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Abstract

I will review recent progress in the study of soft

gluon effects by means of perturbative QCD. This

includes improvements and extensions of the techniques

of soft gluon resummation, applications to modeling of

nonperturbative corrections, and a study of resummation

effects on parton distribution fits.
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Outline

• Strength and Weakness of PQCD

– Why does PQCD work at all?

– Limits to the applicability of PQCD.

• From Factorization to Resummation

– One-scale problems: RG, AP.

– Multi-scale problems: Sudakov logarithms.

• On Sudakov resummation

– Examples: EW annihilation, event shapes.

– From resummation to power corrections.

• Recent Developments

– More logs for old observables.

– More observables for old logs.

– New logs: the non-global movement.

– Joint logs: joint resummation.

• Resummation effects on parton distributions

– Motivations and feasibility.

– A simplified fit: results.

• Perspective
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Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at

the LHC, with and without resummation. From M. Grazzini, hep-ph/0512025.
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66 < Q < 116 GeV

CDF

CDF data on Z production compared with QCD predictions at fixed order

(dotted), with resummation (dashed), and with the inclusion of power

corrections (solid). From A. Kulesza, G. Sterman and W. Vogelsang,

hep-ph/0207148.
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LEP data on the Heavy Jet Mass distribution, compared with resummed QCD

prediction (dotted), and with power corrections treated by Dressed Gluon

Exponentiation (solid), with parameters fixed by fitting the thrust distribution.

From E. Gardi and J. Rathsmann, hep-ph/0201019.
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Why does PQCD work at all?

• In a world of hadrons, we compute cross sections involving

quarks and gluons, which do not exist in the true asymptotic

states of the theory.

• This inconsistency is visible in perturbation theory: the QCD

S-matrix does not exist in the Fock space of quarks and

gluons, due to mass singularities.

• Example: a massless fermion emits a gauge boson in the final

state

PSfrag replacements

p+ k

k

p
M

→ − igu(p)ε/(k)ta
i(p/+ k/)

(p+ k)2 + iε
M ,

Mass singularities: 2p · k = 2 p0 k0 (1 − cos θpk) = 0 ,

→ k0 = 0 (IR); cos θpk = 0 (C).

• The situation is worse than QED: the KLN theorem cannot

be directly applied, the true asymptotic states are not close

enough to the Fock states.
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Strategy of Perturbative QCD

• Infrared Safety: cancelling mass divergences.

– Compute partonic cross sections with IR regulator

σpart = σpart

 
Q2

µ2
, αs(µ

2
),

(
m2(µ2)

µ2
, ε

)!
.

– Identify IR–safe cross sections, having a finite limit as
regulators are removed (ε → 0, m2(µ2) → 0).

σpart = σpart

 
Q2

µ2
, αs(µ

2
), {0, 0}

!
+ O

 ( 
m2

µ2

!p
, ε

)!
.

– Interpret σpart as perturbative estimate of hadronic cross

section valid up to corrections O
`
(ΛQCD/Q)p

´

• Factorization: neutralizing mass divergences.

– Quantum incoherence in the presence of different scales
implies, to all orders in PT for inclusive cross sections,

σpart = f

 
m2

µ2
F

!
∗ bσpart

 
Q2

µ2
,
µ2
F

µ2

!
+ O

  
m2

µ2
F

!p!
.

– Combine the partonic, perturbative, process–dependent

bσpart with measured, nonperturbative, universal f to derive

hadronic cross section.
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The Borders of Perturbative QCD

• Power corrections

– All factorization theorems are valid up to nonperturbative

corrections suppressed by powers of the hard scale,

O
““

Λ2/Q2
”p”

.

– In the presence of several hard scales, power corrections

can be enhanced. In DIS as x → 1, for example, as

O
““

Λ2/
“
Q2(1 − x)

””p”
.

• Large logarithms

Multi–scale problems can have large perturbative corrections

of the general form αns logk
“
Q2
i/Q

2
j

”
, with k ≤ n (single logs)

or k < 2n (double logs). Examples include

– Renormalization logs, αns logn
“
Q2/µ2

R

”
.

– Factorization logs, αns logn
“
Q2/µ2

F

”
.

– High–energy logs, αns logn−2 (s/t).

– Sudakov logs in DIS, αns log2n−1
“
Q2/W 2

”
.

– Sudakov logs in Higgs production, αns log2n−1
“
1 −M2

H/ŝ
”
.

– Transverse momentum logs, αns log2n−1
“
Q2

⊥/Q
2
”
.

• Sudakov logs originate from mass singularities, thus they are

universal and can be resummed. All-order expressions contain

nonperturbative information.
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Factorization leads to Resummation

All factorizations separating dynamics at different energy scales

lead to resummation of logarithmic dependence on the ratio of

scales.

• Renormalization group logarithms.

Renormalization factorizes cutoff dependence

G
(n)
0 (pi,Λ, g0) =

nY

i=1

Z
1/2
i (Λ/µ, g(µ)) G

(n)
R

(pi, µ, g(µ)) ,

dG
(n)
0

dµ
= 0 →

d logG
(n)
R

d log µ
= −

nX

i=1

γi (g(µ)) .

RG evolution resums αns (µ
2) logn

“
Q2/µ2

”
into αs(Q2).

• Altarelli–Parisi logarithms.

Partonic DIS structure functions factorize as

eF2

 
N,

Q2

m2
, αs

!
= eC

 
N,

Q2

µ2
F

, αs

!
ef
 
N,

µ2
F

m2
, αs

!

d eF2

dµF
= 0 →

d log ef
d log µF

= γN (αs) .

AP evolution resums collinear logarithms into evolved PDF’s.

• Double logarithms are more difficult. Renormalization group

is not sufficient, gauge invariance plays a key role.
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Simplest Sudakov: the quark form factor

At the amplitude level, resummation leads to exponentiation of

IR and collinear poles. Consider the EM quark form factor

Γµ(p1, p2;µ
2
, ε) ≡ 〈p1, p2|Jµ(0)|0〉 = −ieqf u(p1)γµv(p2) Γ

 
Q2

µ2
, αs(µ

2
), ε

!

Power counting of singular regions in Feynman diagrams and

application of Ward identities lead to a diagrammatic factorization

of collinear and soft effects

J

H S

J
PSfrag replacements

Γν
“
p1, p2;µ

2, ε
”

=

Schematically, in an axial gauge, this leads to

Γ

 
Q2

µ2
, αs(µ

2
), ε

!
= J

 
(p · n)2

µ2n2

!
S (ui · n)H

 
(pi · n)2

µ2n2

!
.

with H finite. Gauge invariance then implies

∂ log Γ

∂p1 · n
= 0 →

∂ log J1

∂ log(p1 · n)
= −

∂ logH

∂ log(p1 · n)
−

∂ logS

∂ log(u1 · n)
.
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Again, the two functions on the right hand side depend on
different arguments. The equation is of the form

∂ log J

∂ logQ2
= KJ

“
αs(µ

2
), ε
”

+GJ

 
Q2

µ2
, αs(µ

2
), ε

!
.

with all Q2 dependence in the finite function GJ , and all
divergences in the Q2-independent function KJ . It is easy to
show that an identical equation is obeyed by the full form factor.
Then one can exploit RG invariance of the form factor to write

µ
dG

dµ
= −µ

dK

dµ
= γK(αs(µ)) ,

Solving the equations leads to the exponentiation (LM, G. Sterman)

Γ

 
Q2

µ2
, αs(µ

2
), ε

!
= exp

8
<
:

1

2

Z −Q2

0

dξ2

ξ2

h
K
“
ε, αs(µ

2
)
”

+

G

 
−1, α

 
ξ2

µ2
, αs(µ

2
), ε

!
, ε

!
+

1

2

Z µ2

ξ2

dλ2

λ2
γK

 
α

 
λ2

µ2
, αs(µ

2
), ε

!!3
5
9
=
; .

where singularities at ξ = 0 are regulated by the d-dimensional
running coupling

α

 
µ2

µ2
0

, αs(µ
2
0), ε

!
=

αs(µ
2
0)„

µ2

µ2
0

«ε
− 1

ε

„
1 −

„
µ2

µ2
0

«ε«
b0
4παs(µ

2
0)

,

Double poles in Γ are replaced by single poles in the exponent.
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Example: electroweak annihilation

The cross sections for Drell-Yan, W , Z and Higgs production

receive large QCD corrections.

• Threshold logarithms, log(1 −Q2/ŝ)

• Transverse momentum logarithms log(p2
t/Q

2).

PSfrag replacements

ψ

ψ

HH U

To resum threshold logarithms one works with the Mellin
transform of the partonic cross section. It factorizes as

ω(N, ε) = |HDY|
2
ψ(N, ε)

2
U(N) + O(1/N) .

After subtracting collinear poles, in the MS scheme

bω
MS

(N) = exp

2
4
Z 1

0
dz
zN−1 − 1

1 − z

8
<
:2

Z (1−z)2Q2

Q2

dµ2

µ2
A
“
αs(µ

2
)
”

+ D
“
αs
“
(1 − z)

2
Q

2
””
9
=
;+ F

MS
(αs)

3
5 + O

„
1

N

«
.
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Example: event shape distributions

• Examples

– Thrust: T = max~n

P
i|~pi·~n|
Q ; t = 1 − T .

→ ~n is used to define several other shape variables.

– C-parameter: C = 3 − 3
2

P
i,j

(pi·pj)
2

(pi·q) (pj·q)
.

→ does not require maximization procedures.

– Angularity: τa = 1
Q

P
i(p⊥)ie

−|ηi|(1−a) .

→ recently introduced (C. Berger, G. Sterman)

• Two-jet limit: infrared and collinear emission dominates

– Double logarithms here involve the variable vanishing in the

two-jet limit: log(1 − T ), logC.

– The Laplace transform exponentiates. For thrust

Z ∞

0
d τe

−ντ 1

σ

dσ

dτ
= exp

2
4
Z 1

0

du

u

“
e
−uν

− 1
”

×

0
@B

“
αs
“
uQ

2
””

+

Z uQ2

u2Q2

dq2

q2
A
“
αs(q

2
)
”
1
A
3
5 .

– A(αs) =
P
An(αs/π)n, determining leading logs, is a

universal anomalous dimension, with A1 = CF , A2 =

CACF (67/18 − ζ(2))/2 − 5nfCF/18.

– Cambridge, 09/12/2005 – 12



Features of Sudakov resummation

• Non–trivial. Reorganizes perturbation theory in a predictive
way. For threshold resummation, let L = logN . Then

X

k

α
k
s

2kX

p

ckpL
p
→ exp

2
4
X

k

α
k
s

k+1X

p

dkpL
p

3
5 .

• Predictive. Resummation extends the range of perturbative

methods. Fixed order: αsL2 ¿ 1. NLL resummation: αs ¿ 1

suffices. Scale dependence is reduced.

• Widespread. NLL soft gluon resummations exist for most

inclusive cross sections of interest at colliders (NNLL now

available for processes which are electroweak at tree level).

• Non–perturbative aspects of QCD become accessible.

Integrals in the exponent run into the Landau pole.

A variety of regularizations have been proposed

– Principal value/cutoff (G. Korchemsky and G. Sterman, E. Gardi)

– Regular IR coupling (Y. Dokshitzer, G. Marchesini and B. Webber)

– Dimensional regularization (LM)

– Minimal prescription, (S. Catani et al.)

* Result: answer ambiguous by a power–suppressed amount.

* Conclusion: a matching ambiguity must be provided by

power–suppressed, nonperturbative contributions.

* Phenomenology: models of power corrections built using

information from resummations.
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More logarithms ....

• (lnN)0 terms exponentiate in all processes which are

electroweak at tree level (TEW) (T. Eynck, E. Laenen and LM).

For Drell-Yan in the MS scheme

bω
MS

(N) =

 
|Γ(Q2, ε)|2

φV (ε)2

! "`
ψR(N, ε)

´2 UR(N, ε)
`
φR(N, ε)

´2

#
+ O

„
1

N

«
.

– Real and virtual contributions can be made separately finite.

– Virtual contributions are given exactly by finite terms in

the Sudakov form factor

– Not as predictive as resummation of logarithms, but ...

• Three loops are now available for the nonsinglet splitting

function (S. Moch, J. Vermaseren and A. Vogt).

A3 = 16CFC
2
A

„
245

24
−

67

9
ζ2 +

11

6
ζ3 +

11

5
ζ
2
2

«
+ 16C

2
Fnf

„
−

55

24
+ 2ζ3

«

+ 16CFCAnf

„
−

209

108
+

10

9
ζ2 −

7

3
ζ3

«
+ 16CFn

2
f

„
−

1

27

«
.

– A3 was accurately estimated numerically from approximate

calculations (A. Vogt).

– nf -dependence was independently computed with different

methods (J. Gracey, C. Berger).

– It has a small numerical effect on tested cross sections.

– Complete NNLL threshold resummation now available for

all inclusive TEW processes.
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... and more ....

• For NkLL resummation, A(k+1) and D(k) (or B(k)) are needed.

• With the three-loop calculation of DIS coefficient functions by

MVV, only A(4) is missing to perform N3LL resummation for

DIS. The effect of A(4) is tiny and can be estimated.

• Approximate N3LL resummation tests convergence of

logarithmic as well as fixed order expansions.

• The same degree of accuracy can be reached for all TEW

processes. (MV, E. Laenen & LM, A. Idilbi et al.).

• The function D(αs) for Drell-Yan and Higgs production via

gluon fusion can be computed to k loops using

– Sudakov and splitting function data at k loops.

– Constant terms for Drell-Yan (Higgs) at (k − 1) loops.

D(αs) = 4Bδ(αs) − 2 eG(αs) + β(αs)
d

dαs
F

MS
(αs) .

• At three loops

D
(3)
R

=

„
−

297029

23328
+

6139

324
ζ2 −

187

60
ζ
2
2 +

2509

108
ζ3 −

11

6
ζ2ζ3 − 6ζ5

«
C

2
ACR

+

„
31313

11664
−

1837

324
ζ2 +

23

30
ζ
2
2 −

155

36
ζ3

«
nfCACR

+

„
1711

864
−

1

2
ζ2 −

1

5
ζ
2
2 −

19

18
ζ3

«
nfCFCR

+

„
−

58

729
+

10

27
ζ2 +

5

27
ζ3

«
n
2
fCR .
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... and even more?

• Do suppressed logs exponentiate? In the MS scheme

γ
(n)
ns (N) = An(lnN + γe) − Bn − Cn

lnN

N
+ O

„
1

N

«
.

C1 = 0 , C2 = 4CFA1 , C3 = 8CFA2 .

... a “suggestive relation” (MVV).

• Mixed evidence for exponentiation at (lnN)/N level.

– Leading αks(lnN)(2k−1)/N terms appear to exponentiate.

– They have collinear origin (nonsingular terms in the splitting

function).

– Subleading αks(lnN)(2k−2)/N terms do not exponentiate

according to the conventional pattern.

• An unconventional pattern?
Parton evolution can be modified at large x (Y. Dokshitzer, G.
Marchesini, G. Salam)

∂tD(x,Q
2
) =

Z 1

0

dz

z
P
“
z, αs(z

−1
Q

2
)
”
D

„
x

z
, z
σ
Q

2
«

– Restores symmetry between PDF and fragmentation

function evolution (σ = ±1).

– Provides an explanation for the “suggestive relation” of

(MVV).

Note: impact of (lnN)/N exponentiation can be sizeable.
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More observables?

Resummation in Classical Times
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Sure ...

Resummation in Modern Times
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... here they are!

Automated resummation procedures are being developed for a vast

class of observables and processes, including hadronic collisions

(A. Banfi, G. Salam and G. Zanderighi).

• Observables: with up to 4 hard partons, must vanish when a
softer parton becomes collinear to a hard one.

V ({pi}, k) = di

„
kt

Q

«a
e
−biη gi(φ) .

Example: a = di = gi = 1, bi = 0 −→ thrust.

• Requirements

– Recursive IRC safety: slightly stronger than conventional

IRC safety, it requires that the observable behave uniformly

under the addition of a hierarchy of soft/collinear partons.

– Continuous globality: the observable must be sensitive to

emissions in the whole phase space without discontinuities,

to avoid non-global logs.

• NLL Master Equation

ln Σ(v) = −
nX

i=1

Ci

»
Ri(a, bi) + v

∂Ri
∂v

f
`
di, gi

´
+ Bi T

„
log v

a+ bi

«–

+

niX

i=1

ln
fi(xi, v

2
a+bi µ2

f )

fi(xi, µ
2
f
)

+ ln

„
S

»
T

„
log v

a

«–«
+ ln

ˆ
Fnum

`
Ri
´˜
.

• Phenomenology: in progress.
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New logs

‘‘Thou shall not cut up your phase space!’’

• Consider radiation into a fixed angular region Ω, in the presence

of a hard event at scale Q.

• Measure cross section for radiation into Ω to carry energy

E < QΩ << Q −→ get αs log(QΩ/Q).

� �

�������

�	����

�




�����

� �
�

�

��

• Primary radiation: hard partons emit gluons into Ω. Standard

soft gluon techniques apply.

• Secondary radiation: a primary “semihard” gluon carrying

energy Q̄Ω̄ into Ω̄ emits softer gluons into Ω.

• With no restriction on radiation into Ω̄, get log(QΩ/Q̄Ω̄) ∼

log(QΩ/Q) (M. Dasgupta and G. Salam).
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The Non-Global movement

The rise of non-global logarithms has triggered considerable

theoretical activity. Two approaches have been considered.

• Define observables that minimize the impact of non-global

logs and apply standard tecniques.

– R. Appleby and M. Seymour, hep-ph/0211426: rapidity gap events

at HERA. Constrain final state by clustering algorithm.

– C. Berger, T. Kucs, G. Sterman, hep-ph/0303051: event-shape

energy-flow correlations. Constrain final state by focusing

on two-jet limit.

• Resum non-global logarithms.

– A. Banfi, G. Marchesini and G. Smye, 0206076: leading non-global

logs obey an evolution equation, valid at large Nc, and can

be resummed.

– Y. Dokshitzer and G. Marchesini, hep-ph/0303101: in event-shape

energy-flow correlations leading non-global logs factorize

and exponentiate.

– G. Marchesini and A. Mueller hep-ph/0308284: intriguing

connection with BFKL dynamics, for a somewhat exotic

observable.

– H. Weigert, hep-ph/0312050: analogy with small-x dynamics

pursued beyond the large Nc limit.
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Joint resummation

• Phenomenology requires applying resummation techniques to

more differential distributions. More soft logarithms appear.

• Resummed logs in differential distributions may leave non-

logarithmic but large remainders in integrated distributions.

Sudakov resummation techniques can treat simultaneously pt and

threshold logarithms (E. Laenen, G. Sterman and W. Vogelsang). For

weak boson production

dσres
AB

dQ2 dQ2
T

=
X

a
σ
(0)
a

Z

CN

dN

2πi
τ
−N

Z
d2b

(2π)2
e
i ~QT ·~b

×Ca/A(Q, b,N, µ, µF ) exp [Eaā (N, b,Q, µ) ] Cā/B(Q, b,N, µ, µF ) .

Eaā is similar to the Sudakov exponent for pt resummation

Eaā (N, b,Q, µ) = −

Z Q2

Q2/χ2

dk2t

k2t

"
Aa (αs (kt)) ln

 
Q2

k2t

!
+ Ba (αs (kt))

#
.

Ca/A act as generalized parton distributions.

• Landau pole is handled with minimal prescription.

• Phenomenology is under way: electroweak annihilation,

prompt photon, heavy quark production, (A. Banfi, A. Kulesza, E.

Laenen, G. Sterman, W. Vogelsang).

• Higgs: p⊥ distribution very important at LHC. Competing

approach: (S. Catani, M. Grazzini), NNLL p⊥ resummation.
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A case for resummed PDF’s

• Phenomenology

– Resummation justifies including more data in PDF fits.

W 2 ∼ Q2(1 − x) −→ close to resonance region

– Large-x quarks influence large-x gluons and smaller-x

partons via sum rules and evolution.

Q2 evolution of partons at x0 determined by partons at x > x0.

– Light Higgs@LHC (made at small x) should not be unique

focus: large-x is new physics region.

t-channel exchange of heavy particles? High-ET jets?

• Theory

– Consistency requires matching accuracy for parton

distributions and hard cross sections.

– The boundary between perturbative and nonperturbative

must be defined.

Leading Twist ↔ NLO ↔ MS do not mix well!

– Lattice determinations of PDF’s use different, precise

definition of leading twist ... comparison?

– Resummation provides a gateway to nonperturbative

corrections.

∗ Define resummed exponent ↔ define power correction.

∗ QCD models for power corrections to structure functions

can be tested.

– Cambridge, 09/12/2005 – 23



• Resummed global PDF fits?

Soft gluon resummation to NLL is now standard in all simple

QCD cross sections.

– DIS. The best understood cross section in QCD.

NNNLO, (N)NNLL cross section, OPE, proposed non

perturbative factorization (E. Gardi et al.).

– Drell-Yan. Next best. NNLO, (N)NNLL cross section, NNLO

rapidity distribution.

– Prompt photon. Problematic phenomenology.

NLO, NLL, joint resummation, fragmentation component?

Power corrections? Data?

– Jet production. Incomplete.

NLO, formal NLL, non-global logs! Caesar?

A global resummed fit is theoretically achievable.

• A toy large-x parton fit (G. Corcella, LM)

We consider NuTeV and NMC/BCDMS data.

– Data are parametrized at different fixed values of Q2

– Moments of data can be computed with uncertainties.

NOTE: resummation takes place in moment space

– Extract moments of linear combinations of PDF’s, solve for

valence quarks with assumptions on gluon and sea.

– Fit x-space functional forms to moments.
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Results for moments

NLO and resummed moments of the up quark distribution at Q2 = 12.59

and 31.62 GeV2.
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Results in x-space

NLO and resummed up quark distribution at Q2 = 12.59 and 31.62 GeV2.
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Variation

Normalized deviation between NLO and resummed up quark distribution at

Q2 = 12.59 and 31.62 GeV2.
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Perspective

• Sudakov resummations are a very active and rapidly

progressing field of study in QCD.

• They are necessary for phenomenological analysis of data in a

variety of processes.

• They provide a window into nonperturbative contributions to

high energy cross-sections.

• They are available for inclusive processes with high logarithmic

accuracy.

• They are becoming a practical tool, directly applicable to

many measurable cross sections, not only fully inclusive ones.

– more differential cross sections can be resummed, for

example via joint resummation.

– realistic cuts begin to be implemented, and the associated

non-global logs can also be resummed.

• Impact on PDF’s

– Most cross sections used in the extraction of PDF’s are

known in resummed form, to high accuracy (NLL, NNLL),

often with a QCD-motivated parametrization of power

corrections.

– Fully resummed observables require resummed parton

distributions.

– A toy fit shows that impact may be sizeable at large x,

with possible cancellations of hard effects.
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LOG OUT
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