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o From the analytical structure of Feynman diagrams




Outlines

Outlines

o From the analytical structure of Feynman diagrams
Qo to their numerical evaluation

what else, but the inevitable!
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Intermezzo




A complete two-loop calculation

Oooops ... H — vyv,99 ~

This is what | should have been taking about
S. Actis, C. Sturm, S. Uccirati and myself (=~ 10 kilohour)
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Part Il




A celebrated result with too many fathers

Z {1-Ioop n-legs Feynman diagrams} =

ZBDDO(P}’,...,PE)+---
D

D partition of {1...n} into 4 non-empty sets
PP sum of momentaini € D




Bases are bases, and troubles are troubles

Scalar one-loop integrals

form a basis. Thus, coefficients are uniquely determined,
although some method can be more efficient than others.
However, troublesome points will always be there
(Denner-Dittmaier anathema). What to do?

@ Change (adapt) bases?

@ Avoid bases (expansion)?

@ Rethinking necessary.




Part Il

Factorization of Feynman amplitudes




Factorization

Factorization

Any Feynman diagram

is particularly simple when evaluated around its anomalous
threshold.

Kershaw theorem (1972)

The singular part of a scattering amplitude around its leading
Landau singularity may be written as an algebraic product of
the scattering amplitudes for each vertex of the corresponding
Landau graph times a certain explicitly determined singularity
factor which depends only on the type of singularity (triangle
graph, box graph, etc.) and on the masses and spins of the %
internal particles.




Factorization

One-loop, multi-legs

scalar one-loop N -leg integral in n-dimensions as

K n 1
" T2 ) T o )
() = @+ko+ - +k)’+m,

Use N -simple x




Factorization

One-loop, multi-legs I

In parammetric space we get

[1,2 2—n/2 n
San = <?> r <N _ E) IN]s.

N]n = /dSN—lvr\?/z_N:

with %

Vi = X'Hyx+2Kix+Ly, Xy=-KHL
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Factorization

One-loop, multi-legs I

In parametric space we get

’LLZ 2-n/2 n
Shn = (?> r (N - E) [N]n.

N]n = /dSN—lvr\T/ZN:

with

V. — ywyiH y12kiy 1], X — _ktH1



Factorization

One-loop, multi-legs Il

Useful jargon (used by addicts) J

BST factor
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Factorization

One-loop, multi-legs Il

Useful jargon (used by addicts) J
BST factor Caley (determinant)
Hy Ky
Bu = Ly—K!H 1K, K Ly

Gram (determinant)




Factorization

One-loop, multi-legs IV

It follo ws
B = C/G, where C = detM is the so-called modified Cayley
determinant of the diagram.

A\

LS as pinc hes (masses & invariants € R)

Vi = (x = Xy)' H (X — Xy) + By

Thus

By = 0 induces a pinch on the integration contour at the point
of coordinates x = Xy; therefore, if the conditions, %

| A\

By =0, 0 < Xyn—1 < oo < Xy1 <1,

are satisfied we will have the leading singularity of the diagram.



Factorization

Why to avoid Gram—1?

A common wisdom, but?

@ The vanishing of the Gram determinant is the condition for
the occurence of non-Landau singularities, connected with
the distorsion of the integration contour to infinity;

@ furthermore, for complicated diagrams, there may be
pinching of Landau (C = 0) and non-Landau singularities
(G = 0), giving rise to a non-Landau singularity whose
position depends upon the internal masses (so-called D?
wild points).




Factorization

AT and factorization

@ Given the above properties the factorization of Kershaw
theorem follows.

@ The beauty of being at the anomalous threshold is that
everything is frozen and the amplitude factorizes.

@ But, what to do with a point?

@ It looks perfect for boundary conditions, as long as we can

reach it. Alternative: expand & match residues at a given
AT (Cachazo 2008). %




Factorization

Standar d reduction vs modern techniques

3

1% n q-P1

— [ d'q Dijp1-pi = Dy Hy;.

i 72 H|03) ;ul i ;L 1i
carefull application of the method

1 _ 3 3
Dy = —SH'd di= p{*Y — bl — 2K Dy,

where DS) is the scalar triangle obtained by removing %
propagator i from the box.



Factorization

Standar d reduction vs modern techniques I

Therefore we obtain

3
,Lf n q-pP1 1

= = Iy =
i /qu| 0,3 (1) Zz:: = dl
(no G3). Furthermore, the coefficient of Dg in the reduction is

> (mz—m? —p})

(General feature of tensor-N — scalar-N)




Factorization

Standar d reduction vs modern techniques Il

At the leading Landau singularity of the box we must have

9>+m3 = 0, (q+p)’+m?=0, et

Therefore
the coefficient of Dy is fixed by

2q-ps| = mi-mi-p
AT

which is what a careful application of SR gives. Note that one %
gets the coeff. without having to require a physical singularity.




Factorization

From hexagons up: factorization at
SublLeadingLandau

Xe6 — 0
i
AXei = Xgi — Xe,i+1

F(n)s) ~ =588 xmy XDy L XD ES™()

.. easy with BST

1 AX ; .
or ®X(5) ... XP(5)ES(5) bng0 | =5 %



Factorization

Sunny-side up of factorization

Progress

@ At least in one point we
can avoid reduction, all
integrals are scalar;

@ but, do we need to have
the AT inside the
physical region Rpnys
(support of AT in R)?




Factorization

Sunny-side up of factorization

@ At least in one point we @ Since this is a rare event
can avoid reduction, all (see later) we must have
integrals are scalar; a generalization:

@ but, do we need to have @ prove that the AT, even
the AT inside the with invariants ¢ Rpnys
physical region Rpnys implies a frozen q.
(support of AT in R)?




Factorization

Generaliz ed factorization |

1 1
if .—/d”qi. is singularatx = X € R
i 72 [Ticon-1 (i)




Factorization

Generaliz ed factorization |

I | 1 .
if i—z/d”qi is singularatx =X € R
7T

Hi:O,N—l (i)

O T I T R,
i w2 d qu:O,N—l(i) - iZ_;[N]n(l)pl Pi

N N

D OINIn()Hi A > INJa(1) Hi Xi = — K [N]n.

i=1 i=1

>




Factorization

Generaliz ed factorization |

I | 1 .
if i—z/d”qi is singularatx =X € R
7T

Hi:O,N—l (i)

O T I T R,
i w2 d qu:O,N—l(i) - iZ_;[N]n(l)pl Pi

N N

D OINIn()Hi A > INJa(1) Hi Xi = — K [N]n.

i=1 i=1

>
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Generaliz ed factorization |l
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Factorization

Generaliz ed factorization |l

Xi=—-KH™*  HX=-K

~» Factorization

At the AT all scalar products — solution of

(q_|_...+pi)2_|_mi2’ i=0,...,N—-1

\




Part IV

More on the AT




How frequent is AT in your calculation?

For N = 4 there are 14 branches in p -(real) space,

p? > 0,pp <0

2 2

2 2 2 2 2 2
ME < (mp m)T, M >(mi—mj) 1Mk<(mj+mk) , M < (mg —my)”,
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How frequent is AT in your calculation?

For N = 4 there are 14 branches in p -(real) space,

2 2 2 2 2 2
M2 < (mtm)?, M >(mi—mj) ,Mk<(mj+mk) , M2 < (m —m)?,




It's easier with Coleman - Norton

time — M m M

M > 2m M

In 2 — 2 two unstable particles € [in > are needed! Jé




Example for pentagon

: ki t
time — ' /
\
' M” >m+m'
\\ ’/’
\ ’r
AN -
\ Phg
\ Phe
L7
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/’ A}
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z’ \
’/ AY
lf \
F _____________ X
M >2m E



AT watch (ain’t atornado but)

For those who don’t want an AT in their MC, beware of

v*,Z* etc W

2
S>4mt MZ(H)>4MV2V



AT watch Il (Denner’s devil)

Hexagons don’t count but pentagons < hexagons do! J




Expansion around AT

Expansion around AT

of Feynman integrals is easy
to derive analytically

e.g. ImCy has a log singularity, ReCqy has a discontinuity Jé



Expansion around AT

Expansion around AT

of Feynman integrals is easy
to derive analytically

Requires
@ Mellin-Barnes

@ Sector decomposition

e.g. ImCy has a log singularity, ReCqy has a discontinuity Jé



Expansion around AT

Expansion around AT Leading behavior

of Feynman integrals is easy @ Cy ~In Bs;

to derive analytically @ Dy~ B;1/2;
@ Eg~ Bil;

Requires

. @ Fononein4d.
@ Mellin-Barnes 0

@ Sector decomposition

e.g. ImCy has a log singularity, ReCqy has a discontinuity Jé



Non integrab le pentagon singularity?

pentagon — pole
© spin + gauge
cancellations

@ unstable particles —
complex masses
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Non integrab le pentagon singularity?

pentagon — pole
© spin + gauge
cancellations

@ unstable particles —
complex masses

Requires
completely new studies

Preliminar

© not the case

Q unitarity?

@ for integ. sing. average
over a Breit-Wigner of
the invariant mass of
unstable ext particles




Part V

Differential equations



Differential equations, Regge ... Kotikov ...
Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

@ ODE for the amplitude;
@ real momenta T;

@ one boundary condition.

) p € C means SL(2,C) ® SL(2,C) — double cover of é
SO(3,1)
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Differential equations, Regge ... Kotikov ...
Remiddi

Everything is suggesting DE with boundary conditions at the AT

But we want

Advantages

@ ODE for the amplitude;
@ real momenta T;

@ no reduction;
@ extedibility to higher

@ one boundary condition. loops.
Requires
@ the right variable
) p € C means SL(2,C) ® SL(2,C) — double cover of é
S0(3,1)



ODE vs PDE

@ non-homogeneous systems of ODE are easy to obtain with
IBP but the non-homogeneous part requires (a lot) of
additional work;

@ PDE are notoriously much more difficult!




ODE vs PDE

@ non-homogeneous systems of ODE are easy to obtain with
IBP but the non-homogeneous part requires (a lot) of
additional work;

@ PDE are notoriously much more difficult!

However

homogeneous (compatible) systems of nth-order PDE are easy
to derive, a fact that has to do with the hypergeometric
character of one-loop diagrams. é




For the fun of it

Use
@ Kershaw expansion around pseudo-threshold and
@ generalization of Horn-Birkeland-Ore theory (see Bateman
bible)

to write one-loop diagrams as

Z
F(ze,...,Zm) = ZA(nl,...,nm) ﬁ
{ni} i




For the fun of it

@ Kershaw expansion around pseudo-threshold and
@ generalization of Horn-Birkeland-Ore theory (see Bateman
bible)

to write one-loop diagrams as

Z
{ni} i

T

A(....,m+1,...)  Pi({n}) fin. pol.

A(...,n,...)  Q({{nm}) fin. pol.

\,



ODE

Hypergeometry of Feynman integrals




Hypergeometry of Feynman integrals

hen
el -n(a e -0

sj — (i —m;)?

2
si = —(pi+ ... +pi_1)” zj=
! (P 1) 7 4mm
Pj = (M+1)(+1)., m= nj+) n
j>i j<i %
Qij = (nu‘l’l) —, n—Zn”

i<

A\



Diffeomorphisms of Feynman diagrams

Pi(z) = Tij(Z)pj, with Z P, = Z pi =0, Tij(o) _ 5"_



Classification

@ maps D(0) into D(z) which is singular at z,; € R
sj — Sj(z) € Phys,

@ no restriction on s;;




Classification

M — physical

@ maps D(0) into D(z) which is singular at z,; € R
sj — Sj(z) € Phys,
@ no restriction on s;;

M — unph ysical

@ maps D(0) into D(z) which is singular at z,; € R

si — Sj(z) € Phys, %

@ restriction on s;;




Mappings: |

————v—~ Mmassless

massive

A Y e
N e
N7
7\
4 A Y
4 A Y T
TS — — = = FTTO _



Mappings: S-l

Pi = (1-2z)pi+zpiy2 mod 4

transf. invariants

(1-2z)u, S=(1-22)%s, T=(1-22)t,U=u
2

V4
" —Z

1
= 52 4mzs+ut+\/S(4m2—u)(4m23+ut)} %




Mappings: S-l

Pi

z(1-
7% — 7
1
2u?

= (L-2z)pi +zpis2
transf. invariants

zZ)u, S=(1-22)%s, T

=(1-22)%t,U=u

mod 4

4m?s + ut + \/s (4m2 — u) (4m2s + ut)}




Mappings: |l

————v—~ Mmassless

massive



Mappings: S-lla

Pi = pi+(~1) (p1+ps3)z

M? = ur,S=s, T=t U=(1+4r)u
r = z2-z

o = Z—tz [4 m2u + \/u2 (4m2 — s) (4m2 — t)}

unph ysical, PZ ¢ Rphys %

requires s < 4m?



Mappings: S-llIb

Pia = P1a+(P1+p2)2z, Paz=p23—(p1+p2) 2

MZ; = z(z+1)s M3, =z(z-1)s
=s, U=u, T=(@1A+42z%t

unph ysical, P2 & Rphys %

requiress >4m?andu <4m? —s




General solution for D

If 3 adiagram D, a transf ormation T

D(z) = T(z)D, T(0)=1I, D(za)singularz,; €R




General solution for D

If 3 adiagram D, a transf ormation T

D(z) = T(z)D, T(0)=1I, D(za)singularz,; €R

D — D(z,zar)
D (2. 2ar) T1(2,2ar) D+ T2(2,2ar) D(0)
T1(0,z0r) = 1, T2(0,24) =0
) ®

Ty (ZATa Zat — (0F 5 (ZAT7 ZAT) =1




Solution for direct box gggg — 0

Derive (T @ T2)®T

Pi = |fi+f (1— zAT)] Pi + f2 Zar Piy2, mod4
V4
i 1 -~ % 1




Solution for direct box gggg — 0

Derive (T @ T2)®T

Pi = [fi+f (1— ZAT)] Pi +f2Zar Piy2, mod4
A
fl = 1- Z f2 =1- 1:1

© direct box — crossed box
@ crossed box — singular crossed box




ggtt — 0

————v—~ Mmassless

massive



Solution for ggtt — 0

Requires shift on internal masses

p — P=Tp(z)p and m—-M=Ty(z)m




Solution for ggtt — 0

Requires shift on internal masses

p — P=Tp(z)p and m—-M=Ty(z)m
. v
z z
Pp = (1-2z)p1+z (p3+—K) Pp=(1-2)pp+2 (Pa——K>
ZAT ZAT
P = zp+(1-2) (szriK) P4:ZPz+(1*Z)<PA*iK)
ZAT ZAT
v
Tm
z z
Tm = diag (—,—,1,1)
ZAT  ZAT
Kp = ke(w,p1,P2,P3) kZ:—4g[st+(t—m2)2}71

A\



ODE in z with IBP

ODE for boxes

Do({n}) = A / T P

i w2 o5 ()M’
Do(i) = Do(L,....2, ...,1) Do=Do(L,....1)
d

d—ZDo = 21zs [Do(2)+Do(4) + triangles




ODE in z with IBP

ODE for boxes

Do({n}) = A / T P

i w2 o5 ()M’
Do(i) = Do(L,....2, ...,1) Do=Do(L,....1)
d

d—ZDo = 21zs [Do(2)+Do(4) + triangles




ODE in z with IBP

ODE for boxes

Do ({n}) = % / d"q m,
Do(i) = Do(1,....2,...,1) Dp=Dg(1,...,1)
dd_z Do = 2zs [DO(Z) + Do(4)| + triangles

Do(i) = My'dj detM(zs)=0 %

where d; contains Dg or triangles.




ODEinr=2z%2—-7

£ o(r) = C71(0) [X()Dor) + Dres(1)

where C4 is the Caley determinant.




ODEinr=2z%2—-7

:_rDo(r) = C3H(r) [X(1)Dolr) + Drex(r)

where C4 is the Caley determinant.

>

d
EC4 = —ZX(r) ~ %

D.
Do(r) = "7z + Drsll)

(r —rar




A simple example

ODE for H — gg; |

There is one form factor F, that can be written, without
reduction, as Fp = ) ; F;

/dn zmt __Z/d q(oq(lp(lz

2)F3 = /(0 —-n)g®+ q paq - pz]




A simple example

ODE for H — gg; |

There is one form factor F, that can be written, without
reduction, as Fp = ) ; F;

/dn zmt __Z/d q(oq(lp(lz
2)F3 = /(0 —n)g®+ q paq - pz]

Mapping

A mapping is needed; suppose that M2 < 4m?




A simple example

ODE for H — gg; I

Mapping pi2 — P12

z 1-z , C

— B M2 =

T (12 z ) — hG
C = r2+42(1+4r) G= 1|v|21 4

= r“+up;(L+4r) =2 S(1+4r)

r=z(z-1) and pfM? =m¢ %



A simple example

ODE for H — gg; Il

Solution




A simple example

ODE for H — gg; Il

Solution

the amplitude is needed atr = 0




A simple example

ODE for H — gg: IV

Less simple but non-singular (in R)

1-z z 0
Tp = 0O 1-z z
z 0 1-z




A simple example

ODE for H — gg: IV

Less simple but non-singular (in R)

1-z z 0
Tp = 0O 1-z z
z 0 1-z

M; free parameter s to satisfy

P2 < (My+M3)? P2>(My—Ms)?
(P1+P2)? < (Mg+ M3)?

A\



A simple example

ODE for H — gg; V

System of ODE

d

d—rFi = Xiij—l—Yj, X, Y from IBP




A simple example

ODE for H — gg: V.

System of ODE

d

d—rFi = Xiij—l—Yj, X,Y from IBP

Trading F3 for Fy ~»
@
dr

<X33 - Z Xi1> F1 4+ X3z — X22) F2 = Z Yi %

FD - X33 FD +

etc.




A simple example

ODE for H — gg; VI

Boundar y conditions at AT (factorization)

1 2 2 i
oo~ 5 (M2-2m?) C§™ (zur)

F2 = ,\/I'_Z1 ZAT ang (ZAT)

MZ .
Fo ~ {?H (1+61x) —m? (1+4r14)| C3™ (zar)




A simple example

ODE for H — gg; VII

Bs(r
Co(r) = g(r)In Ifﬂ(z)m(r)
H
d 2
ard = 14—4rg




A simple example

ODE for H — gg; VII

Ba(r
Cor) = o) In 20 4 n(r
H
g 2
a9 = 1149

2 i 2
9 (@) = 3z B(2) FP(1) =145




A simple example

ODE for H — gg; VII

Bs(r
Cor) = a(r) n 250 )
H
g L 2
drg - 14—4rg

2 i 2
9 (@) = 3z B(2) FP(1) =145

the regular part h(r) is computed numerically



A simple example

General strategy , e.g. for N = 4

q- q”° q P3"
Dno n3 /d q ?3)
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A simple example

General strategy , e.g. for N = 4

q- q”° q P3"
Drng..s{ /d d ..?3)

Dng..ns(i) = Mij_ldno...ng(j)+dr{]0“.n3(i)

Then

find the minimal set of linear combinations F = ¢ D such that
Amp = > F with {F} closed under d/dz.

A\



A simple example

Extension to multi-loop

Equal mass two-loop sunset ala Remiddi

@ with m=1,p2 =x shift x — zx

2
Xz(xz+1)(xz+9) %S(x,z):

P(x,z) :—Z S(X,z) +Q(x,z)S(x,z) + R(x,2)




A simple example

Extension to multi-loop

Equal mass two-loop sunset ala Remiddi

@ with m=1,p2 =x shift x — zx

2
Xz(xz+1)(xz+9) %S(x,z):

P(x,z) :—Z S(X,z) +Q(x,z)S(x,z) + R(x,2)

z,r = —x~1 (Warning: AT = pseudo-threshold); for different
masses, map %

_Z—Zpr 1-z

m; — Mi—

1-2z,




Conclusions

Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a
single variable deformation of the amplitude.




Conclusions

Conclusions

Recapitulation

A proposal for solving a simpler problem by concentrating on a
single variable deformation of the amplitude.

>

In LLO4 | mentioned the word anomal ous threshold,
Peter Zerwas told me *that showes your age’
perhaps he waswrong . . .

perhapsnot . . .

but then otherswill fall away . . . %
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