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The Tree

Part I

The loop tree: embed ded case stud y
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The Tree

Loop calculus in a nutshell

Theorem
Any algorithm aimed at
reducing the analytical
complexity of a (multi - loop)
Feynman diagram is
generally bound to

replace the original
integral with a sum of
many simpler diagrams,

introducing
denominators that show
zeros.

Definition
An algorithm is optimal when

there is a minimal
number of terms,

zeros of denominators
correspond to solutions
of Landau equations

the nature of the
singularities is not badly
overestimated.
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The Tree

Sunn y-side up

Progress

In the past years an
enormous progress in the
field of 2 L integrals for
massless 2 	 2 scattering;
gg 	 gg 
 qg 	 qg and
qQ 	 qQ as well as Bhabha
scattering.

Achievements
basic 2 L integrals have
been evaluated

e.g. analytic expressions
for the two loop planar
and non-planar box

master integrals
connected with the
tensor integrals have
been determined.
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The Tree

Status of HO loop calculations

zero or one
Impressive calculations (up to four loops) for zero or one
kinematical variable, e.g. g 
 2, R,

�
-function

� 1

Computations involving more than one kin. var. is a new art

Example

We would like to have n � 4 Green functions to all loop orders,
from maximally supersymmetric YM amplitudes to real life it’s a
long way
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The Tree

Main road

Step 1

reduce reducible integrals

Step 2

construct systems of IBP or Lorentz invariance identities

Step 3

reduce irreducible integrals to generalized scalar integrals

Step 4

solve systems of eqns in terms of MI

Step 5

evaluate MI, e.g. differential eqns, MB representations, nested
sums, etc.
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The Tree

But, for the real problem

Loop integrals are not enough

�
assemblage of scattering amplitudes

�
infrared divergenges

�
collinear divergenges

�
numerical programs



�

The Tree

IBP and LI

Tools
A popular and quite
successful tool in dealing
with multi-loop diagrams is
represented by the IBPI and
LII. Arbitrary integrals can be
reduced to an handful of
Master Integrals (MI)

Let us point out one
drawback of this solution.
Consider, for instance, the
following result,
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The Tree

IBP example

Example

B0 � 1 
 2 � p 
 m1 
 m2 � � 1� � 
 p2 
 m2
1 
 m2

2 � � n 
 3 �!� m2
1 
 m2

2 
 p2 � B0 � p 
 m1 
 m2 �
" � n 
 2 � A0 � m1 � 
 p2 " m2

1
"

m2
2

2 m2
2 A0 � m2 � 
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The Tree

IBP example

Around threshold
We know that at the normal threshold the leading behavior of
B0 � 1 
 2 � is

�%$ 1& 2,

Conc lusion:
reduction to MI apparently overestimates the singular behavior;
of course one can derive the right expansion at threshold, but
the result is again a source of cancellations/instabilities.
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The Tree

Two-loop conceptual problems

WSTI vs LSZ
Two loop à la LSZ

The LSZ formalism is
unambiguously defined
only for stable particles,
and it requires some
care when external
unstable particles
appear

Unstab le internal
Unphysical behaviors
induced by self-energy
insertions into 1 L diagrams;
they signal the presence of
an unstable particle and are
the consequence of a
misleading organization of
PT.

Around thresholds
These regions are not
accessible with
approximations, e.g.
expansions.
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The Tree

Technical problems I

Reduction to MI
Algebraic problem,

Buchberger algorithm to
construct Gröbner bases
seems to be inefficient

New bases?

It remains
to generalize to more
than few scales

to compute the MI
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The Tree

Technical problems II

Although.
HTF (usually) have nice properties,

expansions are often available with good properties of
convergence

the expansion parameter has the same cut of the function

where is the limit?
One - loop, Nielsen - Goncharov

Two - loop, one scale (s � 0 
 m2 cuts) harmonic
polylogarithms

Two - loop, two scales (s � 4 m2 cuts) generalized
harmonic polylogarithms

next? New higher transcendental functions?
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Reduction

Part II

Future of 2 L calc: explorator y case stud y
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Reduction

From modern 1 L to 2 L

1 L in a nutshell

Sn 1 N � f � � 2
3

i 4 2 dnq
f � q 
65 p 7 �

i 8 0 9 N $ 1 � i � 

� i � � � q " p0

";:<:<:="
pi � 2 " m2

i >

Sn 1 N � f � �
i

bi B0 � P2
i � "

ij

cij C0 � P2
i 
 P2

j �
"

ijk

dijk D0 � P2
i 
 P2

j 
 P2
k � " R 
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Reduction

The multi facets of QFT

Popular wisdom

Tree is nirvana

1 L is limbo

2 L is samsara

1 L 	
1 L will be nirvana when
general consensus on
reduction is reached

1 L 	A	
Which is the most efficient
way of computing the
coefficients?
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Reduction

Reduction at 2 L

Problem
At 2 L reduction is different
since irreducible scalar
products are present

Master Integrals

One way or the other a basis
of generalized scalar
functions is selected (MI)

Whic h MI are present?

Some care should be payed
in avoiding MIs that do not
occur in the actual
calculation. This fact is
especially significant when
the MI itself is divergent and
the singularity must be
extracted analytically
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Reduction

Stadar d reduction? Unitarity based?

I

� dnq
1

i 8 0 9 N $ 1 H i I 


i
J � dnq

q
:
pi

i 8 0 9 N $ 1 H i I >

Figure: Convention for Feynman diagrams.
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Reduction

Stadar d reduction? Unitarity based?

Example

2
3

i 4 2 dnq
q
:
p1

i 8 0 9 3 H i I �
3

i 8 1

D1i p1
:
pi

� 

3

i 8 1

D1i H1i >
Hij �L
 pi

:
pj ; G � det H is the Gram determinant.
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Reduction

Stadar d reduction?

naive
In naive SR D1i

	 D0 and 	 three-point functions, with inverse
powers of G3 etc.

revised

D1i � 
 1
2

H
$ 1
ij dj 
 di � D N i O 1 P

0 
 D N i P0 
 2 Ki D0 

where D N i P0 is the scalar triangle obtained by removing
propagator i from the box.
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Reduction

Stadar d reduction?

Theref ore we obtain

2
3

i 4 2 dnq
q
:
p1

i 8 0 9 3 H i I � 1
2

3

i 9 j 8 1

H
$ 1
ij H1i dj

� 1
2

d1 

without explicit factors involving G3.
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Reduction

Stadar d reduction?

Fur thermoreS
The coefficient of D0 in the reduction is

1
2

m2
0 
 m2

1 
 p2
1 


. At the leading Landau singularity of the box we must have

q2 " m2
0 � 0 
 � q " p1 � 2 " m2

1 � 0 
 etc.

Theref ore
the coefficient of D0 is fixed by

2 q
:
p1

AT
� m2

0 
 m2
1 
 p2

1 

which is what a careful application of standard reduction gives.
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Reduction

Reduction is telling us that

Anomalous threshold behavior U standard reduction of a tensor
box easily shows if the corresponding scalar box has to be
considered, e.g.

2
3

i 4 2 dnq
q
:
p1

i 8 0 9 3 H i I
V	 D0

iff p2
1 � m2

0 
 m2
1 
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Reduction

Two loop extension?

Embed ding

The N -point, 1 L, function is
a sub-diagram � q2 � of a 2 L
diagram � q1 
 q2 � with l
internal legs. The numerator
contains red X irr scalar
products

if after reduction N 	 N 
 1
the coeff of the S, V or T 1 L
diagram are zero then the 2 L
- l -prop - diagram will not
appear, only its
� l 
 1 � -daughters

In par ticular ,

if the original two-loop
diagram is (e.g. collinear)
divergent the singular
behavior can be read off its
daughters which is a simpler
problem because one
propagator less is involved.
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Reduction

Example: I

Example

Consider now the V K -configuration projected with PD

m1

m2

m3

m4

m5

m6


 P

p1

p2 \

P ]_^D



`

Reduction

Example: II

After decompositiona 6 	 5 the 6 -propagator terms disappear
from the projected V K if m4 � m5 � m6 � 0, for arbitrary m1 
 m2

and m3.

massive case
When all fermion lines in the V K -configuration have a mass m,
we obtain

32 v2O " v2$ � m2 p1
:
p2 
 M2 " 2 m2


 128 v O v $ m2 p1
:
p2
"

2 m2 dnq
1

i 8 1 9 6 H i I K" b
5 - propagator contractions >

As a consequence only the scalar V K is present.
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Reduction

Example: III

Example

m2

m1

m4

m3

m6

m5


 P

p1

p2
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Reduction

Example: IV

all fermion massless

16 v2O " v2$ p1
:
p2
"

M2

 M2 " 2 p1
:
q1 1 
 p1

:
q1

p1
:
p2

 dnq
1

i 8 1 9 6 H i I H" b
5 - propagator contractions 


i.e. one combination of S, V and T V H is the MI
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New integral representations Conc lusions

Part III

Computing MI
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New integral representations Conc lusions

Beyond Nielsen - Gonc harov

New Apprh oach

New integral representations for diagrams

Theorem
Diagrams U

dCk � 5 x 7 � 1
A

ln 1
" A

B
or dCk � 5 x 7 � 1

A
Lin

A
B

where A 
 B are multivariate polynomials in the Feynman
parameters. One-(Two-) loop diagrams are always reducible to
combinations of integrals of this type where the usual
monomials that appear in the integral representation of Nielsen
- Goncharov generalized polylogarithms are replaced by
multivariate polynomials of arbitrary degree.
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New integral representations Conc lusions

Example

General C0: definitions

C0 � dS2 V
$ 1 $ 3 & 2 � x1 
 x2 � 


V � x1 
 x2 � � x t H x
"

2 K t x
"

L � Q � x1 
 x2 � " B 

Hij � 
 pi

:
pj 
 L � m2

1 

K1 � 1

2 � p1
:
p1
"

m2
2 
 m2

1 � 

K2 � 1

2 � P
:
P 
 p1

:
p1
"

m2
3 
 m2

2 � 
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New integral representations Conc lusions

General C0: result

C0 � 1
2

2

i 8 0

� Xi 
 Xi O 1 �
 1

0

dx

Q � i i
"

1 � ln 1
" Q � i i

"
1 �

B

Q � 0 1� � Q � 1 
 x � 
 Q � 1 2 � � Q � x 
 x � 
 Q � 2 3 � � Q � x 
 0 �

X t � 
 K t H
$ 1 
 X0 � 1 
 X3 � 0
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New integral representations Conc lusions

How to construct it

Basics

Define

l
n � z � � zn Ln � z � � zn dCn

n

i 8 1

yi

n $ 1

1
" n

j 8 1

yj z
$ n

� z
n

n

n O 1 Fn �m� n � n O 1 � � n " 1 � n �n
 z � 


l
1 � z � � 
 S0 9 1 � 
 z � 
l
2 � z � � S0 9 1 � 
 z � 
 S1 9 1 � 
 z � 


l
3 � z � � 
 1

2
S0 9 1 � 
 z � " 3

2
S1 9 1 � 
 z � 
 S2 9 1 � 
 z � 
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New integral representations Conc lusions

How to construct it

Problem

For any quadratic form in n-variables

V � x � � � x 
 X � t H � x 
 X � " B � Q � x � " B 

we want to compute

I � n 
 2 � � dCn V
$qp � dCn Q � x � " B

$qp
>

Definition
Consider the operator

r � � x 
 X � t s 
 satisfying
r

Q � 2 Q
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New integral representations Conc lusions

How to construct it

Solution

Intr oduce

J � � 
 2 � � 1

0
dy y u $ 1 W

$qp � y � 
 W � y � � Q � x � y
"

B >

Use

1
2
r 
 y s y W

$qp � 0 	 V
$qp � � " 1

2
r

J � � 
 2 � 

I � n 
 2 � � dCn

� " 1
2
r

J � � 
 2 � 
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New integral representations Conc lusions

How to construct it

Fur ther definitions

Define

f � H x I � � f � x1 
 :<:<: 
 xn � 

f � i H x I � � f � x1 
 :<:<: 
 xi � 0 
 xn � 

f � H x I i � � f � x1 
 :<:<: 
 xi � 1 
 xn � 


dCn � 1

0

n

i 8 1

dxi 
 dCn 9 j �
1

0

n

i 8 1 9 i w8 j

dxi >
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New integral representations Conc lusions

How to construct it

Results I

Example

For 2 � 1 it is convenient to choose
� � 1, to obtain

I � n 
 1 � � n
2

 1 dCn L1 � H x I �


 1
2

n

i 8 1

dCn 9 i Xi L1 � i H x I � 
 � 1 
 Xi � L1 � H x I i �
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New integral representations Conc lusions

How to construct it

Results II

Example

For 2 � 2 it is more convenient to write

V
$ 2 � 2

" 1
2
r 2

J � 2 
 2 � � 2
" 1

2
r 2

L2 >
integration-by-parts follows

additional work (along the same lines) is needed to deal
with surface terms ><><>
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New integral representations Conc lusions

Challeng e

Thechallenge remains:unprecedentedprecisionneededin
high energy QCD andelectroweakradiativecorrections
with more thana singlekinematicalinvariant. Don’t
misstheforest(completecalculation)for thetrees
(Feynmandiagrams).
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