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Outline : there are three vital steps or stages one must climb

Theoretical precision: Missing Higher Orders
(MHO)

On − Off Shell: the Dalitz sector

BSM: SM ⊕⊕⊕ d = 6d = 6d = 6 operators
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Here we go
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Prolegomena

From my Logbook:
now we must move on to the next step

melting BSM-physics with high-precision SM-technology The question has been repeated

many times

But :

Answers converging around Not yet
Meanwhile, it came dangerously close to realizing a
nightmare, of Physics done by sub-sets of diagrams
instead of cuts.

WELL, SEVERAL YEARS AGO WE AVOIDED THAT FATE, MAY BE

THE HISTORY WILL REPEAT ITSELF?
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Missing Higher Orders
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What is THU?

The traditional way for estimating THEORETICAL

UNCERTAINTIES associated to collider physics is based on the
notion of QCD scale variation

We introduce the concept of

U MHO(MHOU), missing higher order (uncertainty), which
has to do with the TRUNCATION ERROR IN THE

PERTURBATIVE EXPANSION;

In the past 30 years the commonly accepted way for
estimating MHOU has been based on scale variations.
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Consider an observable σ (Q,µ)σ (Q,µ)σ (Q,µ) where

QQQ is the typical scale of the process and
µ ≡ {µR,µF}µ ≡ {µR,µF}µ ≡ {µR,µF} are the renormalization and factorization
scales. The conventional strategy defines

σ
−
ξ

= min
{

σ

(
Q ,

µ

ξ

)
, σ (Q , ξ µ)

}
,

σ
+
ξ

= max
{

σ

(
Q ,

µ

ξ

)
, σ (Q , ξ µ)

}
,

selects a value for ξξξ (typically ξ = 2ξ = 2ξ = 2) and predicts
σ− 5 σ 5 σ+σ− 5 σ 5 σ+
σ− 5 σ 5 σ+
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There is an open and debatable question on how to assign a
probability distribution function (pdf) to the MHOU

the generally accepted one is based on a Gaussian (or
log-normal) distribution centered at σ (Q,Q)σ (Q,Q)σ (Q,Q). What to use
for the standard deviation, remains an open problem.
Alternatively, it can be assumed that the pdf is a flat-box

Recently, there has been a proposal by Cacciari and Houdeau, based on

a flat (uninformative) Bayesian prior for the MHOU.
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More generally, dependence on scales is only part of the
problem: indeed, the MHO problem is based on the following
fact: given an observable O, related to a perturbative series

O �
∞

∑
n=0

cn gn

ó how should we interpret the relation?

The perturbative expansion is unlikely to converge, Simon, 1972

the asymptotic behavior of the coefficients is expected to
be

cn ∼ K nα n !
Sn , n→ ∞ Vainshtein 1994

The requirement of Eq.(1) (���) is not a formal one, it has a physical content: it means that there is a smooth
transition between the system with interaction and the system without it, Fischer 1995. Furthermore, Borel and

Carleman proved that there are analytic functions corresponding to arbitrary asymptotic power series.
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We (A. David and I) will not be able to answer general
questions (e.g. to prove uniqueness) but concentrate on

predicting higher orders
using the well-known concept of } series acceleration~, i.e.
one of a collection of sequence transformations (ST) for
improving the rate of convergence of a series.

If the original series is divergent, the ST acts as an
extrapolation method
in the case of infinite sums, STs have the effect that sums
that formally diverge may return a result that can be
interpreted as evaluation of the analytic extension of the
series for the sum.
the relation between Borel summation (usual method applied for summing divergent series) and these
extrapolation methods is known

Note that the definition of a sum of a factorially divergent series, including those with non-alternating
coefficients, is always equivalent to Borel’s definition, Suslov 2005
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Example

S∞ =
∞

∑
n=0

n ! zn+1 = e−1/z Ei
(

1
z

)

where the exponential integral is a single-valued function in
the plane cut along the negative real axis.

However, for z > 0z > 0z > 0 Ei(z)Ei(z)Ei(z) can be computed to great accuracy
using several Chebyshev expansions. Note that the r.h.s. is the

Borel sum of the series.
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Levin τττ -transform
, given the partial sum

Sn =
n

∑
i=0

γi z i , define the τττ -transform as

τk =
Nk

Dk
,

Nk =
k

∑
i=1

W (k , i) Si , Dk =
m

∑
i=1

W (k , i) ,

W (k , i) = (−1)i
(

k
i

)
(i)k−1

∆Si−1

where (z)a = Γ(z +a)/Γ(z)(z)a = Γ(z +a)/Γ(z)(z)a = Γ(z +a)/Γ(z) is the Pochhammer symbol and ∆∆∆

is the usual forward-difference operator, ∆Sn = Sn+1−Sn∆Sn = Sn+1−Sn∆Sn = Sn+1−Sn.
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Weniger δδδ -transform

δk (β ) =
∑

k
i=0 W δ (k , i ,β ) Si

∑
k
i=0 W δ (k , i ,β )

W δ (k , i ,β ) = (−1)i
(

k
i

)
(β + i)k−1

(β +k)k−1

1
γi+1 z i+1
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The whole strategy is based on the fact that one can predict
the coefficients by

constructing an approximant with the known terms of the
series (γ0, . . . ,γnγ0, . . . ,γnγ0, . . . ,γn) and
expanding the approximant in a Taylor series. The first nnn
terms of this series will exactly agree with those of the
original series and

the subsequent terms may be treated as the predicted
coefficients. i.e. if S1 , . . . , SkS1 , . . . , SkS1 , . . . , Sk are known, one computes

τk −Sk = γk+1 zk+1 +O
(

zk+2
)

ó γk+1γk+1γk+1 is the prediction for γk+1γk+1γk+1
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How to use it?

Consider a specific example, gg → Hgg → Hgg → H. Define

σgg

(
τ , M2

H

)
= σ

0
gg

(
τ , M2

H

)
Kgg

(
τ , M2

H , αs

)
where τ = M2

H/sτ = M2
H/sτ = M2
H/s and σ0

ggσ0
ggσ0
gg is the LO cross section. The K -factor

admits a formal power expansion in αs(µR)αs(µR)αs(µR)

Kgg

(
τ , M2

H , αs

)
= 1+

∞

∑
n=1

α
n
s (µR)K n

gg

Known coefficients are 11.87911.87911.879 and 72.25472.25472.254
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In their recent work, Ball et al, (Ball:2013bra) computed (at
√

s = 8 TeV
√

s = 8 TeV
√

s = 8 TeV )

α
3
s

(
MH

2

)
K 3

gg

(
µ =

MH

2

)
= 0.323±0.059

α
3
s
(
MH
)

K 3
gg
(
µ = MH

)
= 0.527±0.043

α
3
s
(
2MH

)
K 3

gg
(
µ = 2MH

)
= 0.729±0.032
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Warming up with two coefficients *

τ2−S2 =
γ

2
2

γ1
z3 +O

(
z4
)

applied to the ggF series gives

346.42346.42346.42 5 γ3
(
µ = MH

)
5 407.48407.48407.48 (Ball:2013bra)

γ3
(
µ = MH

)
= 439.48439.48439.48 WWW predicted

U which has the correct sign and the right order of
magnitude.
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Introducing

SN,n =
n

∑
k=0

γk zk +
N

∑
k=n+1

γk zk ,

and δN,nδN,nδN,n etc, constructed accordingly, our strategy for

estimating
MHO and MHOU

can be summarized as follows:

we select a scale, µ = MHµ = MHµ = MH for gg -fusion
ESTIMATE THE UNCERTAINTY DUE TO HIGHER ORDERS AT

THAT SCALE, I.E. THE (SCALE VARIATION) UNCERTAINTY AT

THE CHOSEN SCALE IS PART OF THE UNCERTAINTY DUE TO

HIGHER ORDERS AND SHOULD NOT BE COUNTED TWICE
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∴∴∴ we compare

σ
S,n
gg = σ

0
gg
(
µ = MH

)
Sn,3

(
µ = MH

)
σ

δ ,n
gg = σ

0
gg
(
µ = MH

)
δn,3

(
µ = MH

)
Our conclusion is that, to a very good accuracy,

σgg ∈
[
σ

S,3
gg , σ

δ ,5
gg

]
with a flat interval of 16.37%16.37%16.37%.

The uncertainty on the width, induced by the error on the coefficient γ3
(
µ = MH

)
γ3
(
µ = MH

)
γ3
(
µ = MH

)
brings it to 26.01%26.01%26.01%

" N3LO & QCD scales var. completion & MHO FFF

σgg ∈ [18.90 , 21.93] pb σgg ∈ [20.13 , 23.42] pb
NNLO ��� +17% ��� N3LO ��� ≈+7% ��� completion
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The advantages of the method are that

the result does not depend on the choice of the parameter
expansion (it is based on } PARTIAL SUMS)~ 3

it takes into account the nature of the coefficients, i.e. that
the known terms of the perturbative expansion in
gg -fusion are positive 3

BU1
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pdf

The corresponding pdf could be derived by following the work
of Cacciari and Houdeau giving

PCH(σ) = N−1
σ



(
∆σ

σ+−σ

)5
if σ 5 σ−

1 if σ− 5 σ 5 σ+(
∆σ

σ−σ−

)5
if σ > σ+

σ− = σ
S,3
gg σ+ = σ

δ ,4
gg

∆σ = σ+−σ− Nσ =
3
2

∆σ
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Pseudo Observables
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These plots are one of the best examples that

BR(H → VV) ⊗ BR2 (V → ff
)

6=
BR(H → 4 f)

Trivial but true, # H → VV# H → VV# H → VV is not a physical OBSERVABLE,
eventually it can be defined as } PSEUDO-OBSERVABLE~
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mass (GeV)
1 2 3 4 5 10 20 100 200

1/
2

 o
r 

(g
/2

v)
λ

-210

-110

1
W Z

t

b

τ

68% CL

95% CL

68% CL

95% CL

CMS Preliminary -1 19.6 fb≤ = 8 TeV, L s  -1 5.1 fb≤ = 7 TeV, L scensored

ô
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The previous plot (couplings ��� masses) is another example
that

POs can be defined (couplings) Iff the rules of the game are
respected

*

MODEL-INDEPENDENT couplings are extracted in some
effective way that includes QCD but not NLO EW
If one wants to obtain the SM (the straight line) ### use
RUNNING MASSES mf(MH)mf(MH)mf(MH)
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Prototyping

Theorem

@ H → Z + γ, H → VV etc.

do not exist/make sense since ���

"VVV 6∈6∈6∈ | in/out >| in/out >| in/out > bases of the Hilbert space
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High Precision Road
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Dalitz Decay?

MH = 125.5 GeV BR(H → e+e−) = 5.1 × 10−9

while a naive estimate gives

BR(H → Zγ) BR
(
Z → e+e−

)
= 5.31 × 10−5

4 orders of magnitude larger
How much is the corresponding PO extracted from full Dalitz

Decay?
We could expect Γ(H → e+e−γ) = 5.7%Γ(H → γγ)Γ(H → e+e−γ) = 5.7%Γ(H → γγ)Γ(H → e+e−γ) = 5.7%Γ(H → γγ) but photon

isolation must be discussed.
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Categories

Terminology:
The name Dalitz Decay must be reserved for the full process

H → ffγH → ffγH → ffγ

Subcategories:


H → Z∗

(
→ ff

)
+ γ "unphysical1

H → γ
∗ (→ ff

)
+ γ "unphysical

H → Zc
(
→ ff

)
+ γ PO2

1Z∗ is the off-shell Z
2Zc is the Z at its complex pole



MHOU PO EFT

Understanding the problem

H → ffH → ffH → ff or H → ff +n γH → ff +n γH → ff +n γ ?

Go to two-loop, the process is considerably more complex than,
say, H → γγH → γγH → γγ because of the role played by QED and QCD

corrections.

The ingredients needed are better understood in terms of cuts
of the three-loop HHH self-energy *
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Moral: Unless you Isolate photons
you don't know which process you are talking about

H → ffH → ffH → ff NNLO or H → ffγH → ffγH → ffγ NLO
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The complete SSS -matrix element will read as follows:

S =
∣∣∣A(0) (H → ff

)∣∣∣2
+ 2Re

[
A(0) (H → ff

)]†
A(1) (H → ff

)
+

∣∣∣A(0) (H → ffγ
)∣∣∣2 7

+ 2Re
[
A(0) (H → ff

)]†
A(2) (H → ff

)
+ 2Re

[
A(0) (H → ffγ

)]†
A(1) (H → ffγ

)
7

+
∣∣∣A(0) (H → ffγγ

)∣∣∣2.
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Don’t get trapped by your intuition, the IR/collinear stuff will not
survive in the limit mf → 0mf → 0mf → 0

There are genuinely non-QED(QCD) terms surviving the
zero-Yukawa limit (a result known since the ’80s)

6
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Dalitz box

�

�����

Collinear/Virtual cancel in the total 7

Gram and Cayley do not generate real
singularities 7

Plenty of hard stuff around ,
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Only the total Dalitz Decay has a meaning and can be
differentiated through cuts

The most important is the definition of visible photon to
distinguish between ffffff and ffγffγffγ

Next cuts are on M(ff)M(ff)M(ff) to isolate pseudo-observables
One has to distinguish:

H → ff+H → ff+H → ff+ soft(collinear) photon(s) which is part of the real
corrections to be added to the virtual ones in order to obtain
H → ffH → ffH → ff at (N)NLO

a visible photon and a soft ffffff -pair where you probe the
Coulomb pole and get large (logarithmic) corrections that
must be exponentiated.
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Unphysical H → Zγ → ffγH → Zγ → ffγH → Zγ → ffγ and H → γγ → ffγH → γγ → ffγH → γγ → ffγ

" None of these contributions
exists by itself, each of

them is NOT even gauge invariant. One can put cuts and

with a small window around the ZZZ -peak the
pseudo-observable H → ZcγH → ZcγH → Zcγ can be enhanced, but there is
a contamination due to many non-resonant backgrounds 3

Beware of generic statements box contamination in H → ZγH → ZγH → Zγ

is known to be small and of ad-hoc definition of
gauge-invariant splittings 3

at small di-lepton invariant masses γ
∗

γ
∗

γ
∗ dominates 3
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Partial Summary

H → ffH → ffH → ff is well defined and H → ff + γH → ff + γH → ff + γ (γγγ soft+collinear) is
part of the corresponding NLO corrections

H → ZγH → ZγH → Zγ is not well defined being a gauge-variant part of
H → ff + γH → ff + γH → ff + γ (γγγ visible) and can be extracted (* in a PO
sense) by cutting the di-lepton invariant mass.
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Intuition
ց

6∈ Facts of life with non-resonant

the best that we can hope to achieve is simply to
misunderstand at a deeper level

BU2
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Results: leptons

m
(
ff
)

> 0.1MH m (fγ) > 0.1MH m
(
fγ
)

> 0.1MH

ΓNLO = 0.233 keV ⊕


ΓLO = 0.29 × 10−6 keV e

ΓLO = 0.012 keV µ

ΓLO = 3.504 keV τ

* LO and NLO do not interfere (as long as masses are
neglected in NLO), they belong to different helicity sets.

Cuts à la Dicus and Repko
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Results: quarks

m
(
ff
)

> 0.1MH m (fγ) > 0.1MH m
(
fγ
)

> 0.1MH


ΓLO = 0.013 keV ΓNLO = 0.874 keV d

ΓLO = 8.139 keV ΓNLO = 0.866 keV b

* Note the effect of mtmtmt
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Cutting

m (fγ) > 0.1MH m
(
fγ
)

> 0.1MH

ΓNLO[ keV ]
m
(
ff
)

> 0.1MH m
(
ff
)

> 0.6MH
l 0.233 0.188
d 0.874 0.835
b 0.866 0.831

ΓLO[ keV ]
m
(
ff
)

> 0.1MH m
(
ff
)

> 0.6MH
µ 0.012 0.010
d 0.013 0.011
b 8.139 6.745
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Mfγ > 0.1 MH

M
f γ > 0.1 MH

d

b

e

0 25 50 75 100 125

10−6

10−5

10−4

10−3

10−2

10−1

M
f f

[ GeV]

dΓ dM
ff

[k
eV

/
G

eV
]
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0 25 50 75 100 125

10−4

10−3

10−2

Me+e− > 0.1 MH

Me+γ > 0.1 MH

Meγ [ GeV]

dΓ dM
e

γ
[k
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/

G
eV
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Me−γ > 0.1 MH

Me+γ > 0.1 MH

Z∗

T
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Eγ [ GeV]

dΓ dE
γ
[k

eV
/

G
eV

]

M
f f
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M
f γ > 0.1 MH
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−0.95 0 +0.95
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M
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M
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Me−γ > 0.1 MH

Me+γ > 0.1 MH

Z∗

γ∗
T

Z
c
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Observable Pseudo-Observable

H → γγ

H → ffγ + H → Zγ

H → ff

H → fff ′f′ + H → VV, Zγ

One needs to define when it is 4 f4 f4 f final state and when it is PAIR

CORRECTION to 2 f2 f2 f final state (as it was done at LEP2)
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Effective Field Theory
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Let's consider the following path

SM ESM BSM
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LESM = LSM + ∑
n>4

Nn

∑
i=1

an
i

Λn−4 O
(d=n)
i

∃(∃ !) LUCSM � Oi ?

UV completion of the SM (UCSM) or ESM?
Bottom-up or top-down approach to ESM?

How many facts the theory explains: it is a draw
Having the fewer auxiliary hypothesis: SM ��� UCSM
superior
Analogy: SM should be augmented by all possible terms
consistent with symmetries ��� ESM

The regulative ideal
of an ultimate theory remains a powerful

aesthetic ingredient
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How to interpret κXκXκX?

Γgg

ΓSM
gg (mH)

=
κ

2
t ·Γ

tt
gg(mH)+κ

2
b ·Γ

bb
gg(mH)+κtκb ·Γtb

gg(mH)

Γ
tt
gg(mH)+Γ

bb
gg(mH)+Γ

tb
gg(mH)
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Space of Lagrangians (arXiv:1202.3144, arXiv:1202.3415, arXiv:1202.3697)

Wilson coefficients in LESMLESMLESM are assumed to be small enough
that they can be treated at leading order.

LSM

LSM

LBSM

LESM

LESM = LSM +
∑

n>4
∑Nn

i=1
an
i

Λn−4O
(d=n)
i
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Strategy

¬
measure κκκ

Γgg

ΓSM
gg (mH)

=
κ

2
t ·Γ

tt
gg(mH)+κ

2
b ·Γ

bb
gg(mH)+κtκb ·Γtb

gg(mH)

Γ
tt
gg(mH)+Γ

bb
gg(mH)+Γ

tb
gg(mH)

­
find Oi ⇔ κxOi ⇔ κxOi ⇔ κx

(epistemological stop, true ESM believers stop here)

LESM = LSM + ∑
n>4

Nn

∑
i=1

an
i

Λn−4 O
(d=n)
i

®
find {LBSM}{LBSM}{LBSM}

that produces OiOiOi
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κXκXκX cannot be arbitrary shifts of the SM diagrams

Γgg

ΓSM
gg (mH)

=
κ

2
t ·Γ

tt
gg(mH)+κ

2
b ·Γ

bb
gg(mH)+κtκb ·Γtb

gg(mH)

Γ
tt
gg(mH)+Γ

bb
gg(mH)+Γ

tb
gg(mH)

### they require an underlying (at least effective) theory
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We define an effective Lagrangian based on

a linear representation of the EW gauge symmetry with a
Higgs-doublet field, restricting ourselves to dimension-666
operators relevant for Higgs physics Buchmuller:1985jz, Grzadkowski:2010es.

* Disclaimer: it is impossible to quote all who have contributed. For what is relevant here:

Yellow Report HXSWG vol. 3: A. David, A. Denner, M. Dührssen, M. Grazzini, C. Grojean,
K. Prokofiev, G. Weiglein, M. Zanetti, S. Dittmaier, G. Passarino and M. Spira

Contino:2013kra

Corbett:2013hia

Elias-Miro:2013gya
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Lagrangian

Leff = L
(4)

SM +
1

Λ2 ∑
k

αkOk ,

L
(4)

SM = −1
4

GA
µνGAµν − 1

4
WI

µν
WIµν − 1

4
B

µν
Bµν

+(DµΦ)†(Dµ
Φ)+m2

Φ
†
Φ− 1

2
λ (Φ†

Φ)2

+ il̄/Dl + iē/De + iq̄/Dq + iū/Du + id̄/Dd

− (l̄ΓeeΦ+ q̄ΓuuΦ̃+ d̄ΓddΦ+h.c.),
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Operators

Φ6 and Φ4D2 ψ2Φ3 X3

OΦ = (Φ†Φ)3 OeΦ = (Φ†Φ)(l̄ Γe eΦ) OG = f ABC GAν
µ GBρ

ν GCµ
ρ

OΦ2 = (Φ†Φ)2(Φ†Φ) OuΦ = (Φ†Φ)(q̄ Γu uΦ̃) OG̃ = f ABC G̃Aν
µ GBρ

ν GCµ
ρ

OΦD = (Φ†Dµ Φ)∗(Φ†Dµ Φ) OdΦ = (Φ†Φ)(q̄ Γd dΦ) OW = ε IJK WIν
µ WJρ

ν WK µ
ρ

OW̃ = ε IJK W̃
Iν
µ WJρ

ν WK µ
ρ

X2Φ2 ψ2XΦ ψ2Φ2D

OΦG = (Φ†Φ)GA
µν GAµν OuG = (q̄σ µν λA

2 Γu uΦ̃)GA
µν O

(1)
Φl = (Φ†i

↔
Dµ Φ)(l̄γµ l)

O
ΦG̃ = (Φ†Φ)G̃A

µν GAµν OdG = (q̄σ µν λA
2 Γd dΦ)GA

µν O
(3)
Φl = (Φ†i

↔
D I

µ Φ)(l̄γµ τ I l)

OΦW = (Φ†Φ)WI
µν WIµν OeW = (l̄σ µν Γe eτ I Φ)WI

µν OΦe = (Φ†i
↔
Dµ Φ)(ēγµ e)

O
ΦW̃ = (Φ†Φ)W̃

I
µν WIµν OuW = (q̄σ µν Γu uτ I Φ̃)WI

µν O
(1)
Φq = (Φ†i

↔
Dµ Φ)(q̄γµ q)

OΦB = (Φ†Φ)Bµν Bµν OdW = (q̄σ µν Γd dτ I Φ)WI
µν O

(3)
Φq = (Φ†i

↔
D I

µ Φ)(q̄γµ τ I q)

O
ΦB̃ = (Φ†Φ)B̃µν Bµν OeB = (l̄σ µν Γe eΦ)Bµν OΦu = (Φ†i

↔
Dµ Φ)(ūγµ u)

OΦWB = (Φ†τ I Φ)WI
µν Bµν OuB = (q̄σ µν Γu uΦ̃)Bµν OΦd = (Φ†i

↔
Dµ Φ)(d̄γµ d)

O
ΦW̃B = (Φ†τ I Φ)W̃

I
µν Bµν OdB = (q̄σ µν Γd dΦ)Bµν OΦud = i(Φ̃†Dµ Φ)(ūγµ Γud d)
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IN A COMPLETE ANALYSIS ALL 59 INDEPENDENT OPERATORS

OF Grzadkowski:2010es), INCLUDING 25 FOUR-FERMION OPERATORS,
HAVE TO BE CONSIDERED IN ADDITION TO THE SELECTED 34

OPERATORS

In weakly interacting theories the dimension-6 operators
involving field strengths can only result from loops, while the
others also result from tree diagrams (Arzt:1994gp). The operators
involving dual field strengths tensors or complex Wilson
coefficients violate CP.
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with the physical mass parameters

M2
W =

1

4
g2v2

[

1 + 2
v2

Λ2
αΦW

]

,

M2
Z =

1

4
(g2 + g′2)v2

[

1 +
v2

2Λ2

(

4αZZ + αΦD

)

]

,

M2
H = λv2

[

1 +
v2

2Λ2

(

4αΦ�−
6

λ
αΦ − αΦD

)]

,

mf =
1√
2
U f̂ΓfU

f ,†v

[

1− 1

2

v2

Λ2
αfφ

]

. (151)

In (150) we have used the usual ’t Hooft–Feynman gauge-fixingterm

Lfix = −C+C− −
1

2
(CZ)2 − 1

2
(CA)2 − 1

2
CA

GCA
G (152)

with

CA
G = ∂µGAµ, CA = ∂µAµ, CZ = ∂µZµ + MZφ0, C± = ∂µW±µ ± iMWφ± (153)

in terms of the physical fields and parameters, which gives rise to the same propagators as in the SM.3282
In the following, the abbreviationscw andsw are defined via the physical masses

cw =
MW

MZ

, sw =
√

1− c2
w. (154)

The parameters of the SM Lagrangiang, g′, λ, m2, andΓf keep their meaning in the presence of3283
dimension-6 operators.3284
10.4.2 Higgs vertices3285
Here we list the most important Feynman rules for vertices involving exactly one physical Higgs boson.3286
These are given in terms of the above-defined physical fields and parameters. In the coefficients of3287
dimension-6 couplings we replacedv2 by the Fermi constant viav2 = 1/(

√
2GF ).3288

The triple vertices involving one Higgs boson read:

Hgg coupling:

GA
µ , p1

GB
ν , p2

H = i
2g

MW

1√
2GF Λ2

[

αGG(p2µp1ν − p1p2gµν) + α
G eG

εµνρσpρ
1p

σ
2

]

δAB ,

(155)

HAA coupling:

Aµ, p1

Aν , p2

H = i
2g

MW

1√
2GF Λ2

[

αAA(p2µp1ν − p1p2gµν) + α
AeA

εµνρσpρ
1p

σ
2

]

, (156)

BU3
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The triple vertices involving one Higgs boson read:

Hgg coupling:

GA
µ , p1

GB
ν , p2

H = i
2g

MW
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2GF Λ2

[

αGG(p2µp1ν − p1p2gµν) + α
G eG
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2
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HAA coupling:

Aµ, p1

Aν , p2

H = i
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MW
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2GF Λ2
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Since κt,κbκt,κbκt,κb etc. can be made different ONLY by inserting OOO
operators in SM vertices

Vademecum (NLO + EFT) trainee

the EFT part has to be implemented into existing (EW +
QCD) codes: formulation in arbitrary gauge (not U-gauge
restricted) is needed
Renormalization for the full SM + EFT Lagrangian is
needed
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If one restricts the analysis to the calculation of on-shell
matrix elements then additional operators are eliminated by the

Equations-Of-Motion (EOM).

given a theory with a Lagrangian L [φ]L [φ]L [φ] consider an effective
Lagrangian Leff = L +g O +g′O ′′Leff = L +g O +g′O ′′Leff = L +g O +g′O ′′ where

O−O ′′ = F [φ]δL /δ φ

and FFF is some local functional of φφφ. The effect of O ′O ′O ′ on
Leff = L +g OLeff = L +g OLeff = L +g O is

to shift g → g +g′ and to replace φ→ φ+g′F
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Caveat

Only SSS -matrix elements will be the same for equivalent
operators but not the Green’s functions ∴∴∴

since we are working with unstable particles,
since we are inserting operators inside loops,
since we want to use (off-shell) S,TS,TS,T and UUU parameters to
constrain the Wilson coefficients,

### the use of EOM should be taken with extreme caution

ó (Wudka:1994ny) even if the S -matrix elements cannot distinguish between two equivalent operators
O and O ′, there is a large quantitative difference whether the underlying theory can generate O ′ or
not. It is equally reasonable not to eliminate redundant operators and, eventually, exploit
redundancy to check S -matrix elements.
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T , L operators

The d = 6d = 6d = 6 operators are supposed to arise from a local
Lagrangian, containing heavy degrees of freedom, ONCE THE

LATTER ARE INTEGRATED OUT (the correspondence
Lagrangians → effective operators is not bijective) These

operators are of two different origins:

ó TTT -operators are those that arise from the tree-level
exchange of some heavy degree of freedom

ó LLL -operators are those that arise from loops of heavy
degrees of freedom.

The LLL -operators are usually not included in the analysis. See recent

results in Einhorn:2013kja
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UV

Insertion of d = 6d = 6d = 6 operators in loops

We have to deal with
renormalization of composite operators
absorbing UV divergences to all orders and of maintaining
the independence of arbitrary UV scale cutoff, problems
that require the introduction of all possible terms allowed
by the symmetries Georgi:1994qn,Kaplan:1995uv (EFT renormalization
à la BPHZ?)
Special care should be devoted in avoiding
double-counting when we consider insertion of
TTT -operators in loops and LLL -operators as well.
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Caveat

Note
that for

Λ≈ 5 TeVΛ≈ 5 TeVΛ≈ 5 TeV
we have

1/(
√

2GFΛ2)≈ g2/(4π)1/(
√

2GFΛ2)≈ g2/(4π)1/(
√

2GFΛ2)≈ g2/(4π)
,

i.e. ó the contributions of d = 6d = 6d = 6 operators are uuu loop effects.
ó ó For higher scales, loop contributions tend to be more

important (<<<)
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UV

UV Characteristic

Operators normally alter the UV power-counting of a SM
diagram
but THERE ARE OPERATORS THAT DO NOT CHANGE THE

UV POWER-COUNTING: we say that a set of SM diagrams
is UV-scalable w.r.t. a combination of d = 6d = 6d = 6 operators if

their sum is UV finite
all diagrams in the set are scaled by the same combination
of d = 6d = 6d = 6 operators.

these diagrams are UV admissible
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Example: SM loops dressed only with
UV-admissible operators
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H→ γγH→ γγH→ γγ

For H → γγH → γγH → γγ the SM amplitude reads

MSM = FSM

(
δ

µν +2
pν

1pµ

2

M 2
H

)
eµ (p1) eν (p2)

FSM = −g M F W
SM −

1
2

g
M2

t

M
F t

SM−
1
2

g
M2

b

M
F b

SM.

F W
SM = 6+

M 2
H

M 2
+6

(
M 2

H−2M 2
)

C0

(
−M 2

H , 0 , 0 ; M ,M ,M
)

,

F t
SM = −8−4

(
M 2

H−4M2
t

)
C0

(
−M 2

H , 0 , 0 ; Mt ,Mt ,Mt

)
,
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We only need a subset of operators yyy

L̃ = A1
V

(
Φ

†
Φ−v2

)
F a

µν F a
µν +A2

V

(
Φ

†
Φ−v2

)
F 0

µν F 0
µν

+ A3
VΦ

†
τa ΦF a

µν F 0
µν +

1
2

A∂Φ ∂µ

(
Φ

†
Φ
)

∂µ

(
Φ

†
Φ
)

+ A1
Φ

(
Φ

†
Φ
) (

Dµ Φ
)† Dµ Φ +A3

Φ

(
Φ

†DµΦ
) [(

DµΦ
)†

Φ

]
+

1
4
√

2

Mt

M
A1

f

(
Φ

†
Φ−v2

)
—ψL Φ tR

+
1

4
√

2

Mb

M
A2

f

(
Φ

†
Φ−v2

)
—ψL Φ

c bR +h. c.

A0
Φ = A1

Φ +2
A3

Φ

ŝ2
θ

+4A∂Φ.
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,

MH→γγ =
(

4
√

2GF

)1/2 {
− α

π

[
Cγγ

W F W
SM +3 ∑

q
Q2

q Cγγ

q F q
SM

]
+FAC

}
FAC =

g6√
2

M 2
H

(
ŝ2

θ A1
V + ĉ2

θ A2
V + ĉθ ŝθ A3

V

)
.

g6 =
1

GF Λ2 = 0.085736
(

TeV
Λ

)2
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, the scaling factors are given by

Cγγ

W =
1
4

M 2
{

1+
g6

4
√

2

[
8A3

V ĉθ

(
ŝθ +

1
ŝθ

)
+A0

Φ

]}

Cγγ

t =
1
8

M2
t

{
1+

g6

4
√

2

[
8A3

V ĉθ

(
ŝθ +

1
ŝθ

)
+A0

Φ−A1
f

]}

Cγγ

b =
1
8

M2
b

{
1+

g6

4
√

2

[
8A3

V ĉθ

(
ŝθ +

1
ŝθ

)
+A0

Φ−A2
f

]}
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The amplitude is the sum of

the W, tW, tW, t and bbb SM components, each scaled by some
combination of Wilson coefficients, and of
a contact term

The latter is O (g6)O (g6)O (g6) while the rest of the corrections is O
(

α

π
g6)
)

O
(

α

π
g6)
)

O
(

α

π
g6)
)
.

However, one should remember that

O i
VO i
VO i
V are operators of LLL -type, i.e. they arise from loop

correction in the complete theory

∴∴∴, the corresponding coefficients are expected to be very small although this is only an argument about
naturalness without a specific quantitative counterpart (apart from a 1/(16π2)1/(16π2)1/(16π2) factor from loop integration)
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Glimpsing at the headlines of the complete calculation for
H → γγH → γγH → γγ

*

SM loops, dressed with admissible operators
New 333333 loop-diagrams
Counter-terms

Amplitude in internal notations *
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g HAA= − i n t ( q ) *Qs(−1 ,[q ]^2+mt ^2 ) *Qs(−1 ,[q+p1 ]^2+mt ^2 ) *Qs(−1 ,[q+p1+p2 ]^2+mt ^2 ) *3* t race * (
( −1/2*g*mt /M + L^−2 * ( 4* r2^−1*M^2* af1 − 2*M*aV1*mt − 1/2*a3K*M*g*mt + 2*adK*M*g*mt ) ) *
(− i _ * ( gd ( s , q)+gd ( s , p1)+gd ( s , p2 ) )+ mt ) *
VAtt ( nu , p2)*(− i _ * ( gd ( s , q)+gd ( s , p1 ) )+ mt ) *
VAtt (mu, p1)*(− i _ *gd ( s , q)+mt )+
( −1/2*g*mt /M + L^−2 * ( 4* r2^−1*M^2* af1 − 2*M*aV1*mt − 1/2*a3K*M*g*mt + 2*adK*M*g*mt ) ) *
( i _ *gd ( s , q)+mt ) *
VAtt (mu, p1 ) * ( i _ * ( gd ( s , q)+gd ( s , p1 ) )+ mt ) *
VAtt ( nu , p2 ) * ( i _ * ( gd ( s , q)+gd ( s , p1)+gd ( s , p2 ) )+ mt))−
i n t ( q ) *Qs(−1 ,[q ]^2+mb^2) *Qs(−1 ,[q+p1 ]^2+mb^2) *Qs(−1 ,[q+p1+p2 ]^2+mb^2) * t race * (
( −1/2*g*mb/M + L^−2 * ( − 4* r2^−1*M^2* af2 − 2*M*aV1*mb − 1/2*a3K*M*g*mb + 2*adK*M*g*mb) ) *
(− i _ * ( gd ( s , q)+gd ( s , p1)+gd ( s , p2 ) )+mb) *
VAbb( nu , p2)*(− i _ * ( gd ( s , q)+gd ( s , p1 ) )+mb) *
VAbb(mu, p1)*(− i _ *gd ( s , q)+mb)+
( −1/2*g*mb/M + L^−2 * ( − 4* r2^−1*M^2* af2 − 2*M*aV1*mb − 1/2*a3K*M*g*mb + 2*adK*M*g*mb) ) *
( i _ *gd ( s , q)+mb) *
VAbb(mu, p1 ) * ( i _ * ( gd ( s , q)+gd ( s , p1 ) )+mb) *
VAbb( nu , p2 ) * ( i _ * ( gd ( s , q)+gd ( s , p1)+gd ( s , p2 ) )+mb) )+
+ i _ *L^−2 * (

+ 8*M* ( s th ^2*aV1 + cth ^2*aV2 + sth * c th *aV3 ) * ( p1 ( nu ) * p2 (mu) − d_ (mu, nu ) * p1 . p2 ) )+
i n t ( q ) *Qs(−1 ,[q ]^2+M^2) *Qs(−1 ,[q+p1 ]^2+M^2) *Qs(−1 ,[q+p1+p2 ]^2+M^ 2 ) * (
dia1 *VHWW( al , be,−q , q+p1+p2 ) *VAWmWp( nu , be , s i , p2,−q−p1−p2 , q+p1 ) *VAWmWp(mu, s i , a l , p1,−q−p1 , q)+
dia2 *VHWW( be , al , q+p1+p2,−q ) *VAWmWp(mu, al , s i , p1 , q,−q−p1 ) *VAWmWp( nu , s i , be , p2 , q+p1,−q−p1−p2)+
dia3 *VHPmWp( al ,−p1−p2,−q ) *VAWmWp( nu , al , be , p2,−q−p1−p2 , q+p1 ) *VAPpWm(mu, be , p1,−q−p1)+

. . . . . . . . . . . . . . . . .

dia30 *VAAWP(mu, nu , al , p1 , p2 ) *VHPpWm( al ,−p1−p2,−q ) )+
i n t ( q ) *Qs(−1 ,[q ]^2+M0^2) *Qs(−1 ,[q+p1+p2 ]^2+M0^ 2 ) * (
dia31 *VHP0P0(−p1−p2,−q , q+p1+p2 ) *VAAP0P0(mu, nu , p1 , p2 ) )+
i n t ( q ) *Qs(−1 ,[q ]^2+mh^2) *Qs(−1 ,[q+p1+p2 ]^2+mh^ 2 ) * (
dia32 *VHHH(−p1−p2 , q+p1,−q ) *VAAHH(mu, nu , p1 , p2 ) )+
i n t ( q ) *Qs(−1 ,[q ]^2+M^ 2 ) * ( dia33 *VHAAWW(mu, nu , s i , s i ) ) ;
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i d VHPmPp( p1? ,p2? ,p3?)=
− 1/2*M^−1*mh^2*g
+ L^−2 * (
− 2*M*mh^2*aV1 − 2*p2 . p3*a1K*M*g + 1 / 2 * (mh^2 + 2*p1 . p1 ) * a3K*M*g − 2* (mh^2 + 2*p1 . p1 ) * adK*M*g ) ;

*
i d VHPmWp( be? ,p1? ,p2?)=
− 1 / 2 * ( p1 ( be ) − p2 ( be ) ) * i _ *g
+ L^−2 * (
− 2*p2 ( be ) * i _ *a1K*M^2*g − 2* ( p1 ( be ) − p2 ( be ) ) * i _ *M^2*aV1
− 1 / 2 * ( p1 ( be ) − p2 ( be ) ) * i _ *a3K*M^2*g + 2* ( p1 ( be ) − p2 ( be ) ) * i _ *adK*M^2*g ) ;

*
i d VHPpWm( be? ,p1? ,p2?)=
− 1 / 2 * ( p1 ( be ) − p2 ( be ) ) * i _ *g
+ L^−2 * (
− 2*p2 ( be ) * i _ *a1K*M^2*g − 2* ( p1 ( be ) − p2 ( be ) ) * i _ *M^2*aV1
− 1 / 2 * ( p1 ( be ) − p2 ( be ) ) * i _ *a3K*M^2*g + 2* ( p1 ( be ) − p2 ( be ) ) * i _ *adK*M^2*g ) ;

*
i d VHWW( a l ? ,be? ,p2? ,p3?)=
− d_ ( al , be ) *M*g
+ L^−2 * (
− 4*d_ ( al , be ) *M^3*aV1 − d_ ( al , be ) * a3K*M^3*g + 2*d_ ( al , be ) * a1K*M^3*g
+ 4*d_ ( al , be ) * adK*M^3*g + 8* ( p2 ( be ) * p3 ( a l ) − d_ ( al , be ) * p2 . p3 ) *M*aV1 ) ;

*
i d VHZZ( a l ? ,be? ,p2? ,p3?)=
− d_ ( al , be ) *M* c th ^−2*g
+ L^−2 * (
− 4*d_ ( al , be ) *M^3*aV1* c th^−2 + d_ ( al , be ) * a3K*M^3* c th ^−2*g
+ 2*d_ ( al , be ) * a1K*M^3* c th ^−2*g + 4*d_ ( al , be ) * adK*M^3* c th ^−2*g
− 8* ( p2 ( be ) * p3 ( a l ) − d_ ( al , be ) * p2 . p3 ) *M*aV3* c th * s th
+ 8* ( p2 ( be ) * p3 ( a l ) − d_ ( al , be ) * p2 . p3 ) *M*aV2* s th ^2
+ 8* ( p2 ( be ) * p3 ( a l ) − d_ ( al , be ) * p2 . p3 ) *M*aV1* c th ^ 2 ) ;

*
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HHH

t, bt, bt, b

HHH

W/φ/X±W/φ/X±W/φ/X±

HHH

W/φW/φW/φ

HHH W/φW/φW/φ

O(g3)O(g3)O(g3)

Figure 1: The three families of diagrams contributing to the amplitude for H → γγ; W/φ denotes a W -line or a

φ -line. X± denotes a FP-ghost line

HHH

t , bt , bt , b

HHH

W , Z , γ , H , φW , Z , γ , H , φW , Z , γ , H , φ

X± , Y
A

, Y
Z
, fX± , Y

A
, Y

Z
, fX± , Y

A
, Y

Z
, f

O(g5)O(g5)O(g5)

Figure 2: Example of two-loop diagrams contributing to the amplitude for H→ γγ
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HHH

t, bt, bt, b
•••

HHH

W/φ/X±W/φ/X±W/φ/X±
•••

HHH

W/φW/φW/φ

•••
HHH W/φW/φW/φ

•••

O(g2 g6)O(g2 g6)O(g2 g6)

Figure 3: Example of one-loop SM diagrams with O-insertions, contributing to the amplitude for H→ γγ

HHH

WWW

•••

OΦWOΦWOΦW

O(g6)O(g6)O(g6)

Figure 4: Example of one-loop O-diagrams, contributing to the amplitude for H→ γγ
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γγγ γγγ

Figure 5: The photon self-energy with inclusion of O-operators into SM one-loop

diagrams. The last diagram contains vertices, like AAHH, AAφ0φ0, that do

not belong to the SM part.
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Renormalization

g = gren

[
1+

g2
ren

16π2

(
dZg +g6 dZ (6)

g

) 1
ε

]
MW = M ren

W

[
1+

1
2

g2
ren

16π2

(
dZMW +g6 dZ (6)

MW

) 1
ε

]
etc.

Wilson coefficients → Wi

Wi = ∑
j

Z wc
ij W ren

j

Z wc
ij = δij +

(
g2

ren dZ wc
ij +dZ wc,6

ij

) 1
ε
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Conclusions?

. Data-driven Theory? Or

If you’re looking for your lost keys, failing to find them in the
kitchen is not evidence against their being somewhere else in
the house
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Conclusions?

Higgs-landscape: asking the right questions takes as much
skill as giving the right answers

A conclusion is the place where you got tired of
thinking (Arthur Bloch)

I am turned into a sort of machine for observing
facts and grinding out conclusions (Charles Darwin)

El sueño de la razõn produce monstruos (Francisco Goya)
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Conclusions?
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Thanks for your attention
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Backup
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assumptions/inferences

Given the (few) known coefficients in the perturbative expansion we estimate the next (few)
coefficients and the corresponding partial sums by means of sequence transformations. This is the
first step towards } reconstructing ~ the physical observable.

The sequence transformations have been tested on a number of test sequences.

A function can be uniquely determined by its asymptotic expansion if certain conditions are
satisfied (Sokal).

Borel procedure is a summation method which, under the above conditions, determines uniquely
the sum of the series. It should be taken into account that there is a large class of series that have
Borel sums (analytic in the cut-plane) and there is evidence that Levin-Weniger transforms produce
approximations to these Borel sums. This is one of the arguments of plausibility supporting our
results.

The QCD scale variation uncertainty decreases when we include new (estimated) partial sums.

All known and predicted coefficients are positive and all transforms predict convergence within a
narrow interval.

Missing a formal proof of uniqueness, we assume uninformative prior between the last known
partial sum and the (largest) predicted partial sum.

Return
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Structure of the calculation

Process: H → ffγ, f = l,q,
including b with non-zero mt

Setup: mf = 0 at NLO. Calculation based on helicity
amplitudes
LO and NLO do not interfere (with mf = 0)

Cuts available in the H rest-frame
Please complain but it took years to interface POWHEG and

Prophecy4f . . . . . .
gg → ffγ ? Can be done, But . . . . . .
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HTO-DALITZ Features

Internal cross-check, loops are evaluated both analytically
and numerically (using BST-algorithm)
The code makes extensive use of In-House abbreviation
algorithms (if a+b appears twice or more it receives an
abbreviation and it is pre-computed only once).
All functions are collinear-free
High performances thanks to gcc-4.8.0
Open MPI version under construction, GPU version in a
preliminar phase
Returns the full result and also the unphysical components



MHOU PO EFT

Man at work

Extensions: as it was done during Lep times, there are
diagrams where both the Z and the γ propagators should
be Dyson-improved, i.e.

αQED(0)→ αQED(virtuality) ρf −parameter included

However, the interested sub-sets are not gauge invariant,
∴∴∴ appropriate subtractions must be performed (at virtuality
= 0 , sZ, the latter being the Z complex-pole).
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Misunderstandings

use M
(
ffγ
)

and require |M−MZ |5 nΓZ. This is not the
photon we are discussing
Photons are collinear to leptons only if emitted by leptons
but those are Yukawa-suppressed.
In any case M

(
ffγ
)

= MH or it is Not Dalitz decay
Requiring a cut on the opening angle between leptons and
the photon to define isolated photons is highly
recommended, But at the moment we are still in the
Higgs rest-frame (Miracles take a bit longer)

Return
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with the physical mass parameters

M2
W =

1

4
g2v2

[

1 + 2
v2

Λ2
αΦW

]

,

M2
Z =

1

4
(g2 + g′2)v2

[

1 +
v2

2Λ2

(

4αZZ + αΦD

)

]

,

M2
H = λv2

[

1 +
v2

2Λ2

(

4αΦ�−
6

λ
αΦ − αΦD

)]

,

mf =
1√
2
U f̂ΓfU

f ,†v

[

1− 1

2

v2

Λ2
αfφ

]

. (151)

In (150) we have used the usual ’t Hooft–Feynman gauge-fixingterm

Lfix = −C+C− −
1

2
(CZ)2 − 1

2
(CA)2 − 1

2
CA

GCA
G (152)

with

CA
G = ∂µGAµ, CA = ∂µAµ, CZ = ∂µZµ + MZφ0, C± = ∂µW±µ ± iMWφ± (153)

in terms of the physical fields and parameters, which gives rise to the same propagators as in the SM.3282
In the following, the abbreviationscw andsw are defined via the physical masses

cw =
MW

MZ

, sw =
√

1− c2
w. (154)

The parameters of the SM Lagrangiang, g′, λ, m2, andΓf keep their meaning in the presence of3283
dimension-6 operators.3284
10.4.2 Higgs vertices3285
Here we list the most important Feynman rules for vertices involving exactly one physical Higgs boson.3286
These are given in terms of the above-defined physical fields and parameters. In the coefficients of3287
dimension-6 couplings we replacedv2 by the Fermi constant viav2 = 1/(

√
2GF ).3288

The triple vertices involving one Higgs boson read:

Hgg coupling:

GA
µ , p1

GB
ν , p2

H = i
2g

MW

1√
2GF Λ2

[

αGG(p2µp1ν − p1p2gµν) + α
G eG

εµνρσpρ
1p

σ
2

]

δAB ,

(155)

HAA coupling:

Aµ, p1

Aν , p2

H = i
2g

MW

1√
2GF Λ2

[

αAA(p2µp1ν − p1p2gµν) + α
AeA

εµνρσpρ
1p

σ
2

]

, (156)
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Aν , p2

H = i
2g

MW
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2GF Λ2

[

αAA(p2µp1ν − p1p2gµν) + α
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HAA coupling:
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HAZ coupling:

Aµ, p1

Zν , p2

H = i
g

MW

1
√

2GF Λ2

[

αAZ(p2µp1ν − p1p2gµν) + α
AeZ

εµνρσp
ρ
1p

σ
2

]

, (157)

HZZ coupling:

Zµ, p1

Zν , p2

H
= ig

MZ

cw

gµν

[

1 +
1

√

2GF Λ2

(

αΦW + αΦ� +
1

4
αΦD

)]

+ i
2g

MW

1
√

2GF Λ2

[

αZZ(p2µp1ν − p1p2gµν) + α
ZeZ

εµνρσp
ρ
1p

σ
2

]

,

(158)

HWW coupling:

W+
µ , p1

W−

ν , p2

H
= igMWgµν

[

1 +
1

√

2GF Λ2

(

αΦW + αΦ�−
1

4
αΦD

)]

+ i
2g

MW

1
√

2GF Λ2

[

αΦW(p2µp1ν − p1p2gµν) + α
ΦfW

εµνρσp
ρ
1p

σ
2

]

,

(159)

Hff coupling:

f̄ , p1

f , p2

H = −i
g

2

mf

MW

[

1 +
1

√

2GF Λ2

(

αΦW + αΦ�−
1

4
αΦD − αfφ

)]

, (160)

wheref = e,u,d.3289
The quadruple vertices involving one Higgs field, one gauge boson and a fermion–antifermion

pair are given by (q = u,d, f = u,d, νl, e, andf̂ = q for f = u,d andf̂ = l for f = e):

Hgqq coupling:

q

PQq

H

GA
µ , pG

= ig
mq

MW

ipGνσ
µν λA

2

[

1 + γ5

2
αqG +

1− γ5

2
α∗qG

]

, (161)
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HAff̄ coupling:

f̄

f

H

Aµ, pA

= ig
mf

MW
ipAνσ

µν

[

1 + γ5

2
(αfBcw + 2If

3 αfWsw)

+
1− γ5

2
(α∗fBcw + 2If

3 α∗fWsw)

]

,

(162)

HZff̄ coupling:

f̄

f

H

Zµ, pZ

= ig
mf

MW
ipZνσ

µν

[

1 + γ5

2
(2I

f
3αfWcw − αfBsw)

+
1− γ5

2
(2I

f
3α

∗
fWcw − α∗fBsw)

]

+ i2MZγµ

[

1− γ5

2

(

α
(1)

Φf̂
− 2I

f
3α

(3)

Φf̂

)

+
1 + γ5

2
αΦf

]

,

(163)

HW+du coupling:

ūp

dq

H

W+
µ , pW

= ig

√

2

MW
ipWνσ

µνVpq

[

1 + γ5

2
mdαdW +

1− γ5

2
muα∗uW

]

− i
√

2MWγµ

[

1− γ5

2
2α

(3)
ΦqVpq +

1 + γ5

2
(Γud)pqαΦud

]

,

(164)

HW−ud coupling:

d̄p

uq

H

W−
µ , pW

= ig

√

2

MW
ipWνσ

µνV †
pq

[

1 + γ5

2
muαuW +

1− γ5

2
mdα∗dW

]

− i
√

2MWγµ

[

1− γ5

2
2α

(3)
ΦqV †

pq +
1 + γ5

2
(Γ†ud)pqα

∗
Φud

]

,

(165)

HW+eνe coupling:

ν̄

e

H

W+
µ , pW

= ig

√

2

MW
ipWνσ

µν 1 + γ5

2
meαeW − i

√

2MWγµ 1− γ5

2
2α

(3)
Φl , (166)

HW−νee
+ coupling:

ē

ν

H

W−
µ , pW

= ig

√

2

MW
ipWνσ

µν 1− γ5

2
meα

∗
eW − i

√

2MWγµ 1− γ5

2
2α

(3)
Φl . (167)

Return
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Decoupling and SU(2)C

Heavy degrees of freedom ↪→↪→↪→ H → γγH → γγH → γγ: to be fully general
one has to consider effects due to heavy fermions ∈ Rf∈ Rf∈ Rf
and heavy scalars ∈ Rs∈ Rs∈ Rs of SU(3)SU(3)SU(3). Colored scalars
disappear from the low energy physics as their mass
increases . However, the same is not true for fermions.

Renormalization: whenever ρLO 6= 1ρLO 6= 1ρLO 6= 1, quadratic power-like
contribution to ∆ρ are absorbed by renormalization of the
new parameters of the model ;;; ρρρ is not a measure of the
custodial symmetry breaking.
Alternatively one could examine models containing
SU(2)L ⊗ SU(2)RSU(2)L ⊗ SU(2)RSU(2)L ⊗ SU(2)R multiplets.
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