It's Simpler to be Singular

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy
INFN, Sezione di Torino, Italy
HEPTOOLS Network

LL08, Sonderhausen, April 2008

Based on work done in collaboration with Stefano Goria

Outlines

what else, but the inevitable.

Outlines

Outlines

(1, <mark>2</mark>,)

From the analytical structure of Feynman diagrams

2 to their numerical evaluation

what else, but the inevitable!

Part I

Intermezzo

A complete two-loop calculation

Oooops ... $H ightarrow \gamma \gamma, gg ightsquigarrow$

This is what I should have been taking about S. Actis, C. Sturm, S. Uccirati and myself (\approx 10 kilohour)

Part II

Sonata form

Theorem

 \mathcal{D} partition of $\{1 \dots n\}$ into 4 non-empty sets $P_i^{\mathcal{D}}$ sum of momenta in $i \in \mathcal{D}$

Bases are bases, and troubles are troubles

Scalar one-loop integrals

form a basis. Thus, coefficients are uniquely determined, although some method can be more efficient than others. However, troublesome points will always be there (Denner-Dittmaier anathema). What to do?

- Change (adapt) bases?
- Avoid bases (expansion)?
- Rethinking necessary.

Part III

Factorization of Feynman amplitudes

Factorization

Any Feynman diagram

is particularly simple when evaluated around its anomalous threshold.

Kershaw theorem (1972)

The singular part of a scattering amplitude around its leading Landau singularity may be written as an algebraic product of the scattering amplitudes for each vertex of the corresponding Landau graph times a certain explicitly determined singularity factor which depends only on the type of singularity (triangle graph, box graph, etc.) and on the masses and spins of the internal particles.

One-loop, multi-legs

Define

scalar one-loop *N* -leg integral in *n* -dimensions as

$$S_{n;N} = \frac{\mu^{\epsilon}}{i \pi^{2}} \int d^{n}q \frac{1}{\prod_{i=0,N-1}(i)},$$

 $(i) = (q + k_{0} + \cdots + k_{i})^{2} + m_{i}^{2},$

Use N-simplex

$$\int dS_N = \prod_{i=1}^N \int_0^{x_{i-1}} dx_i, \qquad x_0 = 1.$$

One-loop, multi-legs II

In parametric space we get

$$S_{nN} = \left(\frac{\mu^2}{\pi}\right)^{2-n/2} \Gamma\left(N-\frac{n}{2}\right) [N]_n.$$

Example

$$[N]_n = \int dS_{N-1} V_N^{n/2-N},$$

with

$$V_N = x^t H_N x + 2 K_N^t x + L_N, X_N = -K_N^t H_N^{-1}.$$

One-loop, multi-legs II

In parametric space we get

$$S_{nN} = \left(\frac{\mu^2}{\pi}\right)^{2-n/2} \Gamma\left(N-\frac{n}{2}\right) [N]_n.$$

Example

$$[N]_n = \int dS_{N-1} V_N^{n/2-N},$$

with

$$V_N = x^t H_N x + 2 K_N^t x + L_N, X_N = -K_N^t H_N^{-1}.$$

One-loop, multi-legs II

In parametric space we get

$$S_{nN} = \left(\frac{\mu^2}{\pi}\right)^{2-n/2} \Gamma\left(N - \frac{n}{2}\right) [N]_n.$$

Example

$$[N]_n = \int dS_{N-1} V_N^{n/2-N},$$

with

 $V_{N} = x^{t} H_{N} x + 2 K_{N}^{t} x + L_{N}, \quad X_{N} = -K_{N}^{t} H_{N}^{-1}.$

One-loop, multi-legs III

Useful jargon (used by addicts)

BST factor

$$B_N = L_N - K_N^t H_N^{-1} K_N$$

Gram (determinant)

$$H_{ii} = -k_i \cdot k$$

Caley (determinant)

$$\begin{pmatrix} H_N & K_N \\ K_N^t & L_N \end{pmatrix}$$

One-loop, multi-legs III

Useful jargon (used by addicts)

BST factor

$$B_N = L_N - K_N^t H_N^{-1} K_N$$

Gram (determinant)

$$H_{ij} = -k_i \cdot k_i$$

Caley (determinant)

$$\left(\begin{array}{ccc} H_N & K_N \\ K_N^t & L_N \end{array}\right)$$

One-loop, multi-legs III

Useful jargon (used by addicts)

BST factor

$$B_N = L_N - K_N^t H_N^{-1} K_N$$

Gram (determinant)

$$H_{ij} = -k_i \cdot k_i$$

Caley (determinant)

$$\left(\begin{array}{cc} H_{N} & K_{N} \\ K_{N}^{t} & L_{N} \end{array}\right)$$

One-loop, multi-legs IV

It follows

B = C/G, where $C = \det M$ is the so-called modified Cayley determinant of the diagram.

LS as pinches (masses & invariants $\in R$)

$$V_N = (x - X_N)^t H(x - X_N) + B_N$$

Thus

 $B_N = 0$ induces a pinch on the integration contour at the point of coordinates $x = X_N$; therefore, if the conditions,

$$B_N = 0,$$
 $0 < X_{N,N-1} < \dots < X_{N,1} < 1,$

are satisfied we will have the leading singularity of the diagram.

Why to avoid Gram⁻¹?

A common wisdom, but?

- The vanishing of the Gram determinant is the condition for the occurence of non-Landau singularities, connected with the distorsion of the integration contour to infinity;
- furthermore, for complicated diagrams, there may be pinching of Landau (C = 0) and non-Landau singularities (G = 0), giving rise to a non-Landau singularity whose position depends upon the internal masses (so-called D^2 wild points).

AT and factorization

It follows:

- Given the above properties the factorization of Kershaw theorem follows.
- The beauty of being at the anomalous threshold is that everything is frozen and the amplitude factorizes.
- But, what to do with a point?
- It looks perfect for boundary conditions, as long as we can reach it. Alternative: expand & match residues at a given AT (Cachazo 2008).

Standard reduction vs modern techniques

Example

$$\frac{\mu^{\epsilon}}{i\pi^{2}}\int d^{n}q\frac{q\cdot p_{1}}{\prod_{i=0,3}(i)} = \sum_{i=1}^{3}D_{1i}p_{1}\cdot p_{i} = -\sum_{i=1}^{3}D_{1i}H_{1i}.$$

carefull application of the method

$$D_{1i} = -\frac{1}{2}H_{ij}^{-1}d_j, \quad d_i = D_0^{(i+1)} - D_0^{(i)} - 2K_iD_0,$$

where $D_0^{(i)}$ is the scalar triangle obtained by removing propagator i from the box.

Standard reduction vs modern techniques II

Therefore we obtain

$$\frac{\mu^{\epsilon}}{i\pi^{2}}\int d^{n}q\frac{q\cdot p_{1}}{\prod_{i=0,3}(i)} = \frac{1}{2}\sum_{i,i=1}^{3}H_{ij}^{-1}H_{1i}d_{j} = \frac{1}{2}d_{1},$$

(no G_3). Furthermore, the coefficient of D_0 in the reduction is

$$\frac{1}{2}\left(m_0^2-m_1^2-p_1^2\right)$$

(General feature of tensor- $N \rightarrow \text{scalar-} N$)

Standard reduction vs modern techniques III

Theorem

At the leading Landau singularity of the box we must have

$$q^2 + m_0^2 = 0,$$
 $(q + p_1)^2 + m_1^2 = 0,$ etc.

Therefore

the coefficient of D_0 is fixed by

$$2 q \cdot p_1 \Big|_{AT} = m_0^2 - m_1^2 - p_1^2,$$

which is what a careful application of SR gives. Note that one gets the coeff. without having to require a physical singularity.

From hexagons up: factorization at SubLeadingLandau

$$F(\{n\}_{5}) \sim \frac{1}{6} \frac{\Delta X_{6i}}{B_{6}} X_{51}^{n_{1}}(i) \dots X_{5i}^{n_{i}+n_{i+1}}(i) \dots X_{54}^{n_{5}}(i) E_{0}^{\text{sing}}(i)$$
or
$$\frac{1}{6} \frac{\Delta X_{65}}{B_{6}} X_{51}^{n_{1}}(5) \dots X_{54}^{n_{4}}(5) E_{0}^{\text{sing}}(5) \delta_{n_{5},0} \quad i = 5$$

Sunny-side up of factorization

Progress

- At least in one point we can avoid reduction, all integrals are scalar;
- but, do we need to have the AT inside the physical region R_{phys} (support of Δ[±] in R)?

Problems

- Since this is a rare event (see later) we must have a generalization:
- prove that the AT, even with invariants ∉ R_{phys} implies a frozen q.

Sunny-side up of factorization

Progress

- At least in one point we can avoid reduction, all integrals are scalar;
- but, do we need to have the AT inside the physical region R_{phys} (support of Δ[±] in R)?

Problems

- Since this is a rare event (see later) we must have a generalization:
- prove that the AT, even with invariants ∉ R_{phys} implies a frozen q.

Generalized factorization I

Define

if
$$\frac{1}{i\pi^2} \int d^n q \frac{1}{\prod_{i=0,N-1} (i)}$$

is singular at $x = X \in R$

Then (example)

$$\frac{1}{i\pi^{2}} \int d^{n}q \frac{\mathbf{q} \cdot \mathbf{p}_{I}}{\prod_{i=0,N-1}(i)} = -\sum_{i=1}^{N} [N]_{n}(i) p_{I} \cdot p_{i}$$

$$\sum_{i=0,N-1}^{N} [N]_{n}(i) H_{li} \stackrel{\sim}{\to} \sum_{i=1}^{N} [N]_{n}(1) H_{li} X_{i} = -K_{I}[N]_{n}(1) H_{li} X_{i} = K_{I}[N]_{n}(1) H_{li} X_{i} = K_{I$$

Generalized factorization I

Define

if
$$\frac{1}{i\pi^2}\int d^nq\frac{1}{\prod_{i=0,N-1}(i)}$$

is singular at $x = X \in R$

Then (example)

$$\frac{1}{i\pi^{2}} \int d^{n}q \frac{\mathbf{q} \cdot \mathbf{p}_{l}}{\prod_{i=0,N-1}(i)} = -\sum_{i=1}^{N} [N]_{n}(i) \, \mathbf{p}_{l} \cdot \mathbf{p}_{i}$$

$$\sum_{i=1}^{N} [N]_{n}(i) \, H_{li} \quad \widetilde{\wedge}_{T} \quad \sum_{i=1}^{N} [N]_{n}(1) \, H_{li} \, X_{i} = -K_{l} [N]_{n}.$$

Generalized factorization I

Define

if
$$\frac{1}{i\pi^2}\int d^nq\frac{1}{\prod_{i=0,N-1}(i)}$$

is singular at $x = X \in R$

Then (example)

$$\frac{1}{i\pi^{2}} \int d^{n}q \frac{\mathbf{q} \cdot \mathbf{p}_{l}}{\prod_{i=0,N-1}(i)} = -\sum_{i=1}^{N} [N]_{n}(i) \, \mathbf{p}_{l} \cdot \mathbf{p}_{i}$$

$$\sum_{i=1}^{N} [N]_{n}(i) \, H_{li} \quad \widetilde{\wedge}_{T} \quad \sum_{i=1}^{N} [N]_{n}(1) \, H_{li} \, X_{i} = -K_{l} [N]_{n}.$$

Generalized factorization II

Where

$$X_i = -K_j H_{jj}^{-1}, \qquad HX = -K$$

→ Factorization

At the AT all scalar products → solution of

$$(q + \cdots + p_i)^2 + m_i^2, \qquad i = 0, \ldots, N-1$$

Generalized factorization II

Where

$$X_i = -K_j H_{jj}^{-1}, \qquad HX = -K$$

→ Factorization

At the AT all scalar products → solution of

$$(q + \cdots + p_i)^2 + m_i^2, \qquad i = 0, \ldots, N-1$$

Generalized factorization II

Where

$$X_i = -K_j H_{ji}^{-1}, \qquad HX = -K$$

→ Factorization

At the AT all scalar products → solution of

$$(q + \cdots + p_i)^2 + m_i^2, \qquad i = 0, \ldots, N-1.$$

Part IV

More on the AT

How frequent is AT in your calculation?

For N = 4 there are 14 branches in p-(real) space,

$$p_i^0 > 0, p_k^0 < 0$$

$$M_i^2 < (m_i + m_l)^2, M_j^2 > (m_i - m_j)^2, M_k^2 < (m_j + m_k)^2, M_l^2 < (m_k - m_l)^2,$$

 $p_i^0 > 0, p_j^0 < 0$

$$M_i^2 < (m_i + m_l)^2, M_j^2 < (m_i + m_j)^2, M_k^2 > (m_j - m_k)^2, M_l^2 > (m_k - m_l)^2$$

$$\rho_i^0 \,>\, 0, \ \rho_j^0 \,<\, 0, \ \rho_k^0 \,>\, 0, \ \rho_l^0 \,<\, 0,$$

$$M_i^2 < (m_i + m_l)^2, M_i^2 < (m_i + m_j)^2, M_k^2 < (m_j + m_k)^2, M_l^2 < (m_k + m_l)^2$$

How frequent is AT in your calculation?

For N = 4 there are 14 branches in p-(real) space,

$$p_i^0 > 0, p_k^0 < 0$$

$$M_i^2 < (m_i + m_l)^2, M_j^2 > (m_i - m_j)^2, M_k^2 < (m_j + m_k)^2, M_l^2 < (m_k - m_l)^2,$$

$$p_i^0 > 0, p_j^0 < 0$$

$$M_i^2 \quad < \quad \left(m_i + m_l \right)^2, \ M_j^2 < \left(m_i + m_j \right)^2, \ M_k^2 > \left(m_j - m_k \right)^2, \ M_l^2 > \left(m_k - m_l \right)^2,$$

$$p_i^0 > 0, \ p_j^0 < 0, \ p_k^0 > 0, \ p_l^0 < 0,$$

$$M_i^2 < (m_i + m_l)^2, M_i^2 < (m_l + m_l)^2, M_k^2 < (m_l + m_k)^2, M_l^2 < (m_k + m_l)^2$$

How frequent is AT in your calculation?

For N = 4 there are 14 branches in p-(real) space,

$$p_i^0 > 0, p_k^0 < 0$$

$$M_i^2 \quad < \quad \left(m_i + m_l \right)^2, \ M_j^2 > \left(m_i - m_j \right)^2, \ M_k^2 < \left(m_j + m_k \right)^2, \ M_l^2 < \left(m_k - m_l \right)^2,$$

$$p_i^0 > 0, p_j^0 < 0$$

$$M_i^2 \quad < \quad (m_i + m_l)^2 \,, \,\, M_j^2 < \left(m_i + m_j\right)^2 \,, \,\, M_k^2 > \left(m_j - m_k\right)^2 \,, \,\, M_l^2 > \left(m_k - m_l\right)^2 \,,$$

$$p_i^0 > 0, \ p_i^0 < 0, \ p_k^0 > 0, \ p_l^0 < 0,$$

$$M_i^2 < (m_i + m_l)^2, M_i^2 < (m_i + m_i)^2, M_k^2 < (m_i + m_k)^2, M_l^2 < (m_k + m_l)^2,$$

It's easier with Coleman - Norton

In 2 \rightarrow 2 two unstable particles \in |in > are needed!

Example for pentagon

AT watch (ain't a tornado but)

For those who don't want an AT in their MC, beware of

AT watch II (Denner's devil)

Hexagons don't count but pentagons ← hexagons do!

Expansion around AT Eden ... Melrose

Expansion around AT

of Feynman integrals is easy to derive analytically

Requires

- Mellin-Barnes
- Sector decomposition

Leading behavior

- $C_0 \sim \ln B_3$;
- $D_0 \sim B_4^{-1/2}$;
- $E_0 \sim B_5^{-1}$;
- F_0 none in 4 d.

e.g. Im C_0 has a log singularity, Re C_0 has a discontinuity

Expansion around AT Eden ... Melrose

Expansion around AT

of Feynman integrals is easy to derive analytically

Requires

- Mellin-Barnes
- Sector decomposition

Leading behavior

- $C_0 \sim \ln B_3$;
- $D_0 \sim B_4^{-1/2}$;
- $E_0 \sim B_5^{-1}$;
- F_0 none in 4 d.

e.g. Im C_0 has a log singularity, Re C_0 has a discontinuity

Expansion around AT Eden ... Melrose

Expansion around AT

of Feynman integrals is easy to derive analytically

Requires

- Mellin-Barnes
- Sector decomposition

Leading behavior

- $C_0 \sim \ln B_3$;
- $D_0 \sim B_4^{-1/2}$;
- $E_0 \sim B_5^{-1}$;
- *F*₀ none in 4 d.

e.g. Im C_0 has a log singularity, Re C_0 has a discontinuity

Non integrable pentagon singularity?

Problem

pentagon → pole

- spin + gauge cancellations
- ② unstable particles → complex masses

Requires

completely new studies

Prelimina

- not the case
- unitarity?
- over a Breit-Wigner of the invariant mass of unstable ext particles

Non integrable pentagon singularity?

Problem

pentagon → pole

- spin + gauge cancellations
- ② unstable particles → complex masses

Requires

completely new studies

Prelimina

- not the case
- unitarity?
- over a Breit-Wigner of the invariant mass of unstable ext particles

Non integrable pentagon singularity?

Problem

pentagon → pole

- spin + gauge cancellations
- ② unstable particles → complex masses

Requires

completely new studies

Preliminar

- not the case
- unitarity?
- for integ. sing. average over a Breit-Wigner of the invariant mass of unstable ext particles

Part V

Differential equations

Differential equations, Regge ... Kotikov ... Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

- ODE for the amplitude;
- real momenta †;
- one boundary condition.

Advantages

- no reduction;
- extedibility to higher loops.

Requires

the right variable

†) $p \in C$ means $SL(2, C) \otimes SL(2, C) \rightarrow$ double cover of SO(3, 1)

Differential equations, Regge ... Kotikov ... Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

- ODE for the amplitude;
- real momenta †;
- one boundary condition.

Advantages

- no reduction;
- extedibility to higher loops.

Requires

the right variable

†) $p \in C$ means $SL(2, C) \otimes SL(2, C) \rightarrow$ double cover of SO(3, 1)

Differential equations, Regge ... Kotikov ... Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

- ODE for the amplitude;
- real momenta †;
- one boundary condition.

Advantages

- no reduction;
- extedibility to higher loops.

Requires

the right variable

†) $p \in C$ means $SL(2, C) \otimes SL(2, C) \rightarrow$ double cover of SO(3, 1)

ODE vs PDE

The case

- non-homogeneous systems of ODE are easy to obtain with IBP but the non-homogeneous part requires (a lot) of additional work;
- PDE are notoriously much more difficult!

However

homogeneous (compatible) systems of nth-order PDE are easy to derive, a fact that has to do with the hypergeometric character of one-loop diagrams.

ODE vs PDE

The case

- non-homogeneous systems of ODE are easy to obtain with IBP but the non-homogeneous part requires (a lot) of additional work;
- PDE are notoriously much more difficult!

However

homogeneous (compatible) systems of nth-order PDE are easy to derive, a fact that has to do with the hypergeometric character of one-loop diagrams.

For the fun of it

Use

- Kershaw expansion around pseudo-threshold and
- generalization of Horn-Birkeland-Ore theory (see Bateman bible)

to write one-loop diagrams as

$$F(z_1, \ldots, z_m) = \sum_{\{n_i\}} A(n_1, \ldots, n_m) \prod_i \frac{z_i^{n_i}}{n_i!}$$

Since

For the fun of it

Use

- Kershaw expansion around pseudo-threshold and
- generalization of Horn-Birkeland-Ore theory (see Bateman bible)

to write one-loop diagrams as

$$F(z_1, \ldots, z_m) = \sum_{\{n_i\}} A(n_1, \ldots, n_m) \prod_i \frac{z_i^{n_i}}{n_i!}$$

Since

$$\frac{A(\ldots,n_i+1,\ldots)}{A(\ldots,n_i,\ldots)} = \frac{P_i(\{n_i\})}{Q_i(\{n_i\})} = \frac{\text{fin. pol.}}{\text{fin. pol.}}$$

Hypergeometry of Feynman integrals

Then

$$\left[Q_i\left(\left\{z_i\frac{\partial}{\partial z_i}\right\}\right)z_i^{-1}-P_i\left(\left\{z_i\frac{\partial}{\partial z_i}\right\}\right)\right]F \ = \ 0.$$

With, e.g. for N=4 (N=5 P, Q are of third order)

$$s_{ij} = -(p_i + \dots + p_{j-1})^2 \quad z_{ij} = \frac{s_{ij} - (m_i - m_j)^2}{4 m_i m_j}$$

$$P_{ij} = (n_i + 1) (n_j + 1), \quad n_i = \sum_{j>i} n_{ij} + \sum_{j

$$Q_{ij} = (n_{ij} + 1) (n + \frac{5}{2}), \quad n = \sum_{i=1}^{n} n_{ij}$$$$

Hypergeometry of Feynman integrals

Then

$$\left[Q_i\!\left(\left\{z_i\,\frac{\partial}{\partial\,z_i}\right\}\right)z_i^{-1}-P_i\!\left(\left\{z_i\,\frac{\partial}{\partial\,z_i}\right\}\right)\right]F\ =\ 0.$$

With, e.g. for N=4 (N=5 P, Q are of third order)

$$s_{ij} = -(p_i + \dots + p_{j-1})^2 \quad z_{ij} = \frac{s_{ij} - (m_i - m_j)^2}{4 m_i m_j}$$

$$P_{ij} = (n_i + 1) (n_j + 1), \quad n_i = \sum_{j>i} n_{ij} + \sum_{j

$$Q_{ij} = (n_{ij} + 1) (n + \frac{5}{2}), \quad n = \sum_{j>i} n_{ij}$$$$

Diffeomorphisms of Feynman diagrams

$$P_i(z) = T_{ij}(z) p_j$$
, with $\sum P_i = \sum p_i = 0$, $T_{ij}(0) = \delta_{ij}$

Classification

M → physical

• maps D(0) into D(z) which is singular at $z_{AT} \in R$

$$s_{ij} \rightarrow S_{ij}(z) \in Phys_z$$

no restriction on s_{ii}

M → unphysical

• maps D(0) into D(z) which is singular at $z_{AT} \in R$

$$s_{ij} \rightarrow S_{ij}(z) \notin Phys_z$$

• restriction on s_{ii}

Classification

M → physical

• maps D(0) into D(z) which is singular at $z_{AT} \in R$

$$s_{ij} \rightarrow S_{ij}(z) \in Phys_z$$

no restriction on s_{ii}

M → unphysical

• maps D(0) into D(z) which is singular at $z_{AT} \in R$

$$s_{ij} \rightarrow S_{ij}(z) \notin Phys_z$$

restriction on s_{ii}

Mappings: I

Mappings: S-I

Solution

$$P_i = (1-z) p_i + z p_{i+2} \mod 4$$

transf. invariants

$$M_i^2 = z(1-z)u$$
, $S = (1-2z)^2 s$, $T = (1-2z)^2 t$, $U = u$
 $r = z^2 - z$
 $r_{AT} = \frac{1}{2u^2} \left[4m^2s + ut + \sqrt{s(4m^2 - u)(4m^2s + ut)} \right]$

4□ > 4周 > 4 = > 4 = > 9 0 0

Mappings: S-I

Solution

$$P_i = (1-z) p_i + z p_{i+2} \mod 4$$

transf. invariants

$$M_i^2 = z(1-z)u$$
, $S = (1-2z)^2 s$, $T = (1-2z)^2 t$, $U = u$
 $r = z^2 - z$
 $r_{AT} = \frac{1}{2u^2} \left[4m^2s + ut + \sqrt{s(4m^2 - u)(4m^2s + ut)} \right]$

Mappings: II

Mappings: S-IIa

Solution

$$P_i = p_i + (-1)^i (p_1 + p_3) z$$

$$M_i^2 = u r, S = s, T = t, U = (1 + 4 r) u$$

 $r = z^2 - z$
 $r_{AT} = \frac{1}{2 u^2} \left[4 m^2 u + \sqrt{u^2 (4m^2 - s) (4m^2 - t)} \right]$

unphysical, $P_{ii}^2 \notin R_{phys}$

requires $s < 4 \, m^2$

Mappings: S-IIb

Solution

$$P_{1,4} = p_{1,4} + (p_1 + p_2) z$$
, $P_{2,3} = p_{2,3} - (p_1 + p_2) z$, $M_{1,3}^2 = z(z+1) s$ $M_{2,4}^2 = z(z-1) s$ $S = s$, $U = u$, $T = (1+4z^2) t$ $z_{AT}^2 = \frac{1}{2} \left[1 - \frac{1}{s} \sqrt{u(4m^2 - s)} \right]$

unphysical, $P_{ii}^2 \notin R_{\text{phys}}$

requires $s > 4 m^2$ and $u < 4 m^2 - s$

General solution for *D*

If \exists a diagram \overline{D} , a transformation \overline{T}

$$\overline{D}(z) = \overline{T}(z)\overline{D}, \quad \overline{T}(0) = I, \quad \overline{D}(z_{\scriptscriptstyle AT}) \text{ singular } z_{\scriptscriptstyle AT} \in R$$

Map D

$$D \rightarrow D(z, z_{AT})$$

$$D(z, z_{AT}) = T_1(z, z_{AT}) D + T_2(z, z_{AT}) \overline{D}(0)$$

$$T_1(0, z_{AT}) = I, \quad T_2(0, z_{AT}) = 0$$

$$T_1(z_{AT}, z_{AT}) = 0 \quad T_2(z_{AT}, z_{AT}) = I$$

General solution for *D*

If \exists a diagram \overline{D} , a transformation \overline{T}

$$\overline{D}(z) = \overline{T}(z)\overline{D}, \quad \overline{T}(0) = I, \quad \overline{D}(z_{AT}) \text{ singular } z_{AT} \in R$$

Map D

$$\begin{array}{rcl} D & \to & D(z,z_{AT}) \\ D(z,z_{AT}) & = & T_1(z,z_{AT}) \ D + T_2(z,z_{AT}) \ \overline{D}(0) \\ T_1(0,z_{AT}) & = & I, \quad T_2(0,z_{AT}) = 0 \\ T_1(z_{AT},z_{AT}) & = & 0, \quad T_2(z_{AT},z_{AT}) = I \end{array}$$

Solution for direct box $gggg \rightarrow 0$

Derive $(T_1 \oplus T_2) \otimes \overline{T}$

$$P_{i} = \left[f_{1} + f_{2} \left(1 - Z_{AT} \right) \right] p_{i} + f_{2} Z_{AT} p_{i+2}, \mod 4$$

$$f_{1} = 1 - \frac{Z}{Z_{AT}} \qquad f_{2} = 1 - f_{1}$$

Or

- direct box → crossed box
- ② crossed box → singular crossed box

Solution for direct box $gggg \rightarrow 0$

Derive $(T_1 \oplus T_2) \otimes \overline{T}$

$$P_{i} = \left[f_{1} + f_{2} \left(1 - Z_{AT} \right) \right] p_{i} + f_{2} Z_{AT} p_{i+2}, \mod 4$$

$$f_{1} = 1 - \frac{Z}{Z_{AT}} \qquad f_{2} = 1 - f_{1}$$

Or

- direct box → crossed box
- 2 crossed box → singular crossed box

$gg\overline{t}t \rightarrow 0$

Solution for $gg\overline{t}t \rightarrow 0$

Requires shift on internal masses

$$p \rightarrow P = T_p(z) p$$
 and $m \rightarrow M = T_m(z) m$

 T_{μ}

$$P_{1} = (1-z) p_{1} + z \left(p_{3} + \frac{z}{z_{AT}} K\right) \quad P_{2} = (1-z) p_{2} + z \left(p_{4} - \frac{z}{z_{AT}} K\right)$$

$$P_{3} = z p_{1} + (1-z) \left(p_{3} + \frac{z}{z_{AT}} K\right) \quad P_{4} = z p_{2} + (1-z) \left(p_{4} - \frac{z}{z_{AT}} K\right)$$

_

$$T_m = \text{diag}\left(\frac{z}{z_{AT}}, \frac{z}{z_{AT}}, 1, 1\right)$$

$$K_{\mu} = k \epsilon (\mu, p_1, p_2, p_3) \quad k^2 = -4 \frac{m}{T} \left[st + \left(t - m^2\right)^2\right]^{-1}$$

Solution for $gg\overline{t}t \rightarrow 0$

Requires shift on internal masses

$$p \rightarrow P = T_p(z) p$$
 and $m \rightarrow M = T_m(z) m$

 T_p

$$P_{1} = (1-z)p_{1} + z\left(p_{3} + \frac{z}{z_{AT}}K\right) \quad P_{2} = (1-z)p_{2} + z\left(p_{4} - \frac{z}{z_{AT}}K\right)$$

$$P_{3} = zp_{1} + (1-z)\left(p_{3} + \frac{z}{z_{AT}}K\right) \quad P_{4} = zp_{2} + (1-z)\left(p_{4} - \frac{z}{z_{AT}}K\right)$$

Tm

$$T_m = \text{diag}\left(\frac{z}{z_{AT}}, \frac{z}{z_{AT}}, 1, 1\right)$$

$$K_{\mu} = k \epsilon (\mu, p_1, p_2, p_3) \quad k^2 = -4 \frac{m}{s} \left[st + \left(t - m^2\right)^2\right]^{-1}$$

ODE in z with IBP

ODE for boxes

$$D_{0}(\{n\}) = \frac{\mu^{\epsilon}}{i\pi^{2}} \int d^{n}q \frac{1}{\prod_{i=0,3} (i)^{n_{i}}},$$

$$D_{0}(i) = D_{0}(1, \dots, 2, \dots, 1) \quad D_{0} = D_{0}(1, \dots, 1)$$

$$\frac{d}{dz} D_{0} = 2 zs \left[D_{0}(2) + D_{0}(4) \right] + \text{triangles}$$

IBP –

$$D_0(i) = M_{ii}^{-1} d_i \det M(z_{AT}) = 0$$

where d_i contains D_0 or triangles.

ODE in z with IBP

ODE for boxes

$$D_{0}(\{n\}) = \frac{\mu^{\epsilon}}{i\pi^{2}} \int d^{n}q \frac{1}{\prod_{i=0,3} (i)^{n_{i}}},$$

$$D_{0}(i) = D_{0}(1, \dots, 2, \dots, 1) \quad D_{0} = D_{0}(1, \dots, 1)$$

$$\frac{d}{dz} D_{0} = 2 zs \left[D_{0}(2) + D_{0}(4) \right] + \text{triangles}$$

IBP –

$$D_0(i) = M_{ii}^{-1} d_i \det M(z_{AT}) = 0$$

where d_i contains D_0 or triangles.

ODE in z with IBP

ODE for boxes

$$D_{0}(\{n\}) = \frac{\mu^{\epsilon}}{i\pi^{2}} \int d^{n}q \frac{1}{\prod_{i=0,3}(i)^{n_{i}}},$$

$$D_{0}(i) = D_{0}(1, \dots, 2, \dots, 1) \quad D_{0} = D_{0}(1, \dots, 1)$$

$$\frac{d}{dz} D_{0} = 2zs \left[D_{0}(2) + D_{0}(4)\right] + \text{triangles}$$

$\mathsf{IBP} \to$

$$D_0(i) = M_{ii}^{-1} d_i \det M(z_{AT}) = 0$$

where d_i contains D_0 or triangles.

ODE in $r = z^2 - z$

▶ exa

ODE

$$\frac{d}{dr}D_0(r) = C_4^{-1}(r)\left[X(r)D_0(r) + D_{\text{rest}}(r)\right]$$

where C_4 is the Caley determinant.

We have

$$\frac{d}{dr}C_4 = -2X(r) \sim$$

$$D_0(r) = \frac{D_{\text{sing}}}{(r - r_{\text{reg}})^{1/2}} + D_{\text{reg}}(r)$$

ODE in $r = z^2 - z$

→ exa

ODE

$$\frac{d}{dr}D_0(r) = C_4^{-1}(r)\left[X(r)D_0(r) + D_{\text{rest}}(r)\right]$$

where C_4 is the Caley determinant.

We have

$$\frac{d}{dr} C_4 = -2 X(r) \longrightarrow$$

$$D_0(r) = \frac{D_{\text{sing}}}{(r - r_{AT})^{1/2}} + D_{\text{reg}}(r)$$

ODE for $H \rightarrow gg$; I

Amplitude

There is one form factor F_D that can be written, without reduction, as $F_D = \sum_i F_i$

$$\begin{aligned} & \textbf{\textit{F}}_1 = \frac{1}{2} \, \int \, d^n q \frac{M_H^2 - 2 \, m_t^2}{(0)(1)(2)} \quad \textbf{\textit{F}}_2 = - \, 2 \, \int \, d^n q \frac{q \cdot p_1}{(0)(1)(2)} \\ & (n-2) \, \textbf{\textit{F}}_3 = \int \frac{d^n q}{(0)(1)(2)} \left[(6-n) \, q^2 + \frac{16}{M_H^2} \, q \cdot p_1 \, q \cdot p_2 \right] \end{aligned}$$

Mapping

A mapping is needed; suppose that $M_{ij}^2 < 4 m_t^2$

ODE for $H \rightarrow gg$; I

Amplitude

There is one form factor F_D that can be written, without reduction, as $F_D = \sum_i F_i$

$$\begin{aligned} & \textbf{\textit{F}}_1 = \frac{1}{2} \, \int \, d^n q \frac{M_H^2 - 2 \, m_t^2}{(0)(1)(2)} \quad \textbf{\textit{F}}_2 = - \, 2 \, \int \, d^n q \frac{q \cdot p_1}{(0)(1)(2)} \\ & (n-2) \, \textbf{\textit{F}}_3 = \int \frac{d^n q}{(0)(1)(2)} \left[(6-n) \, q^2 + \frac{16}{M_H^2} \, q \cdot p_1 \, q \cdot p_2 \right] \end{aligned}$$

Mapping

A mapping is needed; suppose that $M_{\mu}^2 < 4 m_t^2$

ODE for $H \rightarrow gg$; II

Mapping $p_{1,2} \rightarrow P_{1,2}$

$$T = \begin{pmatrix} z & 1-z \\ 1-z & z \end{pmatrix}$$
 $B \rightarrow M_H^2 \frac{C}{G}$

$$C = r^2 + \mu_t^2 (1 + 4r)$$
 $G = -\frac{1}{4} M_H^2 (1 + 4r)$

$$r = z(z - 1)$$
 and $\mu_t^2 M_{\mu}^2 = m_t^2$

ODE for $H \rightarrow gg$; III

Solution

$$r_{AT} = -2\mu_t^2 \left[1 + \sqrt{1 - \frac{1}{4\mu_t^2}} \right]$$
 $-\infty < r_{AT} < -\frac{1}{2}$

Solution for

the amplitude is needed at r = 0

ODE for $H \rightarrow gg$; III

Solution

$$r_{AT} = -2\mu_t^2 \left[1 + \sqrt{1 - \frac{1}{4\mu_t^2}} \, \right]$$

 $-\infty < r_{AT} < -\frac{1}{2}$

Solution for

the amplitude is needed at r = 0

ODE for $H \rightarrow gg$; IV

Less simple but non-singular (in R)

$$T_p = \left(\begin{array}{cccc} 1-z & z & 0 \\ 0 & 1-z & z \\ z & 0 & 1-z \end{array} \right)$$

$$M_i^2 = \left(1 - \frac{z}{z_{AT}}\right) m^2 + \frac{z}{z_{AT}} \overline{M}_i^2$$

\overline{M}_i free parameters to satisfy

$$P_1^2 < (M_1 + M_2)^2 P_2^2 > (M_2 - M_3)^2$$

 $(P_1 + P_2)^2 < (M_1 + M_3)^2$

ODE for $H \rightarrow gg$; IV

Less simple but non-singular (in R)

$$T_p = \left(\begin{array}{cccc} 1-z & z & 0 \\ 0 & 1-z & z \\ z & 0 & 1-z \end{array} \right)$$

$$M_i^2 = \left(1 - \frac{z}{z_{AT}}\right) m^2 + \frac{z}{z_{AT}} \overline{M}_i^2$$

\overline{M}_i free parameters to satisfy

$$P_1^2 < (M_1 + M_2)^2 P_2^2 > (M_2 - M_3)^2$$

 $(P_1 + P_2)^2 < (M_1 + M_3)^2$

ODE for $H \rightarrow gg$; **V**

System of ODE

$$\frac{d}{dr}F_i = X_{ij}F_j + Y_j, X, Y \text{ from IBP}$$

Trading F_3 for $F_D \sim$

$$\frac{d}{dr}F_D - X_{33}F_D + \left(X_{33} - \sum_i X_{i1}\right)F_1 + (X_{33} - X_{22})F_2 = \sum_i Y_i$$

ODE for $H \rightarrow gg$; **V**

System of ODE

$$\frac{d}{dr}F_i = X_{ij}F_j + Y_j, X, Y \text{ from IBP}$$

Trading F_3 for $F_D \rightsquigarrow$

$$\frac{d}{dr} F_D - X_{33} F_D + \left(X_{33} - \sum_i X_{i1} \right) F_1 + (X_{33} - X_{22}) F_2 = \sum_i Y_i$$
 etc.

ODE for $H \rightarrow gg$; VI

Boundary conditions at AT (factorization)

$$F_1 \sim \frac{1}{2} \left(M_H^2 - 2 m_t^2 \right) C_0^{\text{sing}} (z_{AT})$$

$$F_2 \sim M_{_H}^2 \, z_{_{AT}} \, C_0^{sing} \, (z_{_{AT}})$$

$$F_D \sim \left[\frac{M_H^2}{8} (1+6 r_{AT}) - m_t^2 (1+4 r_{AT})\right] C_0^{\text{sing}} (z_{AT})$$

ODE for $H \rightarrow gg$; VII

Solution

$$C_0(r) = g(r) \ln \frac{B_3(r)}{M_H^2} + h(r)$$

$$\frac{d}{dr}g = -\frac{2}{1+4r}g$$

Boundary

$$g(z_{AT}) = \frac{2\pi i}{M_u^2} \beta(z_{AT}) \quad \beta^2(r) = 1 - 4\frac{\mu_t^2}{r}$$

the regular part h(r) is computed numerically

ODE for $H \rightarrow gg$; VII

Solution

$$C_0(r) = g(r) \ln \frac{B_3(r)}{M_H^2} + h(r)$$

$$\frac{d}{dr}g = -\frac{2}{1+4r}g$$

Boundary

the regular part h(r) is computed numerically

ODE for $H \rightarrow gg$; VII

Solution

$$C_0(r) = g(r) \ln \frac{B_3(r)}{M_H^2} + h(r)$$

$$\frac{d}{dr}g = -\frac{2}{1+4r}g$$

Boundary

the regular part h(r) is computed numerically

General strategy, e.g. for N=4

Define

$$D_{n_0...n_3}(i) = \int d^n q \frac{q \cdot q^{n_0} \dots q \cdot P_3^{n_3}}{(0) \dots (i)^2 \dots (3)}$$

which satisfy

$$D_{n_0...n_3}(i) = M_{ij}^{-1} d_{n_0...n_3}(j) + d'_{n_0...n_3}(i)$$

Then

find the minimal set of linear combinations F = cD such that $Amp = \sum F$ with $\{F\}$ closed under d/dz.

General strategy, e.g. for N=4

Define

$$D_{n_0...n_3}(i) = \int d^n q \frac{q \cdot q^{n_0} \dots q \cdot P_3^{n_3}}{(0) \dots (i)^2 \dots (3)}$$

which satisfy

$$D_{n_0...n_3}(i) = M_{ij}^{-1} d_{n_0...n_3}(j) + d'_{n_0...n_3}(i)$$

Then

find the minimal set of linear combinations F = cD such that $Amp = \sum F$ with $\{F\}$ closed under d/dz.

General strategy, e.g. for N=4

Define

$$D_{n_0...n_3}(i) = \int d^n q \frac{q \cdot q^{n_0} \dots q \cdot P_3^{n_3}}{(0) \dots (i)^2 \dots (3)}$$

which satisfy

$$D_{n_0...n_3}(i) = M_{ij}^{-1} d_{n_0...n_3}(j) + d'_{n_0...n_3}(i)$$

Then

find the minimal set of linear combinations F = cD such that $Amp = \sum F$ with $\{F\}$ closed under d/dz.

Extension to multi-loop

Equal mass two-loop sunset à la Remiddi

• with $m = 1, p^2 = x$ shift $x \to zx$

$$xz(xz+1)(xz+9)\frac{d^2}{dz^2}S(x,z) =$$

$$P(x,z)\frac{d}{dz}S(x,z)+Q(x,z)S(x,z)+R(x,z)$$

AT solution

 $\mathbf{Z}_{AT} = -\mathbf{x}^{-1}$ (Warning: AT = pseudo-threshold); for different masses, map

$$m_i \rightarrow M_i = \frac{Z - Z_{AT}}{1 - Z_{AT}} m_i + \frac{1 - Z}{1 - Z_{AT}} m_i$$

Extension to multi-loop

Equal mass two-loop sunset à la Remiddi

• with m = 1, $p^2 = x$ shift $x \to zx$

$$xz(xz+1)(xz+9)\frac{d^2}{dz^2}S(x,z) =$$

$$P(x,z)\frac{d}{dz}S(x,z)+Q(x,z)S(x,z)+R(x,z)$$

AT solution

 $\mathbf{Z}_{AT} = -\mathbf{x}^{-1}$ (Warning: AT = pseudo-threshold); for different masses, map

$$m_i \rightarrow M_i = \frac{z - z_{AT}}{1 - z_{AT}} m_i + \frac{1 - z}{1 - z_{AT}} m$$

Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a single variable deformation of the amplitude.

Refrain

```
In LL04 I mentioned the word anomalous threshold, Peter Zerwas told me 'that showes your age' perhaps he was wrong ... perhaps not ... but then others will fall away
```


Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a single variable deformation of the amplitude.

Refrain

```
In LL04 I mentioned the word anomalous threshold, Peter Zerwas told me 'that showes your age' perhaps he was wrong . . . perhaps not . . . but then others will fall away . . .
```


