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Abstract

Recent work on the theme of power corrections
to QCD factorization theorems is briefly reviewed.
Resummation of certain classes of contributions to IR–
safe observables highlights the limitations of perturbation
theory. The ambiguity of the perturbative answer points
to nonperturbative, power suppressed corrections. Power
corrections can be resummed into shape functions, for
which theoretical models are available. Theoretical
progress is closing in on the nonperturbative frontier.

Some references: M Beneke: hep-ph/9807443.

G. Korchemski, G. Sterman: hep-ph/9902341.
M. Dasgupta: hep-ph/0109220.

E. Gardi: hep-ph/0108222.
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Outline

• The perturbative window on power corrections

– “Large nf” resummations: renormalons.

– “Large N” resummations: the edge of phase space.

• Benchmarks: observables with OPE

– The Adler function.

– DIS structure functions.

– Ultraviolet dominance of power corrections.

• Beyond OPE: two–jet observables

– Factorization, resummation and shape functions.

– Nonlocal operators, energy correlations.

– Recovering renormalons.

• From renormalons to shape functions: DGE

– Dressed gluon exponentiation.

– Borel summation and power corrections.

• Phenomenology

– Beyond universality: hadronization and mass effects.

– Beyond the peak: thrust and jet masses.

– αs and nonperturbative parameters.

• Perspectives
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Taking perturbative QCD to the limit

• FACT: The perturbative series for IR safe observables in QCD

is at best asymptotic. This is good!

– Nonperturbative QCD must be present and relevant.

– Measuring the ambiguity of the perturbative answer gives

information on the size of nonperturbative corrections.

• TOOL: Resummation of perturbation theory.

– The edge of the perturbative domain: soft gluons.

– Soft gluon emission is universal and factorizable.

– Factorization implies resummation: soft gluon emission can

be formally computed to all orders.

• RESULT: QCD resummations (renormalon, threshold ...)
typically yield expressions of the form

fa(Q
2
) =

∫ Q2

0

dk2

k2
(k

2
)
a
αs(k

2
) ,

Such expressions are ill-defined, because of the Landau pole
in the running coupling at k2 = Λ2. In fact, expanding

fa(Q
2
) =

∞∑

n=0

c
(a)
n

(
αs(Q

2
)
)n

one finds

c
(a)
n ∝ n!→ δfa(Q

2
) ∝

(
Λ2

Q2

)a

.
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• EXAMPLE: soft gluon resummation.

Thrust distribution dσ/dt as t ≡ 1− T → 0.

∫ tmax

0
dt e

−νtdσ

dt
= e

−S(ν,Q)
.

S(ν,Q) =

∫ 1

0

dα

α

(
1− e

−να
)


∫ αQ2

α2Q2

dk2
⊥

k2
⊥

Γ
(
αs(k

2
⊥)
)

 .

– Resums multiple soft gluon emission in Laplace space.

– Organizes log t singularities in dσ/dt.

– Integration over gluon k⊥ exhibits Landau pole.

• EXAMPLE: renormalon resummation.

Event shapes or single particle distributions such as σT,L can
be represented as

σ(x) =

∫
dk2

k2

1

|1 + Π(k2)|2
σ̂

(
x,

k2

Q2

)
.

– Resums multiple fermion bubble insertion.

– Identifies nf → −3β0/2 (“näıve nonabelianization”)

– Integration over gluon virtuality k2 exhibits Landau pole.
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Exploiting the consistency of QCD

• Regularizing the Landau pole

A variety of regularizations have been proposed

– Principal value/cutoff (Korchemsky, Sterman, Gardi)

– Regular IR coupling (Dokshitzer, Marchesini, Webber)

– Dimensional regularization (LM)

– Choice of contour in Mellin/Laplace space (Catani et al.)

* Result: the PT answer is ambiguous by a power–suppressed

amount

* Conclusion: a power–suppressed, non–PT contribution

must exist, with a matching ambiguity.

* Question: to what extent can we trust the PT ambiguity

as a measure of the non–PT contribution?

• Benchmarks: observables with OPE

– Nonlinear σ–model in d = 2 (David, 1982).
– The Adler function π′(q2) = dπ(q2)/dq2, where
σtot(e

+e−) ∝ Im
[
π(q2)

]
, (Muller, 1985)

Πµν(q
2
) ≡ i

∫
d
4
xe

iqx〈0|T
[
Jµ(x)Jν(0)

]
|0〉

π(q
2
) = π0(q

2
) +

f2

Q4
π4(q

2
) + . . .

– Deep inelastic structure functions (Beneke, 1998; Gardi et

al., 2002).
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DIS and UV dominance of power corrections

Introducing a factorization scale µF

Fa(N,Q
2
) = C

i
2,a(N,µF , Q

2
)〈O

(2)
i (N,µF )〉

+
1

Q2
C
j
4,a(N,µF , Q

2
)〈O

(4)
j (N,µF )〉+ . . .

• µF acts as: IR cutoff for coefficient functions C i, UV cutoff

for operator matrix elements 〈Oi〉.

• Physical quantities (such as Fa) (or complete QCD

predictions) must not depend on µF .

• Logarithmic dependence on µF cancels between Ci and 〈Oi〉
within a given twist, according to Altarelli–Parisi equations.

• Ci have a power–like ambiguity of IR origin, δC i =

(µf/Q)
pλp, due to the divergence of PT.

• 〈Oi〉 have power–like UV divergences: they mix with leading

twist, and make twist separation ambiguous.

• Once the same regularization is chosen for both C i and

〈Oi〉 (e.g. Borel representation of dressed gluon propagator),

ambiguities cancel.

• Renormalon models rely on UV dominance of PC: assume

〈Oi〉 is well modelled by its UV divergences (M. Beneke, V.

Braun, LM, 1997).

• UV dominance is verified in certain kinematic limits (e.g.

W 2 = (1− x)Q2/x→ 0), where 〈O4,6
i 〉 are dominated by

configurations mimicking twist 2 (Gardi et al., 2002).
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Beyond OPE: two–jet observables

• Generic IR safe observables in production processes cannot be

described with OPE: they are weighted cross sections.

• Classic example: event shape distributions in e+e−.

dσ

de
=
∑

N

|〈N | J(0) | 0〉|2 δ (e− e(N)) ≡ 〈δ (e− e(N))〉 ,

where e = 1− T, ρJ, C, . . ..

• Resummations are available for event shapes in the two–jet

region, where matrix elements factorizePSfrag replacements

JJ H

S

• In the two–jet region

– Two scales: Qe, energy of soft gluons and Q2e, transverse

momentum of jets.

– Goal: organize corrections (Qe)−n, neglect (Q2e)−n.

– Kinematics: t = (M2
R +M2

L)/Q
2 as t→ 0.

• A useful tool: the radiation function

R(e) =

∫ e

0
de
′ dσ

de′
= 〈θ (e− e(N))〉 .

RH(ρ) =
〈
θ
(
ρ−M

2
R/Q

2
)
θ
(
ρ−M

2
L/Q

2
)〉

,

RT (t) =
〈
θ
(
t− (M

2
R +M

2
L)/Q

2
)〉

.
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Power corrections and shape functions

A view from perturbative resummation
• Sudakov exponent for thrust

S(ν,Q) ≡ SPT (ν,Q, µ) + SNP (ν,Q, µ) .

• Focus on t→ 0, large ν, expand formally in powers of ν/Q,
neglect ν/Q2. Then

SNP (ν/Q, µ) =

∫ µ2

0

dk2
⊥

k2
⊥

Γ
(
αs(k

2
⊥)
) ∫ k⊥/Q

k2
⊥
/Q2

dα

α

(
1− e

−να
)

=

∞∑

n=1

1

n!

(
ν

Q

)n

λn(µ
2
) ,

• Nonperturbative parameters:

λn(µ
2
) =

1

n

∫ µ2

0
dk

2
⊥k

n−2
⊥ Γ

(
αs(k

2
⊥)
)
.

• Shape function:

exp (−SNP (ν/Q, µ)) ≡

∫ ∞

0
dεe

−νε/Q
ft(ε, µ) .

• Distribution, by inverse Laplace transform

dσ

dt
∼

∫ tQ

0
dεft(ε, µ)

d

dt
σ
PT

(
t−

ε

Q

)
.

• The distribution is given by the perturbative distribution,

shifted by an amount proportional to the soft energy flow, and

smeared by the shape function.
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Features of the shape function

• More general event shapes (ρH) discriminate between
hemispheres→ the shape function depends on two soft energy
variables, εr, εl

M
2
r,l = (M

2
r,l)PT + εr,lQ ; εr,l =

N
(soft)
r,l∑

k=1

Ek (1− | cos θk|)

• For the heavy jet mass, for example

RH(ρ) =

∫ µ

0
dεrdεl f(εr, εl)

〈
θ

(
ρ−

M2
r

Q2
−

εr

Q

)
θ


ρ−

M2
l

Q2
−

εl
Q



〉

PT

• For t and C, proportional to the sum of the hemisphere
masses, one defines

ft,C(ε) =

∫ µ

0
dεrdεlf(εr, εl, µ)δ(ε− εr − εl)

• f(εr, εl, µ) does not depend on the hard scale Q. It is

normalized by
∫
dεrdεlf(εr, εl) = 1.

• Like parton distributions, shape functions admit a nonlocal

operator definition. Integer moments can be expressed in

terms of correlators of the energy momentum tensor on the

sphere at spatial infinity
• An example of phenomenological use

f(εr, εl) =
N (a, b)

Λ2

(
εrεl
Λ2

)a−1

exp

(
−
ε2r + ε2l + 2bεrεl

Λ2

)
.
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Recovering renormalons

• Renormalon models (Dokshitzer et al., Beneke et al.) predict
moments of event shapes with one nonperturbative parameter

α0(µF ) ≡
1

µF

∫ µF

0
dk⊥αs(k⊥) .

• Event shapes are sensitive to radiation in different hemispheres

(Nason, Seymour). A correction (“Milan”) factor is necessary

in the dispersive approach.
• Tube and renormalon models predict event shape distributions

given at the NP level by shift of PT distribution.

dσ

dt
→

d

dt
σPT

(
t−

〈ε〉

Q

)
.

* Shape functions recover dispersive results for average event
shapes

〈e〉 = 〈e〉PT + ce
λ1

Q
+O

(
1

Q2
,
αs

Q

)
.

Higher moments involve the new NP parameters λn.
* Noninclusive corrections are included in the proper definition

of λ1

λ1 =

∫
dεrdεl(εr + εl)f(εr, εl) .

Inclusiveness assumption corresponds to f(εr, εl) = g(εr)g(εl)

* Shift in PT distribution is recovered with extra smearing by

shape function. It is the leading correction when e >> Λ/Q.

* Shape functions provide a framework to study corrections to

renormalon/dispersive results.
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Dressed Gluon Exponentiation

DGE (Gardi, Gardi and Rathsman) combines Sudakov

resummation with renormalon techniques, and yields a renormalon

model for the shape function.

• STEP 1: Compute the characteristic function of the dispersive

method (integrated probability for virtual gluon emission) for

the observable at hand, in the Sudakov limit.

Example: heavy jet mass (ε = k2/Q2).

Ḟ(ρ, ε)
∣∣∣
log

=
2

ρ
−

ε

ρ2
−
ε2

ρ3
.

• STEP 2: Dress the virtual gluon by turning to a Borel
representation and integrating over gluon virtuality (Note: use
“gluon bremsstrahlung” coupling to achieve NLL accuracy).

dσ

dρ
=

CF

2β0

∫ ∞

0
duB(u, ρ) exp

(
−u lnQ2

/Λ̄
2
) sinπu

πu
ĀB(u)

• STEP 3: Use dressed gluon distribution as kernel of
exponentiation.

ln J(ν,Q
2
) =

∫ 1

0

dσ

dρ

(
e
−νρ − 1

)
dρ ,
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• STEP 4: Borel representation of the exponent suggests pattern
of exponentiated power corrections.

R(ρ) =

∫

C

dν

2πiν
exp

[
νρ+ ln J

PT
(ν,Q

2
) + ln J

NP
(ν,Q

2
)
]
,

ln J
NP

(νΛ/Q) = −
∞∑

n=1

λn
1

n!

(
νΛ

Q

)n

,

Example: For the heavy jet mass: λ2k = 0.

• STEP 5: Introduce shape function with moment structure
derived by Borel representation.

J
NP

(νΛ/Q) =

∫ ∞

0
dζ f (ζ) exp (−ζνΛ/Q) .

• RESULTS

– NLL Sudakov resummation reproduced. All subleading logs

computed in the “large nf” limit.

– Factorial growth of subleading logs detected: power

accuracy requires going beyond logarithms.

– A definite prescription to handle resummed PT at power

accuracy.

– Phenomenology of thrust, jet masses; also DIS, Drell-Yan,

fragmentation.

– A renormalon implementation of the shape function.
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Hadronization and hadron masses

All models of power corrections are derived in massless QCD.

However event shapes are measured using massive particles

produced in hadronization.

The difference between massless and massive definitions of event

shapes induces non–universal power corrections of the same

parametric size (Λ/Q) as conventional ones (Salam, Wicke).

• When fitting nonperturbative parameters it is necessary to

specify a scheme to connect massless QCD computation and

measured event shapes

– Conventional scheme: ignore mass effects in the definition

of events shapes. Different shapes are treated differently.

– p–scheme: use measured three–momenta pi, set Ei =

|pi|. Energy is not conserved.

– E–scheme: use measured energies Ei and rescale three–

momenta by Ei/pi. Three–momentum is not conserved.

Non–universal PC vanish in a tube model.

– Decay scheme: let all particles decay into massless particles

(e.g. via MC). Not all decays are strong, nor realistic.

• Mass effects are enhanced by hadron multiplicity. Model
calculations using LPHD suggest

δm〈e〉 = ce
Λ

Q

(
log

Q

Λ

)A

; A =
4Nc

b0
∼ 1.6
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Perspectives

• Resummed QCD amplitudes point beyond perturbation theory.

• Renormalon models agree with OPE, where available, as to

the size of nonperturbative corrections. UV dominance applies

in certain kinematic domains.

• Shape functions provide a general framework for studies of

power corrections. Like PDF’s, they must be fitted from

data. Different models suggest different functional forms.

Renormalon models are recovered.

• Dressed gluon exponentiation implements renormalon calculus

in Sudakov resummation. It provides a model for shape

functions.

• Hadronization generates mass–related log–enhanced power

corrections. A defining scheme for event shapes must be

chosen.

• Phenomenology is possible in the peak region for event shape

distributions. A cautionary tale: shape function fits yield

αs(MZ) ∼ 0.110; theoretical error?

• The future for theory: NNLO; beyond one chain; beyond two

jets; theoretically motivated choices of shape functions.

• The future for experiment: discriminate between models;

preserve past data; devise methods to preserve future data!
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