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Abstract. Several open questions on heavy-ion fusion reactions will be discussed by using a
semi-classical model (GRAZING) that incorporate well known properties of the interacting nuclei
like single particle levels and surface vibrations. It will be shown that the behavior of the fusion
excitation function at very low energies is sensitive to the actual shape of the ion-ion potential at
distances shorter then the position of the Coulomb barrier and that the high energy hindrance to
fusion may be reconciled by taking into account the flux that will remain in all binary reactions.
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INTRODUCTION

The collision between two heavy ions is described, in its simplest model, as the collision
of two hard spheres moving in a central potential consisting of a short range nuclear
attraction and a long range Coulomb repulsion. In the partial-waves expansion formalism
the fusion cross section is:

σ(E) =
π h̄2

2mE ∑̀(2`+1)T`(E,B) (1)

where m is the reduced mass of the system and E the center of mass energy. The
transmission coefficient through the potential barrier T`(E,B) is usually calculated in
the inverse parabolic approximation (B is the potential barrier). Since this model, and
all the ones mentioned below, is not able to follow the evolution of the system toward
the formation of the compound nucleus the above formula gives, more appropriately, the
capture cross section. For many projectile and target combinations the above description
reproduce quite accurately the fusion process for energies above the Coulomb barrier
but underestimate the cross section by orders of magnitude [1] at the lower energies.

H. Esbensen[2] was the first to recognized that the actual position of the barrier is
influenced by the coupling of the relative motion with the intrinsic states of the two
nuclei. He introduced the concept of barrier distribution D(B)

T`(E) =

∫ ∞

0
T`(E,B)D(B)dB (2)

and in the Zero Point Motion (ZPM) approximation he was able to calculate the effect
of the excitation of the surface modes on the fusion process.



Later it has been shown [3] that the barrier distribution can be extracted directly from
precise measurments of the fusion excitation function as:

D(E) =
1

πR2

d2Eσ(E)

dE2 (3)

being R the interaction radius. The importance of the barrier distribution D(E) lies in
the fact that it retains structures that may be related to the eigenvalues of the coupling
Hamiltonian while the excitation function is usually structurless. However this relation
is true only if the coupling Hamiltonian has eigenvalues that are energy independent.

From a theoretical point of view the study of fusion reactions led to the development
of very sophisticated coupled-channels programs that incorporate the coupling to surface
vibrations, static deformations (rotations) and particle transfer [5, 6, 7, 8]. Despite these
models have to be build considering approximations, all done to reduce the number
of effective channels, they have been quite successful in clarifying the mechanism of
fusion process but many questions remain un-answered. For instance the role of the
transfer channels is still not clearly understood, the behavior of the fusion cross section
at high energies is not well reproduced; these calculations, in fact, lead always to over-
predictions of the fusion cross section. This hindrance to fusion questioned the use of
a single potential for the description of elastic scattering and fusion or even questioned
the couple-channel models in that they may be missing important interactions [9].

More recently the measurements of the fusion excitation function have been extended
at very low energies [10, 11]. Here it has been found that the fusion excitation function
drop more rapidly then the expected exponential behavior. All coupled channels calcula-
tions fail to reproduce this energy dependence indicating that also in this energy region
the theoretical models are inadequate or that the shape of the nuclear potential has to be
somewhat modified [12] from the normally adopted Wood-Saxon shape.

In this contribution some of the above difficulties will be addressed and, hopefully
clarified, by showing several calculations of heavy ion reactions done with a semiclas-
sical model [13, 14, 15] that includes, on the same footing, surface and particle transfer
degrees of freedom. What it is essential is that this model is able calculate how the total
reaction cross section is divided among the different final states.

THE THEORY

The semi-classical theory that is used to analyze the data will not be summarized here,
for details refer to the works in ref. [13, 14, 17], here suffice to remember that the
cross section are calculated by solving in an approximate way the well known system of
coupled equations

i h̄ċβ (t) = ∑
α

cα(t) < β |Hint|α > e
i
h̄ (Eβ−Eα)t+i(δβ−δα ) (4)

obtained from the time dependent Schrödinger equation

i h̄Ψ̇(t) = (H0 +Hint)Ψ(t) (5)



by expanding the total wave function of the system in term of channel wave functions
ψα = ψa(t)ψA(t)eiδ (~R) corresponding to the asymptotic mass partitions. The coefficient
cβ (t) gives the amplitude for the system to be in channel β .

The residual interaction Hin is constructed by using the well known form-factors for
the inelastic excitation and for the trasfer of one-nucleon (neutron and proton, stripping
and pick-up). The time dependence of the interaction is obtained, by solving the classical
equations of motion in a nuclear plus Coulomb field. For the nuclear potential UaA it is
used the simple Wood Saxon parameterization [16] whose parameters come from the
knowledge of the nuclear densities and have been slightly adjusted through a systematic
comparison of elastic scattering data. To obtain the right position of the barrier one
allows for a small modification (δR ∼ 0.1 fm) of the nuclear radius (cfr. ref. [17]).

For illustration it is convenient to discuss a toy model, a forced linear harmonic
oscillator, that can be solved explicitly and that is ideal to put forward the main physics
of the processes we are dealing with. The Hamiltonian is here very simple:

Ĥ = h̄ω a†a+ f (t)(a† +a) (6)

where a†(a) are operators for the creation(annihilation) of a phonon of energy h̄ω and
f (t) is the time dependent external force. The distribution of internal energy E (t) can
be calculated exactly, its average value and standard deviation being:

〈E (t)〉=
1
i

d
dβ

lnZ(β )

∣

∣

∣

∣

β=0
= h̄ω|η(t)|2−

f (t)2

h̄ω
(7)

σ 2
E

=
1
i2

d2

dβ 2 lnZ(β )

∣

∣

∣

∣

β=0
= (h̄ω)2|η(t)|2 (8)

where:

η(t) =
1

i h̄

∫ t

−∞
f (t ′)eiωt ′dt ′+

f (t)
h̄ω

eiωt . (9)

The solution of the forced linear harmonic oscillator have been written in term of the
characteristic function Z(β ) to illustrate the procedure used in the true model for the
calculation of the probabilities to reach the different final states.

The distribution in internal energy may, of course, be translated in a distribution of
relative motion energy and this, at the turning point were the tunneling probability has
to be calculated, is more conveniently seen as a distribution of barriers. If more than one
mode in present the barrier distribution is obtained by the convolution of the different
distributions. Depending on the properties of the modes this may acquire a structure.
Notice that the average value and standard deviation are function of the bombarding
energy E through the time integral along the classical trajectory. The barrier distributions
are thus energy dependent. It is also important to point out the contribution of the force
in the expression of the average energy (cfr. Eq. 7), this illustrate quite well how the
residual interaction modify directly the barrier.

To illustrate the energy dependence of the barrier distribution in Fig. 1 are shown,
for several bombarding energies, the barrier distributions for the 26S + 90Zr system.
At energy below the Coulomb barrier the barrier distributions are almost identical while



FIGURE 1. Barrier distributions for the 26S + 90Zr system calculated at the indicated center of mass
energies.

they become smoother and wider at energy above. This behaviour come from the transfer
of augular momentum and from the opening of the particle transfer channels. At energy
above the barrier the transfer of angular momentum is important and this may be seen
as leading to a shift of the energy of the mode ( h̄ω → h̄ω + µφ̇o) proportional to the
transferred angular momentum µ and to the angular acceleration at the turning point φ̇o.
The exchange of mass and charge will also contribute to the smearing of the barrier
distribution due to the large number of contributing channels. For more details and
examples on the application of the semiclassical model to fusion reactions refer to [17].

FUSION HINDRANCE

The analysis of the fusion reactions for the 16O + 208Pb system reviled [18] that it was
impossible to fit at the same time the excitation function and the barrier distribution by
using a standard Wood-Saxon nuclear potential with a diffuseness derived from elastic
scattering data. The cross sections at the higher energies were alway over-estimated.
By concentrating on the high energy part of the fusion excitation functions Newton et al.
quantized [9] the over-estimation of the fusion cross section by introducing an hindrance
factor as the ratio between the predicted fusion cross section with a standard potential
and the measured one. They suggested that possible work-around may be found or by
introducing a ”fusion potential“ with a diffuseness much larger then the one derived
from from elastic scattering data or by realizing that the coupled-channels models are
inadequate for fusion in that they are missing important couplings.

As mentioned in the introduction the semi-classical code GRAZING estimates, to-
gether with the fusion cross section, the cross sections for all binary events, quasi-elastic
and deep-inelastic. In Fig. 2, for some systems, are shown, together with the excitation
functions for fusion the energy dependence of the total reaction and binary (quasi-elastic
plus deep-inelastic) cross sections. While at the lowest energies the total cross section is
dominated, for all systems, by the quasi-elastic processes at the higher energies the fu-
sion is the dominant process but only for system with AaAA < 5000 being. This is clearly
seen in in Fig. 3 where is shown the ratio between the fusion cross section and the cor-



FIGURE 2. Fusion excitation function for the indicated systems in comparison with the total reaction
cross section (thick line) and the total binary (QE+DIC) cross section (dash-line).

responding total reaction cross section (notice that this ratio is not the hindrance factor
as defined in ref. [9]) calculated at the higher energy. These calculations clearly indicate
that the high-energy hindrance may be explained by taking into account the contribution
of the deep-inelastic events. Unfortunately these channels cannot be explicitly included
in quantal coupled channel calculations but they should be taken into account through an
imaginary potential. For the real part of the potential one can use the standard potentials
derived from the analysis of elastic scattering data.

FIGURE 3. Ratio of the total cross section to the total binary cross section (Quasi-Elastic and deep
inelastic) for several system as a function of the product of the charge of the two reactant.

The inverse parabolic approximation of the transmission coefficient suggest that at
very low energies the fusion cross section decays like an exponential with the slope
determined by the frequency characterizing the parabola fitting the effective potential at
the barrier. As the experiments of ref. [10, 11] indicate this is not the case, the data show
a much faster drop of the fusion cross sections. A simple inspection to the effective
potential show that this, beside the well known barrier, has also a pocket located at



FIGURE 4. In the lower part of the left hand-side of the figure are shown the fusion cross section in
the no-coupling limit for the three potentials shown on the top. The calculation refer to the 60Ni + 89Y
system. In the right hand side, in comparison with the experimental data, are shown the calculations of
the fusion cross sections for the ”original” nuclear potential (dotted line) e for the modified potential (full
line). Notice that all the potential share the same behavior at large distances.

somewhat smaller distances. If this pocket exist (it is indeed a common feature of all
the potentials) it defines naturally the lower limit of the energy range for the fusion to
occur. In ref. [12] it is suggested that the above experiments determine the position of
this pocket.

To demonstrate that fusion is sensitive to the potential at so short distances one has
to use models that do not rely on the parabolic approximation for the tunneling and/or
do not impose incoming wave boundary conditions at the location of the pocket (this is
done in most quantal calculations for numerical stability).

This sensitivity may be shown in absence of couplings with the internal degrees of
freedom since, it is well known, that the final results always inherit whatever character-
istics are already present in the simple barrier-penetration formulation of the problem.

By taking a family of hypothetical potentials (cfr, top of the left panel of Fig. 4) that
are identical for large values of r, share the same barrier (position rB and value VB) and
are approximated by the same parabola but differ somewhat inside of the barrier one
obtains un-coupled fusion excitation functions. for the potentials 2 and 3, that display
clearly the the quenching of the fusion cross sections (see bottom part of the same
panel). The drastic cut-off occurs, in these examples, for cross sections in the range
of microbarns to nanobarns in reasonable agreement with the values reported in the
Argonne experiment. For the potential labeled 3 a full calculation has been done and the
results are shown in the right-hand side of Fig. 4 in comparison with the experimental
data if ref. [10]. The calculations include the couplings to the low lying 2+ and 3− states
of projectile and target and the exchange of particles.

A similar calculation has been performed for the 64Ni +64 Ni system recently [11]



FIGURE 5. For 64Ni + 64Ni system is shown the potential used to calculated the fusion excitation
function (right) is shown on the left panel in comparison with the empirical potential of ref. [16] and the
corresponding parabolic approximation. The data are from ref. [11].

extended to very low energies. The result is shown in Fig. 5, in this case beside modify-
ing the inner part of the nuclear potential the radius of the empirical potential has been
increased by 0.1 fm as in ref [11]. The figure show also the excitation function obtained
with the default potential, it agrees quite well with the quantum mechanical calculations
of ref. [11].

The modification of the inner pocket of the potential allows also the understanding of
the fusion excitation function for the Zirconium isotopes [19]. Here the measured fusion
excitation function could not be fitted with calculations using standard potentials and
couplings. The fusion cross section was strongly overestimated at the higher energies.
In Fig. 6 the preliminary calculations for the 92Zr + 90Zr system, done by modifying
the inner pocket of the potential, indicate that by making shallower the nuclear potential
one non only reduces the capture at the lowest energies by increase the cross section of
binary processes, like deep-inelastic collisions, reduces also the fusion cross section at
the highest energies.

FIGURE 6. Fusion excitation function for the indicated system. In the left panel the data are compared
with semiclassical calculation that use the standard empirical potential. In the right panel for the 92Zr +
90Zr the comparison is done modifying the potential in the inner pocket region.



CONCLUSION

The semi-classical theory offer a very powerful tool for the analysis of heavy ion
reactions since it allows a clear separation between the relative motion degrees of
freedom and the one for the intrinsic states. With this theory it has been possible to
show that the fusion reactions are dominated by the dynamic of the nuclear surfaces.
The transfer channels acting mostly has absorber of the entrance flux are very important
for the explanation of the high-energy fusion hindrance since they constitute the building
blocks for the deep-inelastic reactions. It has also been shown that the very fast decay of
the fusion cross section at the low energies may be used to learn about the shape of the
ion-ion potential at distances shorted then the Coulomb barrier.
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