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Prolegomena: the need for Multi - Loops

O the program for EW - NLO accurate predictions is in-
complete:

a) NLO for ete™ — 4f (LC)

b) NLO for pp = WW + jets (LHC) = (almost) model
independent study of EWSB.

c) etc

O the program for EW - NNLO accurate predictions is
in its early infancy:

a) NNLO for sin? 0'4. There is evidence for tiny anoma-
lies in LEP physics and a measurement at LHC may
very well be the only additional experimental informa-
tion In many years.

a) etc

O NLO/NNLO cannot be a standalone piece of calcu-

lation and must be designed as an essential part of an
event generator.
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A Structural Difference: NLO/NNLO, QCD vs EW

QCD is in a much better shape, cfr. E. W. Glover,
Progress in NNLO calculations for scattering pro-

cesses,
arXiv:hep-ph/0211412.
There are structural reasons,

— less particles,
— less scales,
— 1o v°

although the infrared/collinear structure is far from
trivial. Instead, in the full sector

SM = 11 lines, 57 vertices, modulus f-multiplicity
and, moreover,

QED + QCD € SM

so that infrared /collinear is still there, even more com-
plex.
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Basics: the problem made explicit

No matter how long you turn it around the problem in any
realistic multi-loop, multi-leg calculation is connected with a
simple fact:

something'

-)scalar G =
(non-Jscalar f(parameters)’

T = HTF ora smooth integrand.

Examples of f are

— Gram determinants in the standard tensor reduction;

— denominators in the IBP - techmique.

Integration-by-parts identities are a popular and quite suc-
cestul tool. For one—loop diagrams they can be written as

d'q5 v, F(g,p,ma--)] = 0,

where v = q, p.
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By careful examination of the IBPI one can show that

all one-loop diagrams can be reduced to a
limited set of master integrals (MI)

For two-loops we can write

0

/ anl an? 87 [b'u F(Qla q2, {p}a my-- )] — 07
@y

Ay = iy, b,u = Qipy P1p " "
Again, using IBPI, arbitrary two-loop integrals can be writ-
ten in terms of a restricted number of MI.

Consider, for instance, the following solution
1

A(_an m

BO(17 2 y Py, mZ) —
2 7, m3)

X [(n o 3) (m% — My — p2> BO(17 1 y P, M, m2>
p2+m%+m%
Ag

+ (n=2) Aollma) - (n = 2) =,

(1, ms2)].

The factor in front of the square bracket is exactly zero at
the normal threshold.
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However a general analysis tells us that at the normal
threshold the leading behavior of By(1,2) is

)\—1/2

so the reduction to MI overestimate the singular behavior.

Of course, by a carefull examination of the square bracket,
one can derive the right expansion but the result, as it stands,
is again a source of cancellation/instabilities.
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(possibly) Singular behavior

When we are around the region where f = 0, an alternative
derivation is needed. Actually there are two sub-cases to be

discussed. Consider Cy that can be written as

b3
e

my

mg3
mo

b2

Co = [dS:[(x — X)' H (z — X) + Bs] /2

If B3 = 0 the integral is singular or regular de-
pending on the values of X ,.
If B3 =0, but the condition

0< Xy, < X; <1

is not fulfilled, there is no real singularity in-
side the integration domain; still we cannot apply
standard techniques.

If the condition is fulfilled then there is a pinch
and the integral is singular. We write
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Co = / dSQ V_1_6/2($1, $2) = / dCQ V_1_€/2(£131, 5172)
— /01 dxy /3311 dxs V™ (21, 7o)
= / dOQ V_1_€/2(331, 332) — / ng V_l_E/Q(.CIZQ, .5131)

__ /oYsquare _ oycomp
= C5 ceomp.

Since the point z; = X, is now internal to the

integration domain the complementary C, will be
regular.

pinch
singularity
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Cy™™° is the integral over [0, 1]* which we rewrite
by changing variables, x; = x; — X, as

4 e
Co™™ = X ai B; | dCy[Qi(w1,2) + By,

where

C¥1:C¥2:1—X1, CM3:C¥4:X1,

b1 = 03=1—-Xy, [o=01= Xy,
and where the new quadrics are defined by
Q1 = Q1 — Xp)z1, (1 — Xo)zs),
Q2 = Q((1 — X))z, —Xox9),
Q3 = Q(—X121, (1 — Xy)z9),
Qs = Q(—X171, —Xox9),
with ) = 2! H z. In general we define
Qi(x1,2) = Ajz® + Bixs + Cy 1 2o
In order the derive a Laurent expansion around

B; = 0 we introduce p; = 1/B; and perform a
Mellin-Barnes splitting

cpaare — 5 b [T ds B(s,1 — s) ps~* Cy(s),

i=1 21
Ci(s) = [ dCyQ;*(z1, z2).
Let us consider in detail the C;-functions. We use
a simple sector decomposition to obtain
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Cz' = /dSQ—l-/ dSQ (:L'l,ajz)
— /dOQiL’l 28(A2+02332+Bi333)_8
+ [dCyxy 28(B-+C-;c1+Az-x%)—S
1

T 2(1—s) 3 Cigls).

For each of the C;;-functions we have a reduced

quadratic form in one variable. Let us postpone
for a moment the problem of their evaluation:

square __ Oz%ﬁz +4 00 d F(S) F(].—S) 1_56..
Cs 221 321 4i [Fioo ds 1—s P Cigls),

Czj<8> — /0 diL’ hz'jil? —|—2kij$—|—lij>_s,
and 0 < Res < 1. Suppose that the factors,
bij = lij — ki;/hij = o 37 det(H)/hy;

are not zero and that we are interested in the
region of large |p3|. Then we close the integration
contour over the right-hand complex half-plane
at infinity. The poles are at s = 1 (double) and at
s = k+1(single) where k£ > 1 is an integer. For C;;
we use
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10



1 4 le—X;; d B
¥ - 1 - L] 1‘5
Cij(s) b;j o dzl 2 s—1 dx] i (2)

QZ](.CE) = hij 5132 + 2 kij T + lij,

where X;; is the co-factor for ();;. In the limit
s — 1 we obtain

Cij(s) = Cij(1) + (s = 1) C;;(1) + O ((s — 1)%),
Cij(1) = bt] ) dz [l — ; (z — Xij) CZC In Qij(x)),
Ci;(1) = bl fo dz[—In Qij(z) + i (z — X5) CZC In* Qy()].

ij
Therefore the residue of the double pole at s =1
is

R@'j |3:1 — Cz](l) 111,03 — C,Z](l)
For the single poles at s=k+1,k > 1 we find that

the residues are

) o (=DF k
Rzy |s:k-|-1 — 2 BO(k+ 1) P3

where Bj(k+1) is a generalized two-point function.
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IBP: QCD vs EW

Q v B etc.

Figure 1: The arbitrary two-loop diagram G%ﬁ 7 and one of the associated subtraction sub-diagrams.

An arbitrary two-loop diagram has the following
expression:

(CY; my, ..., Mgy; 771|’Y; Ma41y--- 5y Matry; 7712‘53 Moty+1y -+ 9 Motny+8; 772) =
p/2€ a a+y at+y+pB
L [ adie L6 +md™ TL 2 +md™ I] (R +md™,
T i=1 j=a+1 l=a+y+1

where n = 4 — ¢, with n being the space-time di-
mension, and where o, and v give the number
of lines in the ¢;,¢9; and ¢; — ¢» loops respectively.
Furthermore we have

ki:q1+2§y:177}jpj, 1=1,...,«
kiZQ1_QZ+Z‘J7y:1nilj2pj7 t=a+1,...,a+7y
ki = q+ =i w55 ), i=a+y+1,...,a+y+0,

N being the number of vertices, n* = +1, or 0 and
{p} the set of external momenta. Furthermore,
is the arbitrary unit of mass.
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For tensor integrals with [ external momenta
and I = a+ (+v propagators we have 3+ 2 L scalar
products containing either ¢; and/or ¢, and

Tmax = 2L — I 4+ 3 irreducible scalar products

Therefore we will write IBPs

8 Tmax
d"qg; d"qgo — |b* Gl =0,
| d"q1d"q. 8%[ rlle sG]
a o+ a+vy+0
G=1(k+m)™" U (kj+my)™" T (K +mg)™
1= J=a+1 [=a+v+1

Writing all equations for increasing values of n,
the number of equations grows faster than the
number of unknowns. However,

— In QCD the coefficients are relatively simple;

—in EW the number of scales makes the coeffi-
cients ugly higher order polynomials in several
variables for which a factorization is hard to
attempt.

G. Passarino, Calc03
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An algorithm for all one-loop diagrams

Any one-loop Feynman diagram G, irrespective
of the number N ofvertices, can be expressed as

G = /5 dZCQ(ZC> V'u(x)a
where the integration region is z; > 0, %; z; <
1, with 7 = 1,...,N — 1, and V(z) is a quadratic
polynomial in z,

Viz) =a'Hzx+2K'z + L,

and )(z) is also a polynomial that accounts for

parametrized tensor integrals. The solution to
the problem of determining the polynomial P is
as follows:

D1 (z — X)" 0,
2(p+1)
Xt = —K'H'  B=L-K'H'K,

where the matrix H is symmetric.

G. Passarino, Calc03
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Smoothness of the integrand vs # of terms

The generic, scalar, pentagon is given by
EO — / dS4 V_3_6/2(x17 x2,T3, 5174),
Viz) =a'Hx+2K'z + L,

where H;; = —p;-p; with ¢, =1,...,4, L =m?, and
where

K, = —;(m%—mg—pl-m),

Ky = —;(mg—mg,—?pl-pz—pz-pz),

K3 = —;(mi—mi—2p1-p3—2p2-p3—p3-p3),

Ky = —;(mi—mg—2p1-p4—2p2-p4—2p3-p4—p4-p4)-

msg

Figure 2: The one-loop, five-point Green function. Propagators are g +m?2--- (g+p1+ -+ +p4)? +m2.
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Evaluation of Fy; when Bj # 0

It is a virtue of the BT algorithm that we can
show the decomposition of Ej in five boxes (in
d = 4) with just one iteration, as depictedin Fig. 3.
We obtain

Ey = —— 3 w;Df’
- P wj y
0 4 By i=0 0
where the weights are
w; = X; — X, Xo=1, X5=0,

and where B = L — K!H 'K and X = —K'H~.
The further advantage in this derivation is that
the nature of the weights is transparent since B; =
0 corresponds to a Landau singularity of the pen-
tagon. Furthermore the boxes are specified by

DY) = [dSsV i+ 1),
where the contractions are
OA]- — (1733173327333)7 4/\5 — (331,332,333,0),

etc. As long as Bj is not around zero the deriva-
tion for the pentagon is completed since we know
how to deal with boxes.

G. Passarino, Calc03
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Figure 3: Diagrammatical representation of the BT algorithm for the pentagon. The symbol [i] denotes
multiplication of the corresponding box by a factor w;/(4 Bs).
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Form factors in the E-family

The nice feature of the scalar pentagon is that
fourfold integrals disappear in the final answer.
The same is not immediately true for form fac-
tors, F1; etc. We can use a new identity,

H 1
2 (p + 1)
With the help of the identity and after integration-
by-parts we are able to remove again all fourfold

integrals in the form factors of the F;;-series. To
give an example we consider

By = /d54$1 V_3_€/2(331,332,$3,334)
I __
Secondary quadrics are defined as:

(i — Xi) VH(x1, 22, T3, T4) = 0; VFHH(zy, 9, T3, 74).

= V(x1, 21,22, x3),
(331,$2,$2,£173)
(21, x2, 3, T3),
($1,$2,$3, )
(1,21, 2, x3).

|
S S S S

G. Passarino, Calc03
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The E;; form factor is fully specified by
E1_12 = (X1 — XQ) I Va_2_6/2 + (X2 — X3) I ‘/;)_2_6/2 + (X3 — X4) T ‘/;_2_6/2
+ Xam VT = x) v,
By = (Hy = HR) VP 4 (B = HR) VP (B - BV
+ H1—41 ‘/‘d_l_f/2 _ Hl_ll ‘/;—1—6/2.
Similarly we obtain

Ejl = (Hi'— Hp ) Vo 4 (Hy' — HpY) Vo 4+ (Hp' — HyY) voie/?
— —1—€/2 — —1—e€
+ Hi41 Vd / - Hill V;z ! /27

for:=1,...,4 and

Ef2 = (X, — XQ) w Vo e (X — X3) ma V2 (X — Xy) wa V22
+ Xam Vi (1= X)) VI

B2 = (X, - ) Vo2 (X — Xy)ma Vy T+ (X — Xy) ma V22
+ Xam VTP (1= X)) V2,

Ef2 = (X1—Xo) a3V, 2 4 (X — X3)z3 Vy 7/ + (X3 — Xy) 3 V272
+ (1=Xy)zg V722,

Note that there are also delicate points connected
with the decomposition into objects belonging to
the E-family since the decomposition itself is strictly
defined in 4 dimensions. Furthermore, starting
from six powers of momenta in the numerator (R;-
gauge), we will encounter UV divergent terms so
that some care is needed.

G. Passarino, Calc03
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With two momenta in the numerator we define
form factors as

By = By(ii), =1, 4

Ers = E5(12), Eag=Ex(13), Eyr= E(14),
Eog = E5(23), Eyg= Es(24), Enip= Es(34),
where the auxiliary function Fs(ij) is
Es(ij) = [ dSyz;x; V_3_€/2(x1,x2,x3,a:4).

However, a new form factor arises, the one pro-
portional to §,,,

1 —€
Eoq1 = 1 [ dSy VT2 2y, 29, 3, 14).

Eyq1 can still be reduced to form factors of the
E-family by Writing

1
Eo.q1 = 1[ Z H;; Es(tj) + 2 Z K; E1;+ L Ey).

i,j=1
Let us give the complete expressions for the form
factors of the Fs-series.

4Bs Es(ij) = — | dS4Hi;1 V_1_€/2(x1,x2,x3,x4)
+ /dS3 2;2'2]' - E'2_,zlj)7

where the various coefficients are:
Byl = (Xi—Xo) 2V, 2/ 4 (Xy — Xa) a2 V272
b= X BV X (LX) VR

G. Passarino, Calc03
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A s SPLa
+ (X = X) a3V, P+ Xya VP (1= X0) 2} V2P,
E§§3 = (X1 —Xp)adV, > /2 4 (Xy — X3) 22V, 2-¢/2
+ (XK= X)) a3 Vo P Xaaf VT (1= X)) aB v, 2,
Byiy = (X1=X2) a3V, " P+ (Xy = Xy) a3V, * o/
+ (Xs5—Xy)z VC_2—€/2 +(1-X)a2 Ve—2—5/2’
Eyfy = (Xi-Xo)z 22742 4 (X, — X3) 21 2 Vb*2*f/2
+ (X = Xy) o2 VP 4 Xy o Vd_Z_E/Z + (1= Xy) @y V772,
Byl = (Hp' — Hp) o V, 5 4 (Hp! — Hyl)ay Vy 7

_|_

$1V 1— E/24_[{4 331‘/,1 1—€/2 Hl_ll ‘4—1—6/2’
2)z VP + (Hyy — Hy') my Vb_l_e/2
o V_1_€/2 + H2_41 Lo ‘/(;176/2 _ H2_11 T ‘/6—1—6/2’

|
N =
N
I

_|_

-1
E2;33

23 V. 1—€/2 + H34 T3 Vdf1fe/2 _ Hg? Lo ‘/:175/2’
V—1—5/2 + (H4_21 . H—l) Vb—l—e/2
V 1—€/2 _ H4 x3V 1— e/2
2 Vi TP [(H — H)wo+ (Hy' — Hy )| vy 2
(Hy' — H' )xz + (Hy' — Hy)') wa| V70
Hi'mo + Hy m) V) 1=e/2 — (Hy' o1+ Hy )Y V72,

-1
E2'44

)

_|_

AN — N N N N N N N~ A~
5
w
—
I
o

2 Ey iy

+

_|_

All functions E;; contain a term which is propor-
tional to Ey(d =8). Consider FEsq;:

1
4Bs Fy1n = —Eyp(d=38) + 2 [ dSs[(X1 — X5) Va—l—ﬁ/2

(Xo— Xa) Vy 7 4 (X3 — Xy) V2
+ X, %—1—6/2 T (1- X)) Ve_l_e/Q].

G. Passarino, Calc03
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When we consider
1 d, 9v

EI/ = T o /aN dd :
1% 7,7721"(3)/ q(q2+m%)°°°((q+p1—|—---—I—p4)2—|—m§)

the contribution proportional to Fy(d = 8) is

Ly(d = 8) |
Ew = ——, B. [5“”+i,j2:1 H;;" pippjv)

+ form factors N < 5.

Since the four-vectors p;, span d = 4 space-time
the term proportional to Ey(d = 8) disappears and,
therefore, there is no need to compute it. Indeed
let us contract with p;,[ =1,...,4 to obtain

4 J—
Pl (5;w =+ ”Z H Pip p]l/) Py — ]Z_ Hijlpw Hil = 0.

When we go to three powers of ¢ in the numer-
ator the following result is valid:

d —1- 6/2 7 ') 148%
+ X z %‘z {pipipi} el + form factors N < 5.
1<j<

E,uz/a —

where the coefficients e® are

wl H r; + cyclic,

G. Passarino, Calc03
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and where we introduced

{5]7}/“/04 — 5,uy Do T+ 5,ua Dy T 51/04 Pu,

{qu},ul/a — Puqy ka =+ CYCliC,
showing that PFy(d = 8) disappears again. It is
straightforward to extend the demonstration up
to five powers of loop momentum in the numera-
tor. This is the maximum of non-contracted pow-
ers that we can have in a renormalizable theory
and starting from six powers we will have numer-

ators of the following structure,

{qp'm q2}Q,U1 " Qus,

where scalar products can be simplified according
to ¢> = [1] — m? etc. There is only one case where
the argument fails: suppose that one external line
of momentum p; splits into two lines of momenta
pij; 7 = 1,2. Then scalar products g-p;; do not occur
in any of the propagators and in the final answer
we would end up with evanescent operators like

1
12%
e

Evaluation of £y when B; ~ 0 and E; is regular

G. Passarino, Calc03
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If By ~ 0 and the condition 0 < X, < X;;; <
1,2 =1,---,4 is not satisfied FE; is regular but the
decomposition into a sum of boxes fails. We write

Ey = [ dSyX) (' Hz + Bs)~392

Since FE is regular at B; = 0 we perform a Taylor
expansion in B; with coefficients £(n),
1

Ey = 5 nzo(”+1) (n+2)&n+3)(— Bs)",

En) = [ dSyX) (a! Hz)™ /2,
with n > 3. Using

x 0
X\ T t iy —n—e/2 _
[dSu(X)[1+ ;% | @' Ha 0,
we easily obtain
1 4 o
5(77,) = 1—on Eo / dSs3 (Xz — Xz'—l—l) Q_n_e/2(T’L 1+ 1),

where, as usual, we introduced shifted arguments.
If we denote z' Hxz with Q(z,z2,3,14) the sec-

ondary quadrics and the corresponding coeflicients
are

G. Passarino, Calc03
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QT01) = Q1=0Q(1 — X1,x1 — Xo, 20 — X3, 23 — Xy),
QITT2) = Qy=Q(z1 — X1,21 — X, 29 — X3, 13 — Xy),
QIT23) = Q3=Q(z1 — X1, 70 — X9, 19 — X3,73 — Xy),
QT34) = Qu=Q(z1 — X1, 20 — Xo, 23 — X3, 13 — X4),
Q(T45) = Q5 =Q(z1 — X1, — Xo, 23 — X3, —Xu),

and Xy, = 1,X; = 0. Again, each coefficient in
the Taylor expansion is written as a combination
of threefold integrals which can be evaluated with
standard BT techniques. This will introduce sub-
leading quadrics, i.e.

Qi1 = Qi(01) = Qi(1,x1,x2),
etc, and sub-subleading quadrics, i.e.

Qij1 = Qi5(01) = Qi5(1, x1),
etc, and also constant terms, e.g. Q;1(1,1) etc.
At each step non-leading BT factors are intro-
duced and the procedure fails when one of the
sub-leading BT factors is zero. In this case, since
Ey 1s the sum of 5 terms of the form

1 x

By =~ X (n+2) [dS¢;Q" (= Bs)",

G. Passarino, Calc03
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with ¢; constant, we rewrite the sum as

1
L E QT (B = f dz(Qit By2)

Likewise, by changing variables we obtain

i dz [ dSsqi(Qi+ Bsz)™?
— /dS3 /0 dz q; ( ZUHCC‘|‘B47,—|—B5 ) a

where By is the relevant sub-leading BT factor
and we can apply a Mellin-Barnes splitting, fol-
lowed by a sector decomposition, to z! H;z and
By, + Bs 2. For the Mellin-Barnes anti-transform
the leading contribution comes from the pole at
s = 3/2 giving

2
- Bs
Alternatively we define Vj(z1,...,x4) = V(x1,...,24)—
B; and write down the BT relations correspond-
ing to B5 7é 0 and B5 = 0:

1+ "y (x — X) 0p] [Vo(z1, ..., 2q) + B5]_2_6/2
= B5 [%(331, .. ,5134) —+ B5]_3_€/2,
(z = X) 0] Vo = Pz1,...,z4) = 0.

i dz(By + Bsz) ™% = (By + Bs)~"% — B;;/.

11+

4+ €

G. Passarino, Calc03
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Then, after having summed each side of the two
equations, we integrate by parts and set ¢ = 0,
obtaining'

— / dSQ ' X XH_l)B vV~ (Z ’L/:i- 1) |sub .

Hence the study of the scalar pentagon reduces
again to the study of four-point functions. The
tensor pentagons too can be treated analogously
to the case Bj # 0.

G. Passarino, Calc03
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Algorithms for IR

Consider diagrams belonging to the G'V! family.
The parametrization that we use is

2\ €
G = — (‘;) I‘(N—2+e)/01 dz [ dSn(y,u1,- -, uy-1)

x [z(1—2)] (1= y) P 3
X1N1 = u'Hu + 2K + (m?c — m%) (1 — y) + mg,

where
Hz’j — —DPi" Pj,
1
Ki = 5k =kl +mis—m), 4j=1...,N—1

and where we have introduced a z-dependent

mass

,  (1—z)m?+zm3

v z(l—ux)

131
vertex

G. Passarino, Calc03
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V131

The leading Landau singularity for V%! requires
m3 = m1 + mo. Therefore we look for IR configu-
rations corresponding to sub-leading Landau sin-
gularites. Since a two-point functions does not
develop any IR pole we limit our analysis to re-
duced three-point functions.

CONTRACTION
o7}
(03)
a3

The reduced diagram, i.e. the one where the third
propagator is shrunk to a point, corresponds to a
V121 topology which does not develop IR poles.

—043:()

—a1:a2:O

In this case the reduced diagram is a one loop
three-point function and the classification of the
infrared singularites is simpler. We obtain

G. Passarino, Calc03
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D2

ms
_p Ma
msg
p1
2 2 2 _ 2
1) ms = 0, P = —mg, p; = —my,
_ 2 _ 2 2 _ 2
2) my = 0, P1 = —Mmg, Py = —Ms,
2 2 2 _ 2
3) ms = 0, P* = —mg, Py = —mj

The corresponding quadratic form are

-y 21—y

1) xi = me—i-QO—|—mﬁzf—p§z§+(p§+m§—mﬁ)zlzg,

1— 1—
2) x = mi—Lemiid (- y)+mi (L= )P md s+ (PP 4 md) (1-2) 2,

21—y
212

1—
3)) xv = mf—xy—i-m

+ (pi+mg—mi) (1—21) (1 —2),

—mz(1—y) —pi(1—21)" +mj(1—2)°

showing a zero at

]_) y=1, 21:,22:0,
2) y=2z =1, z9 =0,
3) Yy =21 =2 = 1.

G. Passarino, Calc03
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In each of the three cases, after transforming

y =1—1', the diagram reads as follows:
2

%131 — ('LL) F (1 -+ 6) /01 daj' /01 le 021 dZQ /01_21 dy

7
x [e(l =)~ Py ey + Z) 7

where 1 = 1,2, 3 and

Zy = miz —py2+ (Dt mi—mi) sz, an=myg;
Zy = ms (1 — 21)° +m;i 23

+ (PP +m3+ms) (1 — 21) 2, ag = m> — m3;
Zy = —pi(1—21)* +mj (1 — 2)°

+ (pf +m3 —mi) (1 —21) (1 - 2), az = m; —mj.

We are looking for a procedure that extracts,
first of all, the ultraviolet pole. Consider the in-
nermost integral

-z — a; —1—¢
Y, = Z;7'" /01 ' dyy/? 1(1+7y) e

It is convenient to evaluate this integral in terms

of an hyper-geometric function,
2 e € a; (1 — z)
Z':—Z-lee/Fl AR VI
y c ) <1 21( +€727 —|_27 Zz )7
and to use well-known properties of hyper-geometric
functions to obtain

€
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;= — /A et L —1-¢/2
Y e T'(1+e¢) i ’ 2—|—eaZ ( 2)
€ € Z;
Fy(1 14+—-24 - — ¢
X oF1(1+e¢, +2, +2, az-(l—zl))

g F2 (1 + 6/2) a,z-_e/2 Zi_l_e/Q
e T'(1+e)

1 Z;
-z 1n(1+a¢(1 _Zl))—i—(’)(e).
In this way we have extracted the ultraviolet
pole. The second term is well-behaved when in-
tegrated over r, z; and z,, while for the first term

we have to compute:
X =y defe(l— )] a0,
Zz' = /01 le 021 dZQ ZZ-_l_E/Z.

It is easily seen that the first one gives:

2
X, = 1—%/01 da:ln‘/;-—k%/ol dzn*V;

Vi =m?(l—gx)+miz,
Vo =Va=mi(l—z)+miz—miz(l—2x).
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For the other one we have to distinguish the
three cases. As an example consider case 1. First
of all we map the integration domaine into [0, 1]?
obtaining:

2 = [ dSy (A z% + By zg + Ciz ,7;2)_1_6/2
= / dCQ 21_1_6 (Bl Z; + Cl 29 -+ Al)—l—e/Q

1
= [ dCy (By 22 4 Cy 29 + Ap) 72,

where the coefficients are
9 9 9 9 9

For the z,-integral we use one BT iteration, in-
tegrate by parts and expand in ¢ obtaining:

1
Z = )\—(721—1 e+ R +Rie)
1
where

M = MNBy, Ay, Ay 4 By + Cy) = MN—p3, mi, m3).

and where residue and finite parts, up to O (¢)
are
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Rt = 2B ([ dz Inm(z) — Inm(1) + 2]
— Ci[Inm(1) — Inm(0)];

Ry = — B[} dz nm(2) (4 +lnm(z) — o (1)
-+ leC’l [1n2 7]1(1) — 1Il2 7]1(0)],
Rl = o Bilf} dz b my(2) 6+ (=) — o (1)

B 21401 [In (1) — In s (0)].

where we have defined 7,(z) = B1z? + C1z + Aj.

G. Passarino, Calc03

34



A Novel Approach

Given a two-loop diagram G(ny, - -- n;) we define

the associated ¢-diagram
2

G503 ma, - mg) = 'u—/ d"q1 d"qo ¢E1 (1%2 + m?)_ni_é

7"4
a+y o atytpB o
x I (K+m)™° I (k] +mp) T,
j=a+1 l[=a+vy+1

and are interested in
G(0; n, - ny) = m G505 na, -+ ).
Furthermore, a two-loop diagram is carachterized
— by a degree, D =xn; — 4 + €;
— by a rank, given by the power of irreducible
scalar products present in the numerator.

Clearly, diagrams with D = ¢ are simple to evalu-
ate since, after a Laurent expansion they contain
at most integrals of logarithms. The idea is to
lower D by

— writing IBP (8) and Lorentz identities (1) for
Gs(rank; 0, —1,---, —=1) and
Gs(rank; +1, -1, ---, —1),
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with increasing values for the power of irre-
ducible scalar products till we can solve for the
0-scalar diagram of degree D in favor of (possi-
bly) scalar /-diagrams of degree D —1 or less. The
whole procedure is then iterated till we reach a
decomposition in terms of o-diagrams of degree
D = e(modd). At this point we take the limit
0 — 0 and obtain an expression for the original
diagram. The solution will be of the following
form:

Gs(—1,~1,---, =) =612 ¥ PerGs0),
{C} rank

where C represents a contraction, i.e. at least one

power —1 —¢ is replaced by —4 and the P are poly-
nomials in the external parameters. Note that
positive powers should be also eliminated since,

e.g.
Gs(0;1—=6,—-1—6,—-2-19)
has always to be understood as
Gs(qi; =0, =1 =38, —2—4)
+ miGs(0; =8, —1—6, —2—9),
i.e. with D =—1(mod}).

Solution for C|
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— Equations:

/d"q;;{vu 17 R ) =,

[ d'ag-

[ d'q af; fo, 1170 2730} = 0
[ d'q (;j fo L2030 = 0
| d"q¢{p1 - p2 (p1u api — Doy 61982,1)

T e T o U R
/ d*q {p; - P2 (P1y 81(?1% — Doy %)

+ PPy . P} pay %} R =0,
| d"q¢{p1 - p2 (p1u api — Pay %)

+ o, aﬁ B, %} 17 [0 30 =,
| "¢ {p1 - p2 (p1u 81?1# — Py aiu)

+ B, 8§ ~ B, %} 17 18] = 0,

0 0

/d Q{p1°p2(p1u%—p2u%)
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0

+ P3P A — oo, plpma o PRI R =0,
1
— Solution
2
Cos(—1,—1,—1) = &7 m c,

C:

_1_
_|_

_1_

_|_

_|_
_|_

M?s(s+ M? — 4m?)

M2(1— %) Cos(—1,—1,0) 8

sM?
- Cs(—1,0,—1)¢

2 005(17 —1, _1> (1 o 26)

Co5(1,0,—2) (6 +1)

(2= —5) Cos(0,—2,0) (0 + 1)
S

(1=2-) M? Cos(0, -1, —1) 6

sM?
3 Cos(0, —1, —1)

Cos(0,0,—1) (1 — §)).
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After this we only have to compute J-integrals
in parametric space with = §; = -2 — 34,

[ (36)
I(9)
X f da [§ dy(z—y) Ty (1 - 2) T B T30, y)

An example:

1(517 527 53) — 5_1

r@ee) ]
]<_]-7 _170>:52F3(5) []—25 2—|_]_15 1—|_]0+O<5>]7
I—2 — 17
Iy = —3-3 [ dzlnx(l,x),
i Iny(x,y
1 ln(x_y)
+ /O dCU[ 1— ¢ ]+

— 6 /01 dr In(1 —z) Inx(1,x) — 3 /01 dxr Inz In x(1,x)
+ 2/01 dr In® x(1,7) + 9 — 2((2).

An important check on the calculation is that all
poles in ¢ cancel in the total.
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At the two-loop level the # of terms increases

considerably.

V2, = m \

There are 2 completely irreducible scalar prod-
uct that we choose to be ¢3¢y — g1 - p» and one 9 -

irreducible one, ¢;. It follows
1 2
P22l _ 5ol
(s —4m?) (s —m?) z’,j,%:O

<y pity
C=S C

where

— C denotes simple (S) and double (D) contrac-
tions,

— C sums over the remaining powers such that

D[V;%] = € (mod 6).

G. Passarino, Calc03

40



— the remaining sum is over powers of ¢s- g9, g1 - P2
and of ¢7. Example of D is

Zmﬁ/fﬂ(o,o;o,o,—1,—1,—1)
— ZmQ V#10,0;0,0, -1, —1,—1) 6 + 5;21[
+ (—2633m2+282+5m4) V#4(0,0;0,0, -2, —1, —1)
— ém2 (s —m?) V5#(0,0;0,0, -1, —2, —1)
— émQ (s —m?*) V#(0,0;0,0,—1,—1,—2)
— (gs—6m2) V:#40,1;0,0, -2, -1, —1)
+ gvfﬂ(o,z;o,o, —2,—1,—1)
— (és—mQ) V#4(1,0,0,0, -2, —1, —1)
— ;mQV(&?l(l,o;o,o,—1,—2,—1)

1
= 5m V(1,0,0,0, 1, -1, -2)

1
+ 5V (1,150,0, -2, =1, 1))
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with a grand total of 103 terms therefore proving
a sort of unspoken law

Any algorithm aimed to reduce the analytical
complexity of a multi - loop Feynman diagrams is
generally bound to

— replace the original integral with a sum of many
simpler diagrams,

— introducing denominators that show zeros.

An algorithm is optimal when

— there is a minimal number of terms,

— zeros of denominators correspond to solutions
of Landau equations and

— the nature of the singularities is not badly over-
estimated.
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Index Saturation is not Reduction]

In any realistic calculation one has to get rid
of indices and to perform algebraic reduction of
obvious. Still, this is not yet getting rid of tensor
reduction.

Example: V — ff vertex
Instead of immediately indroducing

Val@ﬁy(:u | 707 P—yD4,11, " 7mI) —
‘GC{ﬁV(p_’p_H my, .- 7mI) P1y +

m%ﬁy(p—ap—i—) my,--- 7ml> P2

etc, we first decompose the vertex into

M = v(p-) e(Py) -V u(ps)
= U(p-) [Fs P- - €(Py) + Fy ¢(Ps) + Fad(Py) v5] u(p<)

and introduce projectors such that all form fac-
tors are extracted

Z PIM — Fb

spin
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with solution

b = S 2(2 i n) s @lp+) /Py vlp-)
— 24 5 _TZ . P-e(Py) u(py) v(p-)],
etc, giving
Fy = Tr Fy,
fv — 1 [ ~ PV

(2—mn)s s —4m?
— V)(igy+m) (ipe +m)

Index saturation allows us to consider only inte-
grals with irreducible scalar products. Then re-
duction follows.

Define vector integrals for the S''!-family, where
we have 5 — 3 irreducible scalar products,

112
Slll('u|0 p, m17m27m3 4 / dnq an2
q1u

(g + mi)((q1 — g2 + p)* + m3)(g3 + m3)

X
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we obtain

SHH0]0; p, {m}) = Sp*,
S (| 0; p,{m}) = Si"p,
SO p; p,{m}) = 53" py,

S = ()T (e—1) fy do fy dy o (1 —2)) Py,
Y

where we have polynomials

P():—l, Plzx(l—y), Pzz—y.

— Solution I: solve the integrals as they stand;
— Solution II: reduce them.
If we define generalized functions
SN2 (n 5 p,my, ma, m3)
n n 3 | —Q
= [ d"qd"q _[Il[z] '

with arbitrary space-time dimension n and select
n=yx;a1 +1— € we obtain
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I'(e—1)
I1; [ (Oéz)
X fy da fy dy(1 = a) (ertestesto)?

— (14 +ar—azte) /2 (1—-y) ylo1mertas=ito/2 X5 (z,9).

Obviously a scalar integral in shifted space-time
dimension and with arbitrary powers of propaga-
tors is exactly as the scalar integral in 4 — ¢ di-
mensions with all powers equal to one and with
Feynman parameters in the numerator.

We will write

3
111 i B i .
S = '21 ki; S Jﬁﬂ](nij, D, M1, Mo, M3),
j:

102 . _
S 2(n7p7m17m27m3) - —

X T ar—1

and fix coefficients and exponents in order to
match. A solution is therefore given by

ap — 27 51 — 27 M = 17
Qg — 27 52: ) 72:27
a1 — ]-7 61 — 17 T = ]-7
1 1
ki = = k= k= —1
11 27 12 ]?7 13 )
ko1 = 0, koo = 5 ko3 =0
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Terefore one can adopt a reduction to scalar in-
tegrals in shifted dimensions, followed by a solu-
tion of the recursion relations, or to relate the
form factors to truly scalar integrals in the same
number of dimensions plus integrals with con-
tracted and irreducible numerators. The two pro-
cedures are algebraically equivalent.

Summary:

Any Feynman integral, independently from its
tensorial structure, can be written as a combina-
tion of

Tmax

Gy oy = E1 Géﬂ;u1"'MN7
where the F's are tensorial structures made of
— external momenta,
— Kroneker’s delta-functions,
— elements of the Dirac algebra.

O the scalar projections G admit a parametric
representation which differ from the one in
the original scalar diagram (S) only because
of polynomials of Feynman parameters in the
numerator.
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[0 Once we have an integral representation for S
with the property of

S = [, deG(a) = - |, ds F{G(@)}

analogous representations, with the same prop-
erties, follow also for the G. Therefore, from
the point of view of numerical evaluation, there
is really little difference between scalar and
tensor integrals.

However, there is a problem which arises as a
consequence of the fact that we are dealing with
gauge theories with inherent gauge cancellations.

Consider the one-loop photon self-energy in QED
and express the result in terms of scalar one-loop
form factors

Hiu — H{ 5,1“/ + Hg p,upw

My = —4¢*[(2—n) Bu(p?; mg, my)
— p’ Bu(p?; mpg,my) —p’ Bi(p’; mpg,my)
- m?‘ BO(p25 myg,mg)],

[{ = —8€’[Bu(p®; my, my)

+ Bi(p*; my,my)].
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Gauge invariance of the theory is controlled by
a set of Ward identities among which one requires
I1,, to be transverse and

— this hardly follows from expressing the form
factors in parametric space followed by some
numerical integration.

— Rather, it follows from a set of identities that
one can write among the form factors directly
in momentum space, the so-called procedure
of scalarization.

The same procedure is plagued by the occurence
of inverse powers of Gram’s determinants whose
zeros are unphysical but sometimes dangerous for
the numerical stability.

There is another place where gauge cancella-
tions play a crucial role: the expected gauge-
parameter independence is seen at the level of
S-matrix elements and not for individual contri-
butions to Green’s functions. From this point
of view any procedure that computes single dia-
grams and sums the corresponding numerical re-
sults, without controlling gauge cancellations an-
alytically, is bound to have its own troubles.
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Procedure:

— impose Ward - Slavnov - Taylor identities (WSTI)
and see that they are satisfied,

— at this point organize the calculation according
to building blocks that are, by construction,
gauge-parameter independent.

The first step requires some form of scalariza-
tion which is only needed to prove that certain
combinations of form factors are zero, therefore
any occurence of denominators do not pose a
problem.

In the second step we need to control the ¢ be-
havior of individual Green’s functions; the tool
is represented by the use of Nielsen’s identities.
Typically we will consider the transverse propa-
gator of a gauge field:

1 O + DuDv/ S
2m)tis — M —TI(¢, s)
where p? = —s, M, is the bare mass and ¢ is a
generic gauge parameter. The NI is

0
a_é_]_[(g, 3) — A(f, 8) H(f, 5)7

D, =
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where A is a complex, amputated, 1PI, two-
point Green function. Let us introduce the com-
plex pole defined by

5—M*+0-1I(&,5) =0, s =0
Let us consider now the amplitude for 1 - V —
f where V is an unstable gauge boson and i/f
are initial /final states. The overall amplitude be-
comes
duw Vi(5)Vi'(s)
Ap(s) = 1
i) s—s5 1—-1I'(s)

+ non-resonant,

where it is understood that the V’s include wave-
function renormalization factors for the external,
on-shell, particles. It has been proved that

d

21 -EI Ve =0
etc, and this combination is the prototype of
one of the gauge-parameter independent building
blocks that are needed in assembling our calcu-
lation for some physical observables. All gauge-
parameter independent blocks will then be mapped
into one (multi-dimensional) integral to be eval-
uated numerically.
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P1 - P2

Examples of scalarization

/ D2
-P
: 2
q1 D1 = Y2
y41
%
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or

As usual the still is the problem of reducing all
these integrals to MI. There is another solution;
given

Vm(ﬂ 1,05 po, Pymy, -+, my) = V11121(p2,P, my, , My) DPiu
+ Vi (2, Py, -+ -, M) Do,
V121(0 | p; p2, Poma, - -,m4) = 21121(1?2,P, mi, ,m4)p1u
+ Vzlzgl(pzap, m, ,m4)P2u

let us start with V'¥!(u,0), where
n. 4
| d"aq: = X Qop

1][2
and where X by standard methods of reduction
is computed to be

L m%—m%_l 1
R 117 R TRV T s

with [0] = ¢5. As a consequence of this result we
obtain

V121(:u|70;p27P7m17“'7m4)

1
— 5( g — m%) V131<O | M p27P7 m17m2707m37m3)
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1
+ §V121(0|:u;p27P7m17”'7m4)

1
i 5C’M(pz7 P;0,m3,m4) [Ag(ma) — Ao(mq)],

so that the g;, vector integral is related to the gy,
vector integral of two families. For the V!*-family
we only have partial reducibility:

VlZI(O |p1 y P2, P7 my, - 7m4)
1

= 5 (mi —mi = pi = 2p1 - p2) V™ (p2, Py, ma, m, ma)
1 1

=+ 5 (%11(p27m17m27m3) — é 0111(P7 m17m27m4)~

Thus we can write

VlZl(O |p1 , P2, P7 my, - 7m4)
— p% ‘/’21121 —P1- PV2|1+1|2(6 _ 6) - V(%Ql(p% P7 miy,:--- 7m4)°
Assuming that p? # 0 we can eliminate one com-

ponent, although we can evaluate V'!(0,p,) di-
rectly in n = 4 — ¢ dimensions.

G. Passarino, Calc03

o4



