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Introduction



Ancient History

A remarkable achievement, before quantum field theory was born.



Theory

Emission of a massless gauge boson

I Singularities may arise only when internal
propagators go on shell.

2p · k = 2p0k0(1− cos θpk) = 0 ,

→ k0 = 0 (IR); cos θpk = 1 (C).

Note: p0 = 0 singularity will be integrable.

I Emission is not suppressed at long distances.

I Isolated charged particles are not true
asymptotic states of unbroken gauge theories.

I A serious problem: the S matrix does not exist in the usual Fock space.

I Possible solutions: construct finite transition probabilities (KLN theorem);
construct better asymptotic states (coherent states).

I Long-distance singularities obey a pattern of exponentiation
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Practice
Just a formal issue in quantum field theory? Are there practical applications?

I Higher order calculations at colliders cross hinge upon cancellation of divergences
between virtual corrections and real emission contributions.

I Cancellation must be performed analytically before numerical integrations.
I Need local counterterms for matrix elements in all singular regions.
I State of the art: NLO multileg. NNLO available only for e+e− annihilation.

I Cancellations leave behind large logarithms: they must be resummed.

1
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virtual
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real

=⇒ ln(m2/Q2) ,

I For inclusive observables: analytic resummation to high logarithmic accuracy.
I For exclusive final states: parton shower event generators, (N)LL accuracy.

I Resummation probes the all-order structure of perturbation theory.

I Power-suppressed corrections to QCD cross sections can be studied
I Links to the strong coupling regime can be established for SUSY gauge theories.



Modern History

Factorization
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Progress

I Exponentiation applies to non-abelian gauge theories.

I Exponentiation extends to collinear divergences.

I Exponentiation is performed at the amplitude level.

I An optimal regularization scheme is used.



At Tevatron

Z boson spectrum at Tevatron (A. Kulesza et al., hep-ph/0207148)

66 < Q < 116 GeV

CDF

CDF data on Z production compared with QCD predictions at fixed order (dotted), with

resummation (dashed), and with the inclusion of power corrections (solid).



At LHC

Higgs boson spectrum at LHC (M. Grazzini, hep-ph/0512025)

Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at the LHC, with

and without resummation.



For theory
I Understanding long-distance singularities to all orders provides

a window into non-perturbative effects.

I The structure of long-distance singularities is universal for all
massless gauge theories.

I A very special theory has emerged as a theoretical laboratory:
N = 4 Super Yang-Mills.

I It is conformal invariant: βN=4(αs) = 0.
I Exponentiation of IR/C poles in scattering amplitudes simplifies.
I AdS/CFT suggests a ‘simple’ description at strong coupling, in the planar limit.
I Exponentiation has been observed for MHV amplitudes up to five legs.
I Higher-point amplitudes are strongly constrained by (super)conformal symmetry.
I A string calculation at strong coupling matches the perturbative result.
I Amplitudes admit a dual description in terms of polygonal Wilson loops.
I Integrability leads to possibly exact expressions for anomalous dimensions.

(Anastasiou, Bern, Dixon, Kosower, Smirnov; Alday, Maldacena; Brandhuber, Heslop, Spence, Travaglini;
Drummond, Ferro, Henn, Korchemsky, Sokatchev; Beisert, Eden, Staudacher; ...)
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Tools: dimensional regularization
Nonabelian exponentiation of IR/C poles requires d-dimensional evolution
equations. The running coupling in d = 4− 2ε obeys

µ
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The β function develops an IR free fixed point, so that α(0, ε) = 0 for ε < 0.
The Landau pole is at

µ2 = Λ2 ≡ Q2
„

1 +
4πε

b0αs(Q2)

«−1/ε

.

I Integrations over the scale of the coupling can be analytically performed.

I All infrared and collinear poles arise by integration of αs(µ2, ε).



Tools: factorization
All factorizations separating dynamics at different energy scales lead to
resummation of logarithms of the ratio of scales.

I Renormalization group logarithms.

Renormalization factorizes cutoff dependence

G(n)
0 (pi,Λ, g0) =

nY
i=1

Z1/2
i (Λ/µ, g(µ)) G(n)

R (pi, µ, g(µ)) ,
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I RG evolution resums αn
s (µ

2) logn `Q2/µ2
´

into αs(Q2).

Note: Factorization is the difficult step. It requires a diagrammatic analysis

I all-order power counting (UV, IR, collinear ...);

I implementation of gauge invariance via Ward identities.



Tools: factorization

I Collinear factorization logarithms.

Mellin moments of partonic DIS structure functions factorize

eF2

„
N,

Q2

m2
, αs

«
= eC„N,

Q2

µ2
F
, αs

« ef „N,
µ2

F

m2
, αs

«

deF2

dµF
= 0 →

d logef
d logµF

= γN (αs) .

I Altarelli-Parisi evolution resums collinear logarithms into evolved
parton distributions (or fragmentation functions).

Note: Sudakov (double) logarithms are more difficult.

I A double factorization is required: hard vs. collinear vs. soft. Gauge invariance plays a
key role in the decoupling.

I After identification of the relevant modes, effective field theory can be used (SCET).



Sudakov factorization

Leading regions for Sudakov factorization.

I Divergences arise in fixed-angle amplitudes from
leading regions in loop momentum space.

I Soft gluons factorize both form hard (easy) and
from collinear (intricate) virtual exchanges.

I Jet functions J represent color singlet evolution of
external hard partons.

I The soft function S is a matrix mixing the
available color representations.

I In the planar limit soft exchanges are confined to
wedges: S ∝ I.

I In the planar limit S can be reabsorbed defining
jets J as square roots of elementary form factors.

I Beyond the planar limit S is determined by an
anomalous dimension matrix ΓS.

I Phenomenological applications to jet and heavy
quark production at hadron colliders.



Form Factors and Planar Amplitudes
(with Lance Dixon and George Sterman)



Gauge theory form factors
Consider as an example the quark form factor

Γµ(p1, p2;µ
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I The form factor obeys the evolution equation
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I Renormalization group invariance requires

µ
dG
dµ

= −µ
dK
dµ

= γK

“
αs(µ

2)
”
.

γK(αs) is the cusp anomalous dimension (G. Korchemsky and A. Radyushkin; ...).

I Dimensional regularization provides a trivial initial condition for
evolution if ε < 0 (for IR regularization).

α(µ2 = 0, ε < 0) = 0 → Γ
“

0, αs(µ
2), ε

”
= Γ (1, α (0, ε) , ε) = 1 .



Detailed factorization

Operator factorization for the Sudakov form factor, with subtractions.



Operator definitions

The functional form of this graphical factorization is
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We introduced factorization vectors nµ
i , with n2

i 6= 0, to define the jets,

J
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where Φn is the Wilson line operator along the direction nµ.
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The jet J has collinear divergences only along p.



Operator definitions
The soft function S is the eikonal limit of the massless form factor

S
“
β1 · β2, αs(µ

2), ε
”

= 〈0|Φβ2 (∞, 0)Φβ1 (0,−∞) |0〉 .

Soft-collinear regions are subtracted dividing by eikonal jets J .
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I S and J are pure counterterms in dimensional regularization.

I βi-dependence of S and J violates rescaling invariance of Wilson lines.
⇒ It arises from double poles, associated with γK .

I A single pole function where the cusp anomaly cancels is
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Jet evolution
The full form factor does not depend on the factorization vectors nµ

i .
Defining xi ≡ (βi · ni)

2 /n2
i ,
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This dictates the evolution of the jet J, through a ‘K + G’ equation
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Imposing RG invariance of the form factor

γS (ρ12, αs) + γH (ρ12, αs) + 2γJ (αs) = 0 .

leads to the final evolution equation

Q
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Results for Sudakov form factors
I The counterterm function K is determined by γK .
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I The form factor can be written in terms of just G and γK ,

Γ
“

Q2, ε
”

= exp

(
1
2

Z −Q2

0

dξ2

ξ2

h
G
“
− 1, α

“
ξ2, ε

”
, ε
”

−
1
2
γK

“
α
“
ξ2, ε

””
log
„
−Q2

ξ2

«–ff
.

⇒ In general, poles up to αn
s/ε

n+1 appear in the exponent.

I The ratio of the timelike to the spacelike form factor is
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⇒ Infinities are confined to a phase given by γK .
⇒ The modulus of the ratio is finite, and physically relevant.



Form factors in N = 4 SYM
I In d = 4− 2ε conformal invariance is broken and β(αs) = −2 ε αs.

I All integrations are trivial. The exponent has only double and single
poles to all orders (Z. Bern, L. Dixon, A. Smirnov).
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I In the planar limit this captures all singularities of fixed-angle
amplitudes in N = 4 SYM. The structure remains valid at strong
coupling, in the planar limit (F. Alday, J. Maldacena).

I The analytic continuation yields a finite result in four dimensions,
arguably exact. ˛̨̨̨
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Characterizing G(αs, ε)

The single-pole function G(αs, ε) is a sum of anomalous dimensions

G(αs, ε) = β(ε, αs)
∂
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Gi ,

In d = 4− 2ε finite remainders can be neatly exponentiated
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The soft function exponentiates like the full form factor
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G(αs, ε) is then simply related to collinear splitting functions and to the
eikonal approximation

G(αs, ε) = 2 Bδ (αs) + Geik (αs) + GH (αs, ε) ,

⇒ GH does not generate poles; it vanishes inN = 4 SYM.

⇒ Checked at strong coupling, in the planar limit (F. Alday).



Beyond the Planar Limit
(with Einan Gardi)



Factorization at fixed angle
Fixed-angle scattering amplitudes in any massless gauge theory can also be
factorized into hard, jet and soft functions.
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The soft function is now a matrix,
mixing the available color tensors.
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Soft exchanges mix color structures.



Soft anomalous dimensions
The soft function S obeys a matrix RG evolution equation

µ
d

dµ
SIK

“
βi · βj, αs(µ

2), ε
”

= − ΓSIJ

“
βi · βj, αs(µ

2), ε
”
SJK

“
βi · βj, αs(µ

2), ε
”
,

I Note: ΓS is singular due to overlapping UV and collinear poles.

As before, S is a pure counterterm. In dimensional regularization, then
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Double poles cancel in the reduced soft function
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I The anomalous dimension ΓS(ρij, αs) for the evolution of S is finite.



Surprising simplicity

I ΓS can be computed from UV poles of S

I Non-abelian eikonal exponentiation
selects the relevant diagrams: webs

I ΓS appears highly complex at high orders.

A web contributing to ΓS .

The two-loop calculation (M. Aybat, L. Dixon, G. Sterman) leads to a surprising
result: for any number of light-like eikonal lines
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I No new kinematic dependence; no new matrix structure.

I κ is the two-loop coefficient of γK , rescaled by the appropriate Casimir,
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Factorization constraints
I The classical rescaling symmetry of Wilson line correlators under

βi → κβi is violated only through the cusp anomaly.
⇒ For eikonal jets, no βi dependence is possible at all except through the cusp.

I In the reduced soft function S the cusp anomaly cancels.
⇒ S must depend on βi only through rescaling-invarant combinations such as ρij, or, for
n ≥ 4 legs, the cross ratios ρijkl ≡ (βi · βj)(βk · βl)/(βi · βk)(βj · βl)

Consider then the anomalous dimension for the reduced soft function
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This poses strong constraints on the soft matrix. Indeed

I Singular terms in ΓS must be diagonal and proportional to γK .

I Finite diagonal terms must conspire to construct ρij’s combining βi · βj with xi.

I Off-diagonal terms in ΓS must be finite, and must depend only on the cross-ratios ρijkl.



Factorization constraints

The constraints can be formalized simply by using the chain rule.
ΓS depends on xi in a simple way.
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∂xi
ΓSIJ (ρij, αs) = − δIJ xi
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I The equation relates ΓS to γK to all orders in perturbation theory
⇒ and should remain true at strong coupling as well.

I It correlates color and kinematics for any number of hard partons.

I It admits a unique solution for amplitudes with up to three hard partons.
⇒ For n ≥ 4 hard partons, functions of ρijkl solve the homogeneous equation.



The dipole formula
The cusp anomalous dimension exhibits Casimir scaling up to three loops.

I γ
(i)
K (αs) = Ci bγK(αs) with Ci the quadratic Casimir and bγK(αs) universal.

Denoting with eγ(i)
K possible terms violating Casimir scaling, we write
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By linearity, using the color generator notation, the scaling term yieldsX
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An all-order solution is the dipole formula (E. Gardi, LM; T. Becher, M. Neubert)
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as easily checked using color conservation, Pi Ti = 0.
Note: all known results for massless gauge theories are of this form.



The full amplitude
It is possible to construct a dipole formula for the full amplitude enforcing
the cancellation of the dependence on the factorization vectors ni through
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satisfying a matrix evolution equation
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The dipole structure of ΓS is inherited by Γ, which reads (T. Becher, M. Neubert)
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Beyond the dipole formula
(with Lance Dixon and Einan Gardi)



Beyond the minimal solution
I The cusp anomalous dimension may violate Casimir scaling starting at

four loops. This would add a contribution ΓSH.C. satisfying

X
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I For n ≥ 4 the constraints do not uniquely determine ΓS : one may write
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I By eikonal exponentiation ∆S must directly correlate four partons.
I A nontrivial function of ρijkl cannot appear in ΓS at two loops.

eH[f] =
X
j,k,l

X
a,b,c

i fabc Ta
j Tb

k Tc
l ln

`
ρijkl
´

ln
`
ρiklj
´

ln
`
ρiljk
´

.

I The minimal solution holds for ‘matter loop’ diagrams at three loops (L. Dixon).



Collinear constraints

Factorization of fixed-angle amplitudes breaks down in collinear limits, as
pi · pj → 0. New singularities are captured by a universal splitting function

Mn (p1, p2, pj;µ, ε)
1‖2−→ Sp (p1, p2;µ, ε) Mn−1 (P, pj;µ, ε) .

Infrared poles of the splitting function are generated by a splitting
anomalous dimension

Sp(p1, p2;µ, ε) = Sp(0)
H (p1, p2;µ, ε) exp

"
−

1
2

Z µ2

0

dλ2

λ2
ΓSp(p1, p2;λ)

#
,

related to the soft anomalous dimensions of the two amplitudes:

ΓSp(p1, p2;µf ) ≡ Γn
`
p1, p2, pj;µf

´
− Γn−1

`
P, pj;µf

´
.

If the dipole formula receives corrections, so does the splitting amplitude

ΓSp(p1, p2;λ) = ΓSp, dip(p1, p2;λ) + ∆n
`
ρijkl;λ

´
−∆n−1

`
ρijkl;λ

´
.

Universality of ΓSp constrains ∆n −∆n−1: it must depend only on the
collinear parton pair (T. Becher, M. Neubert).



Bose symmetry, transcendentality
Contributions to ∆n(ρijkl) arise from gluon subdiagrams of eikonal
correlators. They must be Bose symmetric. With four hard partons,

∆4(ρijkl) =
X

i

h(i)
abcd Ta

i Tb
j Tc

k Td
l ∆

(i)
4, kin(ρijkl) ,

the symmetries of ∆
(i)
4, kin must match those of h(i)

abcd. For polynomials in
Lijkl ≡ log ρijkl one easily matches symmetries of available color tensors

∆4(ρijkl) = Ta
1Tb

2Tc
3Td

4

h
fade f e

cb Lh1
1234

“
Lh2

1423 Lh3
1342 − (−1)h1+h2+h3 Lh2

1342 Lh3
1423

”
+ cycl.

i
,

I Transcendentality constrains the powers of the logarithms. At L loops

htot ≡ h1 + h2 + h3 ≤ τ ≤ 2L− 1

I For N = 4 SYM, and for any massless gauge theory at three loops the
bound is expected to be saturated.

I Collinear consistency requires hi ≥ 1 in any monomial.



Three loops

I ∆n can first appear at three loops.
I A general ∆n is a ‘sum over quadrupoles’.
I Relevant webs are the same in N = 4 SYM.
I The only available color tensors are fade f e

cb

I Polynomials in Lijkl are severely constrained.
I Using Jacobi identities for color and

L1234 + L1423 + L1342 = 0 for kinematics, only
one structure polynomial in Lijkl survives.

a

i

j k

l

d

b c

Three-loop web contributing to ΓS .



Survivors
Just one maximal transcendentality, Bose symmetric, collinear safe
polynomial in the logarithms survives.

∆
(122)
4 (ρijkl) = Ta

1Tb
2Tc

3Td
4

h
fade f e

cb L1234 (L1423 L1342)
2

+ fcae f e
db L1423 (L1234 L1342)

2 + fbae f e
cd L1342 (L1423 L1234)

2
i
.

Allowing for polylogarithms, structures mimicking the simple symmetries of
Lijkl must be constructed. Two examples are

∆
(122, Li2)
4 (ρijkl) = Ta

1Tb
2Tc

3Td
4

»
fade f e

cb L1234

“
Li2(1− ρ1342)− Li2(1− 1/ρ1342)

”
×
“

Li2(1− ρ1423)− Li2(1− 1/ρ1423)
”

+ cycl.
–
.

∆
(311, Li3)
4 (ρijkl) = Ta

1Tb
2Tc

3Td
4

»
fade f e

cb

“
Li3(1−ρ1342)−Li3(1−1/ρ1342)

”
L1423 L1342 + cycl.

–
.

Higher-order polylogarithms are ruled out by their trancendentality
combined with collinear constraints.



Perspective
I After O

`
102
´

years, soft and collinear singularities in massless gauge
theories are still a fertile field of study.
⇒We are probing the all-order structure of the nonabelian exponent.
⇒ All-order results constrain, test and help fixed order calculations.
⇒ Understanding singularities has phenomenological applications through resummation.

I Factorization theorems⇒ Evolution equations⇒ Exponentiation.
I Dimensional continuation is the simplest and most elegant regulator.
⇒ Transparent mapping UV↔ IR for ‘pure counterterm’ functions.

I Remarkable simplifications in N = 4 SYM point to exact results.
I Only three functions, γK , Geik and Bδ determine all singularities in the

planar limit, and possibly beyond.
I Factorization and classical rescaling invariance severely constrain soft

anomalous dimensions to all orders and for any number of legs.
I A simple dipole formula may encode all infrared singularites for any

massless gauge theory.
I The study of possible corrections to the dipole formula is under way.
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