{ "cells": [ { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[120. 240. 360.]\n", "[119640. 119760. 119880. 120000.]\n" ] } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# I tempi a cui vengono fatte le misure in secondi. Circa 2000 misure ogni 120 secondi \n", "timepoints = np.linspace(1,1000.,1000)*120\n", "print(timepoints[0:3])\n", "print(timepoints[-4:])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# Misure previste se il numero di decadimenti è D(t) = N0*exp(t/tau)/tau\n", "N0 = 1.e14\n", "tau = 3000.\n", "datapoints = np.exp(-timepoints/tau)*N0/tau" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAFwCAYAAABghNUnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAv80lEQVR4nO3deZxcdZ3u8edbW3fS2ZMGQhbWBAkgIYlhcUMEDIxjXFATQdHLDIZFQZ25g1dFca7jnRnHwSAScUBUIgERAZk4jAIKzghmIYSEEIjBIU2iaQhJIJB0OvneP+pUUjS9VHdX9Tm/U5/361WvVJ863fUVyPHp3znnKXN3AQAAoPoycQ8AAACQVgQtAACAGiFoAQAA1AhBCwAAoEYIWgAAADVC0AIAAKiRWIOWmd1oZpvNbFUF+77NzJabWbuZndPhtfPN7OnocX7tJgYAAKhc3CtaN0maVeG+z0r6uKQfl280s1GSvizpREkzJX3ZzEZWb0QAAIC+iTVoufuDkraUbzOzI8zsP8xsmZk9ZGZviPb9o7uvlLS3w495l6RfuvsWd39R0i9VeXgDAAComVzcA3Tieknz3P1pMztR0nckndbN/uMkbSj7uiXaBgAAEKtEBS0zGyLpFEk/MbPS5oaevq2TbXyuEAAAiF2igpaKpzK3uvvUXnxPi6RTy74eL+nX1RsJAACgb+K+GP413H27pGfM7IOSZEXH9/Bt90o608xGRhfBnxltAwAAiFXc9Q63SPqdpKPMrMXMLpB0rqQLzOwxSaslzY72fZOZtUj6oKTvmtlqSXL3LZL+XtKS6PHVaBsAAECszJ3LmQAAAGohUacOAQAA0oSgBQAAUCOx3XU4ZswYP/TQQ+N6ewAxWLZs2fPu3hz3HNXAMQyoL309fsUWtA499FAtXbo0rrcHEAMz+5+4Z6gWjmFAfenr8YtThwAAADVC0AIAAKgRghYAAECNELQAAABqhKAFAABQIwQtAACAGiFoAQAA1AhBCwAAoEYIWgAAADVC0AIAAKgRghYAAECNJD5o7dnremDtZv3x+R1xjwIAvbZx66t6eP0LcY8BICZBBK1PfH+J/v3xTXGPAgC9dsUdj+vCHy7Vsy+8EvcoAGKQ+KCVz5okqa19b8yTAEDvfe29x8rMNO/mZdq5e0/c4wAYYIkPWmamXMbUvpegBSA8E0YN1tVzpmrNn7bri3eukrvHPRKAAZT4oCVJ+WxGu/dwcAIQpnccdYA+fdok3b6sRbf8fkPc4wAYQEEErVzWtHsPK1oAwnXZOyfp7ZOb9ZW7V+uxDVvjHgfAAAkiaBWyGYIWgKBlMqarPzxVzUMbdNHNy7RlR1vcIwEYAEEErVzW1M6pQwBVYGaHm9kNZnZ72bYmM/uBmX3PzM6t1XuPbCpowXnT9fyONl226FHt2ctxDUi7IIJWPptRGytaALpgZjea2WYzW9Vh+ywzW2tm68zsCkly9/XufkGHH/F+Sbe7+19Lek8tZz1u/HB99T3H6KGnn9fVv3qqlm8FIAGCCVqsaAHoxk2SZpVvMLOspGslnSVpiqS5Zjali+8fL6l0lXrNOxjmzJyoD80Yr2vuX6f71vy51m8HIEaBBC0uhgfQNXd/UNKWDptnSloXrWC1SVokaXYXP6JFxbAldXNcNLMLzWypmS1tbW3t18xfnX2sjjl4mD5z6wrKTIEUCyJo5TLUOwDotXHav0olFcPUODMbbWYLJJ1gZp+PXrtD0gfM7DpJP+/qB7r79e4+w91nNDc392u4xnxWC86bTpkpkHJBBK18jrsOAfSadbLN3f0Fd5/n7ke4+9ejjTvc/RPufpG7LxyoASeMGqyrP0yZKZBmYQQtmuEB9F6LpAllX4+XtDGmWbr0jjccoE9RZgqkVhhBK5vR7nZ+0wPQK0skTTKzw8ysIGmOpLtjnqlTl71zkt5GmSmQSkEErVzWtJsVLQBdMLNbJP1O0lFm1mJmF7h7u6RLJd0raY2k29x9dZxzdiWbMX0rKjO9eOFyykyBFAkiaNEMD6A77j7X3ce6e97dx7v7DdH2xe4+Oboe62txz9mdUplp68u7KDMFUqTHoGVmjWb2ezN7zMxWm9lVnexjZjY/KgVcaWbTqjkkzfAA6kF5mem3KDMFUqGSFa1dkk5z9+MlTZU0y8xO6rDPWZImRY8LJV1XzSFphgdQL0plpvMpMwVSoceg5UUvR1/mo0fH5aXZkn4Y7fuwpBFmNrZaQ9IMD6CeUGYKpEdF12iZWdbMVkjaLOmX7v5Ih106LQbs5Of0qVWZZngA9YQyUyA9Kgpa7r7H3aeq2EMz08yO7bBLp8WAnfycPrUq57I0wwOoL5SZAunQq7sO3X2rpF+rw4e3qsbFgNx1CKAeUWYKhK+Suw6bzWxE9HyQpNMlPdlht7slfSy6+/AkSdvcfVO1hsxlTO0ELQB1iDJTIGyVrGiNlfSAma1UsWn5l+5+j5nNM7N50T6LJa2XtE7S9yRdXM0hi591yLI5gPpDmSkQtlxPO7j7SkkndLJ9Qdlzl3RJdUfbL58pNsO7u8w6uxwMANJrZFNB1503Tedc9ztdtuhR3fSJmcpmOBYCIQiiGT6fzchdNCUDqFtvHD9CV82mzBQITRBBK5ctjtlO0AJQx+a8aYI+OL1YZnr/k5SZAiEIImjls8UlctrhAdQzM9Pfv7dYZnr5IspMgRAEErSiFS0uiAdQ5ygzBcISVNCiSwsAKDMFQhJE0MpFpw4JWgBQRJkpEIYgglZh34oWv7UBQAllpkDyBRG0SitatMMDwH6UmQLJF0TQKl2jxV2HAPBapTLT1pd26bJFj9I3CCRMIEGrtKLFAQQAOqLMFEiuIIJWLsNdhwDQHcpMgWQKImjluRgeALpFmSmQTIEELeodAKAnjfmsrjt3uiRRZgokRCBBq/RZhwQtAOjOxNGDdfWcqXpi03Z9iTJTIHZBBK1SvUNbOwcMAOjJaW84UJ8+7Uj9ZFmLFi2hzBSIUxBBq8CKFgD0ymWnT9bbJjfry3et1sqWrXGPA9StIIJWjs86BIBeKS8zvejm5XqRMlMgFkEErf0Xw3PqEAAq9Zoy01tXUGYKxCCQoMWKFgD0RanM9MGnWikzBWIQVNCiGR4Aeo8yUyA+QQStHD1aANBnlJkC8QkiaBVohgeAfqHMFIhHEEErl2FFCwD6izJTYOAFEbSyGZOZ1E7QAoB+ocwUGFhBBC0zUz6TURunDgGg3y47fbLeOmkMZabAAAgiaEnFLi1WtACg/7IZ0/w5J1BmCgyAYIJWLpvhGi0AqJKRTQV951zKTIFaCyZo5bMZ7eZAAABVc/yEEfrKe6Iy0/uejnscIJUCClqm3e2saAFANc2dGZWZ3ve0Hnhyc9zjAKkTUNDi1CEAVNtrykxvXaENWygzBaopmKBVyGXURtACgKorlZm6O2WmQJUFE7Ty2Yza2rlGCwBqoVRmunojZaZANQUTtFjRAlArZvZWM1tgZv9mZv8d9zxxocwUqL5gglZDNqO2dpazAVTGzG40s81mtqrD9llmttbM1pnZFZLk7g+5+zxJ90j6QRzzJgVlpkB1BRO0CrkMHyoNoDdukjSrfIOZZSVdK+ksSVMkzTWzKWW7fETSLQM1YBJRZgpUVzBBK581tVHvAKBC7v6gpC0dNs+UtM7d17t7m6RFkmZLkplNlLTN3bd39TPN7EIzW2pmS1tbW2s1euwoMwWqJ5igVchlCFoA+mucpPKLj1qibZJ0gaTvd/fN7n69u89w9xnNzc01GjEZKDMFqqPHoGVmE8zsATNbY2arzeyyTvY51cy2mdmK6HFltQct5LJcDA+gv6yTbS5J7v5ld6/bC+E7M3fmBJ1DmSnQL5WsaLVL+py7Hy3pJEmXdLimoeQhd58aPb5a1SnFqUMAVdEiaULZ1+MlbYxplsQzM/3f9x6rKWMpMwX6qseg5e6b3H159PwlSWu0f6l9wDRQ7wCg/5ZImmRmh5lZQdIcSXfHPFOiNeazWnAeZaZAX/XqGi0zO1TSCZIe6eTlk83sMTP7hZkdU43hyhWyXKMFoHJmdouk30k6ysxazOwCd2+XdKmke1X8pfE2d18d55whmDh6sP71w8Uy0yvvWtXzNwDYJ1fpjmY2RNJPJV3eyV05yyUd4u4vm9nZku6UNKmTn3GhpAslaeLEib0atFjvQNACUBl3n9vF9sWSFg/wOMF759EH6lOnHalr7l+naRNHas7M3h3DgXpV0YqWmeVVDFkL3f2Ojq+7+3Z3fzl6vlhS3szGdLJfn+/YybOiBQCxujwqM73y7tV6vGVb3OMAQajkrkOTdIOkNe7+zS72OSjaT2Y2M/q5L1Rz0EIuo/a9rr30uQBALPaVmQ5p0Lybl1FmClSgkhWtN0v6qKTTyuobzjazeWY2L9rnHEmrzOwxSfMlzfEqfyJpIVcclQviASA+lJkCvdPjNVru/lt13j1Tvs+3JX27WkN1ppDdH7Qa89lavhUAoBulMtP/87PH9a37ntZnz5gc90hAYgXVDC+J67QAIAEoMwUqE07QyhK0ACApKDMFKhNO0IpWtKh4AIBkoMwU6FkwQSvPihYAJA5lpkD3gglapRWtXQQtAEiUUpnpbUtbtOj3z8Y9DpAowQUtTh0CQPJQZgp0Lpig1cCpQwBIrGzG9C3KTIHXCSZo5SksBYBEG1VWZno5ZaaApICCFvUOAJB8x08YoS+/Z4p+81Sr5t/3dNzjALELJ2hxjRYABOEjMycWy0zvp8wUCC5ocdchACRbqcz06IMoMwXCCVqcOgSAYFBmChSFE7T2nTrk4koACAFlpkBIQWvfiha/FQFAKCgzRb0LJmhR7wAAYaLMFPUsmKBVWtHi1CEAhIUyU9SzYIJWPmuSuOsQAEJEmSnqVTBBy8xUyGW46xAAAkWZKepRMEFLKp4+JGgBQLg+MnOiPjAtKjNdS5kp0i+soJXL0AwPAAErlZm+4aBhunwRZaZIv7CCFitaABC8QYWsFpw3TXvdddFCykyRbmEFrVyGegcASIFDRjfp6g9P1arntuvLd62OexygZoIKWvmsEbQAICVKZaa3Lt1AmSlSK6igVchlOXUIAClCmSnSLrCgxTVaAJAmlJki7cIKWlnjrkMASBnKTJFmYQUtVrQAIJUoM0VaBRW0GnJZPoIHAFKKMlOkUWBBixUtAEgrykyRRsEFrZ3tFNsBQFpRZoq0CSxoZbVrNytaAJBmlJkiTcIKWvmMdrGiBQCp986jD9Sl7yiWmd66hDJThCusoJXLcDE8ANSJz5xRLDP90l2UmSJcQQWtxjx3HQJAvSiVmY5pKuiihcu09RXKTBGeoIJWQy6jPXud0lIAqBOjmgr6znnTtXl7scx0L2WmCExgQSsrSaxqAUAdmRqVmf56bavm30+ZKcISVtDKF8fdxe2+AFBXSmWm37qPMlOEpcegZWYTzOwBM1tjZqvN7LJO9jEzm29m68xspZlNq8WwDbkoaLGiBaDKzKzJzJaZ2bvjngWvR5kpQlXJila7pM+5+9GSTpJ0iZlN6bDPWZImRY8LJV1X1SkjjXlOHQKojJndaGabzWxVh+2zzGxt9IvhFWUv/Z2k2wZ2SvQGZaYIUY9By903ufvy6PlLktZIGtdht9mSfuhFD0saYWZjqz1saUWLv1wAKnCTpFnlG8wsK+laFX85nCJprplNMbPTJT0h6c8DPSR6hzJThKZX12iZ2aGSTpD0SIeXxknaUPZ1i14fxvqNi+EBVMrdH5S0pcPmmZLWuft6d2+TtEjFXxTfoeKK/Uck/bWZBXX9ar2hzBQhyVW6o5kNkfRTSZe7+/aOL3fyLa+7B9fMLlTx1KImTpzYizGL9l2jxYoWgL7p7JfCE939Ukkys49Let7dO/1trr/HMFTPZ86YrMdatupLd63WlLHDddz44XGPBHSqot/azCyvYsha6O53dLJLi6QJZV+Pl7Sx407ufr27z3D3Gc3Nzb0edt9dh6xoAeibbn8pdPeb3P2err65v8cwVA9lpghFJXcdmqQbJK1x9292sdvdkj4W3X14kqRt7r6pinNK2n/qkGu0APRRRb8UIgyUmSIElaxovVnSRyWdZmYrosfZZjbPzOZF+yyWtF7SOknfk3RxLYZtZEULQP8skTTJzA4zs4KkOSr+oohATZ0wQlf+JWWmSK4er9Fy99+q8+X28n1c0iXVGqorXAwPoFJmdoukUyWNMbMWSV929xvM7FJJ90rKSrrR3bl1LXDnnjhRy599Ud+672lNnTBCpx51QNwjAftUfDF8EuwvLOXUIYDuufvcLrYvVnEVHilhZvrae4/TExu367JFK3TPp96iCaMGxz0WICm0j+AprWjtZkULALDfoEJW3/3odMpMkThhBa3oGq2drGgBADo4ZHST/vVDlJkiWcIKWvt6tFjRAgC83ulTKDNFsgQVtMxMhVyGi+EBAF36zBmT9dZJY/Slu1br8ZZtcY+DOhdU0JKKq1pcDA8A6AplpkiSAINWVjs5dQgA6AZlpkiKAIMWK1oAgJ5RZookCC5oNea5RgsAUJlzT5yo908bp2/d97R+vXZz3OOgDgUXtBpyWe46BABUpFRmetSBQ3XZohXasOWVuEdCnQkvaOU5dQgAqFx5menFC5dTZooBFV7QymVY0QIA9EqpzPTx57bpK3dTZoqBE2DQyrKiBQDotdOnHKhL3nGEFi3ZoNuWbIh7HNSJ4IIWF8MDAPrqs2ccpbccOUZfvGuVVj1HmSlqL7igVVzRImgBAHqvWGY6VWOaCpp3M2WmqL0Ag1ZGu7iQEQDQR6OHNFBmigETXtDKZ7STFS0AQD9QZoqBElzQasxluTUXANBvlJliIAQXtAYVikHLnaVeAEDfUWaKgRBc0GrMZ7XXpbY9nD4EAPQPZaaoteCC1qB8VpK0s42gBQDoP8pMUUvhBa1CMWi9ym8dAIAqocwUtRJe0MoTtAAA1UeZKWohuKDVWApabQQtAED1UGaKWgguaHHqEABQK6OHNOjac6fpz9t36jOUmaIKwgtapYvhCVoAgBo4YeJIXfmXx+iBta265v51cY+DwAUbtDh1CAColfNOnKj3nzBOV9/3FGWm6JfwglahODKnDgEAtWJm+tr7imWml99KmSn6Lrig1chdhwCAATCokNWC86Zrz17KTNF3wQUtrtECAAyUQ8dQZor+CS9oFbhGCwAwcCgzRX8EF7Qac5w6BAAMLMpM0VfBBa1MxtSQyxC0AAADhjJT9FVwQUsqnj7cyalDAMAAoswUfRFm0MpnWdECAAw4ykzRWwEHrb1xjwEAqEOUmaI3ggxajfksdx0CAGJBmSl6I8igNaiQpUcLABAbykxRqR6DlpndaGabzWxVF6+fambbzGxF9Liy+mO+FtdoAQDiduiYJn0zKjO96ueUmaJzlaxo3SRpVg/7POTuU6PHV/s/Vvc4dQgASIIzphyoi089Qrf8foNuW0qZKV6vx6Dl7g9K2jIAs1RsMKcOAQAJ8bkzj9KbjxytL95JmSler1rXaJ1sZo+Z2S/M7JiudjKzC81sqZktbW1t7fObceoQAJAU2Yxp/pwTNJoyU3SiGkFruaRD3P14SddIurOrHd39enef4e4zmpub+/yGgwoELQDVY2aHm9kNZnZ73LMgTKOHNOg7lJmiE/0OWu6+3d1fjp4vlpQ3szH9nqwbXKMFoCdd3chjZrPMbK2ZrTOzKyTJ3de7+wXxTIq0oMwUnel30DKzg8zMouczo5/5Qn9/bncG5bPa1b6X3xgAdOcmdbiRx8yykq6VdJakKZLmmtmUgR8NaUWZKTqqpN7hFkm/k3SUmbWY2QVmNs/M5kW7nCNplZk9Jmm+pDnuXtMENKhQHHtnO6taADrXxY08MyWti1aw2iQtkjR7wIdDalFmio4quetwrruPdfe8u4939xvcfYG7L4he/7a7H+Pux7v7Se7+37UeelA+K0l6hdOHAHpnnKTye/BbJI0zs9FmtkDSCWb2+a6+uVo39CDdKDNFuUCb4XOSxHVaAHrLOtnm7v6Cu89z9yPc/etdfXO1buhB+lFmipIgg1ZTobii9fKu9pgnARCYFkkTyr4eL2ljTLMg5SgzhRRq0Goormi90kbQAtArSyRNMrPDzKwgaY6ku2OeCSlWKjP9EmWmdSvQoFVc0dqxi1OHADrX2Y087t4u6VJJ90paI+k2d+e8DmqmVGY6qqmgixYu07ZXdsc9EgZYkEFrcIEVLQDd6+xGnmj7YnefHF2P9bW450T6lcpM/7Rtpy6/9VGqiepMkEGrKQpaL7OiBQAIwAkTR+rKd0/RA2tb9e0HKDOtJ0EGrcENpXoHVrQAAGE476RD9L4Txulff0WZaT0JMmgNiS6G5xotAEAozEz/QJlp3QkyaDXkMsoYK1oAgLBQZlp/ggxaZqamQo4eLQBAcCgzrS9BBi2peJ3WK5w6BAAEiDLT+hFs0GpqyGkHpw4BAIGizLQ+hBu0Cjk+VBoAECzKTOtDsEFrcCHLNVoAgKBRZpp+wQatpoYcdx0CAIJHmWm6BRu0Bhe4GB4AkA7lZaa/eao17nFQRcEGrSFcDA8ASInyMtPLFj2qlhcpM02LYIPW4EKOZngAQGoMKmR13XnTtWcPZaZpEmzQamrIakdbu9y5cBAAkA6HjWnSv3zoeK1s2aarfv5E3OOgCoINWoMLOblLO3fvjXsUAACq5sxjDtJFpx6hW37/LGWmKRBs0GpqyEoS12kBAFLnc2dM1ilHUGaaBuEGrUJOkrSDLi0AQMrkshnNn0uZaRqEG7RKK1pcEA8ASKExlJmmQrBBa3BpRYtThwCAlKLMNHzBBq2mhmLQenknQQsAkF6UmYYt2KA1rLEYtLbv5Lw1ACC9KDMNW7BBa2hjXpL4YGkAQOpRZhqugINWcUXrJU4dAgDqAGWmYQo2aA0uZJXNmF7i1CEAoE6Ul5n+hDLTIAQbtMxMQxpyrGgBAOpKqcz0i3eu0uqNlJkmXbBBSyqePiRoAQDqSanMdOTggubdTJlp0gUetPKcOgQA1J0xQxr0nfOKZaafuW0FZaYJFnjQymk7K1oAgDo0beJIfendU3T/k5spM02woIPWME4dAgDq2EdPOkTvnXowZaYJFnTQ4tQhAKCemZn+4f2UmSZZ4EGLFS0AQH0bXMhRZppgwQetl3e1y52LAAEA9Ysy0+TqMWiZ2Y1mttnMVnXxupnZfDNbZ2YrzWxa9cfs3NDGvPbsdb3SRnoHANQ3ykyTqZIVrZskzerm9bMkTYoeF0q6rv9jVYaP4QEAYD/KTJOnx6Dl7g9K2tLNLrMl/dCLHpY0wszGVmvA7uz/YGkuiAcAgDLT5KnGNVrjJJWvUbZE217HzC40s6VmtrS1tf+3oZZWtOjSAgCgiDLTZKlG0LJOtnX6b9Xdr3f3Ge4+o7m5ud9vPIxThwAAvE55mem1lJnGqhpBq0XShLKvx0vaWIWf26PSqUO6tAAAeK1Smek3f/WUHqTMNDbVCFp3S/pYdPfhSZK2ufumKvzcHu07dfgqK1oAAJQrlZlOPoAy0zhVUu9wi6TfSTrKzFrM7AIzm2dm86JdFktaL2mdpO9Jurhm03YwYlBBkrTtVVa0AADoaHAhpwUfna52ykxjk+tpB3ef28PrLumSqk3UC435jAq5jLa+2hbH2wMAkHiHjWnSNz50vD75o2W66udP6OvvPy7ukepK0M3wZqYRg/LcvgoAQDfedcxBmvd2ykzjEHTQkqQRg/PaStAC0A9m9l4z+56Z3WVmZ8Y9D1ALf3MmZaZxSEHQKujFVzh1CNSrrj4mzMxmmdna6OPBrujuZ7j7ne7+15I+LunDNRwXiA1lpvEIP2gNynMxPFDfblKHjwkzs6yka1X8iLApkuaa2RQzO87M7unwOKDsW78YfR+QSpSZDrzwgxanDoG61sXHhM2UtM7d17t7m6RFkma7++Pu/u4Oj81RPc0/SvqFuy/v6r2q/ekWQBwoMx1YKQhaBe46BNBRxR8NFvmUpNMlnVNWXfM61f50CyAulJkOnOCD1vBBee3cvZduEADlKv5oMEly9/nuPt3d57n7ghrOBSQCZaYDJ/igNXJwsbSU04cAysT20WBAKMrLTC9ZuFy72lmwqIXgg9aIwcXPO+T0IYAySyRNMrPDzKwgaY6KHxcGoEypzPSxlm266udPxD1OKoUftAZFQYsVLaAudfYxYe7eLulSSfdKWiPpNndfHeecQFKVykx//Mizun1ZS9zjpE6PH8GTdMMHE7SAetbVx4S5+2IVP4sVQA/+5szJemzDVn3hZ4/r6LFDdczBw+MeKTXCX9Had40Wpw4BAOiLXDajaz5CmWktBB+0Ru67Rov/KAAA6KsxQxp07bmUmVZb8EFrUD6rQjbDx/AAANBP0w8ZqS/+BWWm1RR80DIzjWzK68UdBC0AAPrrYydTZlpNwQctqbjc+fzLBC0AAPqLMtPqSkXQGj2kQS+8vCvuMQAASAXKTKsnFUFrTFOBFS0AAKqIMtPqSEfQGtqgF3bskjt3SAAAUC2UmfZfKoLW6KaCdu7eqx1tLG0CAFBNf3PmZJ18+Gh94WePa/XGbXGPE5x0BK0hDZLEdVoAAFRZeZnpRTcvp8y0l1IRtMYMKbbDc50WAADVVyoz3bTtVX2WMtNeSUnQKq5oPc+KFgAANVEqM73vyc36zq8pM61UKoLW6GhF6wVWtAAAqJmPnXyIZk89WP/yS8pMK5WKoDWqqRS0WNECAKBWzExfp8y0V1IRtBpyWQ1rzOkFPoYHAICaGlzI6brzplFmWqFUBC2peJ1WKytaAADU3OHNQ/TPH6TMtBLpCVpDG9S6naAFAMBAmHXsQfrk2w+nzLQHqQlaBw1r1J+274x7DAAA6sbfnnkUZaY9SE/QGl4MWnwMDwAAA4My056lJmgdOKxRbe17tZV/yQAADBjKTLuXmqA1dnijJHH6EACAAUaZaddSE7QOHBYFrW0ELQAABlp5melDT1NmWpKaoHUQK1oAAMSmvMz007c8que2vhr3SImQmqB1wNAGmbGiBQBAXMrLTC++eRllpkpR0MpnMxozpEF/ZkULAIDYlJeZfpUy0/QELYkuLQAAkqBUZrqQMtPKgpaZzTKztWa2zsyu6OT1U81sm5mtiB5XVn/Unh04rJFThwAAJABlpkU9Bi0zy0q6VtJZkqZImmtmUzrZ9SF3nxo9vlrlOSsybkSjnnvxVUpLAQCIWS6b0fy5J2jE4Hxdl5lWsqI1U9I6d1/v7m2SFkmaXdux+mbCqMF6aVe7tr1an/8yAQBIkuahDfrOudO0cWv9lplWErTGSdpQ9nVLtK2jk83sMTP7hZkdU5XpemnCqMGSpA1buKUUAIAkmH7IKH3xL46u2zLTSoKWdbKtYyRdLukQdz9e0jWS7uz0B5ldaGZLzWxpa2v1y8wmjCwGrWe3vFL1nw0AAPrm/FMOrdsy00qCVoukCWVfj5e0sXwHd9/u7i9HzxdLypvZmI4/yN2vd/cZ7j6jubm5H2N3bsKoQZKkDS8StAAASIp6LjOtJGgtkTTJzA4zs4KkOZLuLt/BzA4yM4uez4x+7gvVHrYnQxvzGjE4rw2saAEAkCj1WmbaY9By93ZJl0q6V9IaSbe5+2ozm2dm86LdzpG0yswekzRf0hyP6da/iaMGa8OL9ZOUAQAIRT2WmeYq2Sk6Hbi4w7YFZc+/Lenb1R2tbyaMHKwnNm2PewwAANCJUpnpd3+zXtMmjtQHpo+Pe6SaSlUzvCSNHzVIz734qvbU4S2kAACEoFRm+n9+9rie2JjuxZHUBa3DRjepbc9ePcfpQwAAEuk1ZaYLl6W6/zJ1QevIA4ZIkv7Q+nLMkwAAgK6Uykyfe/FVfS7FZaapC1pHNBeD1rrNBC0AAJKsVGb6qzXpLTNNXdAa2VTQ6KYCQQsAgACcf8qhes/x6S0zTV3QkqQjDhjCqUMAAAJgZvp/HzhOkw4Yksoy03QGreYhWtf6smKq8gIQGDM71cweMrMFZnZq3PMA9WZwIacF503X7hSWmaYyaB15wBBtfWW3XtjRFvcoAGrMzG40s81mtqrD9llmttbM1pnZFT38GJf0sqRGFT92DMAAO7x5iL7xwTemrsw0lUFr8oHFC+LX/umlmCcBMABukjSrfIOZZSVdK+ksSVMkzTWzKWZ2nJnd0+FxgKSH3P0sSX8n6aoBnh9AZNaxY/XJtx+uhY88q58uS8fvPKkMWsccPFyStOq5bTFPAqDW3P1BSVs6bJ4paZ27r3f3NkmLJM1298fd/d0dHpvdfW/0fS9KaujqvczsQjNbamZLW1vTd9EukARpKzNNZdAa1VTQwcMbtToF/4IA9Mk4SRvKvm6JtnXKzN5vZt+V9CN183Fi7n69u89w9xnNzc1VGxbAfmkrM01l0JKkY8YN16qNrGgBdco62dbl3THufoe7f9LdP+zuv67dWAAqkaYy0/QGrYOH6Znnd2jHrva4RwEw8FokTSj7erykjTHNAqAPystMr/vNH+Iep89SG7SOPXi43KUnNnH6EKhDSyRNMrPDzKwgaY6ku2OeCUAv7Ssz/c+1+u3Tz8c9Tp+kNmi9cXzxgvgVz26NdxAANWVmt0j6naSjzKzFzC5w93ZJl0q6V9IaSbe5++o45wTQe6Uy0yMPGKJPL3pUGwMsM01t0DpgWKMOGT1YS/7Y8WYkAGni7nPdfay75919vLvfEG1f7O6T3f0Id/9a3HMC6JtSmWlb+15dtHB5cGWmqQ1akvSmQ0dp6f+8SEM8AAAB21dmumFrcGWmKQ9aI7VlR5v+0Loj7lEAAEA/zDp2rD75tvDKTFMetEZJkn7/DKcPAQAI3d++6yiddPiooMpMUx20DhvTpIOGNeq362hwBgAgdLlsRtfMnRZUmWmqg5aZ6R1vaNZDTz2v3Xv29vwNAAAg0UIrM0110JKkU486QC/tatfSP74Y9ygAAKAKQiozTX3QevORY5TPmh5YuznuUQAAQJWEUmaa+qA1pCGnU44Yo39fuSnxy4sAAKAyoZSZpj5oSdLsqQfrua2vavmznD4EACAtQigzrYugdeYxB6kxn9GdK56LexQAAFBF5WWmf39P8spM6yJoDWnI6cwpB+muFRu1Y1d73OMAAIAqKpWZ3vzws7pjebLKTOsiaEnS+accopd2tuuOR1nVAgAgbcrLTNdsSk6Zad0ErWkTR+qN44fr+//1jPZwUTwAAKlSKjMdPiiveTcnp8y0boKWmemTbztC61t36C6u1QIAIHWSWGZaN0FLks469iAdc/AwffOXT2nn7uTdmQAAAPpn+iGj9IUElZnWVdDKZEyfP+totbz4qq65/+m4xwEAADXw8QSVmdZV0JKkt0wao3Omj9eC36zXypatcY8DAACqzMz09fcfpyOa4y8zrbugJUlf+ospOmBog+b9aJlaX9oV9zgAAKDKmhpyWvDR+MtM6zJoDR+c1/c+NkNbXmnTX/1giba9kow7EwAAQPUckYAy07oMWpJ07LjhumbuND2xabvmfO/hxH5GEgAA6Lu4y0zrNmhJ0hlTDtQN579Jz76wQ2fPf0j3rNwo9/hvBQUAANUTZ5lpXQctSXrb5Gbd8+m3avzIQbr0x4/qw999WA+s3ZyI7g0AANB/cZaZVhS0zGyWma01s3VmdkUnr5uZzY9eX2lm06o/au0cNqZJd13yFn3tfcfqmRd26BPfX6JTv/Fr/cPiNXp4/Qt6tY3OLQAAQvbaMtPHBmxBJdfTDmaWlXStpDMktUhaYmZ3u3v5VWVnSZoUPU6UdF30ZzCyGdO5Jx6iD06foF+s2qTbl7Xo+//1jK5/cL0yJk0+cKgmHThU40cO0viRgzR2eKOGD8pr+KC8hjXmNbQxr4ZcRpmMxf0/BQAAdKJUZnrVz5/Qdb/5gy55x5E1f88eg5akmZLWuft6STKzRZJmSyoPWrMl/dCLFzg9bGYjzGysu2+q+sQ1VshlNHvqOM2eOk4v7dytR9Zv0crntmlly1atbNmq/1i1Sbv3dJ2CcxlTIZcpPrLFP7MZU8ZMJsms2O+RMclk+742SZlMcVumtGNCJXeyRP9jS62bLzhRTQ2VHEoAIH4fP+VQPfrsVv3Lf67V8eNH6C2TxtT0/So5Oo6TtKHs6xa9frWqs33GSXpN0DKzCyVdKEkTJ07s7awDbmhjXqdPOVCnTzlw37Y9e12bX9qpP2/fpW2v7t73eGnnbrW1793/2LP/+R53uUt73eWSvPxrl4qrl/u3JfnysASPxo0MMSHcAghJqcz0T9t2as8A/P9GJUGrs8Nox8kq2Ufufr2k6yVpxowZQf6/YjZjGjt8kMYOHxT3KAAAoA+aGnK69ZMnyQbgN8VKLoZvkTSh7Ovxkjb2YR8AAIBEGIiQJVUWtJZImmRmh5lZQdIcSXd32OduSR+L7j48SdK2EK/PAgAAqKYeTx26e7uZXSrpXklZSTe6+2ozmxe9vkDSYklnS1on6RVJn6jdyAAAAGGo6FYhd1+sYpgq37ag7LlLuqS6owEAAISt7pvhAQAAaoWgBQAAUCMELQAAgBohaAEAANQIQQsAAKBGCFoAAAA1QtACAACoEYIWAABAjRC0AAAAasSKpe4xvLFZq6T/qXD3MZKer+E4/ZHU2ZI6l5Tc2ZI6l5Tc2Xo71yHu3lyrYQZSSo5hSZ1LSu5sSZ1LSu5sSZ1L6t1sfTp+xRa0esPMlrr7jLjn6ExSZ0vqXFJyZ0vqXFJyZ0vqXEmT1H9OSZ1LSu5sSZ1LSu5sSZ1LGpjZOHUIAABQIwQtAACAGgklaF0f9wDdSOpsSZ1LSu5sSZ1LSu5sSZ0raZL6zympc0nJnS2pc0nJnS2pc0kDMFsQ12gBAACEKJQVLQAAgOAkPmiZ2SwzW2tm68zsihq9xwQze8DM1pjZajO7LNo+ysx+aWZPR3+OLPuez0czrTWzd5Vtn25mj0evzTczi7Y3mNmt0fZHzOzQXsyXNbNHzeyehM01wsxuN7Mno392JydhNjP7TPTvcZWZ3WJmjXHNZWY3mtlmM1tVtm1AZjGz86P3eNrMzq9grn+O/l2uNLOfmdmIgZ4rbYzjF8cvjl81OU50MVsyj2HuntiHpKykP0g6XFJB0mOSptTgfcZKmhY9HyrpKUlTJP2TpCui7VdI+sfo+ZRolgZJh0UzZqPXfi/pZEkm6ReSzoq2XyxpQfR8jqRbezHfZyX9WNI90ddJmesHkv4qel6QNCLu2SSNk/SMpEHR17dJ+nhcc0l6m6RpklaVbav5LJJGSVof/Tkyej6yh7nOlJSLnv9jHHOl6SGOXxy/OH7V7DjRxWyJPIbFfjDq4T+6kyXdW/b15yV9fgDe9y5JZ0haK2lstG2spLWdzSHp3mjWsZKeLNs+V9J3y/eJnudULEizCmYZL+k+Sadp/4EqCXMNU/GAYB22xzqbigeqDdFfgpyke6K/fLHNJelQvfZgUPNZyveJXvuupLndzdXhtfdJWhjHXGl5iOOXxPGL41cNjxMdZ+vwWmKOYUk/dVj6j66kJdpWM9Hy4AmSHpF0oLtvkqTozwN6mGtc9Lyzefd9j7u3S9omaXQFI10t6X9L2lu2LQlzHS6pVdL3o9MC/2ZmTXHP5u7PSfqGpGclbZK0zd3/M+65OhiIWfr7d+d/qfjbXdLmCgnHL45fHL/iO04k5hiW9KBlnWzzmr2Z2RBJP5V0ubtv727XTrZ5N9u7+57u5nm3pM3uvqy7/QZ6rkhOxWXb69z9BEk7VFxGjnW26HqB2SouDx8sqcnMzot7rgpVc5Y+z2hmX5DULmlhkuYKEMcvjl+9mo3jV0Xf0/MgCTuGJT1otUiaUPb1eEkba/FGZpZX8SC10N3viDb/2czGRq+PlbS5h7laouedzbvve8wsJ2m4pC09jPVmSe8xsz9KWiTpNDO7OQFzlb6vxd0fib6+XcUDV9yznS7pGXdvdffdku6QdEoC5io3ELP06e9OdGHnuyWd69G6eBLmChTHL45fHL8G+DiRyGNYd+cV436o+FvHehXTfeli0mNq8D4m6YeSru6w/Z/12ov+/il6foxee2Hdeu2/sG6JpJO0/8K6s6Ptl+i1F9bd1ssZT9X+axwSMZekhyQdFT3/SjRXrLNJOlHSakmDo5/3A0mfinMuvf4ah5rPouI1Hs+oeLHmyOj5qB7mmiXpCUnNHfYb0LnS8hDHL45fHL9qepzoZLZEHsNiPxhV8B/e2SreRfMHSV+o0Xu8RcWlv5WSVkSPs1U8H3ufpKejP0eVfc8XopnWKrpLIdo+Q9Kq6LVvS/tKYRsl/UTSOhXvcji8lzOeqv0HqkTMJWmqpKXRP7c7o//oYp9N0lWSnox+5o+iv1yxzCXpFhWvtdit4m9CFwzULCpeo7AuenyigrnWqXjtwYrosWCg50rbQxy/OH5x/OrTLOrhONHFbIk8htEMDwAAUCNJv0YLAAAgWAQtAACAGiFoAQAA1AhBCwAAoEYIWgAAADVC0AIAAKgRghYAAECNELQAAABq5P8D/DpSq2QG45sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot\n", "fig0,ax0 = plt.subplots(ncols=2, figsize=(10,6))\n", "ax0[0].plot(timepoints,datapoints)\n", "ax0[1].set_yscale('log')\n", "ax0[1].plot(timepoints,datapoints)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[3.15186053e+10 2.93376640e+10 3.04481552e+10 2.91939068e+10\n", " 2.81835038e+10 2.60850878e+10 2.41144719e+10 2.50465395e+10\n", " 2.21684456e+10 2.29978887e+10]\n", "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n" ] } ], "source": [ "# Aggiungiamo rumore. In ogni punto il rumore è composto da un termine distribuito uniformemente \n", "# in un intervallo del 10% attorno alla misura.\n", "noise = (np.random.random_sample(size=len(timepoints))-0.5)/10\n", "datapoints = datapoints*(1.+noise)\n", "# Converiamo i dati in interi\n", "datapoints = np.around(datapoints)\n", "print(datapoints[:10])\n", "print(datapoints[-10:])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAFwCAYAAACckf7tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjJ0lEQVR4nO3de5CkdX3v8fd3uqdndmbvu8OyzLJyFSPkKLpy0cTDIRGRWCEpySmsGC8nKeIlliZWnSOJFct4Tp2TyzGJMQE5kRgTorkhIQaCxigaL8iCXBYQWRBhYGFn75fZnevv/NHPQDPO7vRMPz1PT/f7VdU1z+XXPd/+CczH3+/3PE+klJAkSdLCdBVdgCRJ0lJmmJIkSWqAYUqSJKkBhilJkqQGGKYkSZIaYJiSJElqQKFhKiKuj4idEbGtjravjYi7I2IiIq6Yce5tEfFI9npb8yqWJEl6oaJHpj4NXFpn2yeAtwN/U3swItYCHwbOB84DPhwRa/IrUZIk6dgKDVMppa8Be2qPRcTpEfGvEXFXRHw9Il6StX08pXQfMDXjY14PfCmltCeltBf4EvUHNEmSpIaUiy5gFtcB70wpPRIR5wN/Blx8nPaDwJM1+0PZMUmSpKZrqTAVEcuBVwN/HxHTh3vmetssx3xGjiRJWhQtFaaoTjvuSym9fB7vGQIuqtnfBHw1v5IkSZKOregF6C+QUjoA/CAifgEgql42x9tuAy6JiDXZwvNLsmOSJElNV/StET4LfAs4KyKGIuKXgV8Efjki7gUeAC7P2r4qIoaAXwA+GREPAKSU9gAfBe7MXr+THZMkSWq6SMnlRZIkSQvVUtN8kiRJS41hSpIkqQGFXc23fv36dMoppxT16yVJkup211137UopDcx2rrAwdcopp7B169aifr0kSVLdIuKHxzrnNJ8kSVIDDFOSJEkNMExJkiQ1wDAlSZLUAMOUJElSAwxTkiRJDTBMSZIkNcAwJUmS1ADDlCRJUgMMU5IkSQ0wTEmSJDWgbcPUwaPjfOV7Oxk+OFp0KZIkqY21bZh6Ys8I7/j0ndz9xN6iS5EkSW2sbcNUpVT9auOTUwVXIkmS2ln7hqmyYUqSJDVf24ap7mxkamzCMCVJkpqn/cPUZCq4EkmS1M7aNkxNT/M5MiVJkpqpfcOUC9AlSdIiaNsw1V0KAMYdmZIkSU3UtmGqXOqiK2DMkSlJktREbRumoLoI/am9R0jJReiSJKk52jpMjU5MceN3n+Jzdz5ZdCmSJKlNzRmmIqI3Ir4TEfdGxAMR8ZFZ2kREfDwitkfEfRHxiuaUuzDf2L6r6BIkSVKbKtfRZhS4OKV0KCK6gf+IiFtTSt+uafMG4MzsdT5wTfZTkiSprc05MpWqDmW73dlr5iKky4HPZG2/DayOiI35lrpwEVF0CZIkqU3VtWYqIkoRcQ+wE/hSSumOGU0GgdqFSUPZMUmSpLZWV5hKKU2mlF4ObALOi4hzZjSZbejnRy6hi4irImJrRGwdHh6ed7GSJEmtZl5X86WU9gFfBS6dcWoIOLlmfxPw9Czvvy6ltCWltGVgYGB+lUqSJLWgeq7mG4iI1dn2MuCnge/NaHYz8Nbsqr4LgP0ppR15F7tQU1PeZ0qSJDVHPVfzbQT+MiJKVMPX36WUvhAR7wRIKV0L3AJcBmwHRoB3NKneBRkZmyi6BEmS1KbmDFMppfuAc2c5fm3NdgLek29p+Tk8Nll0CZIkqU219R3Qpx0edWRKkiQ1R1uHqU/+0isBGHFkSpIkNUlbh6nXn30iV77qZEemJElS07R1mALoq5QdmZIkSU3T9mGqv6fE4bEJqmvkJUmS8tUBYapMSnBk3NEpSZKUv/YPU5USAIdHDVOSJCl/bR+m+irVW2l5405JktQMbR+m+nscmZIkSc3T9mHKkSlJktRMbR+m+nuqYeqQ95qSJElN0AFhymk+SZLUPG0fpnrK1TA1OmGYkiRJ+Wv7MFUpV7/i+ORUwZVIkqR21P5hqlT9imMThilJkpS/9g9T2cjUqGFKkiQ1QduHqZ4sTI05zSdJkpqg7cNUt9N8kiSpido+TJW6glJXuABdkiQ1RduHKaguQndkSpIkNUNnhKmyYUqSJDVH54Qpp/kkSVITdEaYKnUxNpGKLkOSJLWhzghTjkxJkqQm6YwwVepizGfzSZKkJuiMMOUCdEmS1CSdE6ac5pMkSU3QEWGquxSMuwBdkiQ1QUeEqUq5xKgjU5IkqQk6I0x5B3RJktQkHRGmespezSdJkpqjI8JUdylcgC5JkpqiI8JUpdzlAnRJktQUHROmHJmSJEnN0BlhqlRyAbokSWqKzghT3gFdkiQ1SWeEqWwBekqum5IkSfnqjDBVrn7N8UnDlCRJytecYSoiTo6Ir0TEQxHxQES8b5Y2F0XE/oi4J3v9dnPKXZjpMOUidEmSlLdyHW0mgA+klO6OiBXAXRHxpZTSgzPafT2l9Mb8S2xcpZSFqYkp6Cm4GEmS1FbmHJlKKe1IKd2dbR8EHgIGm11YnirlEgD3De0rthBJktR25rVmKiJOAc4F7pjl9IURcW9E3BoRZ+dRXF66SwHA2//izoIrkSRJ7aaeaT4AImI58I/A+1NKB2acvht4UUrpUERcBtwEnDnLZ1wFXAWwefPmhdY8b9NrpiRJkvJWV8qIiG6qQeqGlNKNM8+nlA6klA5l27cA3RGxfpZ216WUtqSUtgwMDDRYev16DFOSJKlJ6rmaL4BPAQ+llD52jDYnZu2IiPOyz92dZ6GNcGRKkiQ1Sz3TfK8Bfgm4PyLuyY79JrAZIKV0LXAF8K6ImACOAFemFrpDZqVUKroESZLUpuYMUyml/wBijjafAD6RV1F5m16ALkmSlLeOmP/qdppPkiQ1SUekjMmp52ccW2j2UZIktYGOCFOj488/RmZiyjAlSZLy0xFh6tzNq5/bnvBhx5IkKUcdEab6e8p86Gd+DIDxKR92LEmS8tMRYQqg3FW9om/SkSlJkpSjjglTpVL1qzoyJUmS8tQxYao7G5lyzZQkScpTx4SpcjYyZZiSJEl56pgwNX0XdKf5JElSnjomTJW7HJmSJEn565gwVZpeM+XIlCRJylHHhKnpab6j44YpSZKUn44JU9ML0N90zTcLrkSSJLWTjglT07dGkCRJylPHhKnpkSlJkqQ8dUzCKDkyJUmSmqBjwtT0AnSAlLw9giRJykfHhKnp+0wBjE54RZ8kScpHx4Sp2mk+w5QkScpLx4SpI+OTz22PTkwep6UkSVL9OiZMnbCi57ntUW/cKUmSctIxYeqk1cv46OVnA07zSZKk/HRMmAIYWNELOM0nSZLy01Fhqqe7+nUdmZIkSXnprDBVrn7dMcOUJEnKSYeFqRLgyJQkScpPh4WpbJpv3DVTkiQpHx0VpnqzNVO7Do0VXIkkSWoXHRWmKqXqNN9vfv7+giuRJEntoqPC1Akre+ZuJEmSNA8dFaZ6u0u89+IziICUUtHlSJKkNtBRYQqgr1ImJTjqI2UkSVIOOi5MLe+prps6NDpRcCWSJKkddFyY6quUARgZM0xJkqTGdVyY6ndkSpIk5agDw9T0yJQ37pQkSY3ruDA1Pc132JEpSZKUgznDVEScHBFfiYiHIuKBiHjfLG0iIj4eEdsj4r6IeEVzym3c8p7pMOXIlCRJaly5jjYTwAdSSndHxArgroj4UkrpwZo2bwDOzF7nA9dkP1tOX6W6ZuqwC9AlSVIO5hyZSintSCndnW0fBB4CBmc0uxz4TKr6NrA6IjbmXm0OlmVh6qgPO5YkSTmY15qpiDgFOBe4Y8apQeDJmv0hfjRwtYRKufqVxya8aackSWpc3WEqIpYD/wi8P6V0YObpWd7yI89riYirImJrRGwdHh6eX6U5qZSqX3nUMCVJknJQV5iKiG6qQeqGlNKNszQZAk6u2d8EPD2zUUrpupTSlpTSloGBgYXU2zDDlCRJylM9V/MF8CngoZTSx47R7GbgrdlVfRcA+1NKO3KsMzddXUF3KZzmkyRJuajnar7XAL8E3B8R92THfhPYDJBSuha4BbgM2A6MAO/IvdIcVUpdhilJkpSLOcNUSuk/mH1NVG2bBLwnr6KarVLuYmzSq/kkSVLjOu4O6JCFKUemJElSDgxTkiRJDejMMFXqYmzSMCVJkhrXkWGqp1xyZEqSJOWiI8NUpdzlfaYkSVIuOjZMOTIlSZLy0JFhqqfsmilJkpSPjgxT3rRTkiTlpTPDlNN8kiQpJ50bppzmkyRJOejMMFXqYnTcMCVJkhrXkWFqWaXEyNhE0WVIkqQ20JFhasPKXg4cneDImA87liRJjenIMLVxVS8AO/YfKbgSSZK01HVomFoGwI79RwuuRJIkLXUdGaZOWl0dmXp6nyNTkiSpMR0ZpgZW9ACw+/BYwZVIkqSlriPD1LLuEpVyF3tHDFOSJKkxHRmmIoLVy7rZPzJedCmSJGmJ68gwBbCmr8Ln7nyS3YdGiy5FkiQtYR0bpnZlIepDN20ruBJJkrSUdWyYml58Pu4z+iRJUgM6NkxNO2Vdf9ElSJKkJaxjw9QNv3I+AF1dUXAlkiRpKevYMPWaM9azalk3o+M+n0+SJC1cx4YpgJ5yF6MTrpmSJEkL19lhqtswJUmSGtPRYaq3XGJ0wmk+SZK0cB0dpnq6uxgdd2RKkiQtXGeHqXKJo45MSZKkBnR4mHJkSpIkNcYw5QJ0SZLUgA4PUy5AlyRJjensMOWtESRJUoM6Okz1lksc9Q7okiSpAR0dphyZkiRJjeroMLW8p8yhoxNMTaWiS5EkSUtUR4epDSt7mZhK7BkZK7oUSZK0RM0ZpiLi+ojYGRHbjnH+oojYHxH3ZK/fzr/M5tiwsgeAZw8cLbgSSZK0VNUzMvVp4NI52nw9pfTy7PU7jZe1OE5Y2QvAzgOjBVciSZKWqjnDVErpa8CeRahl0W3IwpQjU5IkaaHyWjN1YUTcGxG3RsTZOX1m0w0sn57mc2RKkiQtTDmHz7gbeFFK6VBEXAbcBJw5W8OIuAq4CmDz5s05/OrGVMpdrOuv8IwjU5IkaYEaHplKKR1IKR3Ktm8BuiNi/THaXpdS2pJS2jIwMNDor87FCSt72WmYkiRJC9RwmIqIEyMisu3zss/c3ejnLpYNK3t49qBhSpIkLcyc03wR8VngImB9RAwBHwa6AVJK1wJXAO+KiAngCHBlSmnJ3AXzxJW9bHvqQNFlSJKkJWrOMJVSevMc5z8BfCK3ihbZyWv72HVolP1Hxlm1rLvociRJ0hLT0XdAB3jZptUA3D+0v9hCJEnSktTxYerHB1cB8MDThilJkjR/HR+mVvV101PuYs9hn88nSZLmr+PDFMCavgp7fdixJElaAMMUsLqvm30j40WXIUmSliDDFIYpSZK0cIYpYPUyp/kkSdLCGKaANf3d7DviyJQkSZo/wxTZAvTDY0xOLZkbt0uSpBZhmAJOXd/PxFTiiT0jRZciSZKWGMMUcOaGFQA88uzBgiuRJElLjWEKOOOE5QBsHz5UcCWSJGmpMUwBy3vKrOgps/PAaNGlSJKkJcYwlVm/ooddhwxTkiRpfgxTmYHlPQwfNExJkqT5MUxlVvV1c8cP9nDL/TuKLkWSJC0hhqnMw89Ur+T7gy8+XHAlkiRpKTFMZa5+w0sAeOnGlQVXIkmSlhLDVOYNP76Rl528mv0+VkaSJM2DYarGuv4Kew77wGNJklQ/w1SNtYYpSZI0T4apGmv7K+w+PEZKPvBYkiTVxzBVY9WybsYmphidmCq6FEmStEQYpmos6y4BcGRssuBKJEnSUmGYqtFXqYapkXHDlCRJqo9hqsayiiNTkiRpfgxTNfoqZcAwJUmS6meYqvHcNN/YRMGVSJKkpcIwVWOZa6YkSdI8GaZq9LlmSpIkzZNhqkZfd3XN1IhhSpIk1ckwVeP5q/lcMyVJkupjmKrx/AJ0R6YkSVJ9DFM1pu+AbpiSJEn1MkzV6OoK1vZXGD40WnQpkiRpiTBMzTC4ehlP7T1SdBmSJGmJMEzNsGnNMob2jhRdhiRJWiIMUzNsWrOMp/YdIaVUdCmSJGkJmDNMRcT1EbEzIrYd43xExMcjYntE3BcRr8i/zMUzuHoZR8en2H14rOhSJEnSElDPyNSngUuPc/4NwJnZ6yrgmsbLKs6mNX0ADLluSpIk1WHOMJVS+hqw5zhNLgc+k6q+DayOiI15FbjYNq1dBsDP/ek3GJ+cKrgaSZLU6vJYMzUIPFmzP5QdW5IGVy97bvveJ/cVV4gkSVoS8ghTMcuxWVdvR8RVEbE1IrYODw/n8Kvzt6K3mwtOWwvAN7bvLrgaSZLU6vIIU0PAyTX7m4CnZ2uYUroupbQlpbRlYGAgh1/dHJ+76kJOH+hn29P7iy5FkiS1uDzC1M3AW7Or+i4A9qeUduTwuYV6ycaVPPzMwaLLkCRJLa48V4OI+CxwEbA+IoaADwPdACmla4FbgMuA7cAI8I5mFbuYztqwgn+5bwdHxiZZlj0AWZIkaaY5w1RK6c1znE/Ae3KrqEUMrOgBYM/IGIOVZXO0liRJnco7oB/D6mXdAOwfGS+4EkmS1MoMU8ewajpMHTFMSZKkYzNMHcNKw5QkSaqDYeoYpkemDhimJEnScRimjmFVnyNTkiRpboapY1heKdMVsO/IWNGlSJKkFmaYOoauruCEFb08tfdI0aVIkqQWZpg6jnMGV3LTPU97ewRJknRMhqnjOGdwFQB/9OXvF1yJJElqVYap43jHq08F4Ie7RwquRJIktSrD1HGs6uvmwtPWcfCo03ySJGl2hqk5rFteYdchr+iTJEmzM0zNYf3yHnYdHC26DEmS1KIMU3NYv7zCwdEJjo5PFl2KJElqQYapOZywsheAHfuPFlyJJElqRYapOZy2vh+Ax3cdLrgSSZLUigxTczg1C1OPGaYkSdIsDFNzWNtfYUVv2ZEpSZI0K8PUHCKCE1f2MuwVfZIkaRaGqTqsW15h92HDlCRJ+lGGqTqsW97Dbm/cKUmSZmGYqsPA8h4e23WYnQe8PYIkSXohw9Q8vOVTdxRdgiRJajGGqTqcM7gKgO8/e6jgSiRJUqsxTNXhTa8Y5L0XnwHAzoNO9UmSpOcZpuoQEVx01gAA9zyxr9hiJElSSzFM1ensk1ZR7gru+MGeokuRJEktxDBVp97uEq976Qb+6ls/ZO9hb5MgSZKqDFPzcPnLBxmbnOKpfUeKLkWSJLUIw9Q8rOnrBmD/kfGCK5EkSa3CMDUPq/sqAOwdcZpPkiRVGabmYXpkat+II1OSJKnKMDUPq7Iw9b1nDhRciSRJahWGqXnoKZcA+OtvP8Gjw94NXZIkGaYW7JvbdxVdgiRJagGGqXn6/LtfDcBdP9xbcCWSJKkVGKbm6dzNazjv1LU8vc9n9EmSJMPUgpy4spcdB7xxpyRJqjNMRcSlEfFwRGyPiA/Ocv6iiNgfEfdkr9/Ov9TWsXFVL88eGCWlVHQpkiSpYOW5GkRECfhT4HXAEHBnRNycUnpwRtOvp5Te2IQaW86Glb2MTUyxd2Sctf2VosuRJEkFqmdk6jxge0rpsZTSGPA54PLmltXaBtcsA+Dx3YcLrkSSJBWtnjA1CDxZsz+UHZvpwoi4NyJujYizc6muRf344CoAfv9fH3aqT5KkDldPmIpZjs1MEHcDL0opvQz4E+CmWT8o4qqI2BoRW4eHh+dVaCvZuKoXgG89tpsHnvZu6JIkdbJ6wtQQcHLN/ibg6doGKaUDKaVD2fYtQHdErJ/5QSml61JKW1JKWwYGBhoou1gRwYd+5scAuP+p/QVXI0mSilRPmLoTODMiTo2ICnAlcHNtg4g4MSIi2z4v+9zdeRfbSn5hSzVfXn3j/Tz8zMGCq5EkSUWZ82q+lNJERPwacBtQAq5PKT0QEe/Mzl8LXAG8KyImgCPAlanNFxOtWtb93PbDzx7krBNXFFiNJEkqypxhCp6burtlxrFra7Y/AXwi39JaX7krmJhK7NjnDTwlSepU3gG9Ads+8nr6KyWe2DNSdCmSJKkghqkG9HaXeMnGlV7RJ0lSBzNMNeiiFw9w79A+dh7wwceSJHUiw1SDLjn7RFKCf3toZ9GlSJKkAhimGvTiDct50bo+vvjgM0WXIkmSCmCYalBEcMlLN/DN7bs5eHS86HIkSdIiM0zl4JKzT2Rscorbv790H5EjSZIWxjCVg1dsXsO6/gq33L+j6FIkSdIiM0zloNQVXLFlE7due4YvP/Rs0eVIkqRFZJjKyXsvPpPNa/v4w3/7ftGlSJKkRWSYysnynjKXvHQDjzx7iMmptn4soSRJqmGYytGLN6xgdGKKe57cV3QpkiRpkRimcnTBaevoKXfx4Zu3kZKjU5IkdQLDVI5OXtvHh37mx9j21AH+4IsPF12OJElaBIapnP3XV53MOYMr+ctv/pDxyamiy5EkSU1mmMpZT7nEuy86g0OjE3z3iX1FlyNJkprMMNUEP3nmenrKXXz+u08VXYokSWoyw1QTrOjt5ufPHeSz33mCT97+aNHlSJKkJjJMNclHf+4cXvviAa65/VGmvO+UJEltyzDVJN2lLi5/2UnsGxnn7+96suhyJElSkximmui1Lx6guxT8z395iKPjk0WXI0mSmsAw1UQDK3q4/u2v4uDRCa6+8f6iy5EkSU1gmGqynzhjPVe8chM33fMUQ3tHii5HkiTlzDDVZBHB+3/6TLoi+J1/fpDtOw8WXZIkScqRYWoRbFrTx7svOp0vPvgsb7rmWxw8Ol50SZIkKSeGqUXygUvO4tq3vJL9R8b50E3bii5HkiTlxDC1iC4950TefdHp/NM9T/Pg0weKLkeSJOXAMLXIfvW1p1PuCi77+Nf537c+REre0FOSpKXMMLXIVvV1866LTicCPnn7Y/zDXUNFlyRJkhpgmCrABy45i0f/12Wcd+paPvqFB3ls+JAjVJIkLVGGqYJ0dQW/+6b/xNjkFBf/39v59DcfL7okSZK0AIapAp26vp8bfuV8AD7yzw9y491DTPpQZEmSlhTDVMFe+aK1fO6qC6iUuviNv7uX1/3h7Xxz+66iy5IkSXUyTLWAC05bx22//lp+7b+cAQne9hff4c+//hjDB0eLLk2SJM0hilr4vGXLlrR169ZCfncr2z8yzhXXfpNHdh7ipFW9fPhnz+b1Z59YdFmSJHW0iLgrpbRltnOOTLWYVX3d3Pq+n+RTb9tCT3eJX/2ru3jdx27n/33tMaZcTyVJUstxZKqFTUxO8Sf/vp2vPTLMd5/Yx2nr+3n1Gev4qZds4KKzBoiIokuUJKkjHG9kyjC1BKSU+LOvPsqNdw/x6PBhAE4b6Of8U9fxi+dv5uyTVhqsJElqIsNUG9l1aJR/uW8HX314J994dDdjE1MMrl7G5rV9nH/aWs47ZS1bTllLdykMWJIk5aThMBURlwJ/DJSAP08p/Z8Z5yM7fxkwArw9pXT38T7TMNW4ob0jfPmhnXzn8T38YPgwD+54/uHJK3rLvGhdH5tW9/HiE1dw1oYVnLq+nw0re1jTV6Gry6AlSVK9GgpTEVECvg+8DhgC7gTenFJ6sKbNZcB7qYap84E/Timdf7zPNUzlb8/hMb7+yDA/2HWY4YOjbN95iOGDozy++zC1a9fLXcG65RXW9fewtr/C6r5u1vRV6O8p018p0Zf9XFYpUSl1USlnr5rtnnIXlVLp+XPZeUfEJEnt6HhhqlzH+88DtqeUHss+7HPA5cCDNW0uBz6Tqsns2xGxOiI2ppR2NFi75mFtf4XLXz74I8ePjk+yfechntgzws4DR3n24Ci7Do6y+/AYe0fGeGrfEfaOjHF4dILxycanfSulLsqloCuCCOiKoCsgZvzsiiDI9rum200fq9mfkc1mhrV4wbmZbWvbxXHOzVBzcuY5s6IktZZLzz6RX/3Ppxf2++sJU4PAkzX7Q1RHn+ZqMwi8IExFxFXAVQCbN2+eb61aoN7uEucMruKcwVVzth2bmOLI2CSHxyYYGZtkbGKK8ckpxianGJuovkYnXrg/NjH5wvOTU0xOJhIwlRIpVX8+v11dVF89BmnG/nS7RGJqqro/bWbUe+HAajrmuR99X32febz3SZJaQ0+52Ds91ROmZvv/4TP/otTThpTSdcB1UJ3mq+N3a5FNT9mt6usuuhRJkpaEeqLcEHByzf4m4OkFtJEkSWo79YSpO4EzI+LUiKgAVwI3z2hzM/DWqLoA2O96KUmS1AnmnOZLKU1ExK8Bt1G9NcL1KaUHIuKd2flrgVuoXsm3neqtEd7RvJIlSZJaRz1rpkgp3UI1MNUeu7ZmOwHvybc0SZKk1ueDjiVJkhpgmJIkSWqAYUqSJKkBhilJkqQGGKYkSZIaYJiSJElqgGFKkiSpAYYpSZKkBhimJEmSGhDVm5cX8IsjhoEfNvnXrAd2Nfl3dBr7NF/2Z/7s0/zZp/myP/O3GH36opTSwGwnCgtTiyEitqaUthRdRzuxT/Nlf+bPPs2ffZov+zN/Rfep03ySJEkNMExJkiQ1oN3D1HVFF9CG7NN82Z/5s0/zZ5/my/7MX6F92tZrpiRJkpqt3UemJEmSmqotw1REXBoRD0fE9oj4YNH1tJKIODkivhIRD0XEAxHxvuz42oj4UkQ8kv1cU/Oeq7O+fDgiXl9z/JURcX927uMREdnxnoj42+z4HRFxyqJ/0QJERCkivhsRX8j27dMGRMTqiPiHiPhe9s/rhfbpwkXEr2f/zm+LiM9GRK/9OT8RcX1E7IyIbTXHFqUPI+Jt2e94JCLetkhfuemO0ae/n/17f19EfD4iVteca80+TSm11QsoAY8CpwEV4F7gpUXX1SovYCPwimx7BfB94KXA7wEfzI5/EPjdbPulWR/2AKdmfVvKzn0HuBAI4FbgDdnxdwPXZttXAn9b9PdepL79DeBvgC9k+/ZpY/35l8CvZNsVYLV9uuC+HAR+ACzL9v8OeLv9Oe9+fC3wCmBbzbGm9yGwFngs+7km215TdH80sU8vAcrZ9u8uhT4tvCOb8D/MhcBtNftXA1cXXVervoB/Al4HPAxszI5tBB6erf+A27I+3gh8r+b4m4FP1rbJtstUb6QWRX/XJvfjJuDLwMU8H6bs04X350qqf/xjxnH7dGH9OQg8mf3hKANfyP5g2Z/z78tTeOEf/qb3YW2b7NwngTcX3RfN6tMZ534euKHV+7Qdp/mm/6MxbSg7phmy4c5zgTuADSmlHQDZzxOyZsfqz8Fse+bxF7wnpTQB7AfWNeVLtI4/Av47MFVzzD5duNOAYeAvsqnTP4+IfuzTBUkpPQX8AfAEsAPYn1L6IvZnHhajDzv579p/ozrSBC3cp+0YpmKWY16yOENELAf+EXh/SunA8ZrOciwd5/jx3tOWIuKNwM6U0l31vmWWY/bpC5WpDv1fk1I6FzhMdQrlWOzT48jW8VxOdWrkJKA/It5yvLfMcsz+nJ88+7Aj+zYifguYAG6YPjRLs5bo03YMU0PAyTX7m4CnC6qlJUVEN9UgdUNK6cbs8LMRsTE7vxHYmR0/Vn8OZdszj7/gPRFRBlYBe/L/Ji3jNcDPRsTjwOeAiyPir7FPGzEEDKWU7sj2/4FquLJPF+angR+klIZTSuPAjcCrsT/zsBh92HF/17IF4W8EfjFl83C0cJ+2Y5i6EzgzIk6NiArVBWc3F1xTy8iucPgU8FBK6WM1p24Gpq9meBvVtVTTx6/Mrog4FTgT+E42nH0wIi7IPvOtM94z/VlXAP9e8y9D20kpXZ1S2pRSOoXqP2//nlJ6C/bpgqWUngGejIizskM/BTyIfbpQTwAXRERf1g8/BTyE/ZmHxejD24BLImJNNsp4SXasLUXEpcD/AH42pTRSc6p1+7TohWfNeAGXUb1K7VHgt4qup5VewE9QHcq8D7gne11GdQ75y8Aj2c+1Ne/5rawvHya7QiI7vgXYlp37BM/fBLYX+HtgO9UrLE4r+nsvYv9exPML0O3Txvry5cDW7J/Vm6hecWOfLrw/PwJ8L+uLv6J6RZT9Ob8+/CzVNWfjVEc2fnmx+pDq2qHt2esdRfdFk/t0O9X1TPdkr2tbvU+9A7okSVID2nGaT5IkadEYpiRJkhpgmJIkSWqAYUqSJKkBhilJkqQGGKYkSZIaYJiSJElqgGFKkiSpAf8fSTLIS1w837AAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig1,ax1 = plt.subplots(figsize=(10,6))\n", "ax1.plot(timepoints,datapoints)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "out_file = open(\"decay_data.txt\", \"w\")\n", "for i in range(len(timepoints)):\n", " out_file.write(f\"{timepoints[i]:12.1f} {datapoints[i]:15.1f}\\n\")\n", "out_file.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Warning\n", "curve-fit non riesce a gestire i dati precedenti." ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1. 3.02040816 5.04081633]\n", "[ 93.93877551 95.95918367 97.97959184 100. ]\n" ] } ], "source": [ "# I tempi a cui vengono fatte le misure in secondi. Circa 2000 misure ogni 120 secondi \n", "timepoints = np.linspace(1,100.,50)\n", "print(timepoints[0:3])\n", "print(timepoints[-4:])" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "N0 = 1.e4\n", "tau = 30.\n", "datapoints = np.exp(-timepoints/tau)*N0/tau\n", "# Aggiungiamo rumore. In ogni punto il rumore è composto da un termine distribuito uniformemente \n", "# in un intervallo del 10% attorno alla misura.\n", "noise = (np.random.random_sample(size=len(timepoints))-0.5)/10\n", "datapoints = datapoints*(1.+noise)\n", "# Converiamo i dati in interi\n", "datapoints = np.around(datapoints)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAFnCAYAAABkaweKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABDaklEQVR4nO3dd3yV5f3/8dfnZEIWJGSHESCEPcNSXOBAFFHbKrSOWi3Vr6vWun79tl9ra6fW0VZbVOpqRSsqww2CigMIe4Y9wghhhU3W9fsjR43KCJDkPuP9fDzOIzl3zsl5J5Lb97mv675uc84hIiIiIqfO53UAERERkVChYiUiIiJST1SsREREROqJipWIiIhIPVGxEhEREaknKlYiIiIi9eS4xcrMYs1slpktMLMlZvZr//b7zWyTmc3334bVes59ZrbKzIrM7IKG/AFEREREAoUdbx0rMzMgzjm3z8yigBnA7cBQYJ9z7qFvPL4z8BLQD8gCpgAdnHNVDZBfREREJGBEHu8BrqZ57fPfjfLfjtXGRgDjnHOHgbVmtoqakvXZ0Z7QokUL16ZNm7pmFpEQMGfOnO3OuVSvc9QH7cNEwsux9l/HLVYAZhYBzAHaA393zs00swuBW8zsGqAQuNM5twvIBj6v9fRi/7ajatOmDYWFhXWJIiIhwszWe52hvmgfJhJejrX/qtPkdedclXOuJ5AD9DOzrsCTQDugJ7AFePiL1zvStzhCqNFmVmhmhaWlpXWJISIiIhLQTuisQOfcbmA6MNQ5V+IvXNXAU9QM90HNEaqWtZ6WA2w+wvca45wrcM4VpKaGxGiAiIiIhLm6nBWYambN/J83Ac4FlptZZq2HXQYs9n8+ERhpZjFmlgvkAbPqNbWIiIhIAKrLHKtM4Dn/PCsf8IpzbrKZvWBmPakZ5lsH/ATAObfEzF4BlgKVwM06I1BERETCQV3OClwI9DrC9quP8ZwHgQdPLZqIiIhIcNHK6yIiIiL1RMVKREREpJ6oWImIiIjUExUrERERkXqiYiUiIiJST1SsREREROpJUBUr5xyz1+1k6eY9XkcRETlhuw+UM3VZidcxRKQBBVWxMjNuenEuYz9Z63UUEZET9ud3i7jpxbms37Hf6ygi0kCCqlgBdMpMoGjrXq9jiIicsNuG5BEVYfxm8jKvo4hIAwm6YpWfnsCKkr1UVTuvo4iInJD0xFhuHZLHlGUlTC/a5nUcEWkAwVesMhI4XFnNOh1KF5EgdN3pbchtEccDk5dSXlntdRwRqWdBV6w6ZSYCaDhQRIJSTGQEv7y4E2tK9/Pcp+u8jiMi9SzoilX7tHh8Bsu36MxAEQlOgzumc05+Ko9NXcm2vYe8jiMi9SjoilVsVAS5LeJYriNWIhLEfnlxZw5XVvGnd4q8jiIi9SjoihVAx4xEFSsRCWptU+P50aBcXp1TzLwNu7yOIyL1JCiLVX5GAht2HmD/4Uqvo4iInLRbB+eRmhDDH95e7nUUEaknQVmsOmYkALCiREetRCR4xcdE8pMz2zJz7U4dtRIJEUFarGrODNRwoIgEu1H9WpHUJIp/fLja6ygiUg+CsljlNG9CXHSEllwQEU+Z2XAzG1NWVnbS3yMuJpJrBrbmvaUlrC7dV4/pRMQLQVmsfD6jQ0YCy7Tkgoh4yDk3yTk3Oikp6ZS+z7WntSE6wseYD9fUUzIR8UpQFiuomWdVVLIX53RpGxEJbi3iY7iioCWvzStma5nWtRIJZkFcrBLZfaCCkj2HvY4iInLKfnxGW6qqHWM/Wet1FBE5BUFbrPL9ZwYu36rhQBEJfq1SmnJR9yz+M3MDZQcrvI4jIicpaIvVF0suaAK7iISKn5zZln2HK3nx8/VeRxGRkxS0xapZ02gyEmO15IKIhIyu2UmckdeCf32yjn1aAFkkKEV6HeBU5GckqFiJSEi56ex2fP+pmXS7/10yE2NpldKUNilxdMtJYlTfVvh85nVEETmGoC5WHTMT+HT1diqqqomKCNqDbyIiXzqtXQue/1E/5m3Yzfod+1m/8wDvLy1h3OyNrNi6l/sv6YKZypVIoAruYpWRQEWVY+32/XRIT/A6johIvTizQypndkj98r5zjt+9tYynPl5LUpMofnZ+vofpRORYgrxYfXVpGxUrEQlVZsb/G9aJPQcrefyDVSQ2ieKGM9p6HUtEjiCox8/apcYT6TOWawV2EQlxZsbvLu/GsG4Z/PbNZbxSuNHrSCJyBEF9xCo60kfb1DgtuSAiYSHCZzxyZU/2Hirk3vELSYyNYmjXDK9jiUgtQX3ECmqGA3VmoIiEi5jICP55dR+6ZSfxv28s4nBlldeRRKSWoC9W+RkJbNp9kD2HtFKxiISHptGR3Hl+Ptv3lfPWoi1exxGRWoK+WHXK1ArsIhJ+BrVvQdvUOJ79VKu0iwSSoC9WeWk1xWrVtn0eJxERaTw+n3HtwDYs2Lib+Rt3ex1HRPyCvlhlN2tCTKSP1SpWIhJmvtMnh/iYSJ77dJ3XUUTEL+iLlc9ntE2NZ3WpipWIhJf4mEi+2yeHyQs3s23vIa/jiAh1KFZmFmtms8xsgZktMbNf+7cnm9n7ZrbS/7F5refcZ2arzKzIzC5oyB8AoF1qHKtL9zf0y4iIBJxrBramosrx0kytayUSCOpyxOowMNg51wPoCQw1swHAvcBU51weMNV/HzPrDIwEugBDgSfMLKIBsn+pXWo8G3cd4FCFTjsWkfDSNjWeMzuk8u+Z6ymvrPY6jkjYO26xcjW+GGeL8t8cMAJ4zr/9OeBS/+cjgHHOucPOubXAKqBffYb+pnZp8TgH63boqJWIhJ8fntaabXsP886SrV5HEQl7dZpjZWYRZjYf2Aa875ybCaQ757YA+D+m+R+eDdQ+Jl3s3/bN7znazArNrLC0tPQUfoSaoUCA1dtUrEQk/JzdIY3WKU01iV0kANSpWDnnqpxzPYEcoJ+ZdT3Gw+1I3+II33OMc67AOVeQmpp6hKfUXW6LmmK1RhPYRSQM+XzG1QNaM2f9LhYVl3kdRySsndBZgc653cB0auZOlZhZJoD/4zb/w4qBlrWelgNsPtWgx9I0OpLsZk10ZqCIhK3vFbQkISaSX05YrLlWIh6qy1mBqWbWzP95E+BcYDkwEbjW/7BrgQn+zycCI80sxsxygTxgVj3n/pa2OjNQRMJYUpMo/vjd7szfuJsH31zqdRyRsFWXI1aZwDQzWwjMpmaO1WTgD8B5ZrYSOM9/H+fcEuAVYCnwDnCzc67BT9dr51/LyrlvjTqKiISFYd0yuWFQLs99tp4J8zd5HUckLEUe7wHOuYVAryNs3wEMOcpzHgQePOV0J6BdWjwHyqvYuucQmUlNGvOlRUQCxj0XdmRB8W7uHb+ITpmJdEhP8DqSSFgJ+pXXv6AzA0VEICrCx9++35u4mEhufGEOew9VeB1JJKyETLFqnxoPoAnsIhL20hNj+dv3e7F+5wHuGb9QUyREGlHIFKvUhBgSYiJVrEREgAFtU7j7gnzeWrSVd7VwqEijCZliZWb+MwNVrEREAK4flEvb1DgeeX8l1dU6aiXSGEKmWEHNmYFrtOSCiAgAkRE+bh+SR1HJXt5erKNWIo0htIpVWjxbyg6x73Cl11FERALCxd2zaJ8Wz6NTVlClo1YiDS60ipX/zMC1OmolIgJAhM/46bl5rNy2j8kLG/QiGCJCyBUrnRkoIvJNw7pmkp+ewGNTV+qolUgDC6li1SqlKRE+U7ESkUZhZsPNbExZWWBf+NjnM+44L481pfuZuODrK7Jv2HGAO19ZwGtziz1KJxJaQqpYxURG0Cq5qYqViDQK59wk59zopKQkr6Mc1/mdM+iUmchjU1ZSWVXNgfJKHnq3iHMf+ZDxc4u577VF2neK1IOQKlZQM89Kq6+LiHydz2fccW4e63Yc4BevL2bwQx/yt2mruKhbJpNvHURsVAR3/XeBhgpFTlHIFau2qfGs3b5fOwcRkW84r3M6XbMTeblwIy0Sonn1xoE8cmVPumYn8etLujB3w27GzljrdUyRoHbcizAHm3apcZRXVVO86wCtU+K8jiMiEjDMjL+O6s3SzXsY2jWDCJ99+bURPbN4c9EWHnqviMGd0r48GUhETkzIHbH6YmeghUJFRL4tt0UcF3XP/FqpgprS9eBlXWkSrSFBkVMRssVKkzBFRE5MWkLsl0OCz8xY43UckaAUcsWqeVw0yXHRKlYiIifhkh5ZnN85nYfeW0HR1r1exxEJOiFXrEBnBoqInCwz47eXdSWpSRTXPzeb7fsOex1JJKiEaLGKZ8W2vWzcecDrKCIiQSctIZanrylg+77D/Pj5Qg5VVHkdSSRohGSxGtIpnT0HKzjjT9O46umZTFywWTsGEZET0KNlMx69sifzNuzmrlcX4pwms4vURUgWq/M6pzPjnsH87LwOrN2+n9temseA30/l1Tm6ZIOISF0N7ZrJ3UPzmbRgM49MWel1HJGgEJLFCiCrWRNuG5LHx3efwwvX9yOneRP+8PYyKquqvY4mIhI0bjqrHd/rk8PjU1fyxrxNx3+CSJgL2WL1BZ/POCMvlVvOac/2feXMXLvT60giIkGjZn2rbgxom8zd4xeydrtODBI5lpAvVl84Oz+NuOgIJi3Y7HUUEZGgEh3p4/FRvYiJ9PHLNxZrvpXIMYRNsYqNiuD8Lhm8vXgr5ZUaDhQRORFpCbHcfUE+M1ZtZ6LeoIocVdgUK4DhPTIpO1jBjFWlXkcREQk63+/fmh4tm/GbycsoO1jhdRyRgBRWxWpQ+1SSmkQxacEWr6OIiASdCJ/x4KVd2bn/MH96Z7nXcUQCUlgVq+hIH0O7ZPD+0hKtayUichK6Zifxw9Ny+c+sDczdsMvrOCIBJ6yKFcDwHlnsO1zJ9KJtXkcREQlKPzu/A+kJsfzi9cVawkbkG8KuWA1om0yL+GgNB4qInKT4mEjuv6Qzy7bs4dlP13kdRySghF2xiozwMaxbJlOXl7DvcKXXcUREgtIFXTI4q0Mqf/1glfalIrWEXbGCmuHAQxXVTF1W4nUUEZGgZGb87LwOlB2s4PnP1nkdRyRghGWx6tOqORmJsRoOFBE5BT1aNuPs/FSe/ngt+3XUSgQI02Ll8xkXd8/kwxXbKDugtVhERE7WrYPz2Lm/nH/PXO91FJGAEJbFCmqGAyuqHFOXazhQRORk9WndnDPyWjDmozUcLNcyNiJhW6y6ZSfRNDqCxZv2eB1FRCSo3TYkj+37yvnPrA1eRxHxXNgWK5/PyEuLZ0XJXq+jiIgEtb5tkhnQNpl/fLhaiy9L2AvbYgXQIT2BIhUrEZFTdtuQPEr3Hubl2Ru9jiLiqeMWKzNraWbTzGyZmS0xs9v92+83s01mNt9/G1brOfeZ2SozKzKzCxryBzgV+RkJlO49zM795V5HEREJagPbptC3TXOenL6aw5U6aiXhqy5HrCqBO51znYABwM1m1tn/tUeccz39t7cA/F8bCXQBhgJPmFlEA2Q/ZR3SEwA0HCgicorMjNuG5LF1zyFe+ExnCEr4Om6xcs5tcc7N9X++F1gGZB/jKSOAcc65w865tcAqoF99hK1v+RkqViIi9WVQ+xacnZ/Kw++tYOPOA17HEfHECc2xMrM2QC9gpn/TLWa20MzGmllz/7ZsoPYgezFHKGJmNtrMCs2ssLS09MST14O0hBiSmkRRtFXFSkTkVJkZD17WDZ/Bfa8twjnndSSRRlfnYmVm8cB44KfOuT3Ak0A7oCewBXj4i4ce4enf+utyzo1xzhU45wpSU1NPNHe9MDPy0xN0xEpEpJ5kN2vCvcM6MWPVdv5bWOx1HJFGV6diZWZR1JSqfzvnXgNwzpU456qcc9XAU3w13FcMtKz19Bxgc/1Frl8dMuIp2rpX76xEROrJD/q1ol9uMr95cyklew55HUekUdXlrEADngGWOef+Umt7Zq2HXQYs9n8+ERhpZjFmlgvkAbPqL3L9yk9PYM+hSkr2HPY6iohISPD5jD9c3o3yymp++cZivXGVsFKXI1anA1cDg7+xtMKfzGyRmS0EzgHuAHDOLQFeAZYC7wA3O+cC9tzbPP+ZgVrPSkSk/rRNjeeO8zrw3tIS3lykC95L+Ig83gOcczM48rypt47xnAeBB08hV6P5csmFrXs5q4M3c71ERELRDYNyeXPhFv5vwhL6tUkmLTHW60giDS6sV14HSI6LJjUhRhPYRUTqWWSEj4e+14ODFVX8+IU5utyNhIWwL1aAzgwUEWkg+RkJ/OWKnizYuJu7X12o+VYS8lSsqBkOXFGyj+pq/cGLiNS3oV0zuOuCfCYu2Mzfp63yOo5Ig1KxAvIz4jlYUUXxroNeRxERCUn/c3Y7LuuVzUPvreCdxZrMLqFLxYqvJrDrzEARkYZhZvz+8m70atWMO15ewOJNZV5HEmkQKlZ8teSC5lmJiDSc2KgI/nl1H5o3jeJ7//iMByYtZfNujRRIaFGxAuJjIslu1kTXDBQRaWBpCbGMGz2QC7tm8Nxn6zjrz9O4678LWLVtn9fRROqFipVffobODBQRaQytUprylyt7Mv3nZ/P9fq2YuGAz5z3yIf/6ZK3X0UROmYqVX4f0BFaX7qOiqtrrKCIiYaFlclN+PaIrn9w7mDPzUvnjO8vZuPOA17FETomKlV9+RjwVVY512/d7HUVEJKy0iI/h95d3wzB+M3mp13FETomKlZ/ODBQR8U5WsybcNiSP95aWMG35Nq/jiJw0FSu/dqnx+AxWlGgCpYiIF64flEvb1Djun7REl7+RoKVi5RcbFUGbFnGs0JmBIiKeiI708ZsRXVm/4wD//HCN13FEToqKVS26ZqCIiLdOb9+Ci7tn8sT0VWzYoYnsEnxUrGrJS09g3Y79OgQtIuKh/72oMxE+44HJS7yOInLCVKxq6Z6dRLWDWWt3eh1FRCRsZSTF8tNz85iybBu/fGMxB8v1ZleCh4pVLYPyWhAfE8nkhZu9jiIiEtZ+dHouNwzK5YXP1zP8bzN0bUEJGipWtcRGRXB+53TeWbyVw5V6hyQi4pXICB//e3FnXry+P3sPVXDZE5/wjw9XU13tvI4mckwqVt8wvEcWew5V8vGK7V5HEREJe4PyWvDO7WcypGM6f3h7OTc8X4hzKlcSuFSsvuH09i1o1jSKSRoOFBEJCM3jonnyqt789Nw8Pli+jQXFGhaUwKVi9Q3RkT4u7JrBlKUlmjApEobM7FIze8rMJpjZ+V7nkRpmxo8G5RIT6eO1ucVexxE5KhWrI7i4exb7y6uYVqTLKoiEAjMba2bbzGzxN7YPNbMiM1tlZvcCOOfecM79GPghcKUHceUoEmOjOL9LBhMXbNY8WAlYKlZHMKBtCi3iY5i0QMOBIiHiWWBo7Q1mFgH8HbgQ6AyMMrPOtR7yv/6vSwC5vHc2uw9U6HqCErBUrI4gwmdc1C2DD5ZvY9/hSq/jiMgpcs59BHxzgbp+wCrn3BrnXDkwDhhhNf4IvO2cm3u072lmo82s0MwKS0tLGy68fM0Z7VuQmhDD+LmbvI4ickQqVkcxvEcWhyurmbK0xOsoItIwsoGNte4X+7fdCpwLfNfMbjzak51zY5xzBc65gtTU1IZNKl+KjPBxac8spi3fxo59h72OI/ItKlZH0btVczKTYjUcKBK67AjbnHPucedcH+fcjc65fzR6Kjmu7/TJobLaaf8sAUnF6ih8PuPi7pl8tLKUsgMVXscRkfpXDLSsdT8H0P+pg0DHjES6ZCVqOFACkorVMQzvkUVFlePdJVu9jiIi9W82kGdmuWYWDYwEJnqcSero8t45LNpUxoqSvV5HEfkaFatj6JadROuUplosVCTImdlLwGdAvpkVm9n1zrlK4BbgXWAZ8IpzbomXOaXuRvTMIsJnjNeaVhJgVKyOwcw4t1M6M9fu5FCF1kwRCVbOuVHOuUznXJRzLsc594x/+1vOuQ7OuXbOuQe9zil11yI+hrM7pPLGvE1U6fqBEkBUrI6jf24y5ZXVLNi42+soIiJSy3f65FCy5zCfrNK1XSVwqFgdR7/cZMxg1tpvLoEjIiJeGtIpjaQmUfxm8lIW6fqBEiBUrI6jWdNo8tMTmKliJSISUGIiI3hsZE/KDlYw4u8z+O3kpezXos7iMRWrOhjQNoU563dRUVXtdRQRCSBmNtzMxpSV6WiJV87OT2PKnWfx/f6teHrGWs5/5CNd51U8pWJVB/1ykzlYUcWiTdp5ishXnHOTnHOjk5KSvI4S1hJjo/jtpd149caBNImO4Lp/zebBN5dSrUnt4gEVqzrol5sMwMw1Gg4UEQlUBW2SefO2QVwzsDVPfbyWW1+apzO6pdEdt1iZWUszm2Zmy8xsiZnd7t+ebGbvm9lK/8fmtZ5zn5mtMrMiM7ugIX+AxtAiPob2afHMXLvD6ygiInIMMZER/PqSLvy/YR15c9EWrn5mJrsPlHsdS8JIXY5YVQJ3Ouc6AQOAm82sM3AvMNU5lwdM9d/H/7WRQBdgKPCEmUU0RPjG1C83mcJ1u7ReiohIgDMzRp/Zjr+O6sWCjWV858lP2bjzgNexJEwct1g557Y45+b6P99LzQrF2cAI4Dn/w54DLvV/PgIY55w77JxbC6wC+tVz7kbXPzeZfYcrWbp5j9dRRESkDob3yOKF6/tRuvcwlz/5KRt2qFxJwzuhOVZm1gboBcwE0p1zW6CmfAFp/odlAxtrPa3Yvy2oDWibAqDhQBGRINK/bQqv3nQa5ZXVXPfsLMoOVHgdSUJcnYuVmcUD44GfOueOddjGjrDtW+NnZjbazArNrLC0tLSuMTyTnhhLm5SmfK4J7CIiQaVDegJjru7Dhp0H+MmLhZRXaukcaTh1KlZmFkVNqfq3c+41/+YSM8v0fz0T+GLhkGKgZa2n5wDfuoqxc26Mc67AOVeQmpp6svkbVb/cZGav23nEU3g190pEJHD1b5vCn77bnc/X7OTe1xbinPbZ0jDqclagAc8Ay5xzf6n1pYnAtf7PrwUm1No+0sxizCwXyANm1V9k7/TPTaHsYAVFJXu/tn3C/E30euA9FmudKxGRgHVZrxzuOLcDr83dxONTV3kdR0JUXY5YnQ5cDQw2s/n+2zDgD8B5ZrYSOM9/H+fcEuAVYCnwDnCzcy4kFhLp3/aL9ay+mmc1e91O7vrvQvYcquS/hRuP9lQRCUFaeT343DakPZf3zuaRKSt4bW6x13EkBNXlrMAZzjlzznV3zvX0395yzu1wzg1xzuX5P+6s9ZwHnXPtnHP5zrm3G/ZHaDw5zZuS3awJs9bV/Kjrtu9n9POF5DRvwhl5LXhz0VYNCYqEEa28HnzMjD9c3p2BbVO469WFTJi/yetIEmK08voJ6p+bzKy1O9l9oJwfPTsbgLE/7Muofq3Yvu/w145miYhI4ImO9PH0tQX0ad2cO16ez+vzdORK6o+K1Qnq3zaZ7fvKufKfn1O86yBjrimgTYs4zslPIy46gkkLvzVPX0REAkxcTCTPXteXAW1T+NkrCzSVQ+qNitUJ6pdbs55VUcle/vTd7vRtUzPvqkl0BOd1TuftxVt1Kq+ISBBoGh3JM9f2ZVD7Ftw9fiHjZm3wOpKEABWrE9QmpSlndkjlvgs7cmmvr697OrxHFrsPVPDJqu0epRMRkRPRJDqCp64p4My8VO59bRFPTl+tpRjklKhYnSAz4/kf9eMnZ7X71tfOyEslMTZSw4EiIkEkNiqCMdf04aLumfzxneXc+OIc9hzSCu1yclSs6lF0pI+hXTN4b0kJhypCYoUJEZGwEBMZwd9G9eKXF3dm6rJtXPLXGSzbomvDyolTsapnw3tkse9wJdOLAv8yPSIi8hUz4/pBuYwbPYCDFVVc9sQnvDpHZwzKiVGxqmcD26aQEhet4UARkSBV0CaZybeeQa+Wzfn5fxfwuZbRkROgYlXPIiN8DOuWydRlJew/XOl1HBEROQmpCTH867q+pMRFM+ajNV7HkSCiYtUALu6eyaGKaqYsK/E6ioiInKTYqAiuHtiaD5ZvY9W2vcd/gggqVg2ib5tk0hNjmLxwi9dRRKQB6VqBoe/qAa2JjvTxzIy1XkeRIKFi1QB8PuOSHllML9rGlrKDXscRkQaiawWGvpT4GL7TO5vxczexfd9hr+NIEFCxaiDXDGxDtYOxepcjIhLUrh/UlvLKal74bL3XUSQIqFg1kJbJTRnePZP/zNzA7gPlXscREZGT1D4tnsEd03jh8/Vao1COS8WqAd14djv2l1fpXY6ISJC74Yxcdu4v57W5m7yOIgFOxaoBdcxI5Jz8VJ79dB0Hy/UuR0QkWA1sm0KXrESenrGG6mpdS1COTsWqgd10dnt27C/nv3M2eh1FREROkpnx4zPasqZ0P9NXbPM6jgQwFasG1rdNc3q3asaYj9ZQWVXtdRwRETlJF3XPJDMplkfeX8nWskNex5EApWLVwMyMm85uT/Gug7y5SOtaiYgEq6gIH/cN60RRyV6GPDydpz5aQ4XeMMs3qFg1giEd08hLi+fJ6atxTmPzIiLB6pIeWbx/x5n0b5vCg28tY9hjH/PZal1LUL6iYtUIfD7jJ2e1Y/nWvUwvKvU6joiInILWKXGM/WFfnr6mgIMVVYx66nOe0vUExU/FqpFc0iOLzKRYxn6iBUNFRELBuZ3TmfKzszizQyp/m7aKA+WVXkeSAKBi1UiiI318r08On6zarkmPIiIhIjYqglsHt6fsYAXjtcaVoGLVqC7rnUO1gwnz9ccnIhIqClo3p3tOEv+asVZrXImKVWPKbRFH71bNGD+3WJPYRUKAmQ03szFlZWVeRxEPmRnXD8plzXatcSUqVo3u8t45rCjZx5LNe7yOIiKnyDk3yTk3Oikpyeso4rFh3TLJSIzlmRmaRxvuVKwa2cXdM4mO8Ol6UyIiISQqwsc1p7Xmk1U7WLZFb5zDmYpVI2vWNJrBHdOYuGCTFpYTEQkh3+/XiiZREYzVUauwpmLlgct7Z7N9Xzkfr9SaViIioaJZ02i+0yebCfM3U7r3sNdxxCMqVh44Oz+N5k2jdGquiEiIue70XMqrqnnx8/VeRxGPqFh5IDrSV3NZhKUllB2s8DqOiIjUk3ap8QzumMaLn6/nUEWV13HEAypWHrm8dw7lldW8rQszi4iElBsG5bJjf7kucxOmVKw80j0niXapcTo7UEQkxAxsl8LF3TN5bOpKFhbv9jqONDIVK4+YGZf3zmHWup1s2HHA6zgiIlJPzIwHL+1Gi/gYfvryfA6Wa0gwnKhYeejSXtkATFq42eMkIiJSn5KaRvHwFT1YU7qf37+9zOs40ohUrDyU3awJPVs2490lW72OIiIi9ez09i24flAuz3+2nmlFutRNuFCx8tjQrhksLC6jeJeGA0VEQs1dF+STn57A3a8uZOf+cq/jSCM4brEys7Fmts3MFtfadr+ZbTKz+f7bsFpfu8/MVplZkZld0FDBQ8XQLhkAvLukxOMkIiJS32KjInjkyp6UHajgjpfns3Gn3kSHurocsXoWGHqE7Y8453r6b28BmFlnYCTQxf+cJ8wsor7ChqI2LeLomJHAu4s1HCgiEoo6ZyXyi4s68dHKUs740zRGjfmc8XOKOVBe6XU0aQDHLVbOuY+AnXX8fiOAcc65w865tcAqoN8p5AsLQ7tmMHv9TrbtPeR1FBERaQDXntaGj+8+hzvP68DmsoPc+d8F9P3tFK11FYJOZY7VLWa20D9U2Ny/LRvYWOsxxf5tcgxDu2bgHLy/VMOBIsHEzIab2ZiysjKvo0gQyGnelFuH5DH952fz3xsH0qdNMr9/exkLNu72OprUo5MtVk8C7YCewBbgYf92O8Jj3ZG+gZmNNrNCMyssLQ3vixHnpyeQ2yKOdzQcKBJUnHOTnHOjk5KSvI4iQcTM6Nsmmb99vxct4mO497VFVFRVex1L6slJFSvnXIlzrso5Vw08xVfDfcVAy1oPzQGOuEiTc26Mc67AOVeQmpp6MjFChplxQZcMPlu9g7IDunagiEg4SIyN4oERXVi2ZQ9jZ6z1Oo7Uk5MqVmaWWevuZcAXZwxOBEaaWYyZ5QJ5wKxTixgehnbNoLLaMWWZhgNFRMLFBV0yOK9zOo9MWaGrcISIuiy38BLwGZBvZsVmdj3wJzNbZGYLgXOAOwCcc0uAV4ClwDvAzc45reVfBz1ykshMiuUdLRYqIhI2zIwHRnQh0ufjF28swrkjzp6RIBJ5vAc450YdYfMzx3j8g8CDpxIqHH0xHPjSrA3sP1xJXMxx/9OIiEgIyExqwt1D8/nVhCW8Pm8Tl/fO8TqSnAKtvB5AhnbN4HBlNdOLwnsyv4hIuLmqf2t6t2rGbyYv1QrtQU7FKoD0bZNMSly0hgNFRMKMz2f8/vLu7DtcyZ2vzKe6WkOCwUrFKoBE+Izzu6TzwbISDpZrapqISDjJz0jgVxd3ZlpRKX/9YJXXceQkqVgFmMt757C/vIpXCjce/8EiIhJSrhrQmst7Z/Po1BVMK9rmdRw5CSpWAaZvm2T6tG7OmI/WaME4EZEwY2Y8eGk3OmYkcvtL87QEQxBSsQpAN53Vjk27D/Lmwi1eRxERkUbWJDqCf17VB4AbX5yjqSFBRsUqAA3umEZeWjxPTl+tNU1ERMJQq5SmPDayF8u27tH6VkFGxSoA+XzGjWe1o6hkr8bYRUTC1Dkd07htcB6vzd2kZXiCiIpVgLqkZxZZSbH8Y/oar6OIiIhHbj6nPa1TmvKHt5dTpSUYgoKKVYCKivBxwxltmbVuJ3PW7/Q6joiIeCA60sddF+RTVLKX1+YWex1H6kDFKoCN7NeSZk2jeFJHrUREwtZF3TLpkZPEX95fwaEKTWQPdCpWAaxpdCTXDmzDlGUlrCjZ63UcERHxgJlxz4Ud2VJ2iOc+Xed1HDkOFasAd+1pbWgSFcET07QKr4hIuDqtXQvOzk/l79NWsfuAriUYyFSsAlxyXDTXnd6GN+Zv5tPV272OIyIiHrlnaEf2Hq7kiemrvY4ix6BiFQRuG5JH65Sm3PfaIo2viwQQMxtuZmPKysq8jiJhoFNmIpf3yuHZT9exafdBr+PIUahYBYHYqAh+f3k31u84wCNTVngdR0T8nHOTnHOjk5KSvI4iYeJn53cA4OF3izxOIkejYhUkTmvXgisLWvL0x2tZvEnvjkVEwlF2syZcPyiX1+ZtYsZKTQ8JRCpWQeT/DetEclw094xfSKUu0CwiEpZuH5JH2xZx3DN+IfsOV3odR75BxSqIJDWN4oFLurBk8x6enrHW6zgiIuKB2KgI/vTd7mwuO8gf317udRz5BhWrIHNht0wu6JLOI++vYPnWPV7HERERDxS0Sea603J54fP1fLZ6h9dxpBYVqyD0wIiuNI2O4JK/fsIf3l6uQ8EiImHorgvyaZ3SlHvGL+RAuf4/EChUrIJQemIs7/70TIb3yOIfH65m8EPTeW1uMdW6QKeISNhoEh3BH7/TnQ07D/BnnSUYMFSsglRaYiwPX9GD1//nNDKbNeFnryzge//8jD2HKryOJiIijWRA2xSuGdiaZz9dx8w1GhIMBCpWQa5Xq+a8ftNp/PE73ZizfhdPfaQLNouIhJN7hnakdXJTbnxxDqu26bqyXlOxCgE+n3Fl31Zc1C2TsTPWsnO/riMlIhIu4mIiee5H/YiM8HHV07Mo3nXA60hhTcUqhNxxXh4HK6r454e6jpSISDhpnRLH8z/qx4HySq5+Zhbb9x32OlLYUrEKIe3TEhjRM5vnPlvHtr2HvI4jIiKNqFNmImN/2JctZQe5duwszbn1iIpViLl9SB4VVY4npumolYhIuClok8yTV/WhaOtebniukN0HNDWksalYhZg2LeL4Xp8c/jNzA5t19XMRkbBzTn4aD1/Rg8J1Oznrz9MZO2Mt5ZW6DFpjUbEKQbcMbo/D8bdpq7yOIiIiHhjRM5u3bj+D7jlJPDB5KRc8+hHvLy3BOa132NBUrEJQTvOmjOrXildmb2TDDp0dIiISjjpmJPL8j/rxrx/2xWfw4+cL+fHzhVpMuoGpWIWom89pT4TP+PN7RXqHIiISpsyMczqm8c5Pz+SOczswZdk2Xp+3yetYIU3FKkSlJ8bykzPbMmnBZka/MEdnh4iIhLGoCB+3Dm5P95wkHnqviIPlVV5HClkqViHsjvM68KuLOzNt+TYu+esMlm3Z43UkERHxiM9n/GJYJ7aUHWLsJ2u9jhOyVKxCmJnxo0G5jBs9gAPlVVz2xCe8Pq/Y61giIuKR/m1TOL9zOk9MW0XpXi0i2hBUrMJAQZtkJt82iB45zbjj5QX8S+9URETC1r0XduRwZTWPTV3hdZSQpGIVJtISYvn3Df3pl5vM0x+v1VkhIiJhqm1qPD/o34qXZm3URZsbwHGLlZmNNbNtZra41rZkM3vfzFb6Pzav9bX7zGyVmRWZ2QUNFVxOXGSEjx/0b8Wm3QeZuXan13FERMQjtw3Jo2lUBH94e7nXUUJOXY5YPQsM/ca2e4Gpzrk8YKr/PmbWGRgJdPE/5wkzi6i3tHLKzu+cQVx0BK/N1VwrEZFwlRIfw/+c054py7bx6artXscJKcctVs65j4BvHt4YATzn//w54NJa28c55w4759YCq4B+9RNV6kOT6AiGdcvkrUVbdLqtyCkys+FmNqasrMzrKCIn7LrT25DTvAnXP1fIMzPWUqUpIvXiZOdYpTvntgD4P6b5t2cDG2s9rti/7VvMbLSZFZpZYWlp6UnGkJNxee8c9pdX8d7SrV5HEQlqzrlJzrnRSUlJXkcROWGxURG88pOBDGibzG8mL+XyJz7Rsjz1oL4nr9sRth2xAjvnxjjnCpxzBampqfUcQ46lf24y2c2aMH6uVt8VEQlnWc2aMPaHfXlsZE827jrI8L/O4KF3i3TR5lNwssWqxMwyAfwft/m3FwMtaz0uB9h88vGkIfh8xmW9spmxspSSPYe8jiMiIh4yM0b0zGbKz87ikp5Z/G3aKn49aYnXsYLWyRaricC1/s+vBSbU2j7SzGLMLBfIA2adWkRpCJf1zqbawYT5OmolIiKQHBfNX67oyegz2/LvmRt4c+EWryMFpbost/AS8BmQb2bFZnY98AfgPDNbCZznv49zbgnwCrAUeAe42TmnGdIBqF1qPD1bNmP8nE26SLOIiHzp5+fn07NlM+4dv5CNOw94HSfo1OWswFHOuUznXJRzLsc594xzbodzbohzLs//cWetxz/onGvnnMt3zr3dsPHlVHyndzZFJXtZqsmKIiLiFx3p46+jeoHBLS/N03yrE6SV18PYxd2ziIowXtMkdhERqaVlclP+9J3uLNi4mz+/q0VET4SKVRhrHhfN4I5pTJi/icoqvSMREZGvXNgtk6sHtOapj9fywfISr+MEDRWrMHd57xy27yvn9pfns7VMZwiKiMhXfnFRJzplJnLHywv4cIXWnKwLFaswd16ndG4bksf7S0sY/PB0/j5tFYcqdL6BiIjULCL6z6v6kJ4Yw7VjZ/HApKX6f8RxqFiFOZ/P+Nl5HZj6s7M4I68Ff363iPMf+YgpS3XYV0REoFVKUybeMohrB7Zm7CdrufTvn7CiZK/XsQKWipUANRMV/3l1AS9e35+YSB83PF/I/ROX6GwQEREhNiqCX4/oytgfFlC69zDD/zqD8XOKvY4VkFSs5GsG5bXgrdvP4Een5/Lsp+sY9dTnWp1dREQAGNwxnXd+eia9WjXj3tcWsnyrluv5JhUr+ZaoCB+/Gt6Zx0f1YtmWPVz0+Aw+X7PD61giIhIAUhNieOIHfUiMjeKu/y7UWeXfoGIlR3VJjywm3Hw6iU0i+cHTM3n2k7VeRxIRkQCQHBfNAyO6smhTGWM+XuN1nICiYiXHlJeewISbT2dwxzTun7SUv09b5XUkEREJABd1z+TCrhk8+v5KVm3TZPYvqFjJcSXERvHkD3pzac8s/vxuEY+8v0LXFxQRER4Y0ZW4mAjuenUhVdX6/wKoWEkdRUb4ePiKnnyvTw6PTV3Jn94tUrkSEQlzqQkx3H9JF+Zt2M3YGZouAhDpdQAJHhE+44/f6U50pI8np6/mcEU1v7y4E2bmdTQREfHIJT2ymLRgCw+9V8SQTmm0TY33OpKndMRKTojPZ/z20q5cd3obxn6yltvGzWf/4UqvY4mIiEfMjN9d1pVIn/E3zcNVsZITZ2b86uLO3HVBPm8u3MxlT3zCmtJ9XscSERGPpCXGMqJXNm8t2kLZwQqv43hKxUpOiplx8zntef5H/dm+r5xL/vYJ7yze6nUsERHxyKi+rThUUc2E+Zu8juIpFSs5JYPyWjD51kG0S4vnxhfn8Pu3lukCnSIiYahbThJdsxP5z8wNYX1yk4qVnLKsZk145ScDuGpAK/750RrOf+Qj3l2yNaz/sEREwtHIvq1YvnUvC4rLvI7iGRUrqRcxkRH89tJu/PuG/sRG+fjJC3O4ZuwsVuoK6CIiYWNEzyyaREUwbtYGr6N4RsVK6tXp7Vvw1m1ncP/wzizYuJuhj33MX6eu9DqWiIg0goTYKIb3yGTigs3sC9MzxlWspN5FRvj44em5TL/rHC7smsHD76/g01XbvY4lIiKNYGS/Vhwor2Li/M1eR/GEipU0mOS4aB76Xg/apDTlvtcXcbBck9pFREJdr5bNyE9PYNzs8BwOVLGSBhUbFcHvL+/O+h0HeHTKCq/jiIhIAzMzRvVrycLiMhZvCr9J7CpW0uAGtkthVL+WPPXxGhaF8ZkiIiLh4rJeOcRE+sLyqJWuFSiN4t4LOzF12TbuGb+QCbecTlSEOr2ISKhKahrFRd0yeWPeZiJ9X9/fd85M5Iq+LT1K1vBUrKRRJDWJ4oERXbnxxTk89fEa/ufs9l5HEhGRBnTd6bnMWLWd1+d9tRJ7RVU1Byuq6N4yiY4ZiR6mazgqVtJohnbN4MKuGTw6ZSVn5qXSNTvJ60giItJAuuUkMesX535tW9mBCgb96QMeereIp6/t61GyhqXxGGlUv76kC3HREVz81xlc8c/PeG1usc4WFBEJE0lNo7jxrHZMWbaNOet3eh2nQahYSaNKS4zl3TvO5J6hHdm25xA/e2UB/R6cwq8mLGZ/mC4mJyISTq47vQ0t4mP44ztFIXnpMxUraXRpCbHcdHY7pv38bMaNHsB5ndN58fP1/PKNxV5HExGRBtY0OpLbhrRn1tqdfLii1Os49U7FSjxjZgxom8JfruzJbUPyeG3eJsbPKfY6lkidmdlwMxtTVqZlREROxMi+rWiZ3IQ/v1tEdXVoHbVSsZKAcOvgPPrnJvPLCYtZXbrP6zgideKcm+ScG52UpBMxRE5EdKSPO87twJLNe3hz0Rav49QrFSsJCBE+47GRvYiJ9HHLf+ZxqEIT2kVEQtmIntnkpyfwl/dXUFFV7XWceqNiJQEjIymWh6/owbIte/j9W8u8jiMiIg0owmf8/IJ81m7fz78/X+91nHqjYiUBZXDHdK4flMtzn63n3SVbvY4jIiIN6NxOaZyR14LfvLmMNxeGxpCgipUEnLuH5tMtO4mfvTyft0Ns7F1ERL5iZvzjqj70atmM28fNC4k31CpWEnBiIiN46poC8tITuOnfc/ndW8uoDKHxdxER+UpcTCT/uq4v3XKSuOU/c/lgeYnXkU7JKRUrM1tnZovMbL6ZFfq3JZvZ+2a20v+xef1ElXCSkRTLyz8ZwNUDWjPmozVc9cxMSvce9jqWiIg0gITYKJ69rh+dMhO58YW5Qb2+VX0csTrHOdfTOVfgv38vMNU5lwdM9d8XOWExkRH85tKu/OWKHszfuJuLHv+YV2ZvpGjrXh3BEhEJMUlNonj+R/1onxbP6OcL+Wz1Dq8jnZSGuAjzCOBs/+fPAdOBexrgdSRMXN47h06ZifzPv+dy9/iFAMRE+uiYmUi37ERGn9GOVilNPU4pIiKnqlnTaP59Q3+uHPMZP36+kJd+PIBuOcG1TpydynV6zGwtsAtwwD+dc2PMbLdzrlmtx+xyzn1rONDMRgOjAVq1atVn/frQOdVSGkZVtWPt9n0s3rSHxZvKWLy5jAUby4iKMB4d2ZPBHdO9jignwMzm1DrSHdQKCgpcYWGh1zFEQsbWskN89x+fcqC8iv/eOJB2qfFeR/qaY+2/TrVYZTnnNptZGvA+cCswsS7FqjbtlORkbdhxgBtfnMPSLXu4bXB7bj+3AxE+8zqW1IGKlYgcy9rt+/nePz4lOsLHqzedRlazJl5H+tKx9l+nNMfKObfZ/3Eb8DrQDygxs0z/C2cC207lNUSOpVVKU177n9P4bp8cHv9gFdc9O5td+8u9jiUiIqcot0Ucz17Xj72HKrn6mZnsDJJ9+0kXKzOLM7OELz4HzgcWAxOBa/0PuxaYcKohRY4lNiqCP3+3O7+7rBufr97BRY9/zDuLt3AqR2NFRMR7XbOTeOaHfSnedZAf/msW+w9Xeh3puE7liFU6MMPMFgCzgDedc+8AfwDOM7OVwHn++yINysz4fv9WvHrTQBKbRHHji3P5wdMzKdq61+toIiJyCvrlJvPED3qzeFMZt740L+DPCj/pYuWcW+Oc6+G/dXHOPejfvsM5N8Q5l+f/uLP+4oocW/ecZky+dRAPjOjCks17GPb4x9w/cQllByq8jiYiIidpSKd0HhjRlQ+Wb+P+SUsCekRCK69LyImM8HHNwDZM//nZjOrXkuc/W8f5j37InPW7vI4mIiIn6aoBrfnJWW158fMNjPlojddxjkrFSkJW87hofntpNybcPIiYyAhGjvmM5z5dF9DvdERE5OjuuaAjF3fP5PdvL2fSgs1exzkiFSsJed1ykph0yyDOzEvl/yYu4Y6X53OgPPAnQIqIyNf5fMZD3+tB3zbNufOVBcxeF3izjVSsJCwkNY3iqWsKuPO8DkxYsJnL/v6pJraLiASh2KgIxlxdQGazWH7x+qKAG4VQsZKw4fMZtw7J47nr+rFt7yGGPf4x/zdhMbsPBMfaKCIiUqN5XDQ3ndWOFSX7mLshsObPqlhJ2DmzQyof3Fkzsf2Fz9dzzkPTefHz9VRVB9a7HhERObrhPbKIi47gpVkbvY7yNSpWEpa+mNg++dYz6JCewP++sZiLHv+YV2ZvDIoF6EREwl1cTCSX9Mxi8sLN7DkUOEvqqFhJWOuclci40QP42/d7UVFVzd3jF9LvwSncO34h8zbsCrixexER+cqofq04VFHNhHmbvI7ypUivA4h4zcy4uHsWF3XLZM76Xbw8eyMT5m9m3OyNtExuQvecZnTJSqRrVhJdshJJiY/xOrKIiADdspPonJnIf2Zt5KoBrTEzryOpWIl8wcwoaJNMQZtkfjW8M5MXbuHDolIWFu/mzYVbvnzcoPYt+NXwznRIT/AwrYiImBmj+rfil28sZmFxGT1aNvM6koqVyJEkxEYxql8rRvVrBcDuA+Us3byHwvW7ePrjNVz42MdcPaA1d5zbgaSmUR6nFREJXyN6ZvG7N5cxbvaGgChWmmMlUgfNmkZzWvsW3DYkj+l3ncPIvjWXyjnn4ZozCnfsO+x1RBGRsJQYG8VF3TOZOH8z+wLg5CMVK5ETlBwXzYOXdWPSrYNonxbP/76xmD6/ncLA30/lhucKeeT9FXy4ojTgr8AuIhIqRvVrxf7yqoC4zI2GAkVOUpesJF4ePYDZ63axYONuFm8uY/GmMqYuL8E5SE+M4bt9criioCWtU+K8jisiErJ6t2pGh/R4xs3a8OUUDq+oWImcAjOjX24y/XKTv9y2/3AlH6/cziuFG3ly+mr+Pm01A9umcGG3DLpmJ9EpI5Em0REephYRCS1mxsi+rXhg8lKWbC6jS1aSZ1lUrETqWVxMJEO7ZjC0awZbyg4yfk4xLxdu5FcTlgDgM2iXGk/X7CQu6JLO4I7pREdqVF5E5FRc3jubR95fwf0Tl/DSjwcQGeHNflXFSqQBZSY14ZbBedx8Tns2lx1iyaYyFm/ew5JNZXy0opTX520iJS6a7/iHDNunxXsdWUQkKDVrGs0Dl3bhjpcX8MT01dw2JM+THCpWIo3AzMhu1oTsZk04v0sGAFXVjo9WlDJu9gbGzljLmI/W0K9NMvdcmE+f1snH+Y4iIvJNl/XKYXpRKY9NXcmgvBb0btW80TNo/EHEIxE+45yOafzz6gI+u28I913YkfU79/OdJz/jp+PmsbXskNcRRUSCzm8u7UpGYiw/HTefvR5cQ1DFSiQApCbE8JOz2vHBnWdz8znteGvRVgY/PJ2/T1vFwfIqqqrd124iInJkibFRPDayJ8W7DvB/E5c0+utrKFAkgMTFRHLXBR25sqAVv31zKX9+t4g/v1v0rcd1z0niyr4tGd4ji8RYrfwuIlJbQZtkbhmcx+NTV3J2fhqX9MhqtNdWsRIJQK1SmjLmmgI+XbWdwvW7vva18spqpiwr4RevL+Y3k5dyUbcsvleQQ69WzYiJ1DIOIiIAtw1uz8crS/nF64soaN2crGZNGuV1zTnvhxUKCgpcYWGh1zFEgoZzjoXFZYybvZFJC2ou4xDpMzqkJ9A1O5Gu2Ul0yUqkU2YiTaMD8/2Tmc1xzhV4naM+aB8mEpjW79jP0Ec/pl9uMs9e1xczq5fve6z9V2DucUXkmMyMHi2b0aNlM355cSemF5WyaFPNyu9Tlm3jlcJioGbNrLap8XTN+qJsJdE5K5GkJho+FJHQ1zoljruH5vPrSUt5dU4x3yto2eCvqWIlEuSaRkcyrFsmw7plAjVHs7buOcSi4jKWbN7Dks1lfL5mJ2/M/+oaWq2Sm9I1O5EuWUkM7ZpBu1StnyUioenagW14a9EWfjN5KWd2SCU9MbZBX09DgSJhYvu+wyzZvIfFm8pYsrmMxZv2sGHnAQD6tUnmyr4tGdYts9Eut6OhQBFpLGu372foox9xRl4Lnrqm4JSHBDUUKCK0iI/hrA6pnNUh9ctt2/YcYvzcTbw8ewN3/ncB909cwoXdMujdqjlds5PIS4/XhHgRCXq5LeK464J8fvvmMibM38ylvbIb7LVUrETCWFpiLDed3Y4bz2rLrLU7eXn2Rt5etPXLOVpREUZeWvBMiBcROZrrTs/lrUVbuH/SEk5rn0JaQsMMCWrvKCKYGf3bptC/bQrV1Y6Nuw6weNMeFm/+9oR4s5p3f0eaAP+XK3qS2yKuseOLiBxXhM/403d7MOzxj7n8iU9JTYj52tdH9Mjih6fnnvLrqFiJyNf4fEbrlDhap8RxUfevT4hfvKlmjtayLXs4WFH1redG1NOpzCIiDaF9Wjx/uaIHL8/e+K2vRdfTtAcVKxE5LjMjM6kJmUlNOK9zutdxRERO2sXds7i4e8OtxK5rBYqIiIjUExUrERERkXqiYiUiIiJST1SsREREROqJipWIiIhIPVGxEhEREaknDVaszGyomRWZ2Sozu7ehXkdEREQkUDRIsTKzCODvwIVAZ2CUmXVuiNcSERERCRQNdcSqH7DKObfGOVcOjANGNNBriYiIiASEhipW2UDt9eKL/du+ZGajzazQzApLS0sbKIaIiIhI42moYnWkC4a5r91xboxzrsA5V5CamtpAMUREREQaT0MVq2KgZa37OcDmBnotERERkYDQUMVqNpBnZrlmFg2MBCY20GuJiIiIBARzzh3/USfzjc2GAY8CEcBY59yDx3hsKbC+Dt+2BbC9XgI2rmDNDcGbPVhzQ/BmP9HcrZ1zITEPoI77sHD57xpIlL3xBWtuOLHsR91/NVixaghmVuicK/A6x4kK1twQvNmDNTcEb/Zgzd1YgvX3E6y5Qdm9EKy5of6ya+V1ERERkXqiYiUiIiJST4KtWI3xOsBJCtbcELzZgzU3BG/2YM3dWIL19xOsuUHZvRCsuaGesgfVHCsRERGRQBZsR6xEREREAlZQFCszG2pmRWa2yszu9TrP0ZhZSzObZmbLzGyJmd3u355sZu+b2Ur/x+ZeZz0aM4sws3lmNtl/Pyiym1kzM3vVzJb7f/8DgyG7md3h/7ey2MxeMrPYQM1tZmPNbJuZLa617ahZzew+/99skZld4E1q7wXL/guCfx+m/Vfj0v7ryAK+WJlZBPB34EKgMzDKzDp7m+qoKoE7nXOdgAHAzf6s9wJTnXN5wFT//UB1O7Cs1v1gyf4Y8I5zriPQg5qfIaCzm1k2cBtQ4JzrSs2abyMJ3NzPAkO/se2IWf3/7kcCXfzPecL/txxWgmz/BcG/D9P+q5Fo/3UMzrmAvgEDgXdr3b8PuM/rXHXMPgE4DygCMv3bMoEir7MdJW+O/x/XYGCyf1vAZwcSgbX45wzW2h7Q2fnqYuXJQCQwGTg/kHMDbYDFx/sdf/PvFHgXGOh1fg9+X0G7//LnDZp9mPZfjZ5b+6+j3AL+iBVf/cf7QrF/W0AzszZAL2AmkO6c2wLg/5jmYbRjeRS4G6iutS0YsrcFSoF/+YcBnjazOAI8u3NuE/AQsAHYApQ5594jwHN/w9GyBuXfbQMI2t9DEO7DHkX7r0aj/dfRBUOxsiNsC+hTGc0sHhgP/NQ5t8frPHVhZhcD25xzc7zOchIigd7Ak865XsB+Aufw81H5x/NHALlAFhBnZld5m6reBN3fbQMJyt9DsO3DtP9qfNp/HV0wFKtioGWt+znAZo+yHJeZRVGzQ/q3c+41/+YSM8v0fz0T2OZVvmM4HbjEzNYB44DBZvYiwZG9GCh2zs3033+Vmh1VoGc/F1jrnCt1zlUArwGnEfi5azta1qD6u21AQfd7CNJ9mPZfjU/7r6MIhmI1G8gzs1wzi6ZmQtlEjzMdkZkZ8AywzDn3l1pfmghc6//8WmrmLQQU59x9zrkc51wban7HHzjnriI4sm8FNppZvn/TEGApgZ99AzDAzJr6/+0MoWbSaqDnru1oWScCI80sxsxygTxglgf5vBY0+y8I3n2Y9l+e0P7raLyeTFbHCWfDgBXAauAXXuc5Rs5B1BwuXAjM99+GASnUTKpc6f+Y7HXW4/wcZ/PV5M+gyA70BAr9v/s3gObBkB34NbAcWAy8AMQEam7gJWrmUlRQ847u+mNlBX7h/5stAi70Or+Hv7eg2H/5swb9Pkz7r0bNrf3XEW5aeV1ERESkngTDUKCIiIhIUFCxEhEREaknKlYiIiIi9UTFSkRERKSeqFiJiIiI1BMVKxEREZF6omIlIiIiUk9UrERERETqyf8HhwqHBVfJD+4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot\n", "fig0,ax0 = plt.subplots(ncols=2, figsize=(10,6))\n", "ax0[0].plot(timepoints,datapoints)\n", "ax0[1].set_yscale('log')\n", "ax0[1].plot(timepoints,datapoints)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Test" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "def f1(x, N_over_lam, inv_lam):\n", " \"\"\"Fit function y=f(x,p) with parameters p=(N,lam). \"\"\"\n", " return N_over_lam * np.exp(- x*inv_lam)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 1. 3.02040816 5.04081633 7.06122449 9.08163265\n", " 11.10204082 13.12244898 15.14285714 17.16326531 19.18367347\n", " 21.20408163 23.2244898 25.24489796 27.26530612 29.28571429\n", " 31.30612245 33.32653061 35.34693878 37.36734694 39.3877551\n", " 41.40816327 43.42857143 45.44897959 47.46938776 49.48979592\n", " 51.51020408 53.53061224 55.55102041 57.57142857 59.59183673\n", " 61.6122449 63.63265306 65.65306122 67.67346939 69.69387755\n", " 71.71428571 73.73469388 75.75510204 77.7755102 79.79591837\n", " 81.81632653 83.83673469 85.85714286 87.87755102 89.89795918\n", " 91.91836735 93.93877551 95.95918367 97.97959184 100. ]\n", "[336. 307. 274. 272. 257. 227. 212. 191. 197. 182. 171. 157. 141. 130.\n", " 122. 119. 109. 105. 91. 88. 84. 79. 75. 72. 64. 62. 55. 51.\n", " 50. 46. 43. 39. 36. 34. 33. 30. 29. 27. 26. 24. 21. 21.\n", " 19. 18. 17. 16. 14. 13. 12. 12.]\n" ] } ], "source": [ "print(timepoints)\n", "print(datapoints)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":3: RuntimeWarning: overflow encountered in exp\n", " return N_over_lam * np.exp(- x*inv_lam)\n" ] }, { "ename": "NameError", "evalue": "name 'N_over_tau' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mpopt1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpcov1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcurve_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimepoints\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdatapoints\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mN_over_tau1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minv_tau1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpopt1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Optimal parameters are N0/tau={N_over_tau:e}, 1/tau={inv_tau2:e}.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'N_over_tau' is not defined" ] } ], "source": [ "from scipy.optimize import curve_fit\n", "popt1, pcov1 = curve_fit(f1, timepoints,datapoints)\n", "N_over_tau1, inv_tau1 = popt1\n", "print(f\"Optimal parameters are N0/tau={N_over_tau1:e}, 1/tau={inv_tau1:e}.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fit the log of the data" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimal parameters are log(N0/tau)=5.818849e+00, 1/tau=3.349831e-02.\n" ] } ], "source": [ "def f2(x, N_over_lam_log, inv_lam):\n", " return N_over_lam_log - x*inv_lam\n", "\n", "datapoints_log = np.log(datapoints)\n", "popt1, pcov1 = curve_fit(f2, timepoints,datapoints_log)\n", "N_over_tau1_log, inv_tau1 = popt1\n", "print(f\"Optimal parameters are log(N0/tau)={N_over_tau1_log:e}, 1/tau={inv_tau1:e}.\")" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "# best fit curve\n", "yfitted = np.exp(f2(timepoints,N_over_tau1_log, inv_tau1))" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAFnCAYAAABkaweKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3ZklEQVR4nO3deXiU1fn/8c+dySSZsCQsAUnYF4NsgkaqotY9aG2hWlvab621i/b7036trVhoa9VuUKltbWsXW612c6lixGpBBTdaBYNBAkgAAYEJS1jCOpDt/P7IgAnMJANZnsnM+3VdXCRnnpnc9LmET885z33MOScAAAC0XIrXBQAAACQKghUAAEArIVgBAAC0EoIVAABAKyFYAQAAtBKCFQAAQCtpNliZWYaZLTazd81shZndEx6/28yCZrY0/OvKBu+ZbmZrzazMzArb8g8AAAAQL6y5PlZmZpI6Oef2m5lf0kJJt0qaKGm/c+5nx1w/QtJjksZLypX0sqRTnXO1bVA/AABA3Eht7gJXn7z2h7/1h381lcYmSXrcOXdY0nozW6v6kPVmtDf07NnTDRw4MNaaAQAAPLNkyZIdzrmcSK81G6wkycx8kpZIGirpAefcIjO7QtItZvYFScWSvuWc2y0pT9JbDd6+OTwW1cCBA1VcXBxLKQAAAJ4ysw+ivRbT5nXnXK1zbqykvpLGm9koSb+TNETSWElbJN135OdF+ogIRd1oZsVmVlxRURFLGQAAAHHthJ4KdM5VSnpV0kTn3LZw4KqT9EfVL/dJ9TNU/Rq8ra+k8gif9aBzrsA5V5CTE3E2DQAAoEOJ5anAHDPLDn8dkHSppFVm1qfBZZ+UtDz89RxJU8ws3cwGSRomaXGrVg0AABCHYtlj1UfSo+F9VimSnnTO/cvM/mpmY1W/zLdB0k2S5JxbYWZPSlopqUbSzTwRCAAAkkGz7RbaQ0FBgWPzOgAA6AjMbIlzriDSa3ReBwAAaCUEKwAAgFZCsAIAAGglBCsAAIBWElPn9Y6uqCSoWfPKVF4ZUm52QFML8zV5XJPN4AEAAE5YwgeropKgps8uVai6vuNDsDKk6bNLJYlwBQAAWlXCLwXOmld2NFQdEaqu1ax5ZR5VBAAAElXCB6vyytAJjQMAAJyshA9WudmBExoHAAA4WQkfrKYW5ivg9zUaC/h9mlqY71FFAAAgUSX85vUjG9R5KhAAALS1hA9WUn24IkgBAIC2lvBLgQAAAO2FYAUAANBKCFYAAACthGAFAADQSpIiWG3fd0g3/bVYi9fv8roUAACQwJIiWHVJ96tkY6XunbtKzjmvywEAAAkqKYJVIM2nWy8dpuIPdmvBqu1elwMAABJUUgQrSfp0QT8N7JGpe+eWqbaOWSsAAND6kiZY+X0p+tbl+Srbtk9z3g16XQ4AAEhASROsJOljo/toZG5X3ffialXV1HldDgAASDBJFaxSUkx3TByuzbtDemzxRq/LAQAACSapgpUkXTCsp84e3F2/XrBGBw7XeF0OAABIIEkXrMzqZ6127K/SwwvXe10OAABIIEkXrCTpjP7ddPmI3nrw9XXadaDK63IAAECCSMpgJUm3F+brQFWNfvfqWq9LAQAACSJpg9Wpvbvo6jP66tE3P1B5ZcjrcgAAQAJI2mAlSd+4dJjkpPtfXuN1KQAAIAEkdbDq2y1Tnz97gP65ZJPWbt/vdTkAAKCDS+pgJUk3XzREAb9P971Y5nUpAACgg0v1ugCv9eicrq9eMFi/fHmNfvXyGj1RvEnllSHlZgc0tTBfk8fleV0iAADoIJJ+xkqSvnL+YHVK9+mX81crWBmSkxSsDGn67FIVlXCuIAAAiA3BSlLn9FSlpqSozjUeD1XXatY8lggBAEBsCFZhe0LVEcdpxQAAAGJFsArLyw5EHM+NMg4AAHAsglXY1MJ8ZaQ2/p8j4PdpamG+RxUBAICOptlgZWYZZrbYzN41sxVmdk94vLuZvWRma8K/d2vwnulmttbMysyssC3/AK1l8rg8zbxmjHp0SpMkZWX4NePq0TwVCAAAYhbLjNVhSRc7506XNFbSRDM7W9I0SfOdc8MkzQ9/LzMbIWmKpJGSJkr6rZn52qD2Vjd5XJ6W3HmZLjg1R3VyuuDUHK9LAgAAHUizwcrVO9KW3B/+5SRNkvRoePxRSZPDX0+S9Lhz7rBzbr2ktZLGt2bRbe17HztNB6tq9cuXV3tdCgAA6EBi2mNlZj4zWyppu6SXnHOLJPV2zm2RpPDvvcKX50na1ODtm8Njx37mjWZWbGbFFRUVLfgjtL5Te3fR58b3198XbdSabfu8LgcAAHQQMQUr51ytc26spL6SxpvZqCYut0gfEeEzH3TOFTjnCnJy4m/J7bbLTlVmmk8/ev49r0sBAAAdxAk9Feicq5T0qur3Tm0zsz6SFP59e/iyzZL6NXhbX0nlLS20vXXvlKZbLxmm11ZX6JWy7c2/AQAAJL1YngrMMbPs8NcBSZdKWiVpjqTrw5ddL+nZ8NdzJE0xs3QzGyRpmKTFrVx3u/jCOQM1sEemfvz8e6qurfO6HAAAEOdimbHqI+kVM1sm6W3V77H6l6SZki4zszWSLgt/L+fcCklPSlopaa6km51ztW1RfFtLS03Rd648TWu379c/Fm30uhwAABDnzLnjtj+1u4KCAldcXOx1GRE55/Q/f1qklVv26rXbL1JWpt/rkgAAgIfMbIlzriDSa3Reb4aZ6c6rRmhvqFr3z1/jdTkAACCOEaxicFqfrvrMWf30lzc3aF3F/ubfAAAAkhLBKkbfvCxfGX6ffvIC7RcAAEBkBKsY5XRJ180XDdXL723XwjU7vC4HAADEIYLVCbhhwkD16x7Qj55fqdo67zf9AwCA+EKwOgEZfp+mX3GaVm3dpyfe3tT8GwAAQFIhWJ2gK0adovEDu+u+F8u091C11+UAAIA4QrA6QUfaL+w6WKUHXlnrdTkAACCOEKxOwui+WbrmjL7688INWr/jgNflAACAOEGwOkl3FOYrPTVFd81ZoXjoXg8AALxHsDpJvbpm6JuXn6rXV1do7vKtXpcDAADiAMGqBa47e4BG9Omqe55bqf2Ha7wuBwAAeIxg1QKpvhT96JOjtHXvIf2KcwQBAEh6BKsWOqN/N312fD89tHC9yrbu87ocAADgIYJVK7ijcLi6ZqTqzqLlbGQHACCJEaxOQlFJUBNmLtCgac9rwswFem11haZdMVyLN+zS7HeCXpcHAAA8QrA6QUUlQU2fXapgZUhOUrAypOmzS+X3peiM/tn6yQvvac9BOrIDAJCMCFYnaNa8MoWqaxuNhaprdd+Lq/WjyaO1+2CVZr246uhrx85uFZUwowUAQKJK9bqAjqa8MhR1fERuV33x3EH683/X69oz+2n9jgOaPrv0aBA7MrslSZPH5bVbzQAAoH0wY3WCcrMDTY7fdtkw5XRO1/eKluveuasizm7NmlfW5nUCAID2R7A6QVML8xXw+xqNBfw+TS3MlyR1yfDre1eNUGlwj8r3HIr4GdFmvQAAQMdGsDpBk8flacbVo5WXHZBJyssOaMbVoxst7X18TB9NGNpDFuUzos16AQCAjo09Vidh8ri8JvdImZl+MGmULv/F65KTahv0tmo4uwUAABILM1ZtZEhOZ/3vR4eo1jn17JwWdXYLAAAkDmas2tDNFw3VMyVBdUr36c3pl8jvI8cCAJDI+Je+DQXSfLrnEyO1ett+/emN9V6XAwAA2hjBqo1dOqK3Ckf21i9fXq11Ffu9LgcAALQhglU7+OGkUUpPTdG0p0tVV8chzQAAJCqCVTvo1TVD37tqhBZv2KW/L/rA63IAAEAbIVi1k2vP7Kvzh/XUzH+v0ubdB70uBwAAtAGCVTsxM/3kk6PlJH33meVyjiVBAAASDcGqHfXrnqk7CvP12uoKzX4n2Oi1opKgJsxcoEHTnteEmQtUVBKM8ikAACBeEaza2RfOGaiCAd30g3+t1PZ99WcJFpUENX12qYKVITlJwcqQps8uJVwBANDBEKzaWUqK6aefGqNQda3unrNCkjRrXplC1bWNrgtV12rWvDIvSgQAACeJYOWBITmddeslw/RC6VbNXb5F5ZWhiNdFGwcAAPGJYOWRGy8YrJG5XfW9ohU6pWtGxGtyswPtXBUAAGgJgpVH/L4U/fSaMdp9sEr9umcq4Pc1ej3g92lqYb5H1QEAgJPRbLAys35m9oqZvWdmK8zs1vD43WYWNLOl4V9XNnjPdDNba2ZlZlbYln+AjmxUXpa+9tHBWrxhl75wzgDlZQdkkvKyA5px9WhNHpfndYkAAOAEpMZwTY2kbznn3jGzLpKWmNlL4dd+4Zz7WcOLzWyEpCmSRkrKlfSymZ3qnGu8OxuSpK9fPExzl2/Vv5Zt0bzbLlDn9FhuCQAAiEfNzlg557Y4594Jf71P0nuSmppKmSTpcefcYefceklrJY1vjWITUYbfp3s/NUble0KaNXeV1+UAAIAWOKE9VmY2UNI4SYvCQ7eY2TIze9jMuoXH8iRtavC2zYoQxMzsRjMrNrPiioqKE688gZw5oLuuP2egHn3zA729YZfX5QAAgJMUc7Ays86Snpb0DefcXkm/kzRE0lhJWyTdd+TSCG8/7vwW59yDzrkC51xBTk7OidadcKYW5qtvt4DueGqZDlbVeF0OAAA4CTEFKzPzqz5U/d05N1uSnHPbnHO1zrk6SX/Uh8t9myX1a/D2vpLKW6/kxNQpPVX3fmqM1u84oBkvsCQIAEBHFMtTgSbpIUnvOed+3mC8T4PLPilpefjrOZKmmFm6mQ2SNEzS4tYrOXGdO6SnvnLeIP31rQ/0Stl2r8sBAAAnKJYZqwmSrpN08TGtFe41s1IzWybpIkm3SZJzboWkJyWtlDRX0s08ERi72wvzld+7i+54apl2HajyuhwAAHACzLnjtj+1u4KCAldcXOx1GXFjZfleTXpgoS4Z3lu/+/wZqp80BAAA8cDMljjnCiK9Ruf1ODQit6u+dXm+5q7YqqffCXpdDgAAiBHBKk599fzBGj+ou+6es0Kbdh30uhwAABADglWc8qWY7rv2dEnSt558V7V13i/ZAgCAphGs4li/7pm6+xMjtXjDLv3xjXVelwMAAJpBsIpz15yRpytGnaL7XizTyvK9XpcDAACaQLCKc2amH39ytLIz03TbE0t1qJrOFQAAxCuCVQfQvVOa7v3UGJVt26f7XizzuhwAABAFwaqDuCi/l647e4D+tHC9/vv+Dq/LAQAAERCsOpDpVw7XoB6ddPuT72pPqNrrcgAAwDEIVh1IZlqqfv6Zsdq277DunrPC63IAAMAxCFYdzNh+2fq/i4fpmZKgikroyg4AQDwhWHVAN180ROMHdtd3ninV+xX7vS4HAACEEaw6mKKSoD4661Ut3rBLh6prdd2fFtGCAQCAOEGw6kCKSoKaPrtUwcqQJKnOSeV7DulLj7ztcWUAAEAiWHUos+aVKRRhduq/7+/Uv5aVe1ARAABoiGDVgZSHZ6oimfZ0qTbsONCO1QAAgGMRrDqQ3OxAxPHeXdPlSzHd8tg7OlzDfisAALxCsOpAphbmK+D3NRoL+H2afsVp+tm1p2t5cK9+8vx7HlUHAABSvS4AsZs8Lk9S/V6r8sqQcrMDmlqYf3T8y+cN0kML1+vswT10xeg+XpYKAEBSIlh1MJPH5R0NUsf69sThKv5gt+54eplG5WWpX/fMdq4OAIDkxlJgAklLTdFvPjtOknTLP95RVU2dxxUBAJBcCFYJpl/3TM361Ol6d/Me/XTuKq/LAQAgqRCsEtDEUafoi+cO1EML1+ulldu8LgcAgKRBsEpQ068crlF5XXX7P9/V5t0HvS4HAICkQLBKUOmpPj3wuTNUV+d089/f4TxBAADaAcEqgQ3o0Un3fbp+v9WdRcvlnPO6JAAAEhrtFhJYUUlQs+aVSZL+uWSznJN+9unTPa4KAIDExYxVgioqCWr67FIFG5wv+NQ7m/XzF8s8rAoAgMRGsEpQs+aVKRRhX9VvXlmrrXsOeVARAACJj2CVoMobzFQ1VOekr/1tCYc1AwDQBghWCSo3OxBxvHtmmpZuqtTdc1a0c0UAACQ+glWCmlqYr4Df12gs4Pfp+x8foVsuGqrHFm/SPxZt9Kg6AAASE08FJqgjBzXPmlem8sqQcrMDmlqYr8nj8lRb57S8fI/umrNc+ad00ZkDunlcLQAAicHiobdRQUGBKy4u9rqMpLLnYLU+8cBChapq9dzXz1PvrhlelwQAQIdgZkuccwWRXmMpMEllZfr14HUF2n+4Rv/7tyWqqqnzuiQAADo8glUSyz+li2Z96nS9s7FS9zzHZnYAAFqq2WBlZv3M7BUze8/MVpjZreHx7mb2kpmtCf/ercF7ppvZWjMrM7PCtvwDoGU+NqaPvvbRIfr7oo16fDGb2QEAaIlYZqxqJH3LOXeapLMl3WxmIyRNkzTfOTdM0vzw9wq/NkXSSEkTJf3WzHwRPxlxYWphvs4f1lN3Prtcb63b6XU5AAB0WM0GK+fcFufcO+Gv90l6T1KepEmSHg1f9qikyeGvJ0l63Dl32Dm3XtJaSeNbuW60Il+K6TefPUP9u2fqpr8u0bqK/V6XBABAh3RCe6zMbKCkcZIWSertnNsi1YcvSb3Cl+VJ2tTgbZvDY4hjWZl+/fmL4+VLMX3pkbe1+0CV1yUBANDhxByszKyzpKclfcM5t7epSyOMHdfTwcxuNLNiMyuuqKiItQy0of49MvXHL5yp8j2HdNNfIx97U1QS1ISZCzRo2vOaMHOBikqCHlQKAEB8iilYmZlf9aHq78652eHhbWbWJ/x6H0nbw+ObJfVr8Pa+ksqP/Uzn3IPOuQLnXEFOTs7J1o9WduaA7pr1qTFavGGXpj9dqoZ9zopKgpo+u1TBypCcpGBlSNNnlxKuAAAIi+WpQJP0kKT3nHM/b/DSHEnXh7++XtKzDcanmFm6mQ2SNEzS4tYrGW1t0tg8ffOyUzW7JKjfLFh7dHzWvDKFqhvPYoWqazVrXll7lwgAQFyK5UibCZKuk1RqZkvDY9+RNFPSk2b2ZUkbJV0rSc65FWb2pKSVqn+i8Gbn3PFrSohrX794qDbsOKD7Xlqt/j0yNWlsnsorQxGvjTYOAECyaTZYOecWKvK+KUm6JMp7fizpxy2oCx4zM824ZrQ27w5p6lPL1LdbQLnZAQUjhKjc7IAHFQIAEH/ovI6oG9LTU336w3VnKjcrQ1/9yxLdMGGgAv7GLckCfp+mFuZ7UTYAAHGHYJXkmtuQ3q1Tmh7+4lmqrXN6bPFG3XnVacrLDsgk5WUHNOPq0Zo8jm4aAABIse2xQgJrakP6kcA0OKez/nDdmbruoUV6vnSLXp16ofw+MjkAAMfiX8ckF+uG9LMH99CMq8foP2t36nvPLG/UhgEAANQjWCW5aBvPI41/6sy+uuWioXqieJN+3aANAwAAqEewSnJTC/NPaEP6Ny87VVefkaefv7Raf1/0QXuUCABAh8EeqyR3ZB/VrHllKq8MKTc7oKmF+VE3pKekmH56zRhVHqzW94qWq1tmmq4c3ac9SwYAIG5ZPOyVKSgocMXFxV6XgRMQqqrV5x9apNLNe/TIDWfp3KE9vS4JAIB2YWZLnHMFkV5jKRAnJZDm08PXn6VBPTvpxr8u0fLgnkavc1gzACAZEaxw0rIy/Xr0S+OVFfDr+ocXa/2OA5I4rBkAkLwIVmiRU7Iy9Jcvj5eTdN1Di7Rt7yEOawYAJC2CFVpsSE5nPXLDWdp9oErXP7w44nmCEoc1AwASH8EKrWJM32z94boCvV+xX2lRurJzWDMAINERrNBqzhvWU7/4zFhV19YpxRq/xmHNAIBkQLBCq7pqTK5+MGmk6pyUmVbfeJTDmgEAyYIGoWh1150zUDv2V+n++Wv01fMH6TtXniYza/6NAAB0cAQrtIlvXDpMlQer9Mc31istNUW3X55PuAIAJDyCFdqEmemuj49UVa3TA6+8rzSfT7deOszrsgAAaFMEK7SZlBTTjyePUnVtnX7x8mql+kw3XzS00TVFJcGYzykEACDeEazQpo4c2lxTW6dZ88rk95luvGCIpA87tB9pJnqkQ7skwhUAoEPiqUC0OV+K6WfXnq6rxvTRT15YpT//Z70k0aEdAJBwmLFCu0j1pegXnxmrmlqne55bqVRfStRO7HRoBwB0VMxYod34fSn61WfH6dLTeunOouXKCvgjXkeHdgBAR0WwQrtKS03RA/9zhj56ao72hKrl9zVuwUCHdgBAR0awQrtLT/XpD9edqQlDe6qm1qlbpl8mOrQDADo+9ljBExl+n/74hQLd8MhiLV6/S7/53Bn62Jg+XpcFAECLMGMFzwTSfHro+rN05oBu+r/HS/Ts0qDXJQEA0CIEK3iqU3qq/nzDeJ01sJu+8cRSPfH2Rq9LAgDgpBGs4LnO6an68xfH64JhOfr206V6JNznCgCAjoZghbgQSPPpwS+cqcKRvXX3cyv121fXel0SAAAnjGCFuJGe6tNvPneGJo3N1b1zy3Tfi2VyznldFgAAMeOpQMQVvy9FP//0WAX8Pv16wVodrKrV9z52msyMA5sBAHGPYIW440sx/eSTo5Xh9+mhhesVqq5VwYBu+u4zyzmwGQAQ1whWiEspKaa7Pj5CmWk+/fbV9/XMO8GoBzYTrAAA8YI9VohbZqY7Jg7X7ZefelyoOoIDmwEA8YRghbh3y8XDlJXBgc0AgPhHsEKHcM+kkRzYDACIe80GKzN72My2m9nyBmN3m1nQzJaGf13Z4LXpZrbWzMrMrLCtCkdymTwuT7M+dbq6Z6ZJklJTTHfwVCAAIM7EMmP1iKSJEcZ/4ZwbG/71giSZ2QhJUySNDL/nt2bma61ikdwmj8vTO9+/TI/feLYCaT79/vX3tWrrXq/LAgDgqGaDlXPudUm7Yvy8SZIed84dds6tl7RW0vgW1Acc5+zBPfTPr50jk+na372pN9/f6XVJAABIatkeq1vMbFl4qbBbeCxP0qYG12wOjwGtavgpXTX7/52rU7IydP3Di/Xcu+VelwQAwEkHq99JGiJprKQtku4Lj1uEayOeSWJmN5pZsZkVV1RUnGQZSGa52QH982vn6PR+Wfr6YyV6aCGHNwMAvHVSwco5t805V+ucq5P0R3243LdZUr8Gl/aVFHEqwTn3oHOuwDlXkJOTczJlAMrOTNNfv/wRTRx5in74r5X6yQvvqa6O8wUBAN44qWBlZn0afPtJSUeeGJwjaYqZpZvZIEnDJC1uWYlA0zL8Pj3wP2foC+cM0IOvr9NtTy5VVU2d12UBAJJQs0famNljki6U1NPMNku6S9KFZjZW9ct8GyTdJEnOuRVm9qSklZJqJN3snIvcMhtoRb4U0z2fGKneXTM0a16Zduw/rN9//kx1idJYFACAtmDOeb9sUlBQ4IqLi70uAwniqSWbNe3pZRraq7P+dH2B+nbL9LokAEACMbMlzrmCSK/ReR0JJzXFlBXwa9XWfbrg3lf0i5dWe10SACBJEKyQUIpKgpo+u1Q7D1RJkuqcdP/8NfruM6UeVwYASAYEKySUWfPKFKo+flvf3xdt1L1zV/HEIACgTRGskFDKK0NRX/vtq+/ra39bogOHa9qxIgBAMiFYIaHkZgcij2dl6PtXjdDL723Ttb9/s8kABgDAySJYIaFMLcxXwN/43O+A36c7Jg7Xl84bpIe/eJY27TqoT/zmP3pn426PqgQAJCqCFRLK5HF5mnH1aOVlB2SS8rIDmnH1aE0eV39k5YX5vTT7/52rzDSfpjz4lp5dGvS2YABAQqGPFZLSrgNV+trflmjx+l265aKh+uZlpyolJdJRlwAANEYfK+AY3Tul6W9f/og+U9BPv3llrb706NuqPFjldVkAgA6OYIWklZaaopnXjNaPJo/Sf9bu0FW/XqjlwT1elwUA6MAIVkhaRSVBnffTV3Rn0XJlB9K0/1CNrvndf/XP4k1elwYA6KAIVkhKRzq0BytDcpIq9h/Woepa9e+eqalPLdN3ninV4RrODwcAnBiCFZJSpA7th2rqdOBwjf73wiH6x6KN+vTv31SQflcAgBNAsEJSitYgdMueQ/r2xOH6/efP1PsVB/TxXy/UwjU72rk6AEBHRbBCUoraoT08PnHUKZpzywT17JymLzy8SA+8spZzBgEAzSJYISlF69A+tTD/6PeDczrrmf83QR8bk6tZ88p009+WaE+our1LBQB0IAQrJKXmOrQf0Sk9Vb+aMlZ3fXyEXlm1XVfe/4aWfMBROACAyFK9LgDwyuRxeccFqUjMTN0y09QtM03BypCu+d1/9bHRffTrz46jWzsAoBFmrIBmHGnNULH/8NGx50u3aOL9r2vb3kMeVgYAiDcEK6AZkVozSNKabft1xf1v6JVV2z2oCgAQj1gKBJoRrTWDk9SrS7pueORtffm8QbpjYr7+XbpVs+aVqbwypNzsgKYW5se03AgASAwEK6AZudmBiI1C87IDKrp5gma88J4eWrhe81ZsVcW+wzpcUydJClaGNH12qSQRrgAgSbAUCDSjqdYMGX6f7pk0Sg9ed6aClaGjoeqIUHWtZs0ra89yAQAeYsYKaMaR2aamlvguH3mKXJT+odGWEgEAiYdgBcQgltYMeVGWDKN1eQcAJB6WAoFWEmnJUJL6d8/U/sM1HlQEAGhvBCuglRzbzT03K0MXD++lt9bv1BX3v65F63Z6XSIAoI2Zi7YxpB0VFBS44uJir8sA2sTbG3bpW0++q027D+rLEwbp9vCmdwBAx2RmS5xzBZFeY8YKaGNnDeyuf996vj7/kQH608L1uurXC7Vsc6XXZQEA2gAzVkA7en11he54apm27zukTmmp2ne4Rnk0EgWADoUZKyBOXHBqjv7vkqEymfaFN7QfaSRaVBL0uDoAQEsRrIB29sAr76v2mJniUHWtfjp3lUcVAQBaC8EKaGfRGoZu2XNIC9fsaOdqAACtiWAFtLNoDUN9KabPP7RI33xyqXYfqDo6XlQS1ISZCzRo2vOaMHMBS4YAEMfovA60s6mF+Zo+u1Sh6tqjYwG/Tz+YNFIf7Dyo37/2vl4tq9D3rxoh55y+88zyo9dysDMAxDeCFdDOmjt78KrT+2ja06X6xhNLlZ6aEvVgZ4IVAMQf2i0Acai2zukvb27QPc+tjPi6SVo/82PtWxQAQFIL2y2Y2cNmtt3MljcY625mL5nZmvDv3Rq8Nt3M1ppZmZkVts4fAUguvhTTDRMGqXfX9Iivc7AzAMSnWDavPyJp4jFj0yTNd84NkzQ//L3MbISkKZJGht/zWzPj7A7gJE2/4jRlpDb+z9RnppsuGOxRRQCApjQbrJxzr0vadczwJEmPhr9+VNLkBuOPO+cOO+fWS1oraXzrlAokn8nj8jTzmjHKC89QdU5Plax+f9ZDC9eruraumU8AALSnk9283ts5t0WSnHNbzKxXeDxP0lsNrtscHjuOmd0o6UZJ6t+//0mWASS+yePyGm1UX1exX/c8t1I//NdKPfn2Jt39iZE6Z0gPDysEABzR2n2sLMJYxN3xzrkHnXMFzrmCnJycVi4DSFyDczrrkRvO0oPXnakDVTX67B/f0tcfK9HWPYe8Lg0Akt7JBqttZtZHksK/bw+Pb5bUr8F1fSWVn3x5ACIxM10+8hS9/M2P6tZLhmneiq26+L5X9fvX3ldVDcuDAOCVkw1WcyRdH/76eknPNhifYmbpZjZI0jBJi1tWIoBoMvw+3XbZqXr5to/q3CE9NfPfq1T4y9c1b8VWxUMrFQBINrG0W3hM0puS8s1ss5l9WdJMSZeZ2RpJl4W/l3NuhaQnJa2UNFfSzc652sifDKC19O+RqT9dX6A/f/Es+VJMN/11iT7z4FtatrnS69IAIKnQIBRIMDW1dXr87U36xUurtfNAlSaPzdXthfnq2y3T69IAICE01SCUI22ABFFUEjzumJxNuw/qT2+s1wvLt+rL5w3S/144RF0z/F6XCgAJq7WfCgTggaKSoKbPLlWwMiSn+sOa73lupYb16qJXbr9QV43uo9+9+r4unPWq/vLmBvpfAUAbYSkQSAATZi5QsDJ03HhedkD/mXaxJGl5cI9+9PxKvbVul1JTTDV1TrlZGbpj4nAOdAaAE9CiswIBxL/yCKHq2PFReVn6TEE/pflSVFNX/3+oyvcc0h1PLVNRSbBd6gSAREewAhJAtEOZjx3/2YurVXXMMmBVbZ2+/fQylWzc3Wb1AUCyIFgBCWBqYb4C/sbnnQf8Pk0tzG80Fm1m63BNnT752//qK4++rfe27G2zOgEg0fFUIJAAjuyROvapwGP3TuVmByLuxeqTlaHPnz1Af3jtfV1x/xu6akwf3XbZqSrdvKfZzwQAfIjN60ASOfL0YKj6w769Ab9PM64ercnj8rTnYLUefON9/fk/GxSqrlWKTLUN/o5oeC0AJCs2rwOQVD+zNePq0crLDshU/9Rgw6CUlenX1MLhev2Oi5SZ5msUqiQpVF2rWfPKPKgcADoGlgKBJDN5XF6zM049O6fr4OHIp1FFWkoEANRjxgpARNGeNJSkWx8v0ept+9qxGgDoGJixAhDR1ML84/ZjZaSm6NyhPfXSym16dmm5rhh1im6+aKjWbt/PJncAEMEKQBRNPWm460CV/vyf9XrkPxv07+VblWJSuOeogpUhTZ9d2ugzACBZ8FQggJO2J1St8366QPsO1Rz3WsPjdAAgkTT1VCAzVgBOWlbAr/0RQpVUP3NVVVOntNQPt3IWlQRZMgSQ0Ni8DqBFmtrkfv69C/T7197X3kPVR3toBStDcvpwyZBzCgEkEoIVgBaJdJxORmqKbrpgsIbkdNbMf6/SuTMW6HtFyxtthJfoiwUg8bAUCKBFmjtOZ3lwj/74xjo9u7Q84vujnV/IsiGAjohgBaDFmmo6OiovS/dPGae31u3Utr2Hj3u9T1bGcWPHHr3Dk4YAOgqWAgG0i+lXnHbckqEkHaiq1a/nr9GO/R+Grlnzylg2BNAhMWMFoF0cu2TYJytDV47uo7Jt+3TfS6v16wVrddWYPrr+3IFRlwejjQNAvCBYAWg30ZYM127fr7+8uUFPL9ms2SVB+X2m6trje+w19QQiAMQDlgIBeG5or876waRReus7l+juj49QdmbacdcE/D5NLcz3oDoAiB3BCkDc6JLh1xcnDNKi6Zfoax8drIwGzUX7d8+U35eiqpo6DysEgKZxpA2AuLZlT0hPvr1ZT7y9UeV7DqlHpzR96sy+mjK+vwb17ERbBgDtrqkjbQhWADqE2jqn19dU6LFFGzV/1XbV1jkN7dVZH+w80Gg/VsDv04yrRxOuALQZzgoE0OH5UkwX5ffSRfm9tH3vIf1zyWb9/KXVqq1r/H8Oj7RliBSsmN0C0NbYYwWgw+nVNUM3XzT0uFB1RLAypIp9jZuRclYhgPZAsALQYeU10X7h7Bnz9aVH3tbzy7boUHgWi6ajANoaS4EAOqyphfmNjr6R6vdY3XrpMFUerFZRSVALVr2jrhmp2nuoJuJn0HQUQGsiWAHosJo7AHpqYb7++/4OPb1ks55dWq5IC4c0HQXQmghWADq0pg6A9qWYzh+Wo/OH5ejswT1057PLGz1BaJLOHNDtaCgDgJYiWAFIClPG91eG36dZ88oUrAwpK8OvrEy/5rxbrjnvluusgd30idNzdcXoPlq4ZgdPDwI4KfSxApDUPth5QM+Fw9XqbfuVYvXjDR84pDcWgIaa6mPFU4EAktqAHp10y8XD9OJtH9Xcb5yvzLRUHdvFIVRdq5n/XuVNgQA6FIIVAIQNP6WrDhyO/PTg1r2HNOXBN/Xofzdo295D7VwZgI6CPVYA0EBudkDBCC0YuqSnasf+Kt01Z4XumrNCZ/TPVr9umXpr3U5t33eYvVgAJLUwWJnZBkn7JNVKqnHOFZhZd0lPSBooaYOkTzvndresTABoH9F6Y/1w8ihNHpentdv36d+lW/XE25v0zsbKo9cEK0P69tPL5JzTJ8/oe9zncpwOkBxaYynwIufc2AabuKZJmu+cGyZpfvh7AOgQJo/L04yrRysvOyBTfXf3hhvXh/bqoq9fMixiT6zDNXX61j/f1XefKdUrq7brUDiccZwOkDxa9FRgeMaqwDm3o8FYmaQLnXNbzKyPpFedc/lNfQ5PBQLoaAZNez5iuJKkzDSfDlbVKjPNp/OG9tTi9btUGao+7rq87ID+M+3iti0UQKtry6cCnaQXzWyJmd0YHuvtnNsiSeHfe0Up6kYzKzaz4oqKihaWAQDtK1pD0bzsgN658zI9csNZuuaMvioN7okYqiSO0wESUUuD1QTn3BmSrpB0s5ldEOsbnXMPOucKnHMFOTk5LSwDANrX1MJ8Bfy+RmMBv09TC/OV4ffpwvxe+uHkUfrvtIuV0zk94mdk+H0qKglq5/7DR8eKSoKaMHOBBk17XhNmLmC5EOhgWrR53TlXHv59u5k9I2m8pG1m1qfBUuD2VqgTAOJKc+cUHmFm+u7HTjtuQ7zPTCkp0jeeWCozaUxelnp3zdCrZRWqqq2T9OFerIY/D0B8O+k9VmbWSVKKc25f+OuXJP1A0iWSdjrnZprZNEndnXN3NPVZ7LECkOgiPRX4idNzVRrco9dWV+i11RVa8kHkB6hzszL03+mXNPt5hC+gfTS1x6olwWqwpGfC36ZK+odz7sdm1kPSk5L6S9oo6Vrn3K6mPotgBQDSwGnPR31tyln9dO7Qnjp3SA8tXLMjYksIjt0B2kdTweqklwKdc+sknR5hfKfqZ60AACcgL0pz0gx/ip4v3aLH394kSfKnmKqPOXcnVF2rWfPKCFaAxzjSBgDiRLQN8TOvHqOl379cRTdP0NTC/ONC1RHBypD2RzmSB0D74EgbAIgTzW2IH9svW2P7ZesfizZGnNmSpNPveVGj8rJ09qDu+sjg7ioY2F0L3tvOfiygnbSoQWhrYY8VAMTuSCf3hnusMlJTdMOEQUr1md5at1Pvbtqjqto6mdW/3vCvevZjAS3TJnusAADeiKXVw6HqWr2zcbdu+ssS7TtmeTBUXavvhINZwYBuGpLTWSkp1q5/BiBRMWMFAAmsqaN3jsjO9OvM/t0USPPprXU7tWN/lfJYMgSiYsYKAJJUbpQnDXOzMvS3r3xExR/sVvGGXXq1rELb933YAT5YGdK3/vmuFq/fpS+fP0iDenRiVguIATNWAJDAIu3HirTHasLMBVE3xEtSVsCv08Ob5w9V1WrOu+XatvcQm+GRlJixAoAkFevRO00dCP3Ta0Zr6aZKlWys1K8XrGm0ET5YGdLt/3xXa7bv09c+OkRdMvyN3kuHeCQbZqwAAFFnrPKyA/rPtIuPfn/OjPnasudQ1M8Z3LOTRvfN0ui8LO05WK0/vrFOh2rqjr7OE4lIBMxYAQCaNLUwP+KS4dTC/EbXbW0iVN1++alatnmPFq/fpWeXlke8JlRdq5n/XnVcsGJmC4mCYAUAiHnJMNpm+LzsgG65eNjR7yv2HdZZP3454s/auveQPvKTlzUyN0sj+nTV/sM1emzxRh0Oz2wFK0OaPru0UV1HEMAQ7whWAABJ9SGmuZAS68xWTpf0qGcfds1I1blDempl+V69trpCtRGO6AlV1+pHz6/URcN7KStQv2/r2I34TQUwwCvssQIAnJBYZ41ieSLxUHWtht85t8mf1ycrQ/mndFHxht0Rz0I8dh/YidYJnCj2WAEAWk0sM1tHrpOaXl7M8Puizmz16JSmr5w/WGVb92rV1n1RD5gOVoY0591yDevVWYN6dlKG33dCs1sEMLQmZqwAAJ6KtdfWuTPmq7yJzfOSlGLSgB6dtKUy1OhpxCOOnd2K9WcDDTFjBQCIW7FunL9j4vCIIeiHk0ZqVN8srdm2X2u279fa7fu0fseBiD8rWBnS94pKNbhnZw3p1VkzXniv0edJ9fu7Zs0rY2YLJ4VgBQDwXCzLi80FsOGndD16bbS+XH6f6dml5dp3KPKy4hHBypAq9h1Wz85pMjM2ziNmLAUCABJOU0t8k8bmasf+Kq2r2K+b/rpElaHqqJ/TOT1VA3pkal3FgeNmtqToG+eR2FgKBAAkleZmt3K6pCunS7ru/sTI4wJYemqKrj93oPpkZeiDnQe1fscBrSjfG/HnBCtD+sqjxRrQI1P9u4d/9chUyQe79YuX18T05CTLi4mFGSsAQFKLJdxEW1rMSE3RgB6dtHHXwYgzWkekppiuPbOvPj42V/26ZeqUrAw9v2xLzBvnCWDxpakZK4IVAADNaO7pQeecKvYf1qZdB/WVR4u1+2D05UVJ8qWY5KTaCP8G9+qSrtfvuEgZfl9MPztSrYSwtsVSIAAALdDc0qKZqVeXDPXqkqHKJkLVP77yEW3eHdLm3Qf1qwVrI16zfd9hDb9zrnp0SlNudkBrtu/ToerGrSNC1bW6d27kMxfp3+UtghUAADGItTFqU+cpnju059Hvn34nGPG6bpl+feX8wQpWhlReGVJp8Ph+XJJUvueQzv7JfPXJzlCfrAyd0jWgp5Zsiql9xIk+5UgIix3BCgCAVhTreYrRrrvr4yMbhZZo+7u6pKfqvGE9tXXPIZVt3adXyyp0sCryPq9gZUjXP7xYvbumq3fXDP3lzQ9OqH8XrSZiR7ACAKAVxdrwNNbrogWwH04e1eha55zOnblAWyJ0p89ITdHug1VatXWvKvYdVoRzryXVh6YvPLxYvcJPTfbqkq5fzV9DE9UTwOZ1AADiXGsefF1TW6fzfvqKtu6NHMDyT+mi7fsOq2LfYdVES2Bhl57WSz07p6tn53SVV4b03LJyVdd++J6M1BTNvGZMwgUwngoEACBJxBJaYglgdXVOlaFqTfzl69q+7/BxPyc9NUWDczprx/7D2nWgSrVRQliKSUN7dVb3Tmnq0Tldew5W6611OxuFtvTUFH33ytP02Y/0l9+XcsJ/nhO5rjUQrAAAQCOtOQtWV+c0+DsvRP1ZhSN7a9eBKu3cX6X1Ow+oqejRJSNV3TulqVtmmqpq6lS2dV+jthRpvhR99fxBuur0XGVn+tUtM01zl29t18O0CVYAAOCktaSJ6rHH/gya9ryiJY/bLj1Vuw9WadeBKu0+WKW31u1stLQYjUkRP7OtjhyijxUAADhpsbSaiPVpyKbaUdx66bBGY4OmPR/15/32f85Q5cFq7T5YpVnzyiJeUx7h57S1lOYvAQAAaNrkcXmacfVo5WUHZKoPSpGW4qYW5isQ7ip/RKQAJtWHsEjysgO6cnQffe4j/XXzRUOVF+W6aO9vS8xYAQCAVhHLzFasbSaklvcEixTW2hrBCgAAtKtYu9i3dk+w9sDmdQAAgBPQ1OZ19lgBAAC0EoIVAABAK2mzYGVmE82szMzWmtm0tvo5AAAA8aJNgpWZ+SQ9IOkKSSMkfdbMRrTFzwIAAIgXbTVjNV7SWufcOudclaTHJU1qo58FAAAQF9oqWOVJ2tTg+83hMQAAgITVVsHKIow16utgZjeaWbGZFVdUVLRRGQAAAO2nrYLVZkn9GnzfV1J5wwuccw865wqccwU5OTltVAYAAED7aatg9bakYWY2yMzSJE2RNKeNfhYAAEBcaJMjbZxzNWZ2i6R5knySHnbOrWiLnwUAABAv4uJIGzOrkPRBK39sT0k7Wvkz0XLcl/jFvYlP3Jf4xH2JX+1xbwY45yLuY4qLYNUWzKw42jk+8A73JX5xb+IT9yU+cV/il9f3hiNtAAAAWgnBCgAAoJUkcrB60OsCEBH3JX5xb+IT9yU+cV/il6f3JmH3WAEAALS3RJ6xAgAAaFcJF6zMbKKZlZnZWjOb5nU9ycrM+pnZK2b2npmtMLNbw+PdzewlM1sT/r2b17UmKzPzmVmJmf0r/D33xmNmlm1mT5nZqvB/O+dwX+KDmd0W/rtsuZk9ZmYZ3BtvmNnDZrbdzJY3GIt6L8xsejgTlJlZYVvXl1DBysx8kh6QdIWkEZI+a2YjvK0qadVI+pZz7jRJZ0u6OXwvpkma75wbJml++Ht441ZJ7zX4nnvjvfslzXXODZd0uurvD/fFY2aWJ+n/JBU450apvvH1FHFvvPKIpInHjEW8F+F/d6ZIGhl+z2/DWaHNJFSwkjRe0lrn3DrnXJWkxyVN8rimpOSc2+Kceyf89T7V/wORp/r78Wj4skclTfakwCRnZn0lfUzSnxoMc288ZGZdJV0g6SFJcs5VOecqxX2JF6mSAmaWKilT9effcm884Jx7XdKuY4aj3YtJkh53zh12zq2XtFb1WaHNJFqwypO0qcH3m8Nj8JCZDZQ0TtIiSb2dc1uk+vAlqZeHpSWzX0q6Q1JdgzHujbcGS6qQ9OfwEu2fzKyTuC+ec84FJf1M0kZJWyTtcc69KO5NPIl2L9o9FyRasLIIYzz26CEz6yzpaUnfcM7t9boeSGZ2laTtzrklXteCRlIlnSHpd865cZIOiKWluBDerzNJ0iBJuZI6mdnnva0KMWr3XJBowWqzpH4Nvu+r+ulaeMDM/KoPVX93zs0OD28zsz7h1/tI2u5VfUlsgqRPmNkG1S+XX2xmfxP3xmubJW12zi0Kf/+U6oMW98V7l0pa75yrcM5VS5ot6Vxxb+JJtHvR7rkg0YLV25KGmdkgM0tT/Ya1OR7XlJTMzFS/V+Q959zPG7w0R9L14a+vl/Rse9eW7Jxz051zfZ1zA1X/38gC59znxb3xlHNuq6RNZpYfHrpE0kpxX+LBRklnm1lm+O+2S1S/b5R7Ez+i3Ys5kqaYWbqZDZI0TNLitiwk4RqEmtmVqt8/4pP0sHPux95WlJzM7DxJb0gq1Yf7eL6j+n1WT0rqr/q/rK51zh27CRHtxMwulHS7c+4qM+sh7o2nzGys6h8oSJO0TtINqv8/wNwXj5nZPZI+o/onnkskfUVSZ3Fv2p2ZPSbpQkk9JW2TdJekIkW5F2b2XUlfUv29+4Zz7t9tWl+iBSsAAACvJNpSIAAAgGcIVgAAAK2EYAUAANBKCFYAAACthGAFAADQSghWAAAArYRgBQAA0EoIVgAAAK3k/wMTOPT8kaXFaAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig1,ax1 = plt.subplots(figsize=(10,6))\n", "ax1.scatter(timepoints,datapoints)\n", "ax1.plot(timepoints,yfitted)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }