NLO SMEFT, MPE and POs a global view

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

EXTERNAL \& UNLISTENED OPINIONS, July, 2015

This short note is about why NLO SMEFT $+\mathrm{POs}^{1}$, and partly about

```
x how NLO2
x what NLO}\mp@subsup{}{}{3
\(x\) how POs and \(\mathrm{MPE}^{4}\) without beating around the bush
```

fuel for more work to come ... nothing more
uncovered, recoverable material here

[^0]
How/what NLO?

\checkmark Start with Warsaw basis, full set, write down Lagrangian and Feynman rules \square
\checkmark Normalize the quadratic part of the Lagrangian and pay due attention to the FP ghost sector \square
\checkmark Compute (all) self-energies (up to one $\mathscr{O}_{\text {dim }}=6$ insertion), write down counterterms, make self-energies UV finite
\checkmark Compute the set of processes you like/want (don't forget non-SM topologies), mix Wilson coefficients to make them UV finite, check closure under renormalization \square
\checkmark Perform finite renormalization, selecting a scheme (better the G_{F}-scheme), introduce wave-function factors, get the answer
\checkmark Start making approximations now (if you like), e.g. neglecting operators etc.

How/what NLO? (cont.)

\checkmark Transform the answer in terms of $\boldsymbol{\kappa}$-shifted SM sub-amplitudes and non SM factorizable sub-amplitudes
\checkmark Derive к-parameters in terms of Wilson coefficients \square
\checkmark Write Pseudo-Observables in terms of $\mathbf{\kappa}$-parameters \square
\checkmark Decide about strategy for including EWPD ■
\checkmark Claim you invented the whole procedure \square
NLO is like biking, you learn it when you are a kid
\square Fade Out Round House \square Fast Pace \square Coked Pistol

How/what NLO?

Are there some pieces that contain the dominant NLO effects?
\checkmark It depends on the TH bias:
For EFT purists there is no model independent EFT statement on some operators being big and other small

2
Remember, logarithms are not large, constants matter too
\checkmark which could be easily incorporated in other calculations/tools? (Well, Well, Well, its certainly a compelling provocative exciting to think about idea)

How/what NLO?

\checkmark NLO SMEFT availability? From arXiv:1505.03706
(1) Counterterms (SM fields and parameters): all
(2) Mixing: those entries related to $\mathbf{H} \rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma}, \mathbf{Z} \boldsymbol{\gamma}, \mathbf{Z Z}, \mathbf{W W}$
(3) Self-energies, complete and at $p^{2}=0$: all
(4) Amplitudes, sub-amplitudes (both SM and non-factorizable, full PTG + LG scenario)
(1) $\mathrm{H} \rightarrow \gamma \gamma$ (2) $\mathrm{H} \rightarrow \mathrm{Z} \gamma$ (3) $\mathrm{H} \rightarrow \mathrm{ZZ}, \mathrm{WW}^{5}$ (4) $\mathrm{H} \rightarrow \mathrm{ff}, \mathrm{gg} \rightarrow \mathrm{H}$ (the latter available, although not public)
(5) EWPD, $\mathbf{M}_{\mathbf{W}}, \mathbf{T}$-parameter; $\mathbf{Z} \rightarrow \mathbf{f} \mathbf{f}$ available, although not public.

[^1]A study of SM-deviations: here the reference process is

$$
\mathbf{H} \rightarrow \gamma \gamma
$$

$\checkmark \times$-approach: write the amplitude as

$$
\mathrm{A}=\sum_{i=\mathrm{t}, \mathrm{~b}, \mathrm{w}} \kappa_{i} \mathscr{A}^{i}+\kappa_{c}
$$

\mathscr{A}^{t} being the SM t -loop etc. The contact term (which is the LO SMEFT) is given by κ_{c}. Furthermore

$$
\kappa_{i}=1+\Delta \kappa_{i} \quad i \neq c
$$

\checkmark For the sake of simplicity assume

$$
\kappa_{\mathrm{b}}=\kappa_{\mathrm{w}}=1 \quad\left(\kappa_{\mathrm{w}}^{\exp }=0.95_{-0.13}^{+0.14} A T L A S 0.96_{-16}^{+35} C M S\right)
$$

and compute

In LO SMEFT κ_{c} is non-zero and $\kappa_{\mathbf{t}}=1{ }^{6}$. You measure a deviation and you get a value for $\boldsymbol{\kappa}_{\boldsymbol{c}}$. However, at NLO $\Delta \boldsymbol{\kappa}_{\boldsymbol{t}}$ is non zero and you get a degeneracy. The interpretation in terms of $\boldsymbol{\kappa}_{\boldsymbol{c}}^{\mathrm{LO}}$ or in terms of $\left\{\boldsymbol{\kappa}_{\boldsymbol{c}}^{\mathrm{NLO}}, \Delta \mathrm{K}_{\mathbf{t}}^{\mathrm{NLO}}\right\}$ could be rather different.

$\Gamma\left(\Delta \kappa_{t}, \kappa_{c}\right)=\left(42.29-23.87 \Delta \kappa_{t}-13.01 \kappa_{c}\right) \frac{G_{F} \alpha^{2}}{128 \sqrt{2} \pi^{3}} M_{H}^{3}$

Fitting is not interpreting

Of course, depending on what you measure, the corresponding interpretation could tell us that the required kappas or Wilson coefficients are too large to allow for a meaningful interpretation in terms of a weakly coupled $\mathcal{U U}$ completion ${ }^{7}$
hi-tech center Caveat: SMEFT interpretation should include LO SMEFT and (at least) RGE modified predictions (arXiv:1301.2588); furthermore, full one-loop SMEFT gives you (new) logarithmic and constant terms that are not small compared to the one from RGE, see arXiv:1505.02646, arXiv:1505.03706

For interpretations other than weakly coupled renormalizable, see arXiv:1305.0017
EFT purist: there is no model independent EFT statement on some operators being big and other small (arXiv:1305.0017)

Going interpretational

$$
\mathrm{A}_{\mathrm{SMEFT}}=\frac{g^{2} s_{\theta}^{2}}{8 \pi^{2}}\left[\sum_{i=\mathrm{t}, \mathrm{~b}, \mathrm{w}} \kappa_{i} \mathscr{A}^{i}+\frac{g_{6}}{g^{2} s_{\theta}^{2}} \frac{M_{\mathrm{H}}^{2}}{M_{\mathrm{W}}^{2}} 8 \pi^{2} a_{\mathrm{AA}}\right]
$$

\checkmark Assumption: use arXiv:1505.03706, work in the Einhorn-Wudka PTG scenario (arXiv:1307.0478), adopt Warsaw basis (arXiv:1008.4884)
(1) LO SMEFT: $\boldsymbol{\kappa}_{\boldsymbol{i}}=\mathbf{1}$ and a_{AA} is scaled by $1 / 16 \pi^{2}$ being LG
(2) NLO PTG-SMEFT: $\boldsymbol{\kappa}_{\boldsymbol{i}} \neq 1$ but only PTG operators inserted in loops (non-factorizable terms absent), $\boldsymbol{a}_{\mathrm{AA}}$ scaled as above

$$
\begin{align*}
& \text { At NLO, } \Delta \mathrm{\kappa}=g_{6} \rho \text { and } a_{\mathrm{AA}}=s_{\theta}^{2} a_{\phi \mathrm{w}}+c_{\theta}^{2} a_{\phi \mathrm{B}}+s_{\theta} c_{\theta} a_{\phi \mathrm{WB}} \\
& \mathscr{A}_{\mathrm{SMEFT}}=\sum_{i=\mathrm{t}, \mathrm{~b}, \mathrm{w}}\left(1+g_{6} \rho_{i}\right) \mathscr{A}^{i}+g_{c} a_{\mathrm{AA}}
\end{align*}
$$

Warsaw basis

$$
\begin{aligned}
g_{6}^{-1} & =\sqrt{2} G_{\mathrm{F}} \Lambda^{2} \\
g_{c} & =\frac{1}{2} \frac{g_{6}}{g^{2} s_{\theta}^{2}} \frac{M_{\mathrm{H}}^{2}}{M_{\mathrm{W}}^{2}} \\
\rho_{\mathrm{t}} & =-\frac{1}{2}\left[a_{\phi \mathrm{D}}-2 s_{\theta}^{2}\left(a_{\mathrm{t} \phi}+2 a_{\phi \mathrm{D}}\right)\right] \frac{1}{s_{\theta}^{2}} \\
\rho_{\mathrm{b}} & =-\frac{1}{2}\left[a_{\phi \mathrm{D}}+2 s_{\theta}^{2}\left(a_{\mathrm{b} \phi}-2 a_{\phi \square}\right)\right] \frac{1}{s_{\theta}^{2}} \\
\rho_{\mathrm{w}} & =-\frac{1}{2}\left[a_{\phi \mathrm{D}}-4 s_{\theta}^{2} a_{\phi \mathrm{D}}\right] \frac{1}{s_{\theta}^{2}} \\
\Gamma_{\text {SMEFT }} & =\frac{\alpha^{2} G_{\mathrm{F}} M_{\mathrm{H}}^{3}}{32 \sqrt{2} \pi^{3}} \frac{M_{\mathrm{W}}^{4}}{M_{\mathrm{H}}^{4}}\left|\mathscr{A}_{\text {SMEFT }}\right|^{2} \quad \Gamma_{\mathrm{SM}}=\left.\Gamma_{\mathrm{SMEFT}}\right|_{\Delta \kappa_{i}=0, \kappa_{c}=0}
\end{aligned}
$$

hi-tech center
Relaxing the PTG assumption introduces non-factorizable sub-amplitudes proportional to
$a_{t W}, a_{t B}, a_{b W}, a_{b B}, a_{\phi W}, a_{\phi B}, a_{\phi W B}$ with a mixing among $\left\{a_{\phi W}, a_{\phi B}, a_{\phi W B}\right\}$. Meanwhile, renormalization has made one-loop SMEFT finite, e.g. in the G_{F}-scheme, with a residual μ_{R}-dependence
\checkmark Demonstration strategy:
(1) Allow each Wilson coefficient to vary in the interval $\mathbf{I}_{\mathbf{2}}=[-2,+2]$ (naturalness ${ }^{8}$; put $\Lambda=3 \mathrm{TeV}$, conventional point)
(2) LO: generate points from $\mathbf{I}_{\mathbf{2}}$ for $\boldsymbol{a}_{\mathrm{AA}}$ with uniform probability and calculate \mathbf{R}_{Lo}
(2) NLO: generate points from I_{2}^{5} for $\left\{a_{\phi \mathrm{D}}, a_{\phi \square}, a_{t \phi}, a_{b \phi}, a_{A A}\right\}$ with uniform probability and calculate $\mathbf{R}_{\text {NLo }}$
(3) Calculate the \mathbf{R} pdf

$$
\text { N.B. }\left|a_{\mathrm{AA}}\right|<1 \text { is equivalent to }\left|g_{c} a_{\mathrm{AA}}\right|<8.610^{-2}
$$

[^2]

Changing the interval

The inversion problem ad usum insane graphi There are correlations among different observables, and constraints too, e.g.

$$
\begin{aligned}
\Delta \kappa_{\mathrm{b}}^{\mathrm{HAZ}}-\Delta \mathrm{K}_{\mathrm{t}}^{\mathrm{HAZ}} & =\Delta \mathrm{K}_{\mathrm{b}}^{\mathrm{HAA}}-\Delta \mathrm{K}_{\mathrm{t}}^{\mathrm{HAA}} \\
c_{\theta}^{2} \Delta \kappa_{\mathrm{w}}^{\mathrm{HAZ}}+\left(\frac{3}{2}+2 c_{\theta}^{2}\right) \Delta \kappa_{\mathrm{t}}^{\mathrm{HAZ}} & =\left(\frac{3}{2}+2 c_{\theta}^{2}\right) \Delta \mathrm{t}_{\mathrm{t}}^{\mathrm{HAA}}-\left(\frac{1}{2}+3 c_{\theta}^{2}\right) \Delta \kappa_{\mathrm{w}}^{\mathrm{HAA}} \\
a_{\mathrm{t} \phi} & =\frac{1}{2 s_{\theta}^{2}} a_{\phi \mathrm{D}}-2 a_{\phi \mathrm{D}}+\Delta \kappa_{\mathrm{t}}^{\mathrm{HAA}} \\
a_{\mathrm{b} \phi} & =-\frac{1}{2 s_{\theta}^{2}} a_{\phi \mathrm{D}}+2 a_{\phi \mathrm{D}}-\Delta \kappa_{\mathrm{b}}^{\mathrm{HAA}} \\
a_{\phi \mathrm{D}} & =\frac{1}{4 s_{\theta}^{2}} a_{\phi \mathrm{D}}+\frac{1}{2} \Delta \kappa_{\mathrm{w}}^{\mathrm{HAA}} \\
2 c_{\theta}^{2} a_{\phi \mathrm{D}} & =s_{\theta}^{2}\left(\Delta \kappa_{\mathrm{b}}^{\mathrm{HAZ}}-\Delta \mathrm{K}_{\mathrm{b}}^{\mathrm{HAA}}\right)
\end{aligned}
$$

Conclusions:

(1) For the SMEFT, (almost) regardless of the $\kappa_{\boldsymbol{c}}$, to have more than 5% deviation (at $\Lambda=3 \mathrm{TeV}$) you have to go NLO, or unnatural ${ }^{9}$ (Wilson coefficients not $\mathscr{O}(1)$)
(2) The LO, NLO distributions are different, therefore interpretation is different, how to reweight once your analysis was LO interpreted? It all depends on the new central value for $\boldsymbol{k}_{\gamma}^{\exp }$

$$
\begin{gathered}
\text { presently } \quad \text { ATLAS: } a_{\mathrm{AA}}^{\mathrm{LO}}=+3.79_{-6.06}^{+5.31} \quad \mathrm{CMS}: a_{\mathrm{AA}}^{\mathrm{LO}}=-5.31_{-4.55}^{+4.93} \\
\text { naive dimensional estimate } a_{\mathrm{AA}} \approx 1
\end{gathered}
$$

(3) Cbi ba avuto, ba avuto, ba avuto ... chi ba dato, ha dato, ba dato ... scurdammoce o ppassato
Those who've taken, taken, taken ... Those who've given, given, given
... Let's forget about the past

[^3]
interpretation: POs à la LEP

$$
\mathrm{H} \rightarrow \gamma \gamma(\gamma \mathrm{Z}) \quad \mapsto \quad \rho_{\mathrm{H}}^{\gamma \gamma(\mathrm{Z})} \frac{p_{1} \cdot p_{2} g^{\mu \nu}-p_{2}^{\mu} p_{1}^{\nu}}{M_{\mathrm{H}}}
$$

$$
\mathbf{H} \rightarrow \overline{\mathbf{b}} \mathbf{b} \quad \mapsto \quad \rho_{\mathrm{H}}^{\mathrm{b}} \overline{\mathbf{u}} \mathbf{v}
$$

etc. Production? Analyticity and crossing symmetry

a middle way language
wolf, goat, and cabbage
(1) external layer ${ }^{a}$ (similar to LEP of ${ }_{\text {feak }}$,
$\left(\sum_{\mathrm{f}}\right) \Gamma_{\mathrm{Vff}} \quad \mathrm{A}_{\mathrm{FB}}^{\mathrm{ZZ}} \quad \mathrm{N}_{\text {off }}^{41} \quad$ etc \quad not as trivial as NWA or truncated MPE
(2) intermediate layer (similar to LEP g_{VA}^{e})

$$
\rho_{\mathrm{H}}^{\mathrm{V}} \quad \mathscr{G}_{\mathrm{L}}^{\mathrm{V}} \quad \rho_{\mathrm{H}}^{\gamma \gamma}, \rho_{\mathrm{H}}^{\gamma \mathrm{Z}} \quad \rho_{\mathrm{H}}^{\mathrm{f}}
$$

more
uni-
ver-
sal
(3) internal layer: the kappas

$$
\begin{array}{lll}
k_{f}^{\gamma \gamma} & k_{w}^{\gamma \gamma} & k_{i}^{\gamma N \mathrm{NF}}
\end{array} \text { etc }
$$

(4) innermost layer: Wilson coeff. or non-SM parameters in BSM (e.g. $\alpha, \beta, M_{\mathrm{sb}}$ etc. in THDMs)

Everything cbanges and nothing remains still \ldots and \ldots you cannot step twice into the same stream (Heracilius)

2
\square

Return

Return

Return
G
Return
\qquad
\square

促
\qquad

\qquad
\qquad

Appendix C. Dimension-Six Basis Operators for the SM^{22}. Einhorn, Wudka

X^{3} (LG)		φ^{6} and $\varphi^{4} D^{2}$ (PTG)		$\psi^{2} \varphi^{3}$ (PTG)	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right)^{3}$	$Q_{e \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right)$
$Q_{\tilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	$Q_{\varphi \square}$	$\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)$	$Q_{u \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right)$
$\begin{aligned} & Q_{W} \\ & Q_{\widetilde{W}} \\ & \hline \hline \end{aligned}$	$\begin{aligned} & \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \\ & \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} \\ & \hline \end{aligned}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$	$Q_{d \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right)$
$X^{2} \varphi^{2}$ (LG)		$\psi^{2} X \varphi$ (LG)		$\psi^{2} \varphi^{2} D$ (PTG)	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{\text {eW }}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi l}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e B}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi l}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{\prime}} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A}$	$Q_{\varphi e}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \tilde{\varphi} W_{\mu \nu}^{I}$	$Q_{\varphi q}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi B}$	$\varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}$	$Q_{u B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{\stackrel{H}{\mu}^{I}} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}$	$Q_{d G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A}$	$Q_{\varphi u}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
$Q_{\varphi W B}$	$\varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi d}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{\varphi \widetilde{W} B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi u d}$	$i\left(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

Table C.1: Dimension-six operators other than the four-fermion ones.

[^4]
SMEFT evolution

LO $\mathscr{A}^{\text {SMEFT }}=\mathscr{A}^{\text {SM }}+a_{i}$, where $a_{i} \in \mathrm{~V}_{6}$ and V_{6} is the set of $\operatorname{dim}=6$ Wilson coefficients

RGE $a_{i} \rightarrow Z_{i j}(\mathrm{~L}) a^{j}$, where $\mathrm{L}=\ln \left(\Lambda / M_{\mathrm{H}}\right)$ and $i, j \in \mathrm{H}_{\mathbf{6}} \subset \mathrm{V}_{\mathbf{6}}$
NLO $\mathscr{A}^{\text {SMEFT }}=\mathscr{A}^{\text {SM }}+\mathscr{A}_{k}(\mathrm{~L}$, const $) a^{k}$, where $k \in \mathrm{~S}_{6}$ and $\mathrm{H}_{6} \subset \mathrm{~S}_{6} \subset \mathrm{~V}_{6}$

(1) Each loop $=$ multiply by g^{2} (g is the $S U(2)$ coupling constant)
(2) Each dim $+2=$ multiply by $g_{6}=1 /\left(G_{F} \Lambda^{2}\right)$
(3) Warning: when squaring the amplitude respect the order in powers of g and of g_{6}
(4) be carefull with Λ or you will claim NP simply because you are missing 2 loops SM.
$\left|a_{i}\right| \in[-1,+1]$
$\Lambda=3 \mathrm{TeV}$
$\mathrm{gg} \rightarrow \mathrm{H}$ off-shell离

$+10$

Another reason to go NLO
The contact term is real ...
$a_{i}=1, \forall i$
$\Lambda=3 \mathrm{TeV}$

Scenarios for understanding SM deviations in (especially tails of) distributions:

A use SMEFT and stop where you have to stop, it is an honest assessment of our ignorance
B improve SMEFT with dim $=8$ (but this will not be enough)
C use the kappa-BSM-parameters connection, i.e. replace SMEFT with BSM models, especially in the tails, optimally matching to SMEFT at lower scales

D introduce binned POs

Multi Pole Expansion

In any process, the residues of the poles (starting from maximal degree) are numbers.
The non-resonant part is a multivariate function and requires some basis.
That is to say, residue of the poles can be POs by themselves, expressing them in terms of other objects is an operation the can be postponed.
The very end of the chain, no poles left, requires (almost) model independent SMEFT or model dependent BSM. Numerically speaking, it depends on the impact of the non-resonant part wich is small in gluon-fusion (ggF) but not in Vector Boson Scattering (VBS).

MPE: crab expansion

directly POs

residue of poles \Rightarrow one number \Leftarrow interpretation: $\kappa \times$ sub-amplitudes
non-resonant $\Rightarrow \quad$ NAN
$\Leftarrow \kappa \times$ sub-amplitudes needed even before interpretation
or dense binning in $\quad($ say $) p_{\mathrm{T}} \quad \Leftarrow$ interpretation: $\kappa \times$ sub-amplitudes (C used to "interpret" D!)

Going "far" off-shell. The \mathbf{k}-framework for BSM models (Singlet, THDMs, etc). Here THDM type I.

$$
\begin{aligned}
\mathscr{A}_{\mathrm{h} \rightarrow \gamma \gamma}(s) & \mapsto i \frac{g^{2} s_{\theta}^{2}}{8 \pi^{2}}\left(p_{1} \cdot p_{2} g^{\mu v}-p_{2}^{\mu} p_{1}^{v}\right) \\
& \times\left\{\frac{\cos \alpha}{\sin \beta} \sum_{\mathrm{f}} \mathscr{A}_{\mathrm{f}}^{\mathrm{SM}}-\sin (\alpha-\beta) \mathscr{A}_{\mathrm{bos}}^{\mathrm{SM}}\right. \\
& +\left[\left(M_{\mathrm{sb}}^{2}+s\right) \cos (\alpha-\beta) \cos 2 \beta\right. \\
& \left.\left.-\left(2 M_{\mathrm{sb}}^{2}+s+2 M_{\mathrm{H}^{+}}^{2}\right) \sin (\alpha-\beta) \sin 2 \beta\right] \mathscr{A}_{\mathrm{H}^{+}}^{\mathrm{SM}}\right\}
\end{aligned}
$$

where $\boldsymbol{M}_{\mathbf{s b}}$ is the $\boldsymbol{Z}_{\mathbf{2}}$ soft-breaking scale, $\mathbf{h}(\mathbf{H})$ are the light(heavy) scalar Higg bosons. The \mathbf{h} virtuality is \boldsymbol{s}. The coeff are $\kappa \mathbf{s}, \mathscr{A}_{\mathbf{H}^{+}}^{\text {SM }}$ is the "resolved" \mathbf{H}^{+}loop, becoming the contact term of SMEFT in the limit $\mathbf{M}_{\mathbf{H}^{+}} \rightarrow \infty$.

The dual role of MPE

(1) Poles and their residues are intimately related to the gauge invariant splitting of the amplitude (Nielsen identities)
(2) Residues of poles (eventually after integration over residual variables) can be interpreted as POs (factorization)

Gauge invariant splitting is not the same as "factorization" of the process into sub-processes, indeed

Phase space factorization requires the pole to be inside the physical region

$$
\begin{aligned}
& \Delta=\frac{1}{\left(s-M^{2}\right)^{2}+\Gamma^{2} M^{2}}=\frac{\pi}{M \Gamma} \delta\left(s-M^{2}\right)+\mathrm{PV}\left[\frac{1}{\left(s-M^{2}\right)^{2}}\right] \\
& d \Phi_{n}\left(P, p_{1} \ldots p_{n}\right)=\frac{1}{2 \pi} d Q^{2} d \Phi_{n-j+1}\left(P, Q, p_{j+1} \ldots p_{n}\right) d \Phi_{j}\left(Q, p_{1} \ldots p_{j}\right)
\end{aligned}
$$

To "complete" the decay ($d \Phi_{j}$) we need the δ-function ...

The δ-part of the resonant propagator opens the line

룬 the rght cun

$$
\sigma\left(\mathrm{qq} \rightarrow \overline{\mathrm{f} f f} \mathrm{f}^{\prime} \mathrm{j} j\right) \stackrel{P O}{\longrightarrow} \sigma(\mathrm{qq} \rightarrow \mathbf{H j j}) \otimes \Gamma(\mathbf{H} \rightarrow \mathbf{Z} \overline{\mathrm{f}} \mathbf{f}) \otimes \Gamma\left(\mathbf{Z} \rightarrow \overline{\mathrm{f}}^{\prime} \mathrm{f}^{\prime}\right)
$$

The δ-part of the resonant propagator opens the line t-channel propagators cannot be cut

$$
\sigma\left(\mathrm{qq} \rightarrow \overline{\mathbf{f}} \overline{\mathrm{f}}^{\prime} \mathbf{f}^{\prime} \mathrm{jj}\right) \stackrel{P O}{\longmapsto} \sigma(\mathrm{qq} \rightarrow \mathrm{ZZjj}) \otimes \Gamma(\mathrm{Z} \rightarrow \overline{\mathbf{f}} \mathbf{f}) \otimes \Gamma\left(\mathrm{Z} \rightarrow \overline{\mathbf{f}}^{\prime} \mathbf{f}^{\prime}\right)
$$

External and intermediate layers are complementary but not always interchangeable

Factorizing into "physical" sub-processes (external POs): fine points
(1) Process: $\mathscr{A}=\mathscr{A}_{\mu}^{(1)} \Delta_{\mu v}(p) \mathscr{A}_{v}^{(2)}$
(2) Replace: $\Delta_{\mu \nu} \rightarrow \frac{1}{s-s_{c}} \Sigma_{\lambda} \varepsilon_{\mu}(p, \lambda) \varepsilon_{\nu}^{*}(p, \lambda)$
(3) Obtain

$$
|\mathscr{A}|^{2}=\frac{1}{\left|s-s_{c}\right|^{2}}\left|\left[\mathscr{A}^{(1)} \cdot \varepsilon\right]\left[\mathscr{A}^{(2)} \cdot \varepsilon^{*}\right]\right|^{2}
$$

(4) Extract the δ from the propagator, factorize phase space ... but you don't have what you need, i.e.

$$
\sum_{\lambda}\left|\mathscr{A}^{(1)} \cdot \varepsilon(p, \lambda)\right|^{2} \sum_{\sigma}\left|\mathscr{A}^{(2)} \cdot \varepsilon(p, \sigma)\right|^{2}
$$

Factorization continued

5
iff cuts are not introduced, the interference terms among different helicities oscillate over the phase space and drop out
(6) MPE or "asymptotic expansion" means that no NWA is performed but, instead, the phase space decompostion obtains by using the two parts in the propagator expansion.
(1) The δ-term is what we need to reconstruct (external) POs
(2) the PV-term gives the remainder

Since the problem is extracting pseudo-observables, analytic continuation is performed only after integrating over residual variables.

$$
\mathrm{u}\left(p_{1}\right)+\mathrm{u}\left(p_{2}\right) \rightarrow \mathrm{u}\left(p_{3}\right)+\mathrm{e}^{-}\left(p_{4}\right)+\mathrm{e}^{+}\left(p_{5}\right)+\mu^{-}\left(p_{6}\right)+\mu^{+}\left(p_{7}\right)+\mathrm{u}\left(p_{8}\right) \quad \text { LO SMEFT }
$$

$$
\begin{aligned}
& J_{ \pm}^{\mu}\left(p_{i}, p_{j}\right)=\bar{u}\left(p_{i}\right) \gamma^{\mu} \gamma_{ \pm} u\left(p_{j}\right) \\
& \mathscr{A}_{\mathrm{LO}}^{\mathrm{TR}}=\left[J_{-}^{\mu}\left(p_{4}, p_{5}\right)\left(1-v_{1}\right)+J_{+}^{\mu}\left(p_{4}, p_{5}\right)\left(1+v_{1}\right)\right] \\
& \times\left[J_{\mu}^{-}\left(p_{6}, p_{7}\right)\left(1-v_{1}\right)+J_{\mu}^{+}\left(p_{6}, p_{7}\right)\left(1+v_{1}\right)\right] \\
& \times\left[J_{-}^{v}\left(p_{3}, p_{2}\right)\left(1-v_{\mathrm{u}}\right)+J_{+}^{v}\left(p_{3}, p_{2}\right)\left(1+v_{\mathrm{u}}\right)\right] \\
& \times\left[J_{v}^{-}\left(p_{8}, p_{1}\right)\left(1-v_{\mathrm{u}}\right)+J_{v}^{+}\left(p_{8}, p_{1}\right)\left(1+v_{\mathrm{u}}\right)\right] \\
& \mathscr{A}_{\mathrm{SMEFT}}^{\mathrm{TR}}=\frac{g^{6}}{4096} \Delta_{\mathrm{H}}\left(q_{1}+q_{2}\right) \prod_{i=1,4} \Delta_{\mathrm{Z}}\left(q_{i}\right) \frac{M_{\mathrm{W}}^{2}}{c_{\theta}^{8}} \kappa_{\mathrm{LO}} \mathscr{A}_{\mathrm{LO}}^{\mathrm{TR}}+g^{6} g_{6} \mathscr{A}_{\mathrm{SMEFT}}^{\mathrm{TR} ; \mathrm{nf}} \\
& \Delta_{\mathrm{LO}}^{-1}(p) \\
&=2 a_{\phi \square}^{2}+M_{\Phi}^{2} \frac{2 M_{\mathrm{Z}}^{2}-2 M_{\mathrm{H}}^{2}+q_{1} \cdot q_{2}+q_{2} \cdot q_{2}}{M_{\mathrm{W}}^{2}} c_{\theta}^{2} a_{\mathrm{ZZ}} \\
& q_{1}=p_{8}-p_{1}, q_{2}=p_{3}-p_{2}, q_{3}=p_{4}+p_{5}, q_{4}=p_{6}+p_{7}
\end{aligned}
$$

[^0]: ${ }^{1}$ What can be said at all should be said clearly and whereof one cannot speak thereof one must be silent (Wittgenstein)
 ${ }^{2}$ Covered in "ATLAS Higgs (N)NLO MC and Tools Workshop for LHC RUN-2", https://indico.cern.ch/event/345455/, see also https://indico.desy.de/conferenceDisplay.py?confld=476
 ${ }^{3}$ same as above
 ${ }^{4}$ Covered in "Pseudo-observables: from LEP to LHC", https://indico.cern.ch/event/373667/

[^1]: ${ }^{5}$ Green's functions in well-defined kinematic limit, i.e. residue of the poles after extracting the parts which are 1 P reducible, which means MPE

[^2]: ${ }^{8}$ Disregarding TH bias for the sign (Sect. D of arXiv:0907.5413)

[^3]: 9 from the point of view of a weakly coupled UV completion

[^4]: ${ }^{22}$ These tables are taken from [5], by permission of the authors.

