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Note on the Radiation Field of the Electron

F. BLocH aND A. NORDSIECK*
Stanford University, California

(Received May 14, 1937)

Previous methods of treating radiative corrections in non-
stationary processes such as the scattering of an electron in
an atomic field or the emission of a g-ray, by an expansion”
in powers of e*/hc, are defective in that they predict infinite
low frequency corrections to the transition probabilities.
This difficulty can be avoided by a method developed here
which is based on the alternative assumption that efw/me?,
hw/met and ho/cAp (w=angular frequency of radiation,
Agp=change in momentum of electron) are small compared
to unity. In contrast to the expansion in powers of e%/hc,
this permits the transition to the classical limit h=0.

External perturbations on the electron are treated in the
Born approximation. It is shown that for frequencies such
that the above three parameters are negligible the quantum
mechanical calculation yields just the directly reinterpreted
results of the classical formulae, namely that the total
probability of a given change in the motion of the electron
is unaffected by the interaction with radiation, and that
the mean number of emitted quanta is infinite in such a way
that the mean radiated energy is equal to the energy
radiated classically in the corresponding trajectory.

A remarkable achievement, before quantum field theory was born.
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Modern History

Factorization
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Progress
e Exponentiation applies to non-abelian gauge theories.
e Exponentiation extends to collinear divergences.

e Exponentiation is performed at the amplitude level.

An optimal regularization scheme is used. oy 204

ALMA
UNIVERSITAS TAURINENSIS



OUTLINT

INTRODUCTION FORM FACTORS RESULTS
[e]e) 0000 [e]e]

@00 00 o]

[e]e]e} [e]e]

Motiwvation: LHC phenomenology

Higgs boson spectrum at LHC' (M. Grazzini, nep-pn/0512025)
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the qp spectrum of Higgs bosons produced via gluon fusion at

the LHC, with and without resummation.
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Motivation: LHC phenomenology

7 boson spectrum at Tevatron (A. Kulesza et al, hep-ph/0207148)
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Tioy-2004
CDF data on Z production compared with QCD predictions at fived order (dotted), iy
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with resummation (dashed), and with the inclusion of power corrections (solid).
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Motivation: gauge field theories

e Remarkable progress has been achieved in techniques to compute
finite order gauge theory amplitudes.

o Supersymmetric versions of Yang-Mills theory and QCD have
remarkable properties.

Example: N =4 SYM is conformal invariant: Sa—4(cs) = 0.

e FEzxponentiation of IR/C poles in QCD amplitudes simplifies
Note: at most double poles in the exponent.

e AdS/CFT suggests that N/ =4 SYM must ‘be simple’ at
strong coupling. Can this be seen in perturbation theory?

e Fzponentiation has been observed for MHV amplitudes with
up to five legs (z. Bern et al).

e A stringy calculation at strong coupling is consistent

with the perturbative result (L. Alday and J. Maldacena). A
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Tools: dimensional reqularization

Nonabelian exponentiation of IR poles requires d-dimensional evolution
equations. The running coupling in d = 4 — 2¢ obeys

oa . . a° — a\”
Hp = Blea) = ~2ea+ f(a) . ﬁ(a)‘g;zbn@

n=0

The one-loop solution is

@ (12) = () KZ;)) - (1 B (Z;)) ﬁ“s(“g)}

The /3 function develops an IR free fixed point, so that @(0,¢) = 0 for
€ < 0. The Landau pole is at

4me —1/e
o A2 2 - ) Al
d @ (1 ariam) AA
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Tools: factorization

All factorizations separating dynamics at different energy scales lead to
resummation of logarithms of the ratio of scales.

e Renormalization group logarithms.

Renormalization factorizes cutoff dependence

G5 (v A, g0) = [T 2% (A1 910) G i g(w)
=1

aGim dlog Gy
du - dlog L Z 7

e RG evolution resums o (11%) log™ (Q?/1?) into a,(Q?).

1§04-2004
Note: Factorization is the difficult step ... A
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Tools: factorization

e (Collinear factorization logarithms.

Mellin moments of partonic DIS structure functions factorize

_ 2 - 2 _ 2
7 (N, QQQ) _é (N,/ Qza> 7 (N., ”FQ,as>
m W m
dFs dlog f (@)
—_—= = — —— =N (ag) .
dpr dlogpr N\

o Altarelli-Parisi evolution resums collinear logarithms into evolved
parton distributions.

Note: Sudakov logarithms are more difficult. Ordinary
renormalization group is not sufficient. Gauge invariance iy 2084
plays a key role. Or: use effective field theory (SCET). Onnversinas Thvumessis



OUTLINE INTRODUCTION FORM FACTORS RESULTS PERSPECTIVE

(e]e] 0000 (e}
000 (o]e} [e]
[e]e]e} (oo}

Gauge theory form factors
Consider as an example the quark form factor
2

Tu(p1,p2;u®,€) = (017,(0)|p1, p2) = v(p2)ypulpr) T (%,aswz% 6) .

e The form factor obeys the evolution equation

2 2
Q? 032 log [r (%,as(ﬁ),e)] = % {K (eastu®) +c (%,asof),e)] .

e Renormalization group invariance requires

G dK )
HZ = */LE =TK ((’to(ﬂ )) s
Note: vx (a) is the cusp anomalous dimension.

e Dimensional reqularization provides a trivial initial condition for
evolution if ¢ < 0 (for IR regularization).

T404-2004
@(n* =0,e<0) =0 —T(0,as(u®),¢) =T (1,T(0,¢),¢) = 1. A
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Detailed factorization

- - 20

»—m ?
ﬁ\

Operator factorization of the Sudakov form factor, with subtractions.

1404-2004
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Operator definitions

The functional form of this graphical factorization is

02 ) 2 S ny)2 )
F(%,ns(uz),e> = C<Q—2«,%«,as<ur2>,e) x S (61 B2, s (1), €)

s nfp

n)2
J (%,mﬂx e)
< 11 :

3,;.m,;)2 f
i=1 J(%A,QS(NZ)’E)

We introduced factorization vectors nk', with n? # 0, to define the jets,

-n 2 -
g <<i2ﬂi ,as<u2>,e> () = (0|®4(00,0) (0) |p)

m
i

where @, is the Wilson line operator along the direction n

A2
P, (X2, A1) = Pexp ig/ dAn - A(An) | ,
A1 1§04-2004
ALMA
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The jet J has collinear divergences only along p.
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Operator definitions
The soft function S is the eikonal limit of the massless form factor
S (81 B2, s (%), €) = (0], (00,0) @, (0, —00) 0) .

Soft-collinear regions are subtracted dividing by eikonal jets 7.
B1-n1)?
T (% as(,u,2),c> = (0]®y, (00,0) @, (0, —00) |0) ,
TLl

e S and J are pure counterterms in dimensional regularization.
e S only depends on kinematics through the cusp anomaly.
e A single pole function where the cusp anomaly cancels is
S (81 B2, as(u?),€)
i, 7 (%ﬁ»%(u%x)

s (/712,0.<(112),e) =

It can only depend on the scaling variable

2 2 2 1404 - 200.
p1o = (—=B1 - B2) ny Ny U
= B ALMA
(—pB1 - 71,1)2 (—pB2 - 712)2 UNIVERSITAS TAURINENSIS
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Jet evolution

The full form factor does not depend on the factorization vectors n!'.
Defining z; = (—f3; - n;)* /n2,
2
z; aii logT <(j—2,a5(u2), e) =0.
This dictates the evolution of the jet J
i ——logJ; = O ogC 4 2 log T,
z; o2, ogJ; = -z os ogC + z; 0711 og J;
1 . -
= S [Gi(m o)) + K (s, €)]
Imposing RG invariance of the form factor
75 (P12, as) + ve (P12, o) + 277 (as) = 0.
leads to the final evolution equation
9] 2 1404-200:
Qg loaT = Ale as) 5o 1oaC — 75 — 27 + Zjl (Gi +K) *‘:‘*

UNIVERSITAS TAURINENSIS
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Collinear evolution

It is useful to establish a connection to conventional collinear
factorization. Define a parton-in-parton distribution as

1 9N
bqjq (@)= — [ 2

AP B pp (AB)~y - BB4(N, 0 0
e / [ s b s
av. | 2 (Pl g (AB) v - B2z (X, 0) Yq(0)[p)

The virtual contribution can be isolated. At the amplitude level it is

T/ (ffﬂ,aswz»e) = (01% (00, 0) 14 (0) [p) ,

Comparing factorizations for this amplitude and the jet .J, and enforcing
Altarelli-Parisi evolution one finds

(Bp-m)? 2 )] _ .
[J( n2 o eli)e pole Ly/q (’GP ) “3‘“5(“2)’6)

7 (Lo o)) Tl (Bp - B0 (1), )
1 fu? de? (a] 5 ]
= exp | — / — B (@(e?,€) . Lo Sau
|:2 JO £2 ° ( ) ALMA
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Results for Sudakov form factors

e In dimensional regularization (e < 0) one has the boundary value
I'(0,e) = 1. Then

oar (@%.9) = 2 [ 0w (w(e) ) o b L2 D (w ()

e The functions K and v are not independent

12 da?
/\z

Mil{(e,as):*"/l((okﬁ e K(ros(il?)) :72./0

— VK (&(/\2,5)) .
e The form factor can be written in terms of just G' and g,
2 2
r(e?, {3 [0 G (- 1a ()
1
2

NG e>> (*;32)]} | G
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Implications

e The exponent is not affected by the Landau pole for e < 0. T' is an
analytic function of the coupling and €. At one loop in QCD

2
log T <&,<¥5(M2),6>
w?

(1) 2 2
_ 1 )k . a(Q7) (. ) a(Q7)
- » { Lz [7a(Q2)+c:| +26M () log (14 =" & .

log T (1, QS(QQ), e)

e The ratio of the timelike to the spacelike form factor admits a
simple representation

T i fm : - i 1o R
log {m} = iEK(e) + > /s [G (E e‘ng) ‘5) — 5/0 dé vi (E (e‘on))}

which is physically relevant for resummed EW
annihilation processes. Tog-20by
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Form factors in N =4 SYM
In d = 4 — 2¢ conformal invariance is broken and B(ay) = —2 € a.

All integrations are trivial. The exponent has only double and single

poles to all orders.
as)\" (2 \" [ e
| ks —Q2 2n2e2 + ne

2
log [F (& Las(p?), e)}
w? "

& (s (@) ipne [ 1 6
= Z © o2z T ’
n=1 T 2nZe

I
|
N |
8

N |

ne

In the planar limit this captures all singularities of fixed-angle
amplitudes in N = 4 SYM.

The analytic continuation yields a finite result in four dimensions,
arguably exact.

r(Q?)
r(-Q2)

2 71_2
= exp {7 YK (“s(Qz))} . 74032004

ALMA
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Characterizing G(as, €)
The single pole function G(ag, €) is a sum of anomalous dimensions

9 2
Glas) =B(e,as) — logC —vg5 — 275+ > Gs,
das i=1

In d =4 — 2¢ finite remainders can be neatly exponentiated

Q2 qg2 [dlogCT (@ (€2, ¢),¢ 1 Q2 qe2 oy
C(aS(QQ),e):exp |:/0 572 {#}} = exp |:5 /(J ?Gﬁ(a(&zye)7€>}
The soft function exponentiates like the full form factor

(o) =esn {1 [ % fon((€.)) - (2. or (5]} -

G(ag, €) is then simply related to collinear splitting functions and to
the eikonal approximation

1§04-2004
G(as,€) = 2Bs (as) + Geik (O‘S)“‘Gﬁ(amf) > ik
ALMA
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Single logarithms in resummation

A deeper characterization of infrared and collinear single poles in
amplitudes should be reflected in single logarithms in cross sections.

For a resummation as in the Drell-Yan cross section

N r@* o |* 1oV o
Oy (V) m exp {FDY(as) +/0 dz B
o ra=%Q% au? . 5
o [0 2 A fenut) 0 (o (0 70%)) ]
the function D(«) should be related to Bs(as) and to G(as). Indeed,
Alas) = Ak (as)/2,
. . d
D(ag) = 4Bg(u5)72G(as)+6(as)KFDy(aS),
B(as) = Bs(as) — é(”s) + B((Ys) o Fpis(as) ,
14032004
where B(a) is the single log function for DIS resummation.  ~ aw
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Perspective

e The all-order analysis of infrared and collinear divergences in gauge
theories has a long history.

e This history is entering a new phase

e New motivations from LHC phenomenology
e New (non)-perturbative input from A/ =4 SYM.

e We are beginning to unravel all-order structure in the resummed
exponent.

e FExact results are in sight in N' = 4 SYM.

e For infrared and collinear divergences in fized-angle massless gauge
theory amplitudes only three functions play a role: vyx (),
Geix(as) and Bs(as), possibly even beyond the planar limit.

1404-2004
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