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Jets at Tevatron and LHC

• Jets are ubiquitous at hadron colliders

−→ the most common high-pt final state

• Jets need to be understood in detail

−→ top mass, Higgs searches, QCD studies, new particle cascades

• Jets at LHC will be numerous and complicated

−→ tt̄H → 8 jets ... , underlying event, pileup ...

• Jets are inherently ambiguous in QCD

−→ no unique link hard parton → jet

• Jets are theoretically interesting

−→ IR/C safety, resummations, hadronization ...
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tt̄→ 4 jets + lepton + /Et: a cartoon
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tt̄→ 4 jets + lepton + /Et: real life at CDF
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From hard partons to jets

Hard scattering provides us with high-pt partons initiating the
jets. Jet momenta receive several PT and NP corrections.

• Perturbative radiation + parton showering

−→ expensive: 5 · 102 m · y ∼ $ 5 · 107 at NNLO ...

• Universal hadronization, induced by soft radiation

−→ from hard scattering, as in DIS, e+e−

• Underlying event, colored fragments from proton remnants

−→ no perturbative control, large at LHC

• Pileup, multiple proton scatterings per bunch crossing

−→ experimental issue, up to 102 GeV
per unit rapidity at LHC
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Jet algorithms

• Requirements. IR/C safe, for theoretical stability; fast, for
implementation; limited hadronization corrections

• Algorithm structures.
• Cone. Top-down, intuitive, Sterman-Weinberg inspired.

−→ IR/C safety issues −→ SISCone

• Sequential recombination. Bottom-up, clustering, from e+e−.

Metric: d
(p)
ij ≡ min

(
k2p

t,i, k
2p
t,j

)
∆y2

ij+∆φ2
ij

R2 , d
(p)
iB ≡ k2p

t,i ,

Choices: p = 1: kt, p = 0: Cambridge, p = −1: Anti-kt

• Recent progress.

• G. Salam et al.: FastJet, SISCone, Anti-kt,
Jet Area, Jet Flavor

• Also S. Ellis et al.: SpartyJet
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Nonperturbative effects at TeV colliders

Why bother?

• Do power corrections matter for TeV jets?

Λ/Q ∼ 10−3 −→ true asymptotics?

• Precision measurements require precise jet energy scale

1% uncertainty←→ ∆Mtop ∼ 1GeV/c2

• Steeply falling distributions magnify power corrections

power corrections necessary to fit Tevatron data

• Hadronization and underlying event: different physics

−→ disentangle computable effects

• QCD dynamics in full colors.

−→ color correlations in hadronization
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Determining the jet energy scale
CDF, hep-ex/0510047

• Precision for the jet energy scale ET is important

∆ET /ET = 10−2 −→ ∆σjet/σjet|500GeV = 10−1

• Determining the jet energy scale is experimentally difficult

pparton
T =

(
pjet

T × Cη − CMI

)
× CABS − CUE + COOC

• Experimental issues: Cη , CMI , CABS

• Calorimeter and detector efficiencies
• Multiple interactions

• Theoretical input: CUE , COOC

• Underlying event, hadronization, out-of-cone radiation
• Models, Monte-Carlo, analytic results?
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Fitting jet distributions at Tevatron
M.L. Mangano, hep-ph/9911256

The ratio of single-inclusive jet ET distributions at different
√

S

should scale up to logarithms.

Fit of CDF data with NLO QCD assuming ET -independent

shift Λ in jet energy.

• Cross section ratio should scale up

to PDF ad αs effects.

• Data can be fitted with shift in

distribution.

• Small Λ has impact at high ET .

• σ(ET ) ∼ E−n
T → δσ

σ ∼ −n δET

• Several sources of energy flow in
and out of jets.
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Discriminating power corrections

• Sources of power corrections at hadron colliders

• Soft radiation from hard antenna ⇒ hadronization.

∗ Accessible with perturbative QCD.

∗ Partially localized in phase space.

∗ Tools: resummations, dispersive techniques.
• Background soft radiation ⇒ underlying event.
∗ Not calculable in perturbative QCD.

∗ Fills phase space (minijets?).

∗ Tools: models, Monte-Carlo.

• Experimental issues impact on theory.

• Phase space cuts −→ non-global logarithms.

• Pileup subtraction −→ jet areas.
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Factorization and resummation

Consider inclusive production of a jet with momentum pµ
J in

hadron-hadron collisions, near partonic threshold.

• Partonic threshold: s4 ≡ s + t + u→ 0
−→ αn

s

[
log2n−1(s4)/s4

]
+

in the distribution.

• Sudakov logs arise from collinear and soft gluons, which
factorize, with nontrivial color mixing
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NLL jet ET distribution
G. Sterman, N. Kidonakis, J. Owens ...

Factorization leads to resummation. For qq̄ collisions

EJ
d3σ

d3pJ

=
1

s
exp [EF + EIN + EOUT] · Tr [HS] .

Incoming partons build up a Drell-Yan structure

EIN = −
2X

i=1

Z 1

0
dz

zNi−1 − 1

1− z

(
1

2
νq

h
αs

“
(1− z)

2
Q

2
i

”i
+

Z 1

(1−z)2

dξ

ξ
Aq

h
αs

“
ξQ

2
i

”i)
.

Note: N1 = N(−u/s) , N2 = N(−t/s) , Q1 = −u/
√

s , Q2 = −t/
√

s

Outgoing partons near threshold cluster in two jets

EOUT = −
X

i=J,R

Z 1

0
dz

zN−1 − 1

1− z

(
Bi

h
αs

“
(1− z)p

2
T

”i
+ Ci

h
αs

“
(1− z)

2
p
2
T

”i

+

Z 1−z

(1−z)2

dξ

ξ
Ai

h
αs

“
ξp

2
T

”i)
.
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Color exchange near threshold

Soft gluons change the color structure of the hard scattering.

• Choose a basis in color configuration space

c
(1)
{ri}

= δr1r3δr2r4 , c
(2)
{ri}

=
“

TA

”
r3r1

“
T A

”
r2r4

= 1
2

“
δr1r2δr3r4 −

1
Nc

δr1r3δr2r4

”

• At tree level, for qq̄ collisions

M{ri} = M1 c
(1)
{ri}

+M2 c
(2)
{ri}

→ |M|2 = MIM∗
J tr

»
c
(I)
{ri}

“
c
(J)
{ri}

”†–
≡ Tr [HS]0

• Renormalization group resums soft logarithms

Tr [HS] ≡ HAB

“
αs(µ

2
)
”

S
AB

„
pT

Nµ
, αs(µ

2
)

«
=

H
“

αs(p
2
T )
”
· P exp

 Z pT
N

pT

dµ

µ
Γ
†
S

“
αs(µ

2
)
”!

· S

 
1, αs

 
p2

T

N2

!!
· P exp

 Z pT
N

pT

dµ

µ
ΓS

“
αs(µ

2
)
”!

• Note:
[
Γqq̄

S

](1)
11

= 2CF log (−t/s) + iπ . . .
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Issues of globalness and jet algorithms

Resummations in hadron-hadron collisions require a precise
definition of the observable.

• Precisely defining threshold
• For dijet distributions: M12 = (p1 + p2)2 differs from

M12 = 2p1 · p2 at LL level.
• For single inclusive distributions: fixed and integrated rapidity

differ (Ni → N).

• Precisely defining the observable
• Jet algorithm: IR safety a must.
• Jet momentum: four-momentum recombination

p⊥ =
P

i Ei sin θi vs. p⊥ =
P

i Ei · sin θeff .

• Beware of nonglobal logarithms
• Pick global observable: satisfied by xT distribution.
• Minimize impact of nonglobal logs: k⊥ algorithm

for energy flows; joint distributions.
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Soft gluons in dipoles
Y. Dokshitzer, G. Marchesini

• Given hard antenna, define eikonal soft gluon current.

jµ,b(k) =

NpX
i=1

ω p
µ
i

(k · pi)
T

b
i ;

NpX
i=1

T
b
i = 0.

• Eikonal cross section is built by dipoles.

j2(k) = 2
X
i>j

Ti · Tj
ω2 (pi · pj)

(k · pi)(k · pj)
≡ 2

X
i>j

Ti · Tj wij(k),

• By color conservation, up to three hard emitters have no
color mixing (unique representation content).

• −2T1 · T2 = T2
1 + T2

2 = 2CF ; −2T1 · T2 = T2
1 + T2

2 − T2
3 ,

• −j2(k) = T2
1 ·W

(1)
23 (k) + T2

2 ·W
(2)
13 (k) + T2

3 ·W
(3)
12 (k) ,

• W
(1)
23 = w12 + w13 − w23 .

• Note: W
(i)
jk isolates collinear singularity along i.
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Soft gluons in dipoles

Beyond three emitters different color representations contribute.

• The eikonal cross section acquires noncommuting dipole
combinations

−j2(k) = T2
1 W

(1)
34 (k)+T2

2 W
(2)
34 (k)+T2

3 W
(3)
12 (k)+T2

4 W
(4)
12 (k)+T2

t ·At(k)+T2
u ·Au(k) .

with nonCasimir color factors

T2
t = (T3 + T1)2 = (T2 + T4)2, T2

u = (T4 + T1)2 = (T2 + T3)2.

• The resulting distributions are collinear safe

At = w12 + w34 − w13 − w24 , Au = w12 + w34 − w14 − w23 ,

• Angular integrals yield momentum dependence of radiators

R dΩ
4π

At(k) = −2 ln −t
s

;
R dΩ

4π
Au(k) = −2 ln −u

s
.

• Dipole approach practical for power corrections.
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Power corrections by dipoles

• Consider the single inclusive distribution for a jet observable
O(y, pt, R), with jet radius R =

√
(∆y)2 + (∆φ)2.

• Measure the effect of single soft gluon emission on the
distribution, as done in e+e− and DIS, but dipole by dipole.

• Define R-dependent power correction

∆O±
ij(R) ≡

Z
±

dη
dφ

2π

Z µf

µc

dκ
(ij)
t δαs

“
κ
(ij)
t

”
kt

˛̨̨̨
˛ ∂kt

∂κ
(ij)
t

˛̨̨̨
˛ pi·pj

pi·k pj ·k
δO± (kt, η, φ) .

• Compute in-cone and out-of-cone contributions

∆Oij(R) = ∆O+
ij(R) + ∆O−

ij(R) = ∆O+
ij(R) + ∆O− all

ij (R)−∆O− in
ij (R) .

• Express leading power R dependence in terms of (universal?)
moment of the non-perturbative coupling, A(µf )

A (µf ) = 1
π

∫ µf

0

dκ⊥ δαs(κ⊥)
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Radius dependence: pT distribution

Let O = ξT ≡ 1− 2pT /
√

S. In this case

• In-In dipole

∆ξT,12(R) = −4√
S
A(µf ) R J1(R) = − 4√

S
A(µf )

„
R2
2 − R4

16 + . . .

«
.

• In-Jet dipoles

∆ξT,1j(R) = −

s
2

S

Z
η2+φ2<R2

dη
dφ

2π
αs(κt)

dκt

κt
κt

cos φ e
3η
2

(cosh η − cos φ)
3
2

=
2
√

S
A(µf )

„
2

R
−

5

8
R +

23

1536
R

3
+ . . .

«

• Jet-Recoil dipole

∆ξT,jr(R) = 2√
S
A(µf )

“
2
R

+ 1
2 R + 1

96 R3 + . . .
”

• In-Recoil dipoles

∆ξT,1r(R) = − 2√
S
A(µf )

“
1
8 R2 − 9

512 R4 − 73
24576 R6 + . . .

”
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Radius dependence: mass distribution

For comparison, let O = νJ ≡M2
J/S. Now only gluons recombined

with the jet contribute, and one finds nonsingular R dependence.

• In-In dipole

∆νJ,12(R) = 1√
S
A(µf )

“
1
4 R4 + 1

4608 R8 +O
“

R12
””

,

• In-Jet dipoles

∆νJ,1j(R) = 1√
S
A(µf )

“
R + 3

16 R3 + 125
9216 R5 + 7

16384 R7 +O
“

R9
””

,

• Jet-Recoil dipole

∆νJ,jr(R) = 1√
S
A(µf )

“
R + 5

576 R5 +O
“

R9
””

,

• In-Recoil dipoles

∆νJ,1r(R) = 1√
S
A(µf )

“
1
32 R4 + 3

256 R6 + 169
589824 R8 +O

“
R10

””
.
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Combining dipoles

Example: leading power shift in pt after dipole recombination for
qq′ → qq′ parton process, at central rapidity.

∆pt(R)|qq′→qq′ = A(µf )
[
− 2

R CF + 1
8 R

(
5 CF − 9

Nc

)
+O

(
R2

)]
.

• Hadronization has a singular R dependence. 1/R has a
collinear origin, like the log R behavior of PT.

• The color structure at 1/R level is abelian, with the hard
parton color charge. For gluon jets, CF → CA.

• Possible universality: A(µf ) is the same as defined for event
shapes in e+e− and DIS.

• Universality generically broken by nonlinear effects
in jet algorithm, except for Anti-kt.

• At O(R2) hadronization is overtaken by underlying
event, entering with a new scale ΛUE .
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Power corrections by MonteCarlo

The analytical estimate of power corrections provided by
resummation is valid near threshold. It can be compared with
numerical estimates from QCD-inspired MonteCarlo models of
hadronization.

• Run MC at parton level (p), hadron level without UE (h)
and finally with UE (u)

• Select events with hardest jet in chosen pT range, identify two
hardest jets, define for each hadron level

∆p
(h/u)
T = 1

2

(
p
(h/u)
T,1 + p

(h/u)
T,2 − p

(p)
T,1 − p

(p)
T,2

)
.

∆p
(u−h)
T = ∆p

(u)
T −∆p

(h)
T .

• Compare results for different jet algorithms,
hadronization models, parton channels.
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Quark scattering at Tevatron: comparing jet algorithms
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Gluon scattering at Tevatron
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Gluon scattering at LHC
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Underlying event, scaled
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Jetography

The change in pt from the hard parton to the hadronic jet has
several sources, each with its own scale and radius, energy and
color dependence.

Dependence of jet ∆pt on
scale colour factor R

√
s

PT αs(pt) pt Ci lnR +O(1) –
H A(µf ) Ci −1/R +O(R) –
UE ΛUE – R2 +O(R4) sω

• Jet algorithm dependence is weak at this level

• Parameters tunable to optimize specific physics searches

• Radius dependence usable to disentangle pt sources.
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Looking for the best R
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Looking for the best R
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Perspective on hadronization

• Single inclusive jet distributions have Λ/pT power corrections
from hadronization.

• Hadronization corrections are distinguishable from
underlying event effects because of singular R dependence.

• In a “dispersive model” the size of leading power corrections
can be related to parameters determined in e+e− annihilation.

• Power corrections near partonic threshold are qualitatively
compatible with Monte Carlo results.

• Work in progress.
• Study rapidity dependence.
• Investigate role of jet algorithms.
• Combine with resummation to go beyond shift.
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Perspective

• In recent years: great progress in theoretical jets studies

• Several IR/C safe jet algorithms available; fast
implementation

• Operational definitions of jet area, jet flavor
• Progress in PT, shower, resummation, hadronization

• Progress will be necessary for complex LHC environment
(multi-jet, large UE, pileup, ...)

• To take advantage of available tools: flexibility
• Use different (safe) algorithms, vary parameters

• QCD is now precision physics
• New frontiers in quantum field theory
• Useful for new physics studies
• Necessary for precision studies
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