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Outlines

Loop calculus in a nutshell

Theorem Definition

Any algorithm aimed at An algorithm is optimal when
reducing the analytical @ there is a minimal
complexity of a (multi - loop) number of terms,

Feynman diagram is

@ zeros of denominators
generally bound to

correspond to solutions

@ replace the original of Landau equations
integral with a sum of

: . @ the nature of the
many simpler diagrams,

_ _ singularities is not badly
@ introducing ~ overestimated. %

denominators that show
Zeros.
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Sunny-side up

Progress

In the past years an
enormous progress in the
field of 2L integrals for
massless 2 — 2 scattering;
g9 — 99,99 — qg and

gQ — gQ as well as Bhabha
scattering.




Outlines

Sunny-side up

In the past years an @ basic 2L integrals have
enormous progress in the been evaluated
field of 2L integrals for @ e.g. analytic expressions
massless 2 — 2 scattering; for the two loop planar
99 — 99,99 — qg and and non-planar box
9Q — qQ as well as Bhabha @ master integrals
scattenng. ) connected with the
tensor integrals have
been determined. %
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Z€ero or one

Impressive calculations (up to four loops) for zero or one
kinematical variable, e.g. g — 2, R, g -function
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Outlines

Status of HO loop calculations

Z€ero or one

Impressive calculations (up to four loops) for zero or one
kinematical variable, e.g. g — 2, R, g -function

Computations involving more than one Kkin. var. is a new art

We would like to have n = 4 Green functions to all loop orders,
from maximally supersymmetric YM amplitudes to real life it's a %

long way
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Outlines

Main road

reduce reducible integrals

gonstruct systems of IBP or Lorentz invariance identities

r-educe irreducible integrals to generalized scalar integrals

solve systems of eqns in terms of Ml %
evaluate Ml, e.g. DE, MB representations, nested sums, etc.




Outlines

But, for the real problem

Loop integrals are not enough

R

assemblage of scattering amplitudes

infrared divergenges

collinear divergenges

numerical programs
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Two-loop conceptual problems

WSTI vs LSZ

@ Two loop ala LSz

@ The LSZ formalism is
unambiguously defined
only for stable particles,
and it requires some
care when external
unstable particles
appear




Outlines

Two-loop conceptual problems

WSTI vs LSZ Unstab le internal

@ Two loop ala LSz Unphysical behaviors

@ The LSZ formalism is induced by self-energy
unambiguously defined insertions into 1L diagrams;
only for stable particles, they signal the presence of
and it requires some an UP and are the
care when external consequence of a misleading
unstable particles Qrganlzauon of PT. )
appear
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Two-loop conceptual problems

WSTI vs LSZ

@ Two loop ala LSz

@ The LSZ formalism is
unambiguously defined
only for stable particles,
and it requires some
care when external
unstable particles
appear

Unstab le internal

Unphysical behaviors
induced by self-energy
insertions into 1 L diagrams;
they signal the presence of
an UP and are the
consequence of a misleading
organization of PT.

-

Around thresholds

These regions are not
accessible with
approximations, e.g.
expansions.
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Algebraic problem,

@ Buchberger algorithm to
construct Grobner bases
seems to be inefficient
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Technical problems |

Reduction to Ml

Algebraic problem,

@ Buchberger algorithm to
construct Grobner bases
seems to be inefficient

@ to generalize to more
than few scales

@ to compute the Ml

New bases?




Outlines

Technical problems Il

HTF (usually) have nice properties,

@ expansions are often available with good properties of
convergence

@ the expansion parameter has the same cut of the function

where is the limit?

@ One - loop, Nielsen - Goncharov

@ Two - loop, one scale (s = 0,m? cuts) harmonic
polylogarithms

@ Two - loop, two scales (s = 4 m? cuts) generalized %
harmonic polylogarithms

@ next? New higher transcendental functions?



Part |

Future of 2L calc: explorator y case study




Reduction

From modern 1Lto 2L

R R A C PR ("))
Snll) = 7 [ o P

(i) = @+po+ - +pi)°+m?.




Reduction

From modern 1Lto 2L

1L in a nutshell

,uf n f(qv{p})
Sl = i [ OO
(i) = (@+po+ - +p)*+m?.

Sn;N(f ZbBO(P +ZCI]CO |aJ
+ Zd'JkDO(PU T )_|_R’ %

ijk
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@ 2L is samsara
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Reduction

The multi facets of QFT

Popular wisdom

@ Tree is nirvana
@ 1L is limbo
@ 2L is samsara

| A\

1L —

1L will be nirvana when
general consensus on
reduction is reached

Which is the most efficient
way of computing the
coefficients?
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Problem

At 2 L reduction is different
since irreducible scalar
products are present
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VES CIMELES

One way or the other a basis
of generalized scalar
functions is selected (MI) é




Reduction

Reduction

at 2L

Problem

At 2 L reduction is different
since irreducible scalar
products are present

VES CIMELES

One way or the other a basis
of generalized scalar
functions is selected (MI)

Whic h Ml are present?

Some care should be payed
in avoiding MIs that do not
occur in the actual
calculation. This fact is
especially significant when
the Ml itself is divergent and
the singularity must be
extracted analytically




Part Il

Renormalization Tree: embedded case study




The Tree

flow-chart

Feynman

Rules

uv
Counterterms

\ 4

Feynman
Diagrams

\

Gre(_an
Functions

A

IPS
Ren. Eq.

\

(Pseudo)
Observables




The Tree
0000000

Generating amplitudes

Group the diagrams into families

P3 P3 P3 P3 P2 P1
P2 P2 P2 P2 P3 P3
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The Tree
(o] lelelele]e]

Generating amplitudes

Steps

Combinatorial factors (Goldberg strategy) J
Combine the topologies and the Feynman rules J
Introduce projectors, compute the trace of Dirac matrices J




The Tree
[e]e] lele]e]e]

Generating amplitudes

Reduction to Master Integrals

recursive algebraic reduction

2q.p 1 1 p? —m? + M2
@+m2)[@+p2+M2  a?+m?  (a+p2+M2 (a%+m?)[(q +Pp)? +M?]
Mapping on a fixed standard routing for loop momenta )

gy — —0 —P
2 — —G2 — P




The Tree
[e]e]e] Jelele]

Generating amplitudes

Reduction

to Master

Integrals

Symmetrization
m P m P2
1 5
m m,
—p 2 —p 4 — g, —P
N q1 q2
2 — —01 — P
my my
ms my
P2



The Tree
[e]e]ele] Tele]

Generating amplitudes

Reduction to Master Integrals

We end with integrals up to rank 2: 1-loop functions, 2-loop
tadpoles (2)

TA TB

5 L0



The Tree
00000e0

Generating amplitudes

Reduction to Master Integrals

2-loop self-energies (4 topologies)

&



The Tree
000000e

Generating amplitudes

Reduction to Master Integrals

2-loop vertices (6 topologies)

L <<
°




Univer sal UV decomposition: |

One-loop integrals

Any one-loop integral f1 can be decomposed as

1
) = Y k) Fx),

k=1

where {I} = external kinematical variables, masses of internal
particles. x is some kinematical variable and the dependence
on the dimensional regulator ¢ is entirely transferred to the
universal UV factors,

1 1 1

FE]_(X) = Z_EAUV(X)—i_gASV(X)G’ %

1
Fa(x) = 1= S Aw(x)e, Fi(x) =€




Univer sal UV decomposition: |l

One-loop integrals

Because of overlapping divergencies we include O (¢) terms in
all one-loop results.

M2 M2
AUV == "y + In7T + In ?, Auv(x) — AUV - In 7,
— — 2RL,M?)
m



Univer sal UV decomposition: |l

Two-loop integrals

A generic two-loop integral f2 can be written as

0
P} = > P21} k) FEX).

k=—2

Here the two-loop UV factors read as follows:

1 Aw(x) 1

2 . uv 2

F—Z(X) - 6_27 e +§AUV(X)’
1

F2,(x) = Z—Auv(x), Fé(x) =1.

Note that the product of two one-loop integrals can be written %
through the same UV decomposition of a two-loop integral.




Univer sal UV decomposition: |V

Vo (---1-2) = -2,
Vo (P2, P, {m}1234; —1) —2bo(1,1,p1,{m}34; 0) — 1.

e

\é



Univer sal UV decomposition: |V

Vo (---1-2) = -2,
Vo (P2, P, {m}123a; —1) = —2bo(1,1,p1,{m}3s; 0) —1.




Renormalization constants

Multiplicative

renormalization

c.t. not needed but useful —————@——

masses, parameters

1/2

m = Zy mg,

ZppPr, P =9,Ch,Sg

Fields, gauge parameters

(% \" Lm
4 = 6Z
w = (o)
_ 1/2 LR _ 51/2 LR
¢ = R Y “/‘L R YR
A — 1/2,_\# +Zl/22u

n
/2 _ (n)
2 - 5 () g

n=1

FP ghost fields are not renormalized




Renormalization constants




Renormalization constants

MS and beyond |

NMS scheme: advancing renormalization theory

In the spirit of the UV decomposition we define a non-minimal
(NMS) subtraction scheme where

1loop — 6z =naz®MF1, (M),

2 loops — 2P = Z AZR) F(M2),

%




Renormalization constants

MS and beyond Il

c.t. are fixed in order to remove order-by-order the poles at
e = 0 for any Green function

Property of NMS

The product of a one-loop c.t. with a one-loop diagram (i.e., a
one-loop c.t. insertion) has the same UV decomposition of a
two-loop function thus simplifying two-loop renormalized Green
functions

The NMS scheme has the virtue of respecting the universal UV %
decomposition

>



Renormalization constants

The two facets of renormalization

promote bare quantities p to
renormalized ones pg




Renormalization constants

The two facets of renormalization

promote bare quantities p to
renormalized ones pg

Step 2
@ fixthect. atlL =to
remove the UV poles

from all 1L GF;

@ check that 2L GF
develop local UV :
residues; é

@ fix the 2L c.t. to remove
2L local UV poles.




Renormalization constants

The two facets of renormalization

Finite renomalization

promote bare quantities p to the absorption of UV poles
renormalized ones py into local c.t. does not
exhaust the procedure; we

Step 2 have to connect pg to POs,

o fixthect. atlL =to thus making the theory
remove the UV poles predictive.
from all 1L GF;

@ check that 2L GF
develop local UV :
residues; é

@ fix the 2L c.t. to remove
2L local UV poles.




Consistency checks

WST identities

W
NN —(n)iipzy/ Pzt

p H
® 4 x151/251/2
o - « (2m)*i MZ,"7Z," " Ze,,
p

Figure: Sources related to the gauge-fixing functions C*



Consistency checks

WST identities

w w w ® ® w ® ®
MN\‘V\/W +¢/w\‘---o +o--‘\/vw + o--‘---o ~0
Figure: Doubly-contracted WST identity with two external C* sources

°



Consistency checks

Summary

SU(3) ® SU(2) ® U(1)
We have been able to verify that the SM can be made
(two-loop) UV finite by adding local c.t.

| A\

Generalization of 1L

The well-known one-loop result that self-energies suffice in
performing renormalization can be extended up to two loops.

L



Consistency checks

Overlapping diver gencies




Consistency checks

Overlapping diver gencies

Figure: The arbitrary two-loop diagram G**” and one of the
associated subtraction sub-diagrams. Only in the sum we have
cancellation of non-local residues é
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Consistency checks

Example: «

Renormalizing g sy

In extracting « from Thomson scattering at zero momentum
transfer we find four classes of two-loop diagrams:

@ irreducible two-loop vertices and wave-function factors,
product of one-loop corrected vertices with one-loop
wave-function factors;

© one-loop vacuum polarization ® one-loop vertices or
one-loop wave-function factors;

@ irreducible two-loop AA, AZ , A¢? transitions; %
© reducible two-loop AA, AZ , A¢° transitions.




Consistency checks

Consistenc y

A matter of life -- - )

You can’t prove something by assuming it's true

We have verified that the non-vanishing contribution originates
from 11l and IV only and, within these terms, only the reducible
and irreducible AA transition survives.

Bluntl y:

We have proven that the SM it's only slightly more complex

than QED. %




Consistency checks

Example: G:

Renormalizing g, M

In extracting the Fermi coupling constant from the muon lifetime
all corrections to

>

G 2
7 = syz(1t49)

which do not originate from the W self-energy and that are UV
(and IR) finite at one loop remain finite at two loops after
one-loop renormalization (i.e. two-loop counterterms are not %
needed)




Consistency checks

A sample of MS counter terms: |

an MS example

A7
ZANE (% - Auv) ( - +Azif§)> + A2 AZ{D.

4

Higgs field renormalization

g2

?a

431 5x 371 7

9
Xt — —XZ + 24xq

Az® - 4y =2 = -
Hil +4cg 4c§ 2cg 2 4




Consistency checks

A sample of MS counter terms: |I

Higgs field renormalization

7 4311 8x 1011 25
Az@ L9t 2 99A& VAL &9
"2 T 5 96ci 48cZ 122 24"
27, 3 g2
+ Extz — ﬁxﬁ — 10xtg—2,
@) 431 5x 371 7 9 , g2
Az2, = a4 O X S0- ] _2 9
i3 Tleci T16c2 Bz 8t 167 T ONp %



Consistency checks

v° in a nutshell

HVBM scheme

The HVBM scheme breaks all WST identities (so-called
spurious or avoidable violations) which can be restored
afterwards by introducing suitable ultraviolet finite counterterms.
The procedure, however is lengthy and cumbersome.




Consistency checks

v° in a nutshell

HVBM scheme

The HVBM scheme breaks all WST identities (so-called
spurious or avoidable violations) which can be restored
afterwards by introducing suitable ultraviolet finite counterterms.
The procedure, however is lengthy and cumbersome.

pseudo-regularization of chiral theories

After considerable wrangling one is lead to the conclusion that
the only sensible solution is the one proposed by Jegerlehner:
n-dimensional y-algebra with strictly anti-commuting ~°

together with 4-dimensional treatment of the hard anomalies. %
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Problem




Towards comple x poles

About gauge independence |

o0

Tw(s.€) = S xl)(s.6) g™

n=1

On mass shell

(s, €) = =), (s)
SR M3)¢VV(Saf)




Towards comple x poles

About gauge independence |

Nielsen identity
() 2n 0 —0

Tw(s.€) = D Tw(s.€)g o vv(Se,€) =
n=1

Sp — M3 + ZVV(SP) = 0

On mass shell

(s, €) = =), (s)
SR M3)¢VV(Saf)




Towards comple x poles

About gauge independence |

zVV(S7 5) = Z z\(/r\]/)(S 5) 92n
n=1

On mass shell

(s, €) = =), (s)
SR M3)¢VV(Saf)

Nielsen identity

0
8_5 Tuv(se,€) =0

Sp — M3 + ZVV(SP) = 0

Decomposition

sW(s,&) =W (s)
+ = (s,€)

VvV ;€




Towards comple x poles

About gauge independence I

(n) _ y(n-1)
Yoy e(Se &) = Ty (Se) Puv(se,€),

As a result we can prove that all £&-dependent parts cancel,

Zvv(SP) = \(/r\1/) | QZn

However, this example shows how an all-order relation should
be carefully interpreted while working at some fixed order.

A\



Finite Renormalization

Renormalization equations

One of our renormalization equations will always be of the type

2
SV — M3 - %ZV\/(S\/,M\%). %
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Finite Renormalization

Options

(1, )
@ AtO(g*) in Z,, we keep p? = —s, with O (g®) violation;




Finite Renormalization

Options

» 3,)
Q AtO (g*) in Z,, we keep p? = —s, with O (g°) violation;
© we replace ¥, with &, .,

v@ (sv) = T®(sy,1) = =W (sy) Duy(sy, 1)




Finite Renormalization

Options

Q AtO (g*) in Z,, we keep p? = —s, with O (g°) violation;
@ we replace ¥, with &, .,

v@ (s0) = T®(sy,1) = =W (sy) Dy (sy, 1)

@ we expand,

g2

16 72
02 \* [-@ 2 2
— (16 7(_2) |:ZVV (MV1 MV)

M2, M) =), (M2, M2)

1
sv = M2- (M2, M2)




Finite Renormalization

Finite renormalization in running couplings

(intermediate) renormaliz ed theory
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Comple x poles

Properties: |

all orders

We assume that a dressed propagator obeys Kallen - Lehmann
representation; using the relation

ImA(p?) = Im):{(p2+m2—ReZ)2+(lmZ)2rl

= 7Tp(— pZ)’

Kéallen - Lehmann

the Kallen - Lehmann representation follows:

—~ I p(s)
A(p?) _/0 dsm. é




Comple x poles

Properties: I

Figure: Cutting equation for a dressed propagator; the red circle is
the (all-orders) cut self-energy.



Figure 1: Schwinger-Dyson equation for any p
oval is the SD self-energy: solid lines represent (\Vn.hout further
standard model

— @

sible (standard model) dressed plnpﬁga!(n (vellow box); the red
isti of the fields of the

"



- -

Figure 1: Schwinger Dyson equation for the self energy (Lh.s). In the r.h.s. the red oval is the SD vertex and the
vellow box is the dressed propagator; solid lines represent (without further distinction) any of the permissible fields
of the standard model.



Figure 1: Schwinger-Dyson equation for a dressed vertex (Lh.s); in the rhs we have SD three and four-point
vertices (red ovals) and dressed propagators (vellow boxes); solid lines represent (without further distinction) any of
the fields of the standard model and vertices must be understood as any of the permissible standard model ver




Comple x poles

Unitarity

all orders

@ Unitarity follows if we add all possible ways in which a
diagram with given topology can be cut in two.

~

@ We express ImX in terms of cut self-energy diagrams and
repeat the procedure ad libidum, therefore proving that %
unstable particles contribute to the unitarity of the
S—matrix only via their stable decay products.




Comple x poles

Unitarity

@ Unitarity follows if we add all possible ways in which a
diagram with given topology can be cut in two.

@ The shaded line separates S from Sf.

~

@ We express ImX in terms of cut self-energy diagrams and
repeat the procedure ad libidum, therefore proving that %
unstable particles contribute to the unitarity of the
S—matrix only via their stable decay products.




Comple x poles

Unitarity

@ Unitarity follows if we add all possible ways in which a
diagram with given topology can be cut in two.

@ The shaded line separates S from S,

@ For a stable particle the cut line, proportional to Z+,
contains a pole term 2i 7 6(po) 6(p? + m?),

~

@ We express ImX in terms of cut self-energy diagrams and
repeat the procedure ad libidum, therefore proving that %
unstable particles contribute to the unitarity of the
S—matrix only via their stable decay products.




Comple x poles

Unitarity

@ Unitarity follows if we add all possible ways in which a
diagram with given topology can be cut in two.

@ The shaded line separates S from S,

@ For a stable particle the cut line, proportional to At
contains a pole term 2i 7 0(pg) 6(p? + m?),

@ whereas there is no such contribution for an unstable
particle.

~

@ We express ImX in terms of cut self-energy diagrams and
repeat the procedure ad libidum, therefore proving that %
unstable particles contribute to the unitarity of the
S—matrix only via their stable decay products.




Comple x poles

WSTI

WSTI with dressed propagator s/ver tices

@ We assume that WST identities hold at any fixed order in
perturbation theory for diagrams that contain bare
propagators and vertices;




Comple x poles

WSTI

WSTI with dressed propagator s/ver tices

@ We assume that WST identities hold at any fixed order in
perturbation theory for diagrams that contain bare
propagators and vertices;

@ they again form dressed propagators and vertices when
summed.

but

Any arbitrary truncation that preferentially resums specific
topologies will lead to violations of WST identities. é
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Comple x poles

Finite renormalization with unstab le particles

Give up unitarity (a quizzical approach) |

m? = sm+X(sm);

At one loop
m? — s, everywhere;

At two loops

@ 2L no X insertions:
m2 = sp;
@ 1L: m? =sy + X(sm)
and the factor
X(s) —X(sm)
S — Sm

9

expanded to first order;
@ vertices: m?2 = s, in 2L,
m? = sm + X(sm) in 1L




New integral representations

Part Il

Computing M



Beyond Nielsen - Gonc harov

New Apjr oach
New integral representations for diagrams

Theorem
Diagrams =

/ de({X})% In <1+ g) or / de({x})% Lin (g)

where A, B are multivariate polynomials in the Feynman
parameters. One-(Two-) loop diagrams are always reducible to
combinations of integrals of this type where the usual
monomials that appear in the integral representation of Nielsen
- Goncharov generalized polylogarithms are replaced by
multivariate polynomials of arbitrary degree.

v




Example

General Cg: definitions

/ dSZ Vv _1_6/2()(13 X2)7

X'Hx +2K'x + L = Q(xg,%2) + B,
_plpja L:mi

(p1-p1+ m% - m%),

2
1
E(P-P—pl-pl+m§—m§),



General Cq: result

1
2

2
> (Xi = Xis1)
i=0

X/ dx In<+Q(ii/+\1)
o Q(ii+1) B

Q01) = Q(L.x), Q(12)=Q(x.x), Q(23) =

Xt = —K'H™L Xo=1, X3=0

Q(x,0)




How to construct it

Basics

n n—1
Ln(z) = z"La(z) =2" /dcn (H yi) [1+TIwz]
i=1 ;

- (%)n n1 Fn (Mnga; (N4 1)ns —2),

El(Z) = —So’l(—Z),
L>(z) = Soi1(-2)—S11(-2).
I s

L3(z) = 5 So,1(=2) + g S1,1(—2) — S2,.1(~2),



How to construct it

Problem

@ For any quadratic form in n-variables
V(x) = (x—X)'H (x=X)+B=Q(x)+B,

@ we want to compute

I(n,p) = /anV“:/an [Q(x)+BT“.

@ Consider the operator

P = (x—X)'9, satisfying PQ=2Q %




How to construct it

Solution

Introduce MT of y -shifte quadratic

1
W60 = [ ayy W) Wiy) =)y +B.

Use integration-b y-parts

7’) I(B, ),

P) 360 @

(2pya)wrmo ~ vro (s

I(n,p) = /olcn <ﬂ+

NI N




How to construct it

Further definitions




How to construct it

Results |

@ For p = 1itis convenient to choose g = 1, to obtain

I(n,1) = <g—1) /anLl([X])

— % Zn: / dCp, {Xi La(i [x]) = (1 = Xi) Ll([x]i)}
i—1

4




How to construct it

Results I

@ For p = 2 it is more convenient to write

. 1 \2 1 \2
VZ2=(2+5P) 322)=(2+5P) Lo

@ integration-by-parts follows

@ additional work (along the same lines) is needed to deal
with surface terms ...
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m; = 174.3 GeV

M, = 150 GeV
M

z

128.104

128.040
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MZ
128.104

128.046
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m; = 174.3 GeV

M,, = 150 GeV
MZ
128.104
128.040
—0.05
M,, = 300 GeV
MZ
128.104
128.046
—0.05

200
127.734
127.831

+0.08

200
127.734
127.689

—0.04



m; = 174.3 GeV
Vs [GeV]
one-loop
two-loop

%

m; = 174.3 GeV
Vs [GeV]
one-loop
two-loop

%

M,, = 150 GeV
M

z

128.104

128.040
~0.05
M,, = 300 GeV
MZ
128.104
128.046
~0.05

200
127.734
127.831

+0.08

200
127.734
127.689

—0.04

500
127.305
127.586

+0.22

500
127.305
127.272

+0.03



V/5 = 200GeV |



1/(1:(8)

V/5 = 200GeV |

1L+ 2L
126.774(3
126.688(2
126.598(3
127.300(3
127.313(2
127.122(3

~— N N N N N



Vs = 200 GeV
m¢, M, [Gev]
169.3, 150
174.3, 150
179.3, 150
169.3, 300
174.3, 300
179.3, 300

1L+ 2L
126.774(3
126.688(2
126.598(3
127.300(3
127.313(2
127.122(3

~— N N N N N

2L /1L perturbative only
14.64 %
16.27 %
17.97 %
4.35%
1.51%

7.73% %
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C&C




Conclusions

C&C

All toolsfor a two-loopcalculationin the SMhavebeen
assembledh one stand-alonecode

Numbes for (pseudo)bservablesre poppingup...
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