i00

In view of (8.27) we have
(2.65) ry(s)/(1—us—a—N), = O(s72)

for |s| - co uniformly on Res = w. So the integral in (2.64)
converges absolutely for £ > 0 and

(2.66) r(t)] < K|gPrswReed

for t > 0; here K is independent of {. From lemma 2 and (2.66)
we derive that for ¢ > 1 the function r(¢) is equal to the sum of
the residues of the integrand in (2.64) in the poles s with Re s > w
multiplied by 27i(—1)¥+1, The number of these poles is finite and
it follows that the function 7(¢) for £ > 1 can be continued analyti-
cally for t 3£ 0. It is easy now to estimate the integral in (2.63)
with the help of the lemmas 6 and 6a from § 5 and the properties
of r(t). The results are formulated in lemma 8 in § 8.

From the properties of F(z) mentioned in lemma 8 and (2.50)
we deduce in § 9 the asymptotic expansions of H(z) for [3| — o0
in the case 4 > 0 which are not contained in the theorems 3 and 4
(though theorem 38 can also be deduced from lemma 8 and (2.50)
again). In § 8 the details of the proofs of the assertions in § 2.3 are
presented.

§ 3. Approximations for quotients of gamma-functions

In this paragraph approximation formulae for the functions
ho(s) defined by (2.10) and hy(s) defined by (2.24) will be derived.
Here and in the following paragraphs we use the notation of § 1.1
and § 2.1. Further Log z always denotes the principal value of
logz and >} ;... is interpreted as zero if k > I.

§ 3.1. In this section we derive lemma 1 on which the approxi-
mations for k(s) and hy(s) will be based. Lemma 1 will be derived
from the formula of Stirling in the following form:

Let a be a complex number, ¢ a constant satisfying 0 < e <=
and M a non-negative integer. Then
(8.1) Log I'(s+a) = (s+a—3) Log s—s-+4 Log (2r)

M- (—1)i+1 . g4
+ B a) ———————— 0 S—M
?’ (@) JG+1) + O0(s~)

for |s| - oo uniformly on the sector
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2.12 Green’s function



11
Green’s function

This chapter marks the beginning of a series of chapters dealing with

the solution to differential equations of theoretical physics. Very often,
these differential equations are linear; that is, the “sought after” function
Y (x), y(x), (1) et cetera occur only as a polynomial of degree zero and one,
and not of any higher degree, such as, for instance, [y(x)]%.

11.1 Elegant way to solve linear differential equations

Green'’s function present a very elegant way of solving linear differential
equations of the form

Z£,y(x) = f(x), with the differential operator

n n-1 d
gx:an(X)W+an_l(X)m+'“+al(X)E+a0(x) (11.1)
n dJ
= Z a; (x)m,

where a;(x), 0 < i < n are functions of x. The idea is quite straightfor-
ward: if we are able to obtain the “inverse” G of the differential operator £
defined by

LG(x,x)=8(x—x), (11.2)

with 8 representing Dirac’s delta function, then the solution to the inho-
mogenuous differential equation (11.1) can be obtained by integrating
G(x — x') alongside with the inhomogenuous term f(x'); that is,

y(x) =f G(x, x") f(xhdx'. (11.3)
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This claim, as posted in Eq. (11.3), can be verified by explicitly applying the
differential operator %y to the solution y(x),

Zry(x)
- .,‘fxfoo G(x, x") f(x"dx'

= f LGlx, X f(xdx (11.4)

= foo S(x—x)f(xdx
= f(x).

Let us check whether G(x, x') = H(x— x') sinh(x — x') is a Green’s function
of the differential operator £, = dd—; — 1. In this case, all we have to do is to
verify that Z, applied to G(x, x'), actually renders § (x — x'), as required by
Eq. (11.2).

£L.G(x,x) S(x—x)

(d—z - 1) H(x—x")sinh(x— x")
dx?

11~

S(x—x"

d d
Note that — sinh x = coshx, — coshx =sinh x; and hence
dx dx

d
pp §(x—x’)sinh(x—x’)+H(x—x’)cosh(x—x’) — H(x-x")sinh(x—x") =
-0

S(x—x")cosh(x—x")+ H(x—x) sinh(x— x") — H(x—x) sinh(x—x") = 6 (x — x').

The solution (11.4) so obtained is not unique, as it is only a special solu-
tion to the inhomogenuous equation (11.1). The general solution to (11.1)
can be found by adding the general solution y(x) of the corresponding
homogenuous differential equation

ZLyy(x)=0 (11.5)

to one special solution — say, the one obtained in Eq. (11.4) through Green’s
function techniques.
Indeed, the most general solution

Y(x) = y(x)+ yo(x) (11.6)
clearly is a solution of the inhomogenuous differential equation (11.4), as
LY (x) =Ly y(x)+ ZLryo(x) = f(x)+0 = f(x). (11.7)

Conversely, any two distinct special solutions y; (x) and y;(x) of the in-
homogenuous differential equation (11.4) differ only by a function which is
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a solution tho the homogenuous differential equation (11.5), because due
to linearity of Z, their difference y;(x) = y; (x) — y2(x) can be parameter-
ized by some function in yy

Lrly1(X) = y2 (0] = ZLxy1 () + Ly ya (x) = f(x) - f(x) =0. (11.8)

From now on, we assume that the coefficients a;(x) = a; in Eq. (11.1)
are constants, and thus translational invariant. Then the entire Ansatz
(11.2) for G(x, x') is translation invariant, because derivatives are defined
only by relative distances, and & (x — x') is translation invariant for the same
reason. Hence,

G(x,x") = G(x-x). (11.9)

For such translation invariant systems, the Fourier analysis represents an
excellent way of analyzing the situation.

Let us see why translanslation invariance of the coefficients a;(x) =
aj(x +¢) = aj under the translation x — x + ¢ with arbitrary ¢ - that is,
independence of the coefficients a; on the “coordinate” or “parameter”
x — and thus of the Green’s function, implies a simple form of the latter.

Translanslation invariance of the Green’s function really means
Gx+&x +8)=G(xx). (11.10)

Now set ¢ = —x'; then we can define a new green’s functions which just de-
pends on one argument (instead of previously two), which is the difference
of the old arguments

Gx-x',x'-x)=Gx-x',0) - G(x-x). (11.11)

What is important for applications is the possibility to adapt the solu-
tions of some inhomogenuous differential equation to boundary and initial
value problems. In particular, a properly chosen G(x — x'), in its depen-
dence on the parameter x, “inherits” some behaviour of the solution y(x).
Suppose, for instance, we would like to find solutions with y(x;) = 0 for
some parameter values x;, i = 1,..., k. Then, the Green’s function G must
vanish there also

Glxj—x)=0fori=1,...,k. (11.12)

11.2 Finding Green’s functions by spectral decompositions

It has been mentioned earlier (cf. Section 10.6.5 on page 160) that the o-
function can be expressed in terms of various eigenfunction expansions.
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We shall make use of these expansions here !. ! Dean G. Duffy. Green’s Functions with

Suppose v;(x) are eigenfunctions of the differential operator £y, and A;
Boca Raton, 2001

are the associated eigenvalues; that is,

Lyyi(x) = Ay (x). (11.13)

Applications. Chapman and Hall/CRC,
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Suppose further that £ is of degree n, and therefore (we assume with-
out proof) that we know all (a complete set of) the n eigenfunctions

W1 (X), w2 (x),...,wns(x) of Zy. In this case, orthogonality of the system of
eigenfunctions holds, such that

f 1//,-(x)1//j(x)dx:6ij, (11.14)

as well as completeness, such that,
n —_—
Y wiyi(x) =6(x—x). (11.15)
i=1

W stands for the complex conjugate of y; (x'). The sum in Eq. (11.15)
stands for an integral in the case of continuous spectrum of Z. In this
case, the Kronecker §;; in (11.14) is replaced by the Dirac delta function
&(k — k). It has been mentioned earlier that the §-function can be ex-
pressed in terms of various eigenfunction expansions.

The Green’s function of £, can be written as the spectral sum of the
absolute squares of the eigenfunctions, divided by the eigenvalues A ;; that
is,

n oy ()Y (x)

Gx—-x")=
;, Aj

(11.16)

For the sake of proof, apply the differential operator £y to the Green’s
function Ansatz G of Eq. (11.16) and verify that it satisfies Eq. (11.2):

L.Gx-x")
() (x)

f— ‘Zx ——
j=1 Aj

L (Lo (0T ()

n |
ig Aj

_ i (Ajwi(0ly;(x)
j=1 Aj

=Y w0y )
=1

(11.17)

=5(x—x).

For a demonstration of completeness of systems of eigenfunctions, con-
sider, for instance, the differential equation corresponding to the harmonic
vibration [please do not confuse this with the harmonic oscillator (9.29)]

_ dZ _ 1.2
Ly =y =k, (11.18)

with ke R.
Without any boundary conditions the associated eigenfunctions are

Yo (t)=e ", (11.19)



with 0 < w < oo, and with eigenvalue —w?. Taking the complex conjugate
and integrating over w yields [modulo a constant factor which depends on
the choice of Fourier transform parameters; see also Eq. (10.76)]

o0
f Yo(DYe()dow
—00
o0
:f e—iwteiwt’dw
) (11.20)
o0
:f e i0=1) g,
—00
=6(t—1t).
The associated Green'’s function is
oo e—iw(t—t’)
G(t—1) =f ———dw. (11.21)
—00 (_w)

And the solution is obtained by integrating over the constant k?; that is,

o0

w(t)=f G(t—t')kzdt’z—f

—00

K\
(—) e =D gudt’. (11.22)
w

Note that if we are imposing boundary conditions; e.g., w(0) = w(L) = 0,
representing a string “fastened” at positions 0 and L, the eigenfunctions
change to
. . (nT
Wit =sin(@nt) =sm(Tt), (11.23)

with w,, = * and n € Z. We can deduce orthogonality and completeness by
listening to the orthogonality relations for sines (9.11).

For the sake of another example suppose, from the Euler-Bernoulli
bending theory, we know (no proof is given here) that the equation for the
quasistatic bending of slender, isotropic, homogeneous beams of constant
cross-section under an applied transverse load ¢g(x) is given by

d4
ZLyy(x) = Wy(x) =q(x)=c, (11.24)

with constant ¢ € R. Let us further assume the boundary conditions
d2 dZ
y0)=y) = Wy(O) = Wy(L) =0. (11.25)

Also, we require that y(x) vanishes everywhere except inbetween 0 and L;
thatis, y(x) = 0 for x = (—o0,0) and for x = (/,00). Then in accordance with
these boundary conditions, the system of eigenfunctions {y ;(x)} of £ can

'(x)—\/?sin(m) (11.26)
Vivo=\ 1 L ’
for j =1,2,.... The associated eigenvalues
N4
nj
A:i==L
! ( L )

be written as

GREEN’S FUNCTION
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can be verified through explicit differentiation

Ly (x) = Ex\/751n(nix)

3 .
=%/ = sin(M)
L L

GRS

S\ 4
]
= (T) v j(x).

(11.27)

The cosine functions which are also solutions of the Euler-Bernoulli equa-
tions (11.24) do not vanish at the origin x = 0.
Hence,
. (mjx) . (mjx
, 2 X SIH(T)SIH(T)
Gx-xNx)==3 —
T
L (11.28)
2[3 &2 1 ' (7‘[ ) ) (njx’)
Z sin
L

j= 1

7-[4

Finally we are in a good shape to calculate the solution explicitly by

L
y(x) =[ Gx-x"gxhdx'

213 &2 1 . (n x) . (njx’)
Z sin | ——
L
X

e
[ n[*5)av|

~ 2cL3 °° 1 (n]
L
4cL4 S| ( ) ( ])
= — sin sin
] j° L 2

dx'

(11.29)

]1]

11.3 Finding Green’s functions by Fourier analysis
If one is dealing with translation invariant systems of the form

Z,y(x) = f(x), with the differential operator
an dn_l

d
££x—andx +an— ldx"*1+"'+ala+ao (11.30)

with constant coefficients a;, then we can apply the following strategy
using Fourier analysis to obtain the Green’s function.
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First, recall that, by Eq. (10.75) on page 159 the Fourier transform of the
delta function & (k) = 1 is just a constant; with our definition unity. Then, &
can be written as

1 [ .0
6(x—x’):§f k=) g g (11.31)

Next, consider the Fourier transform of the Green’s function

oo .
é(k):f Gx)e **gx (11.32)
o0
and its back trasform
1 [© . .
G(x):—f Gk e dk. (11.33)
27 J-0o

Insertion of Eq. (11.33) into the Ansatz £, G(x — x') = §(x — x) yields
ZG(x)

-2 [T Gwerak
=iy | Gke (11.34)

=[G (e ak= o [ etak
271 J oo * 2 '

T J-oco

and thus, through comparison of the integral kernels,

L e _ ikx _

zﬂf_w[G(k)fx 1]e'**dk =0,
G L -1=0, (11.35)
G(k) = (Ln7",

d

dx
latter by ik in the former. in that way, the Fourier transform G(k) is ob-

where %% is obtained from £, by substituting every derivative - in the
tained as a polynomial of degree 7, the same degree as the highest order of
derivative in %.

In order to obtain the Green’s function G(x), and to be able to integrate
over it with the inhomogenuous term f(x), we have to Fourier transform
G(k) back to G(x).

Then we have to make sure that the solution obeys the initial con-
ditions, and, if necessary, we have to add solutions of the homogenuos
equation £, G(x — x') =0. That is all.

Let us consider a few examples for this procedure.

1. First, let us solve the differential operator y’ — y = t on the intervall
[0, 00) with the boundary conditions y(0) = 0.
We observe that the associated differential operator is given by

d
L=,
Tt

and the inhomogenuous term can be identified with f(#) = t.

185
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+00 A P
We use the Ansaiz Gy (t,1') = 5= [ Gi(k)e’*""")dk; hence
—00

LG 1) = 1 TOG (k) (i—l)ei“f—f’) dk =

t ’ 21 ! dt

—00 —_—

= (ik—1)etk=1)
1 +o0

— 6(1'—1") - f eik(t—t/)dk
27

—00

Now compare the kernels of the Fourier integrals of £;G; and d:

~ = 1 1
Gi(k(k-1)=1 Gik)= —— =
1(k) (@ y=1= G (k) 1T D In?k
, 1 O k(-1 region t—t' >0
Gi(t,t)=— | ———dk
160 an ik+1)
—00
The paths in the upper and lower integration plain are drawn in Frig. » Rek

11.1.

The “closures” throught the respective half-circle paths vanish.
region t—¢ <0

0 for t>t

residuum theorem: Gy (¢, t')

ik(—1") Figure 11.1: Plot of the two paths regired
Gy (t, t,) = —27miRes i e . for solving the Fourier integral.
. . ’
2mwi (k+1)
4
= e forr<t.

Hence we obtain a Green’s function for the inhomogenuous differential
equation

Gi(t, 1) = —H({ - pe'™"
However, this Green’s function and its associated (special) solution

does not obey the boundary conditions G (0, 1) = —H(t)e™" # 0 for
t' € 10,00).

Therefore, we have to fit the Green’s function by adding an appropri-
ately weighted solution to the homogenuos differential equation. The
homogenuous Green’s function is found by

LiGo(1,1) =0,
and thus, in particular,
iGo =Gy= Gy=ae""
dt ’
with the Ansatz

G(0,£) = G1(0,£) +Go(0,t;a) = —H(tYe " +ae "



for the general solution we can choose the constant coefficient a so that
G(0,1') = G1(0,£) + Go(0, ¢';a) = —H(t)e " +ae™" =0

For a = 1, the Green’s function and thus the solution obeys the boundary
value conditions; that is,

G(t,t) = [1-H(' - n]e'".
Since H(—x) = 1— H(x), G(t, t') can be rewritten as

G(t,t) = H(t—t)e' ",

In the final step we obtain the solution through integration of G over the
inhomogenuous term ¢:

y(t) H(t-1t) e 'rar =
——

t
e Ydr = e”f fe 'dt =

7
0 =1fort' <t
ft
0

0
¢
|t /
el|-te? ‘0—[(—e_t)dt’
0

1t
et [(—teft)—eft ‘0] =e'(-te'—e+1)=e'-1-1.

2
. Next, let us solve the differential equation % + y =cost on the intervall
t € [0,00) with the boundary conditions y(0) = y'(0) = 0.

First, observe that
2

— +
dt®
The Fourier Ansatz for the Green’s function is

£ = 1.

+o0
1 T
Gi(t,f) = —/G(k)e’k“’”dk
27
—00
1 +00 dz
LG = — | Go|= +1|e* gk =
! Zﬂf ()(dt2 )e
—00

1 +00
= —fG(k)((ik)2+1)e”““‘f')dk=
27
—00

+00
1 . /
_ 6(t—t,)=2ﬂ f etk(t—t)dk:

—00

Hence
G-k =1

GREEN’S FUNCTION

187



188 MATHEMATICAL METHODS OF THEORETICAL PHYSICS

ant thus
1 -1

1-k2) (k+D(k-1

The Fourier transformation is

G(k) =

1 +oo pik(t—t)

/ _ e —
Gr) = -5 (k+1)(k—1)dk
—00
1 el‘k(t—l”)
= ——27i|Res|———— k=1
o es((k+1)(k—1)k )+
eik(t—t’) .
Res| — s k=—1||H(t-t
Sl kr D=1 ] (=1

The path in the upper integration plain is drawn in Fig. 11.2.

i ey o
Gt 1) = -3 (et(t—t) _e—l(t—t))H(t_ £ =
ei(t—t’) _e—i(t—t’)
= ————  H(t-t)=sin(t—tH(t-1t)

2i
G10,t) = sin(-fYH(-t)=0  since >0
Gy(t,t) = cos(t—tVH(t—1t")+sin(t—1)6(r—1")
—_—

=0

G, (0,1 cos(—t")H(-t')=0 asbefore.

G already satisfies the boundary conditions; hence we do not need to

find the Green'’s function Gy of the homogenuous equation.

y(1) fG(t, t’)f(t')dt’zfsin(t—t’) H(t—1t) cost'dt' =
0 0

=1fort>"¢

|
—-

0
t

f[sin t(cost')* —costsint’ cost']dt’ =

0

¢ t
sin tf(cos 2dt - cos tfsint’cos t'dt =
0 0

sin? ¢/ |t

sin t

0

l ! . ! ! ¢
E(t +sint cost) )O—cost

fsint sin®fcost costsin?t _ tsint

+
2 2 2 2

&

t
sin(t—t")cost'dt = f(sin tcost' —costsint’)cost'dt =
0

Figure 11.2: Plot of the pdth reqired for
solving the Fourier integral.
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1. Introduction

Many systems studied in physics show some form of symmetry. In physics, this means
the following: we can consider some transformation rule, like a rotation, a displacement,
or the reflection by a mirror, and we compare the original system with the transformed
system. If they show some resemblance, we have a symmetry. A snow flake looks like
itself when we rotate it by 60° or when we perform a mirror reflection. We say that
the snow flake has a symmetry. If we replace a proton by a neutron, and wvice versa, the
replaced particles behave very much like the originals; this is also a symmetry. Many laws
of Nature have symmetries in this sense. Sometimes the symmetry is perfect, but often
it is not exact; the transformed system is then slightly different from the original; the
symmetry is broken.

If system A resembles system B, and system B resembles C', then A resembles
C' . Therefore, the product of two symmetry transformations is again a symmetry trans-
formation. Thus, the set of all symmetry transformations that characterize the symmetry
of a system, are elements of a group. For example, the reflections with respect to a plane
form a group that contains just two elements: the reflection operation and the identity
— the identity being the one operation that leaves everything the same. The rotations in
three-dimensional space, the set of all Lorentz transformations, and the set of all parallel
displacements also form groups, which have an unlimited number of elements. For obvi-
ous reasons, groups with a finite (or denumerable) number of elements are called discrete
groups; groups of transformations that continuously depend on a number of parameters,
such as the rotations, which can be defined in terms of a few angular parameters, are
called continuous groups.

The symmetry of a system implies certain relations among observable quantities, which
may be obeyed with great precision, independently of the nature of the forces acting in the
system. In the hydrogen atom, for example, one finds that the energies of different states
of the atom, are exactly equal, as a consequence of the rotational invariance of the system.
However, one also often finds that the symmetry of a physical system is only approximately
realized. An infinite crystal, for example, is invariant under those translations for which
the displacement is an integral multiple of the distance between two adjacent atoms. In
reality, however, the crystal has a definite size, and its surface perturbs the translational
symmetry. Nevertheless, if the crystal contains a sufficiently large number of atoms, the
disturbance due to the surface has little effects on the properties at the interior.

An other example of a symmetry that is only approximately realized, is encountered
in elementary particle physics. The so-called A™ particle, which is one of the excited
states of the nucleons, decays into a nucleon and an other particle, the 7 -meson, also
called pion. There exist two kinds of nucleons, neutrons and protons, and there are three
types of pions, the electrically charged pions 7* and 7~ , and the neutral one, 7°. Since
the total electric charge of the A™ must be preserved during its decay, one distinguishes

IThis lecture course was originally set up by M. Veltman, and subsequently modified and extended
by B. de Wit and G. ’t Hooft.



nucleons pions A particles
Mproton = 938 MeV/c? | mu+ &~ 140 MeV/c? | ma++ &~ 1231 MeV/c?
Mueutron ~ 939 MeV /c? | myo ~ 135 MeV/c? ma+ ~ 1232 MeV /c?
M- ~ 140 MeV/c? | mapo ~ 1233 MeV /c?
ma- ~ 1235 MeV/c?

Table 1: Masses of nucleons, pions and A particles, expressed in MeV /c?.

two possible decay modes:
At —nrt and AT —p7r°. (1.1)

Remarkably, the second decay occurs twice as often as the the first one, a fact that seems to
be difficult to explain as being due to the differences in the charges of the decay products.
A natural explanation of this factor 2 could follow from symmetry considerations. This
is not as strange as it might seem, because protons and neutrons have nearly identical
masses, just as the three species of pions and the four A particles that are found in
Nature (see table).

It will be demonstrated that the near equality of the masses, and also the factor 2 in
the two decay modes (1.1), can be explained by assuming nature to be invariant under
so-called isospin transformations. The notion of ‘isobaric spin’, or ‘isospin’ for short, was
introduced by Heisenberg in 1932. He was puzzled by the fact that protons and neutrons
have nearly equal masses, while, apart from the obvious differences in electrical charge,
also other properties are much alike. Thus, the nucleons form a doublet, just like electrons
that show a doublet structure as a consequence of the fact that there are two possible spin
orientations for the electron states — hence the term isobaric spin. Later, it turned out
that elementary particles with nearly equal masses can always be arranged in so-called
isospin multiplets. The nucleons form an isospin doublet, the pions an isospin triplet,
and the A particles an isospin quadruplet. Particles inside a single multiplet all have
approximately identical masses, but different electric charges. The charge arrangement is
as indicated in the table: no two particles in one multiplet have the same charge, and the
particles can always be arranged in such a way that the charge difference between two
successive particles is exactly one elementary charge unit.

However, it will be clear that isospin invariance can only be an approximation, since
the masses of the nucleons, pions and A particles turn out to depend somewhat on their
electric charges. The mass differences within a multiplet are only of the order of a few
percent, and this is the degree of accuracy that one can expect for theoretical predictions
based upon isospin invariance.

The above example is an application of group theory in the physics of elementary
particles, but invariance principles play an important role in nearly all branches of physics.
In atomic physics we frequently notice the consequences of rotation invariance, in nuclear
physics we have rotation and isospin invariance, in solid state physics also invariance
under discrete translations and rotations. Also in (quantum) field theory, symmetry
transformations are important. A very special kind of transformations are encountered



for example in electrodynamics. Here, electric and magnetic fields can be expressed in
terms of the so-called vector potential A,(x), for which we use a relativistic four-vector
notation (u=0,1,2,3):

Au(@ = (- ¢! ¢(I)a A(I)) ) o = (ct, x) , (1.2)

where ¢ denotes the potential, and A the three-dimensional vector potential field; ¢ is
the velocity of light. The electric and magnetic fields are defined by

E = —ng—c_l%—?, (1.3)

B = VxA. (1.4)

An electrically charged particle is described by a complex wave function (%, t). The
Schrédinger equation obeyed by this wave function remains valid when one performs a
rotation in the complex plane:

V(T t) — e ap(F t) . (1.5)

Is the phase factor A allowed to vary in space and time?

The answer to this is yes, however only if the Schrédinger equation depends on the
vector potential in a very special way. Wherever a derivative 0, occurs, it must be in
the combination

D, =0, —ieA,, (1.6)

where e is the electric charge of the particle in question. If A(Z, t) depends on # and
t, then (1.5) must be associated with the following transformation rules for the potential

fields:

Alz) — A(@)+e'VA(), (1.7)
o) — o)~ (o) TA) (1.9

or, in four-vector notation,
Au(x) — Au(x) + e 10, A () . (1.9)

It can now easily be established that E en B will not be affected by this so-called
gauge transformation. Furthermore, we derive:

D,p(z) — e D ab(a) (1.10)

Notice that the substitution (1.6) in the Schrodinger equation is all that is needed to
include the interaction of a charged particle with the fields E en B.

These phase factors define a group, called the group of 1 x 1 unitary matrices, U(1) .
In this case, the group is quite a simple one, but it so happens that similar theories exist

3



that are based on other (continuous) groups that are quite a bit more complicated such as
the group SU(2) that will be considered in these lectures. Theories of this type are known
as gauge theories, or Yang-Mills theories, and the field A, is called a gauge field. The
fact that E en B are invariant under gauge transformations implies that electromagnetic
phenomena are gauge-invariant. For more general groups it turns out that several of these
gauge fields are needed: they form multiplets.

Surprisingly, the theory of gravitation, Einstein’s general relativity theory, turns out
to be a gauge theory as well, be it of a somewhat different type. This theory can be
considered to be the gauge theory of the general coordinate transformations, the most
general reparametrizations of points in space and time,

zt — at + M (x) . (1.11)

The gauge field here is the gravitational field, taking the form of a metric, which is to be
used in the definitions of distances and angles in four-dimensional space and time. All of
this is the subject of an entire lecture course, Introduction to General Relativity.

The fact that gauge transformations are associated to an abstract group, and can
depend on space and time as well, can give rise to interesting phenomena of a topological
nature. Examples of this are flux quantization in super conductors, the Aharonov-Bohm
effect in quantum mechanics, and magnetic monopoles. To illustrate the relevance of
topology, we consider again the group of the U(1) gauge transformations, but now in
two-dimensional space (or equivalently, in a situation where the fields only depend on
two of the three space coordinates). Let ¢ (z,y) be a complex function, such as a wave
function in quantum mechanics, transforming under these gauge transformations, i.e.

d(x,y) — MY (2, y) . (1.12)

From the fact that the phase of ¢ can be modified everywhere by applying different
gauge transformations, one might conclude that the phase of ¢ is actually irrelevant for
the description of the system. This however is not quite the case. Consider for instance
a function that vanishes at the origin. Now take a closed curve in the z-y plane, and
check how the phase of ¥(x,y) changes along the curve. After a complete run along the
curve the phase might not necessarily take the same value as at the beginning, but if we
assume that v (z,y) is single-valued on the plane, then the phase difference will be equal
to 2mn, where n is an arbitrary integral number. This number is called the winding
number. An example of a situation with winding number n =1 is pictured in Fig. 1; the
phase angle makes a full turn over 27 when we follow the function ¢ (z,y) along a curve
winding once around the origin. One can easily imagine situations with other winding
numbers. The case n =0 for instance occurs when the phase of ¥ (x,y) is constant.

If we change the function 1 (x,y) continuously, the winding number will not change.
This is why the winding number is called a topological invariant. This also implies that the
winding number will not change under the gauge transformations (1.12), provided that
we limit ourselves to gauge transformations that are well-defined in the entire plane. Note
also that the winding number does not depend on the choice of the closed curve around
the origin, as long as it is not pulled across the origin or any other zero of the function

4
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Figure 1: De phase angle of (z,y) indicated by an arrow (whose length is immaterial,
but could be given for instance by |¢(z,y)|) at various spots in the z -y plane. This
function has a zero at the origin.

¥(x,y). All this implies that although locally, that is, at one point and its immediate
neighborhood, the phase of % can be made to vanish, this can be realized globally, that
is, on the entire plane, only if the winding number for any closed curve equals zero.

A similar situation can be imagined for the vector potential. Once more consider
the two-dimensional plane, and assume that we are dealing with a magnetic field that is
everywhere equal to zero, except for a small region surrounding the origin. In this region,
A cannot be equal to zero, because of the relation (1.4). However, in the surrounding
region, where B vanishes, there may seem to be no reason why not also A should vanish.
Indeed, one can show that, at every given point and its neighborhood, a suitably chosen
gauge transformation can ensure A(x) to vanish there. This result, however, can only
hold locally, as we can verify by considering the following loop integral:

B[] = chi da, (1.13)

where C' is a given closed curve. It is easy to check that ®[C] does not change under
a gauge transformation (1.5). Indeed, we know from the theory of magnetism that ®[C]
must be proportional to the total magnetic flux through the surface enclosed by the curve

C.

Applying this to the given situation, we take the curve C' to surround the origin and
the region where B # 0, so that the B field vanishes on the curve itself. The quantity
®[C] equals the total flux through C', which may well be different from zero. If this
is the case, we cannot transform A away in the entire outside region, even if it can
be transformed away locally?. Note that the magnetic flux here plays the same role as
the winding number of the previous example. Indeed, in superconducting material, the
gauge phases can be chosen such that A vanishes, and consequently, magnetic flux going
through a superconducting coil is limited to integral values: the flux is quantized.

2This causes an interesting quantum mechanical effect in electrons outside a magnetic field, to wit,
the Aharonov-Bohm effect.



Under some circumstances, magnetic field lines can penetrate superconducting mate-
rials in the form of vortices. These vortices again are quantized. In the case of more com-
plicated groups, such as SU(2) , other situations of a similar nature can occur: magnetic
monopoles are topologically stable objects in three dimensions; even in four dimensions
one can have such phenomena, referred to as “instantons”.

Clearly, group theory plays an essential role in physics. In these lectures we will
primarily limit ourselves to the group of three-dimensional rotations, mostly in the context
of quantum mechanics. Many of the essentials can be clarified this way, and the treatment
can be made reasonably transparent, physically and mathematically. The course does not
intend to give a complete mathematical analysis; rather, we wish to illustrate as clearly as
possible the relevance of group theory for physics. Therefore, some physical applications
will be displayed extensively. The rotation group is an example of a so-called compact Lie
group. In most applications, we consider the representations of this group. Representation
theory for such groups is completely known in mathematics. Some advance knowledge
of linear algebra (matrices, inner products, traces, functions and derivatives of matrices,
etc.) will be necessary. For completeness, some of the most important properties of
matrices are summarized in a couple of appendices.



2. Quantum mechanics and rotation invariance

Quantum mechanics tells us that any physical system can be described by a (usually
complex) wave function. This wave function is a solution of a differential equation (for
instance the Schrodinger equation, if a non-relativistic limit is applicable) with boundary
conditions determined by the physical situation. We will not indulge in the problems of
determining this wave function in all sorts of cases, but we are interested in the properties
of wave functions that follow from the fact that Nature shows certain symmetries. By
making use of these symmetries we can save ourselves a lot of hard work doing calculations.

One of the most obvious symmetries that we observe in nature around us, is invariance
of the laws of nature under rotations in three-dimensional space. An observer expects that
the results of measurements should be independent of the orientation of his or her appara-
tus in space, assuming that the experimental setup is not interacting with its environment,
or with the Earth’s gravitational field. For instance, one does not expect that the time
shown by a watch will depend on its orientation in space, or that the way a calculator
works changes if we rotate it. Rotational symmetry can be found in many fundamental
equations of physics: Newton’s laws, Maxwell’s laws, and Schrédinger’s equation for ex-
ample do not depend on orientation in space. To state things more precisely: Nature’s
laws are invariant under rotations in three-dimensional space.

We now intend to find out what the consequences are of this invariance under rotation
for wave functions. From classical mechanics it is known that rotational invariance of
a system with no interaction with its environment, gives rise to conservation of angular
momentum: in such a system, the total angular momentum is a constant of the motion.
This conservation law turns out to be independent of the details of the dynamical laws; it
simply follows from more general considerations. It can be deduced in quantum mechanics
as well. There turns out to be a connection between the behavior of a wave function under
rotations and the conservation of angular momentum.

The equations may be hard to solve explicitly. But consider a wave function ¢ de-
pending on all sorts of variables, being the solution of some linear differential equation:

Dip=0. (2.1)

The essential thing is that the exact form of D does not matter; the only thing that
matters is that D be invariant under rotations. An example is Schrodinger’s equation
for a particle moving in a spherically symmetric potential V' (r),

e 91 -
[% (a_l‘%+a_.%’%+8_xz23>_v(r)+lh§:| 1/J(I7t)_07 r=vxr-. (2'2)

Consider now the behavior of this differential equation under rotations. When we
rotate, the position vector # turns into an other vector with coordinates z :

J
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Here, we should characterize the rotation using a 3 x 3 matrix R, that is orthogonal
and has determinant equal to 1 (orthogonal matrices with determinant —1 correspond
to mirror reflections). The orthogonality condition for R implies that

ER:RE:]., or ZR” le:@k, ZR” Rk]: ik s (24)
i J

where R is the transpose of R (defined by Rij =Ry ).

It is not difficult now to check that equation (2.2) is rotationally invariant. To see
this, consider® the function ¢/(7, t) = o (@' t)

0 iz -2y @
o,V @0 =Y Z 8331 8:1: Z R”a : K (2:5)

where use was made of Eq. (2.3). Subsequently, we observe that

o 0
= ii i vt
Z@xl az, ¥ 1) > B B o) ax;f’(‘r )

i,k
o od
where we made use of Eq. (2.4). Since 7'? = 72, the potential V(r) also remains the

same after a rotation. From the above, it follows that Equation (2.2) is invariant under
rotations: if (%, t) is a solution of Eq. (2.2), then also ¢'(Z, t) must be a solution of
the same equation.

In the above, use was made of the fact that rotations can be represented by real 3 x 3
matrices R. Their determinant must be +1, and they must obey the orthogonality
condition RR = 1. Every rotation in 3 dimensions can be represented by three angles
(this will be made more precise in Chapter 3) Let R; and R, both be matrices belonging
to some rotations; then their product R3 = R;Rs will also be a rotation. This statement
is proven as follows: assume that R; and R, are orthogonal matrices with determinant
1. From the fact that

Ry = Rt Ry = Ry* (2.7)

it follows that also Rs = R Ry is orthogonal:
Ry = R1Ry = RyRy = Ry'R;' = (RiRo) ™' = R; ' . (2.8)
Furthermore, we derive that

det Rg = det(Rle) = det Rl det R2 =1 s (29)

3By rotating & first, and taking the old function at the new point Z’ afterwards, we actually rotate
the wave function into the opposite direction. This is a question of notation that, rather from being
objectionable, avoids unnecessary complications in the calculations.



so that R3 is a rotation as well. Note that also the product Ry = Ry R, is a rotation, but
that R3 en R4 need not be the same. In other words, rotations are not commutative;
when applied in a different order, the result will be different, in general.

We observe that the rotations form what is known as a group. A set of elements (here
the set of real 3 x 3 matrices R with determinant 1 and RR = 1) is called a group if an
operation exists that we call ‘multiplication’ (here the ordinary matrix multiplication), in
such a way that the following demands are obeyed:

1. If Ry en Ry are elements of the group, then also the product R;Rs is an element
of the group.

2. The multiplication is associative: Rj(R2R3) = (R1R2)R3. So, one may either first
multiply R, with Rs, and then multiply the result with R, , or perform these two
operations in the opposite order. Note that the order in which the matrices appear
in this expression does have to stay the same.

3. There exists a unity element 1, such that 1R = R for all elements R of the group.
This unity element is also an element of the group.

4. For all elements R of the group, there exists in the group an inverse element R~1
such that R"!R=1.

The set of rotation matrices possesses all these properties. This set forms a group with
infinitely many elements.

Every group is fully characterized by its multiplication structure, i.e. the relation
between the elements via the multiplication rules. Later, we will attempt to define this
notion of “structure” more precisely in terms of formulae. Note that a group does not
possess notions such as “add” or “subtract”, only “multiply”. There is no “zero-element”
in a group.

Much use is made of the fact that the set of all transformations that leave a system
invariant, together form a group. If we have two invariance transformations, we can
immediately find a third, by subjecting the quantities in terms of which the theory is
defined, to the two transformations in succession. Obviously, the resulting transformation
must leave the system invariant as well, and so this “product transformation” belongs to
our set. Thus, the first condition defining a group is fulfilled; the others usually are quite
obvious as well.

For what follows, the time dependence of the wave function is immaterial, and therefore
we henceforth write a rotation R of a wave function as:

(&) = (") = P(RT) . (2.10)

Applying a second rotation S, gives us

W' = ' (ST) = Y(RST) . (2.11)



In what follows now, we will make use of the fact that the equation Dy = 0 is a linear
equation. This is in contrast to the invariance transformation R, which may or may not
be linear: the sum of two matrices R and S usually is not a legitimate rotation. It is
true that if we have two solutions v and v, of the equation (2.1), then every linear
combination of these is a solution as well:

D (A1 + pips) = XDy + pDipp =0 . (2.12)
In general: if 4y,...,4, are solutions of the equation in (2.1) then also every linear
combination

is a solution of (2.1).

Regarding the behavior under rotations, we now distinguish two possible situations.
Either the wave function % is rotationally invariant, that is, upon a rotation, % turns
into itself,

V(@) =9(@) = @) =@, (2.14)
or we have sets of linearly independent solutions 1, ...,, , that, upon a rotation, each
transform into some linear combination of the others. To illustrate the second possibility,
we can take for example the set of solutions of particles moving in all possible directions.
In this case, the set 1, ...,1, contains an infinite number of solutions. In order to avoid
complications due to the infinite number of elements in this set, we can limit ourselves
either to particles at rest, or omit the momentum dependence of the wave functions. Upon
a rotation, a particle at rest turns into itself, but the internal structure might change. In
this case, the set of wave functions that rotate into one another usually only contains a
finite number of linearly independent solutions. If the particle is in its ground state, the
associated wave function is often rotationally invariant; in that case, the set only contains
one wave function. If the particle is in an excited state, different excited states can emerge
after a rotation.

Now let there be given such a set W = (¢1,...,1,) of wave functions transforming
into one another upon a rotation. This means that after a rotation, t; turns into some
linear combination of q,...,, ,

P1(Z) = 1 (RT) = diy 1(Z) + diz Vo @) + -+ - + dip Y (T) | (2.15)

and a similar expression holds for s, ..., . In general, we can write

Wy =Y dapts.  (AB=1...n). (2.16)
B
The coefficients dsp depend on R and form a matrix D(R), such that
V' (¥) = ¥(RZ) = D(R)¥(T) , (2.17)
where we indicated the wave functions 1,...,%, as a column vector W . In the cases

to be discussed next, there is only a limited number of linearly independent solutions of
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the equation Dy = 0, and therefore the space of all solutions (2.15) that we obtain by
rotating one of them, must be finite-dimensional.

The matrices D(R) in (2.15)-(2.16) are related to the rotation matrices R in the
sense that for every rotation R in 3-dimensional space a matrix D(R) exists that turns
the solutions 14 into linear combinations of the same solutions. One can, however, say
more. A given rotation can either be applied at once, or be the result of several rotations
performed in succession. Whatever is the case, the final result should be the same. This
implies that the matrices D(R) must possess certain multiplication properties. To derive
these, consider two successive rotations, R and S (see Eq. (2.11)). Let R be associated
with a matrix D(R), and S with a matrix D(S). In formulae:

U(RZ) = D(R)U(Z),
U(S7) = D(S)U(T). (2.18)

Obviously, the combined rotation RS must be associated with a matrix D(R.S) , so that
we have

U(RSZ)=D(RS)¥(Z) . (2.19)
But we can also determine W(R.S) using Eq. (2.18),

V(RSZ)=D(R)¥(SZ)=D(R)D(S)¥ () . (2.20)
therefore, one must have?
D(R)D(S)=D(RS) . (2.21)

Thus, the matrices D(R) must have the same multiplication rules, the same multipli-
cation structure, as the matrices R. A mapping of the group elements R on matrices
D(R) with this property is said to be a ‘representation’ of the group. We shall study
various kinds of representations of the group of rotations in three dimensions.

Summarizing: a set of matrices forms a representation of a group, if one has

1. Every element a of the group is mapped onto a matrix A,

2. The product of two elements is mapped onto the product of the corresponding
matrices, i.e. if a, b and ¢ are associated to the matrices A, B, and C', and
c=ab, then one must have C = AB.

We found the following result: Upon rotations in three-dimensional space, the wave func-
tions of a physical system must transform as linear mappings that form a representation
of the group of rotations in three dimensions.

“In this derivation, note the order of R en S . The correct mathematical notation is: D(R)¥ = ¥R,
so D(R)-(D(S)-¥)=D(R)-¥-S=(V-R)-S=D(RS)-V. It is not correct to say that this should

o
equal D(R)-(¥-S) = (V-S5) R because the definitions (2.18) only hold for the given wave function
W not for ¥-S.
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As a simple example take the three functions

Vi(T) = a1 (1), Vo(T) = 22 f(1) , Y3(%) = a3 f(1) (2.22)

where f(r) only depends on the radius r = VZ2 , which is rotationally invariant. These
may be, for instance, three different solutions of the Schrédinger equation (2.2). Upon a
rotation, these three functions transform with a matrix D(R) that happens to coincide
with R itself. The condition (2.21) is trivially obeyed.

However, the above conclusion may not always hold. According to quantum mechan-
ics, two wave functions that only differ by a factor with absolute value equal to 1, must
describe the same physical situation. The wave functions ¢ and e describe the same
physical situation, assuming « to be real. This leaves us the possibility of a certain mul-
tivaluedness in the definition of the matrices D(R) . In principle, therefore, the condition
(2.21) can be replaced by a weaker condition

D(Rl) D(Rg) = eXp [iOZ(Rl, Rg)] D (Rl Rz) 5 (223)

where « is a real phase angle depending on R; and R, . Matrices D(R) obeying (2.23)
with a non-trivial phase factor form what we call a projective representation. Projective
representations indeed occur in physics. We shall discover circumstances where every
matrix R of the rotation group is associated to two matrices D(R) en D'(R), differing
from one another by a phase factor, to wit, a factor —1. One has D'(R) = —D(R).
This is admitted because the wave functions 1 and —w» describe the same physical
situation. This multivaluedness implies that the relation (2.21) is obeyed only up to a
sign, so that the phase angle « in (2.23) can be equal to 0 or m. Particles described by
wave functions transforming according to a projective representation, have no analogue
in classical mechanics. Examples of such particles are the electron, the proton and the
neutron. Their wave functions will transform in a more complicated way than what is
described in Eq. (2.10). We shall return to this topic (Chapter 6).

The physical interpretation of the quantum wave function has another implication, in
the form of an important constraint that the matrices D(R) must obey. A significant
role is attributed to the inner product, a mapping that associates a complex number to a
pair of wave functions, 11 and s, to be written as (¢ | ¢9) , and obeying the following
relations (see Appendix E):

(Wly) = 0,
(|¥) = 0, then and only thenif |¢) =0, (2.24)
(1 [ Ao+ pws) = A | o) +p (¥ | ¥s) (2.25)
for every pair of complex numbers A and f ,
(o [¥2)" = (Y2 ]n) . (2.26)

For wave functions depending on just one coordinate, such an inner product is defined
by

(W1 | o) = / " do 44(2) a(a) | (2.27)

o
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but for our purposes the exact definition of the inner product is immaterial.

According to quantum mechanics, the absolute value of the inner product is to be
interpreted as a probability. More explicitly, consider the state described by | 1) . The
probability that a measurement will establish the system to be in the state | ¢) is given
by [{¢ | ¥)|*>. Now subject the system, including the measurement device, to a rotation.
According to (2.17), the states will change into

|9y = DId)y, o) =Dly) . (2.28)

The corresponding change of the inner product is then

(plv) — (9| D'D|v). (2.29)

However, if nature is invariant under rotations, the probability described by the inner
product, should not change under rotations. The two inner products in (2.29) must be
equal. Since this equality must hold for all possible pairs of states | ¢) and | ), we can
conclude that the matrices themselves must obey the following condition:

D'D=1, (2.30)

in other words, D must be a unitary matrix.® Since this has to hold for every matrix
D(R) associated to a rotation, this demand should hold for the entire representation.
Thus, in this context, we shall be exclusively interested in unitary representations.

5The condition is that the absolute value of the inner product should not change, so one might suspect
that it suffices to constrain DTD to be equal to unity apart from a phase factor. However, DD is a
hermitian, positive definite matrix, so we must conclude that this phase factor can only be equal to 1.
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3. The group of rotations in three dimensions

A rotation in three-dimensional space can be represented by a 3 x 3 matrix of real
numbers. Since upon a rotation of a set of vectors, the angles between them remain the
same, the matrix in question will be orthogonal. These orthogonal matrices form a group,
called O(3). From the demand R R =1, one derives that det (R) = %1 . If we restrict
ourselves to the orthogonal matrices with det (R) = +1, then we call the group SO(3),
the special orthogonal group in & dimensions.

A rotation in three-dimensional space is completely determined by the rotation axis
and the angle over which we rotate. The rotation axis can for instance be specified by
a three-dimensional vector & ; the length of this vector can then be chosen to be equal
to the angle over which we rotate (in radians). Since rotations over angles that differ by
a multiple of 27, are identical, we can limit ourselves to rotation axis vectors & inside
(or on the surface of) a three-dimensional sphere with radius 7. This gives us a natural
parametrization for all rotations. Every point in this sphere of parameters corresponds
to a possible rotation: the rotation axis is given by the line through this point and the
center of the sphere, and the angle over which we rotate (according to a left-handed screw
for instance) varies from 0 to 7 (rotations over angles between —m and 0 are then
associated with the vector in the opposite direction). T'wo opposite points on the surface
of the sphere, that is, @ and —a& with |@| = 7, describe the same rotation, one over an
angle m and one over an angle —m, around the same axis of rotation. However, apart
from this identification of diametrically opposed points on the surface of the sphere, two
different points inside this parameter sphere always describe two different rotations.

From the above, it is clear that rotations can be parameterized in terms of three
independent parameters, being the three components of the vectors &, and furthermore
that the rotations depend on these parameters in a continuous fashion. To study this
dependence further, consider infinitesimal rotations, or, rotations corresponding to vectors
|&| = 0. First, let us limit ourselves to rotations around the z axis, so that & = (0,0, a) .
The associated rotation follows from

r — cosazx+sinay,
y — cosay—sinaw, (3.1)

z — z.
This leads to a matrix R(«), equal to

cosa sina 0
R(a)=| —sina cosa 0 | . (3.2)
0 0 1

The rotation by an angle « can also be regarded as being the result of n successive
rotations over an angle «/n. For very large values of n, the rotation by a small angle
a/n will differ from the identity only infinitesimally; ignoring terms of order (a/n)?, we
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find for the associated 3 x 3 matrix,

1 a/n 0 02
R(a/n) = —a/n 1 0 +O<ﬁ>
0 0 1
o 0 10 o2
—1+2( -1 00 +0(—2> . (3.3)
"\ o 00 "

It is now possible to reconstruct the finite rotation over an angle a by taking the n'®
power of (3.3),

R(a) = [R(a/n)]" = |1+ Y710 o ' (3.4)
N N n n? ’ '
where the matrix T is given by

0 10
T=[-100]. (3.5)
0 00

In the limit n — oo, we expect to be able to ignore terms of order 1/n?; furthermore,
we make use of the formula

1 n
e = lim (1 + —A) : (3.6)
n—oo n
This results in
R(«a) = exp(aT) . (3.7)
The exponent of this matrix can be elaborated by using the series expansion
A = 1 n
e =) —A". (3.8)
n!
n=0
Next, we remark that
100
™ =(=)"f010], (n>1) (3.9)
000

from which it follows immediately that T%"*' = (=)"T for n > 0. Using this, we can
perform the exponentiation by separately selecting the even and odd powers. This leads
to

oo 1 00 o0
(_)na2n ( )na2n+1
exp(al) = l—l—Z— 010 —1—2
n=1 (2n)! 000 n=0 (2n +1)!
1 00
= 1+ (cosa—1)1 0 1 0 | +sinaT, (3.10)
000
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Figure 2: Infinitesimal rotation of a vector 7, around a rotation axis &

which indeed coincides with the original matrix (3.2).

Let us now consider the relation between finite and infinitesimal transformations as
given by Eq. (3.7), for more general rotations. For rotations over a small angle, every 7
gets a small vector added to it that is orthogonal both to the vector 7 and the rotation
axis (see Figure 2). This tiny vector is exactly equal to the outer product of 7 and the
rotation axis vector @ (where it was assumed that |@| ~ 0 ), so that

F—7r+rxad+0(|a]) . (3.11)

therefore, in case of a general rotation axis vector @ = (a1, g, a3) one can write

x—>x+a3y—a22+0(\d'|2) ,
y—y+arz—azz+0(|a?) , (3.12)

z—z4+az—ay+0(|d?) .

Infinitesimal rotations can therefore be written as follows:
R@) =1+ i(a1L1 + gLy + a3L3> +0(lap?) (3.13)

where we added a factor ¢ in order to conform to the usual notations, and the hermitian
matrices L;, Ly en L3 are defined by

00 O
L, = 00 —i )
0 ¢ O
0 0 ¢
Ly, = 0 00 , (3.14)
— 0 0
0 — 0
Ly = 1 0 0
0 0 O



Above result can be compressed in one expression by using the completely skew-symmetric
epsilon tensor,

(Li)jy, = —i€ijn - (3.15)
Indeed, we can easily check that
(L1)23 = (L1)32 = —l€193 = —1,
(L) = — (L2)y3 = —ieas = —i (3.16)
(L3)1g = — (L3)y, = —i€z10 = —i .

Again, we can consider R(d) as being formed out of n successive rotations with
rotation axis a/n,

R(@) = [R(@/n)]"

1 A2\ 1"
- {1 +- (mlLl Yol + mng) +0 ('Z‘—L)] . (3.17)

Employing (3.4), we find then the following expression in the limit n — oo,

R(&) = exp (iZakLk> . (3.18)

The correctness of Eq. (3.18) can be checked in a different way. First, we note that
the following multiplication rule holds for rotations around one common axis of rotation,
but with different rotation angles:

R(s@) R(t&) = R((s + t)) , (3.19)

where s and ¢ are real numbers. The rotations R(sd) with one common axis of rotation
define a commuting subgroup of the complete rotation group. This is not difficult to see:
The matrices R(sd) (with a fixed vector @ and a variable s) define a group, where the
result of a multiplication does not depend on the order in the product,

R(sd@) R(td) = R(td) R(sd) . (3.20)

This subgroup is the group SO(2), the group of the two-dimensional rotations (the axis
of rotation stays the same under these rotations, only the components of a vector that are
orthogonal to the axis of rotation are rotated). Using Eq. (3.19), we can simply deduce
the following differential equation for R(sd),

d . R((s+A)d) — R(sd)
3 @) = A

. RA@) -1,

= Jim ——{—filsq)

= (iZakLk) R(sa) , (3.21)
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where first Eq. (3.19) was used, and subsequently (3.13). Now it is easy to verify that the
solution of this differential equation is exactly given by Eq. (3.18).

Yet an other way to ascertain that the matrices (3.18) represent rotations, is to prove
that these matrices are orthogonal and have determinant equal to 1, which means that
the following relations are fulfilled

R(@) = [R(@)] ' = R(—a&),  detR(a)

1, (3.22)

The proof follows from the following properties for a general matrix A (see also Appendix
),

(ed) = e | det (e?) =™ . (3.23)

From this, it follows that the matrices (3.18) obey Egs. (3.22) provided that the matrix
iy, arLi be real and skew-symmetric. This indeed turns out to be the case; from the
definitions (3.15) it follows that ), a,Lj in fact represents the most general real, and
skew-symmetric 3 x 3 matrix.

The above question may actually be turned around: can all rotations be written in the
form of Eq. (3.18)7 The answer to this question is not quite so easy to give. In principle,
the exponentiation in (3.18) can be performed explicitly via the power series expansion
(3.8), and the result can be compared with the most general rotation matrix. It will
turn out that the answer is affirmative: all rotations can indeed be written in the form
of Eq. (3.18). This, however, is not the case for all groups. The so-called non-compact
groups contain elements that cannot be written as a product of a finite number of such
exponentials. These groups are called non-compact, because the volume of parameter
space is non-compact. The rotation group, where all possible group elements are defined
in terms of the parameters «; that are restricted to the insides of a sphere with radius
7w, is a compact group. Within the frame of these lectures, non-compact groups will
play no role, but such groups are not unimportant in physics. The Lorentz group, for
example, which is the group consisting of all lorentz transformations, is an example of a
non-compact group.

From the preceding discussion it will be clear that the matrices L , associated with
the infinitesimal transformations, will be important, and at least for the compact groups,
they will completely determine the group elements, by means of the exponentiation (3.18).
This is why these matrices are called the generators of the group. Although our discussion
was confined to the rotation group, the above can be applied to all Lie groups®: a group
whose elements depend analytically on a finite number of parameters, in our case a1, as,
and asz. In the case that the group elements take the form of matrices, this means that
the matrix elements must be differentiable functions of the parameters.” The number of
linearly independent parameters defines the dimension of the Lie group, not to be confused

6Named after the Norwegian mathematician Sophus Lie, 1842-1899

“This is clearly the case for the rotation group. In the general case, the above requirement can
be somewhat weakened; for a general Lie group it suffices to require the elements as functions of the
parameters to be twice differentiable.
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with the dimension of the matrices considered.® The number of linearly independent
generators must obviously be equal to the dimension of the group.

One of the most essential ingredients of a group, is its multiplication structure, accord-
ing to which the product of two rotations R(&) and R(f), again should be a rotation,

R(d@) R(5) = R(7) , (3.24)

where 4 depends on @ and B . The exact dependence fixes the multiplication structure

-,

of the group. The fact that such a vector function (&, ) must exist, has implications
for the product of generators. To derive these, we expand (3.24) in powers’ of o en 3,

ei&'i elﬁ'i = (1 + 1oLy + O(Oz2)> (1 + ’L.ﬁlLl + 0(52)>
= 1+i(a+ B) L — arB Ll + O(a?) + O(5%)
= 1+i(a+ B)p Lk — 3(a+ B)i(a+ B) LiLy
—3ai0 [Li, Li] + O(a?) + O(5%) . (3.25)

The first three terms are recognized as the beginning of the power series of exp(i(d+ ﬁ)f) :
If the fourth term would vanish, that is, if the matrices L, and L; commute, then indeed
Vi = o + B . However, it will turn out that the generators of the rotation group do not
commute. Since it must be possible in any case to write the r.h.s. of the equation again in
the form of the power series for exp(ﬁ-l_:) , it must be possible to rewrite the commutators
of the generators in terms of some linear combination of the generators. in other words,
we must have

where the constants cfj are called the structure constants of the group, because they
(nearly) completely determine the multiplication structure of the group. Note that, since

the generators Lj; are hermitian, the structure constants must be purely imaginary.

Before continuing, we first verify whether the generators (3.15) obey to the demand
(3.26). After explicit matrix multiplications, we find this indeed to be the case:

Ly, Lo) =iLy , (Lo, L) =Ly , [Ls, L1] = 1Ly , (3.27)
or,
[Li7 L]] - ieijk Lk . (328)

=

Making use of Eq. (3.26), we can now deduce the following result for ¥(&, () :
Ve = + B + 2k an B, + O(a?) + O(5?) . (3.29)

8For the rotation group in three dimensions the dimension of the group and that of the matrices are
both 3, but this is a coincidence: the dimension of the rotation group in d dimensions is %d(d -1).

9The notation & - L is here intended to mean a1l + asls + agLs . In Eq. (3.25) we also used
summation convention: if in one term of an expression an index occurs twice, this means that it is
summed over, even if the summation sign is not explicitly shown. So, axLy =, apLy . From now on,

this convention will be frequently used.
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In principle, the higher order contributions can be determined by means of iteration; for
example, we find

Vi = ag + Br + %c’fnn OB — é (Um0 By + BinBnoy) c’;chp 4+ (3.30)

The fact that all terms in this iteration can be expressed in terms of the structure constants
follows from the Campbell-Baker-Hausdorff formula, which expresses the logarithm of
(exp A exp B) in terms of a power series consisting exclusively of repeated commutators
of the matrices A and B. Thus, the multiplication structure of the group is determined
by the structure constants (at least for all those group elements that reside in some finite
domain in the neighborhood of the identity). The CBH formula is explained in Appendix
D.

Imagine that we can find matrices Ay , different from the matrices Ly, obeying the
same commutation relations (3.26) as the Ly . In that case, by means of exponentiation,
we can determine the corresponding group elements, which will have the same multiplica-
tion rules as the elements of the original group. In other words, we find a representation
of the group this way. On the other hand, for every representation of the group, we can
construct the corresponding generators, using the infinitesimal transformations, and they
will obey the same commutation rules (3.26), with the same structure constants. Thus,
we have found a direct relation between group representations and the matrix relations
(3.26) (In more mathematical terms: the generators Ly , together with the commutation
relations (3.26), define an algebra, called the Lie algebra. Matrices Aj with the same
commutation relations then define a representation of the Lie algebra.)

One can easily check that the structure constants also must obey certain relations.
This follows from the so-called Jacobi identity, which holds for any triple of matrices A,
B and C,

[[A, B],C]+[[B,C], A+ [[C,A],B] =0. (3.31)

This identity can be proven by explicitly writing the commutators and using the asso-
ciativity of the multiplication (See chapter 2); one then obtains 12 terms that cancel out
pairwise. Using the Jacobi identity with A = L;, B = L; en C' = L, we deduce the
following equation for the structure constants,

m . n m n m n
Cii Cote  C Comi T iy = 0 (3.32)

where use was made of (3.26). The equation (3.32) is also called the Jacobi identity. For
the rotation group, this implies the following equation for the e -tensors:

€ijm Emkn T €jkm Emin T €kim €mjn = 0, (333>

which will be frequently used later. The validity of Eq. (3.33) can be derived directly
from the identity

€ijm Emkl = ik 5jl — it 5jk ) (3-34)

which is easy to prove (for instance by choosing a couple of values for two of the indices).
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Equation (3.32) has another consequence. Let us define n n x n matrices C; ac-
cording to
(€)= —dy (3.35)

where n is the dimension of the Lie group. We can then write (3.32) as
(CZ»L Cm)kn + (CjCi)k” - (CZC])kn =0 s or Cz' Cj - Cj Cz' = ij Ck . (336)

These are exactly the same commutation relations as the ones we used to define the
structure constants, in Eq. (3.26). The matrices C; thus define a representation of the
Lie algebra based on (3.26). Through exponentiation of the matrices C;, we can then
define a group with the same multiplication properties (at least in some finite region
surrounding the identity) as the original Lie group, consisting of n x n matrices, where n
is the dimension of the Lie group. This representation is called the adjoint representation.

Applying the above to the case of the rotation group leads to something of a dis-
appointment. Since in this case cfj = 1€ , the matrices C; are simply equal to the
matrices L; (see Eq. (3.15), and so we recovered the original three-dimensional rotations.
The adjoint representation thus coincides with the original group. This, however, is rather
the exception than the rule, as will be seen later.
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4. More about representations

In the previous chapter the properties of the group of three-dimensional rotations were
discussed. Now, we return to the representations of this group. First, we note that,
starting from a given representation, for instance by the matrices D acting on the wave
functions that we combined in a column vector v, we can obtain an other representation,
by constructing an other vector v . For instance, rearrange 1 in wave functions 1[1
according to

h=Uy . (4.1)
Under rotations, i then transforms according to
)= =Dp, (4.2)
where D is given by
D=UDU™". (4.3)

Both the original matrices D and the matrices D define a representation of the rotation
group, but such representations will not be considered as fundamentally different. This
is why representations that are related according to (4.3), are called equivalent represen-
tations. This allows us to formulate an important result in representation theory:

All finite dimensional representations of finite or compact groups are unitary.

With this we mean that all representations can be chosen to be unitary via a redefinition
(4.3), so that all matrices D belonging to the representation obey D = D~1. We will
not prove this here.

Up to here, we have primarily discussed one special representation of the group of
rotations, being the representation defined by rotating the three-dimensional vector Z =
(1,22, 23) . There is an easy way to construct larger representations: just consider two
vectors, & and ¥, both transforming the usual way under rotations. Together, they form
a six-dimensional vector Z'= (x1, Z2, T3, Y1, Y2,¥3) , transforming under rotations as

7— 7 =D7, (4.4)

where the matrix D can be decomposed in 3 x 3 matrices in the following way:

D_<§2). (4.5)

Such a representation is called reducible, because the six-dimensional space can be split up
in two invariant three-dimensional subspaces. This reducible six-dimensional representa-
tion can therefore be regarded as the direct sum of two three-dimensional representations,
and we write

6=3¢3. (4.6)

The sum representation can occur if we consider a particle that can be in a superposition
of two different kinds of quantum states.
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It will be clear that representations that do not leave any subspace invariant, and
therefore cannot be described in a block diagonal form such as in Eq. (4.5), are considered
to be irreducible representations.

Other representations can be obtained by constructing so-called product representa-
tions. Consider for instance a system of two (free) particles with wave functions (%)
and 9(y), where ¥ and ¢ are the coordinates of the particles. The wave functions
U(Z,7) of the combined system then consist of all possible products of wave functions
1 and 1y . We call this a tensor product, which is denoted by

U =1 @1y . (4.7)

Under rotations of both # and ¢, this ¥ transforms accordingly, but the correspond-
ing representation is more complicated than the ones associated to the separate wave
functions 1, and . Often, such a product representation is not irreducible, and can
be decomposed into a number of distinct representations that are irreducible. Let us
demonstrate this phenomenon first in the following example. Let three possible functions
¥} be given by the coordinates z; and three possible functions Lbf by the coordinates
y;j . Thus, both the ¢} ’s and the ¢7’s transform according to the three-dimensional
representation of the rotation group. The product representation works on all possible
products of ] and wjz , and therefore we can distinguish nine independent functions,

transforming under rotations as

T;'j — T‘z/] = Rii’Rjj/ T‘z']/ . (49)

This nine-dimensional representation however is not irreducible. For instance, the
symmetric part and the skew-symmetric part of Tj; , defined by T{;;) = %(TU +Tj) , and
Tij) = %(sz —T};) , transform separately and independently under rotations. This follows
directly by restricting ourselves only to the (skew-)symmetric part of T}; , and observing
that the (anti)symmetry in ¢ and j of 3(RiR;y + RjyR;) implies the (anti)symmetry
in ¢ en j'. This is why we write

T(ij) — T(/U) = RWR]‘]‘/ T(i’j’) N T[z’j] — T‘[/”] = Rii’Rjj’ ﬂiljl] . (410)

The skew-symmetric part of 7;; contains three independent components, transforming
as a three-dimensional representation of the rotation group. The symmetric part of T;;
contains the remaining six components, which however do not transform as an irreducible
transformation. This follows immediately from the fact that the trace of T;; is equal to

Ti=7-7, (4.11)

and therefore invariant under rotations. We must conclude that 7;; can be decomposed
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in three independent tensors!®
Ir=z-y
Tij — 8 T = €x2yi ) (4.12)
Sij = Ty + Ty — (513 (Z-9)

Note that we used the epsilon symbol to describe the skew-symmetric part of 7;; again as
a three-dimensional vector T (it is nothing but the outer product Z x ). Furthermore,
we made the symmetric part S;; traceless by adding an extra term proportional to ¢;; .
The consequence of this is that S;; consists of only five independent components. Under
rotations, the terms listed above transform into expressions of the same type; the five
independent components of S;; transform into one another.!* In short, the product of
two three-dimensional representations can be written as

33=103d5, (4.13)

where the representations are characterized by their dimensions (temporarily ignoring
the fact that inequivalent irreducible representations might exist with equal numbers of
dimensions; they don’t here, as we will see later).

The procedure followed in this example, rests on two features; first, we use that the
symmetry properties of tensors do not change under the transformations, and secondly
we make use of the existence of two invariant tensors, to wit:

Tij = 045 Tiji = €ijks - (4.14)

An invariant tensor is a tensor that does not change at all under the group transformations,
as they act according to the index structure of the tensor, so that

ka — = Rii/Rjj'Rkk’ c T/ it = Lijk... (4.15)

!/
ik
Indeed, both tensors ¢;; and €;;; obey (4.15), since the equation

is fulfilled because the R;; are orthogonal matrices, and

Ry Rjj Rypr €ijnr = det Regjp = €k (4.17)

19Tn the second equation, again summation convention is used, see an earlier footnote.

HFor each of these representations, we can indicate the matrices D(R) that are defined in chapter 2.
For the first representation, we have that D(R) = 1. In the second representation, we have 3 x 3
matrices D(R) equal to the matrix R . For the third representation, we have 5 x 5 matrices D(R) .
The indices of this correspond to the symmetric, traceless index pairs 4j . The matrices D(R) can be
written as

1 1
D(R) 5y (k1) = 3 (Rix Rji + Ri Rj1) — 55” Ok -
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holds because the rotation matrices R;; have det R = 1 . For every given tensor Tjj;... we
can contract the indices using invariant tensors. It is then evident that tensors contracted
that way span invariant subspaces, in other words, under rotations they will transform into
tensors that are formed the same way. For example, let T}j;.. be a tensor transforming
like

Tiji. = Tjjp.. = Rig Rjjr R -+ T - (4.18)
Now, form the tensor )
Tklm--- = 5”‘ Ejklm--- (419)

which has two indices less. By using Eq, (4.16), it is now easy to check that T transforms

as
Thime = Thm... = R Ry Rinr - -+ T (4.20)

and, in a similar way, we can verify that contractions with one or more § and € tensors,
produce tensors that span invariant subspaces. Using the example discussed earlier, we
can write the expansion as

1 1 2 1
T = S€idk (€kim Tim) + 3 <Tij +Tj — §5ikak> + 5%’ Ty (4.21)

where the first term can also be written as $(7;; — T};) , by using the identity (3.34),

€ijk €klm = 6il5jm - 5z‘m5jl s (4-22)

and the second term in (4.21) is constructed in such a way that it is traceless:

2
0ij <Tz‘j + T — §5ikak> =0. (4.23)
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5. Ladder operators

Let us consider a representation of the rotation group, generated by hermitian matrices
I, I, and I3, which obey the same commutation rules as L;, Ly and Ls, given in
Eq. (3.15),

([, [] =ils [Iy, I3] =ily (I3, [,] =ily (5.1)
or in shorthand:
(L, Ij] = e I - (5.2)

We demand the matrices exp(icyly) to be unitary; therefore, the I; are hermitian:
I' = I, . Starting from this information, we now wish to determine all sets of irreducible
matrices [I; with these properties. This is the way to determine all (finite-dimensional,
unitary) representations of the group of rotations in three dimensions.

To this end, first define the linear combinations

I, =1 +ily, (5.3)
so that (I3)" = I+ , and
(I3, 11] = I3, ]| £ill5, 5] =ils £ [, = +14 . (5.4)
So we have for any state | ),
I (I 1 9)) = Ll +1) | ) | (5.5)

A Casimir operator is a combination of operators for a representation constructed in such
a way that it commutes with all generators. Schur’s lemma states the following: if and
only if the representation is irreducible, every Casimir operator will be a multiple of the
unit matrix.

In the case of the three-dimensional rotations, we have such a Casimir operator:
P=P++12. (5.6)
We derive from Eq. (5.1):
(2, 5] = [[* L] = [I*15] = 0. (5.7)

Since I2 en I 3 are two commuting matrices, we can find a basis of states such that I?
and I3 both at the same time take a diagonal form, with real eigenvalues. Furthermore,
the eigenvalues of T2 must be positive (or zero), because we have

>0. (5.8)

‘ 2

W 21wy = 00|+ n o] +|6 1)

26



It will turn out to be convenient to write the eigenvalues of I2 as ¢(£+ 1), where £ >0
(The reason for this strange expression will become clear shortly; for the time being,
consider this merely as a notation).

Now, consider a state | ¢,m) that is an eigenstate of I'? and I3, with eigenvalues
((+1) and m,

T2 em)y=tl+1)6m), I|ém)=m]|Llm). (5.9)

From Egs. (5.5) and (5.7), one derives that

LT[ tm)) = (et 1)(Ly | £m))

I (1+ I, m>) = o+ 1)(1+ | e,m>) . (5.10)
Substituting I, | ¢,m) =| ), we have
Llyy=(m+1)|¢), IP[¢)=Le+1)]|0), (5.11)

in other words, | 1) is a new eigenvector of I3 and I? with eigenvalues m’' =m+ 1,
and ¢ = ¢, unless

|y =1, | 6m) =0 (5.12)
Furthermore, we find
Om | 7T 6,m)
Com | I} + I3 + i1, L) | €,m)
Om | B+ 13— I3 | £,m)
Com | I? = I(Is+1) | £,m) (5.13)

Wly) = |
{
(
{

where we made use of: Ijr = I_. And so, using Eq. (5.9), we find

W1 0) = ((e+1) = mm+ 1)) (¢m | &;m) . (5.14)

If we now assume that | ¢,m) is a normalized state (so, (¢, m | {,m) = 1), then | ¢)
can be written as a normalized state | ¢,m + 1) multiplied by a proportionality factor
that is given by (5.14). This factor is fixed up to a phase factor, which we absorb in the
definition of | £,m + 1) . This way, we conclude that

Lo 6,m)y =0l +1)—mim+1) | £,m+1) . (5.15)

Repeating this procedure, the operator I, produces states with ever increasing eigenval-
ues of I3 :

| m) =5 m+1) 2] 6m+2) =5 6m+3) =5 ete. (5.16)

This is why I, will be called “ladder operator” or “step operator”. However, we are
interested in finite matrices I;, and this implies that the series (5.16) has to come to
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an end somewhere. According to Eq. (5.15), this only happens if, in the series (5.16),
a state emerges for which the eigenalue m of I3 equals ¢. This, in turn, requires
that the original eigenvalue m of the state we started off with, differs from ¢ by an
integer. The necessity of this in fact already follows from Eq. (5.14): since (¥ | ¢) and
(¢, m | £,m) must have non negative norms, one must have ¢({ +1) —m(m+1) >0,
and also —¢ —1 < m < ¢. In order to ensure that the series (5.15) terminates, as soon
as m approaches values greater than its allowed limit, we must demand that ¢ —m be
a positive integer. therefore, we find

| m) 25 fm 1) 2 RNV (5.17)
where the vector | ¢,¢) with the highest eigenvalue of I3 obeys

L |6,0)=0. (5.18)

It is now easy to continue by observing that the matrix /_ is also a ladder operator,
but one generating lower eigenvalues of I3 . Starting from a state | £,m) , we can construct
states with decreasing eigenvalues of I3 :

ete. e | 6,m —3) <= | 6,m —2) <= | £,;m —1) <= £, m) (5.19)
Repeating the same manipulations as the ones for I, , shows that for |¢) =1_1¢,m),
W) = [t +1) = mm=1)]{&m | m), (5.20)

so it follows that we must have ¢(¢ + 1) —m(m — 1) > 0, and subsequently ¢(¢ + 1) —
m(m — 1) > 0, that is, —¢ < m < £+ 1. Since we must require the series (5.19) to
terminate as well, there must be a state in the series with minimal eigenvalue m = —/¢,

which guarantees that
I_|¢,—0)=0. (5.21)

Again, we encounter an undetermined phase factor. It seems that we have the freedom
to choose it any way we like, so again we fix the phase factor to be +1, but we return to
this phase factor shortly:

I 6m)=el+1)—m(m—1)]6,m—1). (5.22)

Starting from a given state | ¢,m), we now have constructed ¢ — m states with
eigenvalues m+ 1, m+2, ..., £ and ¢+ m states with I3 eigenvalues m — 1, m —
2, ... ,—(. Thus, in total we found 1+ (¢ —m)+ ({+m) =2(+ 1 states. This is why
2¢ + 1 must be an integral number, so that ¢, and therefore also m , are either both

1

integers or both an integer plus 3 .

Above arguments do not quite suffice to prove that we indeed found all states. In
principle, it might be possible to apply arbitrary sequences of I, and [I_ operators, to
find many more states. Suppose we apply I, and subsequently I_. We get a state with
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the same values of both ¢ and m as before. But is this the same state? Indeed, the
answer is yes — and also the phase is +1 ! Note that

LI =R+ +ihIh—LI)=()?—-12—1I5= (e(e +1) —m(m + 1))1 . (5.23)

This ensures that, if we apply (5.15) and (5.22) in succession, we get back exactly the
same state as the one we started off with (correctly normalized, and with a phase factor
+1).

By way of exercise, we verify that the operators I,, I and I3 exclusively act on this
single series of states | £,m) as prescribed by Egs. (5.9), (5.15), and (5.22). Checking the

commutation rules,
(I3, 1.,] = +1 (I, 1 ]=2I3, (5.24)

we indeed find

(IIy — I:D3) [ 6,m) = (mED)VE+1) —m(m+1) | £{,m=E1)
—mAl(L+1) —m(m£1) | {,m=E1)
= £\l +1)—mim+1) [ Lm=E1)
= I | Lm), (5.25)

(I I —I1_I) | 6,m) = VUL+1)—(m—1Dm\Jll+1)—(m—1)m | £,m)
VU +1) = (m+Dm L+ 1) — (m+ 1)ym | £,m)
= 2m|{,m)
2L | €,m) . (5.26)

Summarizing, we found that an irreducible representation of I, Iy, I3 can be char-
acterized by a number ¢, and it acts on a space spanned by 2¢ + 1 states | ¢,m) for
which

2 6m) = e+1)]6m),
]3|€am> = m|€,m>,

L|tm) = VJIl+1)—mim=E1)|[Lm+1), (5.27)
with m= -4, —0+1, ,—(+2,---, £—2, {—1, {. Either both ¢ and m are integers,
or they are both integers plus 3. Of course, we always have I} = 1(I, + I_) and

I, = %(Lr —1).
We now provide some examples, being the representations for ¢ =0, %, 1, and % :

e For ¢ =0, we find the trivial representation. There is only one state, |0,0), and
1,]0,0) =0 for i=1,2,3.
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e For /= % , we find a two-dimensional representation. There are two basis elements,
| 3,3) and | 1,—1), for which, according to Eq. (5.27), we have
I+|%71_%> = |%7%>7
I 2 §> =0
’ ¥ 5.28
rikh -, o)
I | %7 _%> 0.

This way, we find the matrices

1o 01 00
— 2 — —
13_<0_%>, I+_<OO>, 1__<10). (5.29)

The matrices Iy, I, en I3 following from this calculation, are the matrices %Ti

that will be introduced in Chapter 6.

For I =1 we find a three-dimensional representation. There are three basis ele-
ments, | 1,1), | 1,0) and | 1,—1), for which, according to Eq. (5.27), we have

I, |1,-1) = v2]1,0),
I+‘O> = \/5‘171>7

I+|171> - 07
I_]1,1) = V2|1,0),

I_|-1,-1) = 0.
This way, we find the matrices

10 0 0 vV2 0 0 0 0

ILi=|00 0 |, I,=(0 0 Vv2 |, I_=[+Vv2 0 0

00 —1 0 0 0 0 V2 0
(5.31)

The matrices Iy, Is en I3 are here equal to the matrices L;, but in a different
(complex) basis, where L3 is diagonal.

For | = % , we find a four dimensional representation. We have the basis elements
| %, §> . %, %) , %, —%) en | %, —%) , for which, according to Eq. (5.27),
L3 = Y3lE D,
[-‘r 2y 92 = 2 279/
(5.32)
[+|§,§> = \/§| %7%>7
I ]35.3) = 0.
This way, we find the marices
30 0 0 0 V30 0
0L 0 o0 0 0 2 0
I = 2 I, = 5.33
’ 00 -2 o] 7o o0 0 v3 (5.33)
00 0 -3 00 0 O

2

The matrix I_ can be derived in a similar way from Eq. (5.27), or can be obtained
directly by hermitian conjugation: [_ = Ii .
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6. The group SU(2)

In Chapter 4, we only saw irreducible representations of the three-dimensional rotation
group that were all odd dimensional. Chapter 5, however, showed the complete set of
all irreducible representations of this group, and as many of them are even as there are
odd ones. More understanding of the even-dimensional representations is needed. To
this end, we subject the simplest example of these, the one with ¢ = %, to a closer
inspection. Clearly, we have vectors forming a two-dimensional space, which will be
called spinors. Every rotation in a three-dimensional space must be associated to a
unitary transformation in this spinor space. If R = exp(i)_, i L), then the associated
transformation X is written as X = exp(i)_, axlx), where the generators I follow
from Eq. (5.29):

L+
2

I, -1
:%7'1, L = - :%7'27 Iy =373 (6.1)

I
! 2

Here, we have introduced the following three fundamental 2 x 2 matrices: 2

(00 () (2 0) e

These 7 -matrices obey the following product rules:
T; Tj :5ij1+i€ijk7_k 5 (63)
as can easily be established. Since [r;, 7;] = 7, 7; — 7; 7; , we find that the generators I,
indeed obey the correct commutation rules:
T; Tj} . Tk
_7 i g ZEZ . —_— . 6.4
[22 "9 (6.4)

The three 7 matrices are hermitian and traceless:

=1 Tr(r;)=0. (6.5)

(3

For rotations over tiny angles, |@| < 1, the associated matrix X (&) takes the fol-
lowing form:

X(@) =1+iB+0(B? ; B=aig . (6.6)
One readily verifies that X (&) is unitary and that its determinant equals 1:
(1+iB+0(B*))' = (1+iB+0(B%) ' =1-iB+0(B?) ;
det (L+iB+0(B*)) = 1+iTrB+0(B*) =1, (6.7)
since
B' =B, TrB=0. (6.8)

12 Also called Pauli matrices, and often indicated as o; .
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The finite transformation X (&) is found by exponentiation of (6.6), exactly in accor-
dance with the limiting procedure displayed in Chapter 3:

X(&) = lim {1 + z%%}" = exp (m%) . (6.9)

n—oo

The matrices %Ti are therefore the generators of the rotations for the ¢ = % representa-
1

tion. They do require the coefficients 5 in order to obey exactly the same commutation
rules as the generators L; of the rotation group in three dimensions, see Eq. (6.4).
By making use of the product property of the 7-matrices, we can calculate the expo-

nential expression for X (&) . This is done as follows:

X(O?) _ eiaiTi/Q

n=0
=1 10T " > 10T 2l

_ 6.10
Yo () Sorm() T e

where, in the last line, we do the summation over the even and the odd powers of (ia;7;)
separately. Now we note that

(ijm))* = —jag 7 = —a 1, (6.11)

where use was made of Eq. (6.3), and « is defined as

a=/al+ai+ai. (6.12)

From Eq. (6.11) it immediately follows that

)Qn

(i)™ = (=) o™ 1, (iojm)*" = (=)™ a® (iayT)) (6.13)

so that we can write Eq. (6.10) as

X(a) = { ( ) } {i 2n +n1 ( >2n+1} <%)

n:O
= COS

a OT;

5 (6.14)

It so happens that every 2 x 2 matrix can be decomposed in the unit matrix 1 and
Ti -

X2001+iCiTi. (615)
If we furthermore use the product rule (6.3) and Eq. (6.5), and also

Tr(1) =2, (6.16)
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the coefficients ¢y and ¢; can be determined for every 2 x 2 matrix X :
co=3Tr(X); o=3Tr(Xn). (6.17)
In our case, we read off the coefficients ¢y and ¢; directly from Eq. (6.14):

(0 o; .«
Cop = COS 5, C; = E Sin 5 (618)

It is clear that all these coefficients are real. Furthermore, we simply establish:

cg+c=1. (6.19)

The expression (6.15) for X (&) can now also be written in terms of two complex

parameters a en b,
X = ( S ; > , (6.20)

with |a|?> + || = 1. Matrices of the form (6.20) with generic @ and b obeying
la|> + |b]> = 1 form the elements of the group SU(2), the group of unitary 2 x 2
matrices with determinant 1, because '3 they obey:

Xt=X"1  detX=1. (6.21)

It should be clear that these matrices form a group: if X; en X, both obey (6.21)
and (6.20), then also X3 = X;X, and so this matrix also is an element of the group.
Furthermore, the unit matrix and the inverse matrix obey (6.20) en (6.21), so they also
are in the group, while associativity for the multiplication is evident as well.

In chapter 3 we established that the rotations can be parameterized by vectors @ that
lie in a sphere with radius a = 7w . The direction of @ coincides with the axis of rotation,
and its length « equals the angle of rotation. Since rotations over +7 and —= radians
are equal, we established that

R@) =R(-d), i a=nr. (6.22)

As we see in Eq. (6.14), the elements of SU(2) can be parameterized by the same vectors
a . However, to parameterize all elements X (@) , the radius of the sphere must be taken to
be twice as large, that is, equal to 27 . Again consider two vectors in opposite directions,
@ and @', in this sphere, such that the lengths a+«a’ = 27, so that they yield the same
rotation,

R(@") = R(d) , (6.23)

just because they rotate over the same axis with a difference of 27 in the angles. The
two associated SU(2) elements, X(d') and X (&), however, are opposite to each other:

X(@') = —X(d) . (6.24)

13Similarly, the complex numbers with norm 1 form the group U(1) , which simply consists of all phase
factors expia .
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This follows from Eqs. (6.14), (6.18) and the fact that cos %’ = —cos§ en sin %’ =sin§ .

The above implies that, strictly speaking, the elements of SU(2) are not a represen-
tation of the three-dimensional rotation group, but a projective representation. After all,
in the product of the rotations

R(d@) R(B) = R(7). (6.25)
with a, #, we would also have v < 7, but the product of the associated SU(2) matrices,
X(d@) X (6) = +X(7) , (6.26)

the value of v depends on « and § but its length can be either larger or smaller than 7,
so we may or may not have to include a minus sign in the equation'* if we wish to restrict
ourselves to vectors shorter than 7. The group SU(2) does have the same structure
constants, and thus the same group product structure, as the rotation group, but the
latter only holds true in a small domain surrounding the unit element, and not exactly
for the entire group.

A spinor ¢® transforms as follows:

P — ¥ = X o . (6.27)
The complex conjugated vectors then transform as
0 = v = (X%) v = (XN ¢ - (6.28)

Here, we introduced an important new notation: the indices are sometimes in a raised
position (superscripts), and sometimes lowered (subscripts). This is done to indicate that
spinors with superscripts, such as in (6.27), transform differently under a rotation than
spinors with subscripts, such as (6.28). Upon complex conjugation, a superscript index
becomes a subscript, and vice versa. Subsequently, we limit our summation convention to
be applied only in those cases where one superscript index is identified with one subscript
index:

2
Gath =D Gat)” . (6.29)
a=1

In contrast to the case of the rotation group, one cannot apply group-invariant sum-
mations with two superscript or two subscript indices, since

o X507 =N XOXP £ 697 (6.30)
v

because X in general is not orthogonal, but unitary. The only allowed Kronecker delta
function is one with one superscript and one subscript index: d3 . A summation such as
in Eq.(6.29) is covariant:

2 2
D G = (X)X %0 = (XTX)oa" = g™ =) gt (6.31)
a=1 B=1

140n the other hand, we may state that the three-dimensional rotations are a representation of the
group SU(2) .
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where unitarity, according to the first of Eqgs. (6.21), is used.

We do have two other invariant tensors however, to wit: e,53 and €*?  which, as
usual, are defined by

£ = eap = —Epa =g =1. (6.32)

By observing that
0 X0 e = det X e = e | (6.33)
where the second of Egs. (6.21) was used, we note that ,5 and % after the transfor-

mation take the same form as before.

From this, one derives that the representation generated by the matrices X* is equiv-
alent to the original representation. With every co-spinor ¢® we have a contra-spinor,

def Ié]
)

wa = Eap¥ (634)

transforming as in Eq. (6.28).

The fact that X and X* are equivalent can also be demonstrated by writing .5 as

a matrix:
-1 0 1 a b 0 -1
= Xe _<—10><—b* ar J\1 0
B a* b
N -b a
= X", (6.35)
since €2 = —1. From this, it follows that the two representations given by (6.27) and

(6.28) are equivalent according to the definition given in Eq. (4.3).

Now, let us attempt to find all representations of the group SU(2), rather than
SO(3). To this end, we let the SU(2) matrices act in an abstract vector space with
complez coordinates ® %, where a = 1, 2. We consider all analytic functions f of
these two coordinates. Perform the Taylor series expansion of such a function at the origin.
At the N*® order, the Taylor expansion terms form homogeneous, symmetric polynomials
in ¢* of degree N . Obviously, N is a non negative integer. Since f is analytic, the
complex conjugated spinors, ¢’ are not allowed to enter in these polynomials. Write

Y aazran — o1 92 L N (6.36)
Under SU(2), these polynomials transform as follows:
yaoeean _ yalazean/ _ xo1 xe2 | YON Yo/la’zmo/N . (637)
Otl 042 aN

In view of the above, we expect that the tensors Y®1*>*N (which, because of the
symmetry under interchange of the indices, do not depend on the way these indices are

5The coordinates ¢ are therefore slightly more difficult to interpret.
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ordered), should transform as representations of SU(2). Indeed, they are irreducble
representations. The independent coefficients of these polynomials are completely charac-
terized by specifying the number p; of indices that are equal to 1 (the remaining indices,
their number being p, = N — p;, must be equal to 2), and so we find the number of
independent coefficients in a polynomial of degree N to be

Y =N+1. (6.38)

p1=0

Thus, here we have representations of dimension N + 1, for any non negative integer N .

Subsequently, we can write the SU(2) generators, acting on functions of the coordi-
nates ¢, as differential operators. This leads to

1 0
LIY® = 2 (7)) ¢” 6.39
K3 2 (T ) ﬁ (p asoa ? ( )
so that infinitesimal SU(2) transformations on functions f(y) can be written as

fo) = fle) = (1—ia LV® +0(?) (s
= 1)+ 2oy ()% g(a)+0< ). (6.40)

Note in passing that the index « in % is treated as a subscript index.

Making use of Eq. (6.39), we can now derive the Casimir operator (L5U®)? as a
differential operator,

SU(2)\2 5 0
(L; ) = —Z<15‘P D0 )(T]MP 6—@7)

) 0
—  Z( _ Sa 57 o Y 8 5
4( 0505 +20505)¢ &Pa(p 90
o la 9 L0 150 0
Y v T2¥ Hpa
1 o \* 1 )
— (e g s . 6.41
4<(p 0#)‘*) "2 (w &pa) (641)

It is easy to see that the last two lines of Eq. (6.41) are equal by writing all derivatives to
the right of the coordinates. The transition from the first to the second line is less trivial.
There, use was made of the identity

D ()% (1) = —0% 8 + 20567 . (6.42)

i

A convenient way to derive this equation is by first multiplying it with an arbitrary matrix
X}, after which one uses the decomposition rule (6.15) and Eq. (6.17) for this X . If now
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the derivative of this equation is taken with respect to X7, we directly end up with the
identity (6.42). Evidently, the validity of (6.42) can also be verified by choosing specific
values for the indices «, 3, v and ¢ .

Now, let the operator (6.41) act on the polynomials Y122 Using the fact that

(@aaia> YalaZ"'aN — ]VY'OQOQ"'OQS7 (643)

we find directly the result:
(L77P)? yaeran — LN 4 1) yoaean (6.44)

Thus, we recognize the representations ¢ of chapter 5, if we write £ = s, s = %N .
We succeeded to (re)construct (2s+ 1) dimensional representations of SU(2), where s
is an integer or an integer plus % . In these representations, the eigenvalue of the Casimir
operator, according to Eq. (6.44), equals s(s + 1). In Chapter 5, it was shown that this
completes the set of all irreducible representations of SU(2) .

We expect that, for integral values of s, the representations coincide with the repre-
sentation of the rotation group found in chapter 4. This indeed turns out to be the case.
To see this, consider the tensors Y with an even number of indices. Then, arrange the
factors ¢® in pairs, and use in each pair the e tensor to lower one of the superscript
indices to obtain a subscript index:

YO =P s Vg =5 Y =ep,0%0 . (6.45)

We read off easily that Sp(Y) = 0, so that, according to the decomposition (6.15), ¥
can be written as

Y=1>mn:  x=Yy@),. (6.46)
Under SU(2), the quantities z; transform as
mo— o2 = X0 (XY (R (6.47)

where use was made of the transformation rules for superscript and subscript indices.
And now we prove that

X7Ha) 7 X(@) = R(@); 75 (6.48)

so that the tensors xz; actually transform exactly like the coordinates x; in chapter 4.
We verify the validity of the transformation rule (6.48) for infinitesimal transformations.
One then has

]

(1 - ;aj T; + O(aQ)) 7 (1 + o+ O(a2)>

X @)X (@) ; ;

Q

= (n + %aj 73, 73] + O(a2)>

= T;+ €ijk Tj Ol + O(Oé2> y (649)
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which indeed takes the same form as infinitesimal rotations of the coordinates w; .

The rotation operator (6.39) is an exact analogue of the generator of rotations in x
space:

0
Li = _iaijkxja_m s (650)

which we obtain if we apply an infinitesimal rotation (3.11) to a function (7):

W(F) = V(747 x d) = (1 4 iagLg))(F) . (6.51)
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