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Abstract. One and two neutron transfer reactions are discussed in the semiclassical formalism. The two-
neutrons transfer cross sections are calculated in the successive approximation. Comparisons with new experi-
mental data below the Coulomb barrier are discussed in term of transfer probabilities as a function of the distance
of closest approach for Coulomb scattering.

1 Introduction

The degrees of freedom associated with the rearrangement
of nucleons are very important in the understanding of the
evolution of a heavy-ion reaction. By following the usual
classification of reactions at energy close to the Coulomb
barrier, we can summarize the role of transfer degrees of
freedom as it follows:

– elastic scattering: they constitute the main contribution
to the absorptive potential iW(r),

– quasi-elastic reactions: these reactions allow the ex-
traction of spectroscopic factors and provide informa-
tion on correlations,

– deep-inelastic collision: they provide the main mecha-
nism for the dissipation of energy and angular momen-
tum (friction force),

– fission: they are important degrees of freedom for the
dynamic of the neck rupture,

– fusion reaction: here the role of transfer is elusive but
it is thought to play an important role.

In Fig. 1 is shown, for the indicated system, the ex-
citation function for fusion processes in comparison with
the inclusive cross sections for one and two neutron trans-
fer reactions. [1]. The total reaction cross section is dom-
inated, at low energies, by the transfer processes. These
have to be driven by matrix elements that have a long tail
since the distance of closest approach is, at these energies,
quite outside the Coulomb barrier. It is also clear that the
two-neutrons transfer process is of second order. Here we
recall that the first order, one-particle transfer is propor-
tional to the collision time while the second order is pro-
portional at the square of the collision time.

In this talk I will restrict the discussion to transfer re-
actions of one- and two-nucleons at energy well below the
Coulomb barrier. Even though the cross sections are quite
small, advantages appear when dealing with these low en-
ergies. In this situation the two nuclei are kept apart mak-
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Fig. 1. Fusion excitation function in comparison with inclusive
one and two neutron transfer reactions for the 32S + 98,100Mo
systems.

ing negligible the formation of compound nuclei and en-
sure that the transfer process is a direct one. At the same
time the distortion of the Coulomb elastic waves by the nu-
clear attraction is very small and may easily be accounted
for. However, the main advantage of these low energies is
that in the calculations of the transfer cross section one
needs only the overlap of the tails of the intrinsic wave
functions that are involved in the transition and these asymp-
totic behaviours are well known at least for single-particle
transfer. Not only the one particle transfer reactions can be
well described but at this energies one has been able to ob-
tain a nice description of the data also for the two particle
transfer channel by including contributions coming from
the successive mechanism [2–4]. After a short overview of
the theoretical formalism, application to new sub-barrier
data [6] will be discussed.
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2 Remarks from theory

The transfer of neutrons and protons between two colliding
ions is essentially due by the mean single-particle field (the
shell model potential) of one of the two nuclei that is felt
by the nucleons of the other nucleus. This process is char-
acterized by many open channels that are all quite weak
so to ensure a perturbative approach. In the semiclassical
approximation, the amplitude for the exchange of one nu-
cleon may be written as:

cβα(`) =
1
i~

∫ +∞

−∞

< ψβ|(Vα −Uα)|ψα >R ei(Eβ−Eα)t/~dt (1)

where the time integral has to be performed along the clas-
sical trajectory of partial wave `. Vα represents the interac-
tion among all the nucleons in the entrance channel mass
partition and Uα is its expectation value in their ground-
state configuration that is normally identified with the real
part of the ion-ion optical potential. With R we indicated
the distance between the center-of-mass of the two nuclei.
In the semiclassical approximation this is defined as the av-
erage between the distances in the entrance and exit chan-
nel. The channel wave function, of energy Eβ,

|ψβ(t) >= ψb(ξb, t)ψB(ξB, t)e−
i
~ δβ(t) (2)

is defined as the product of the two intrinsic wave functions
times a phase factor δβ(t) that takes into account that the
two ions are moving along a classical trajectory developing
in a nuclear plus Coulomb field.

By considering the stripping of a single nucleon, for
even-even nuclei (Ia = IA = 0), the first order amplitude
for the transition of a nucleon from the single particle state
a′1 ≡ (n′1, l

′
1, j′1) in the projectile to the single particle state

a1 ≡ (n1, l1, j1) in the target may be written in the form:

cβα(`) = −i
∑
λµ

(−1)λ+µ

√
2λ + 1

< j′1m′1λ − µ| j1m1 > I(a1,a′1)
λµ (`)

(3)
where λ is the transferred angular momentum, µ its third
component and I(a1,a′1)

λµ is the orbital integral of the radial
formfactor. This is calculated to be:

I(a1,a′1)
λµ (`) =

√
2πatr

r̈o~2 Yλµ(π/2, 0) fλ0(D`)

× e
−

atr
2r̈0~

2

(
∆E−Qopt−~µφ̇(0)

)2

(4)

where with fλ0 we have indicated the radial formfactor of
multipolarity λ and with ∆E the Q-value of the transition.
The transfer probability is readily calculated from the am-
plitude as:

Pβα(`) = P(a1,a′1)(`) =
∑

m′1,m1

|cβα(`)|2

= U2(a1, IA)V2(a′1, Ia)
∑
λµ

2 j′1 + 1
2λ + 1

|I(a1,a′1)
λµ (`)|2 (5)

where we wrote explicitly the occupation probabilities for
the single particle states a′1 and a1 in projectile and target
respectively.

In deriving the above expression we exploited the fact
that the radial form factor, in the tail region, may be well
approximated with an exponential tail:

fλ0(R) ∼ e−(R−R0)/atr (6)

and that the trajectory of relative motion may be approxi-
mated with a parabola osculating the true trajectory at the
distance of closest approach D`. r̈0 and φ̇(0) are the ra-
dial acceleration and the angular velocity at the distance
of closest approach. With Qopt we have indicated the op-
timum Q-value. It takes into account that the amplitude is
maxima for transitions that have a good matching between
the entrance and exit channels trajectories. Its expression
may be found in ref. [5].

The parameter atr defines the range of the transfer form-
factor. Its value is related to the binding energy of the trans-
ferred nucleon in the target system if one adopt the so
called prior representation while it is related to the binding
energy in the projectile if one adopts the post representa-
tion. This asymmetric behaviour, it derives from the non
orthogonality of the channels wave functions, is of minor
importance for reactions involving nuclei in the β-stability
valley but may lead to conflicting arguments when deal-
ing with exotic beams. Here the Fermi-energies of projec-
tile and target are very different. These considerations have
also some relevance in the present talk since we chose to
represent the transfer probabilities as a function of the dis-
tance of closest approach (D`) (cfr. 4 and 6) in order to
have a direct visualization of the tail of the transfer form
factor. From Eq. 3 and 4 we see that the probability for a
given transfer is proportional to the square of the formfac-
tor time a factor, adiabatic cut-off function, that depends
from the optimum Q-value of the reaction. It is clear that
it is from this result that it is convenient to extract, from
the data, the transfer probability and to plot it as a function
of the distance of closest approach D`. However one has
to keep in mind that the transfer probability extracted from
inclusive cross section has a tail representing the binding
energies of the transferred nucleon only if the width of the
Q-value spectra does not depend strongly from the bom-
barding energy.

In applying the above formalism in the calculation of
inclusive cross sections we cannot just add-up the proba-
bilities of all possible transitions, the number of transitions
may be very large and the sum may exceed one even if
the single transitions are quite small. The inclusive trans-
fer probability Pinc has to be calculated as:

Pinc =
∑
β

Pβα

∏
γ,β

(1 − Pγα)

' e−
∑
γ Pγα

∑
β

Pβα

= e−
2
~

∫ +∞

−∞
W(t)dt

∑
β

Pαβ (7)
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Our treatment of the two-particle transfer process fol-
lows very closely the one of ref. [4] so that we here simply
remind some initial considerations referring to the above
ref. for details. To calculate the amplitude for the transfer
of two-nucleons one has to solve the well known system
of semiclassical coupled equations up to the second order
Born approximation. The second order Born approxima-
tion may be written in the form:

cβα(`) = (cβα)(1) + (cβα)ort + (cβα)succ (8)

where:

(cβα)succ =

(
1
i~

)2 ∑
γ∫ +∞

−∞

dt < ψβ|(Vγ − Uγ)|ψγ >R ei(Eβ−Eγ)t/~∫ t

−∞

dt′ < ψγ|(Vα − Uα)|ψα >R ei(Eγ−Eα)t/~(9)

being (α) the initial, (γ) the intermediate and (β) the fi-
nal channel respectively. In Eq. 8 the first two terms arise
from the non-orthogonality of the channels vectors and
their contributions cancel out [2–4] so that only the last
term, successive transfer, is considered for the calculation
of the two particle transfer amplitude. By using the two-
particle parentage expansion of projectile (a) and target-
like (B) wave functions one can express the successive
amplitude (cfr. Eq. 9) in term of the one-particle transfer
formfactor introduced for the calculation of one-nucleon
transfer reaction. Working in the m-representation one can
write (cfr. Ref. [4]):

(cβα ) succ =
1
~2

∑
a1,a′1

B(A)(a1a1; 0)B(a)(a′1a′1; 0)

2
(−1) j1+ j′1√

(2 j1 + 1)
√

(2 j′1 + 1)

∑
m1m′1

(−1)m1+m′1

∫ +∞

−∞

dt fm1m′1 (R)ei[(Eβ−Eγ)t+δβγ(t)+~(m′1−m1)Φ(t)]/~∫ t

−∞

dt f−m1−m′1 (R)ei[(Eγ−Eα)t+δγα(t)−~(m′1−m1)Φ(t)]/~(10)

The two-dimensional time integral is easily calculated in
term of the one-dimensional time integral, encountered in
the calculation of one-neutron transfer amplitude, by us-
ing the step-function θ(t − t′) to complete the second time
integral up to +∞ and then by using:

θ(t−t′) =
1
2

[
1+ε(t−t′)] =

1
2

[
1+

i
π
P

∫ +∞

−∞

dq
q

eiq(t−t)
]

(11)

with the above substitution it is easy to write the amplitude
for the successive transfer in the form:

(cβα)succ =
∑
γ

[
1
2

cβγ(ωβγ)cγα(ωγα)

×
i

2π
P

∫ +∞

−∞

dq
q

cβγ(ωβγ − q)cγα(ωγα + q)
]
(12)

Fig. 2. Transfer probabilities for neutron-stripping channels as a
function of the distance of closest approach.

The first term in this expression, real, corresponds to tran-
sitions on the energy-shell since the energy entering in the
first-order amplitudes are the one corresponding to the phys-
ical transitions. The second term, purely imaginary, corre-
sponds to transitions off the energy-shell since the energy
are here shifted by an amount q. The real part of the suc-
cessive amplitude provides the dominant contribution for
transition where the pair of nucleons has a small correla-
tion energy. The imaginary part, instead, provides the dom-
inant contribution when the correlation energy of the pair
is large. Also for two particle transfer the probability is ob-
tained by squaring the amplitude and multiplying the result
for the probability to remain in the elastic channels as in eq.
7.

3 Data analysis

The semiclassical formalism outlined above will be ap-
plied to the analysis of the 96Zr + 40Ca reactions. The ex-
periment was performed in inverse kinematic with a 96Zr
beam delivered from the XTU-Tandem + ALPI supercon-
ducting booster of LNL. It was possible to extract excita-
tion functions up to the transfer of 4 neutrons in the energy
range between 330 t0 255 MeV of bombarding energies
(for detail we refer to the talk [6] in this conference). From
the experimental cross sections the transfer probabilities
Ptr are extracted from the formula:

Ptr =
dσtr

dσRuth
(13)

and plotted as a function of the distance of closest approach
D for a Coulomb trajectory,

D =
ZaZAe2

2Ec.m.

(
1 +

1
sin(θc.m./2)

)
(14)

for the +1n, +2n and +3n transfer channels these are shown
in Fig. 2.

The transfer probabilities are very well described with
an exponential function with a decay length that gets smaller
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Fig. 3. Neutron single particle levels in 96Zr and 40Ca.

as the number of transferred neutrons increases. This be-
haviour of the transfer probabilities suggests a simple phe-
nomenological interpretation of the data. The full line rep-
resents a fit to the transfer probability for the +1n chan-
nel. By using a simple transfer model based on the ex-
change of independent particles that predicts for the two
particle channel a probability proportional to the square of
the single particle probability, one can obtain a nice de-
scription for the +2n and +3n channels with the equations
P2n = 3(P1n)2 and P3n = 3(P1n)3. These are shown with
dash lines in the same figure. The factor 3 appearing in the
previous expressions is usually referred as enhancement
factor and should represent a measure of the collectivity
of the transferred pair.

The comparison between the theory and the experi-
ment starts by calculating the inclusive one-neutron strip-
ping process. Since projectile and target may be both con-
sidered closed shell nuclei we will describe the spectra of
95Zr as pure hole states while the one of 41Ca as pure par-
ticle states. In this approximation the inclusive probability
for one-neutron stripping may be calculated (from Eq. 7)
by summing over all single particle transitions that can be
constructed from the single particle levels shown in Fig. 3.
The result of such a calculation is shown, with a full line
in Fig. 4 in comparison with the experimental data [6].

The data are quite well described both in magnitude
and slope. The reproduction of the slope is not a surprise
since the one neutron transfer formfactors are constructed
by using the experimental single particle energies. The spec-
troscopic factors have been all set to one, in fact dealing
with inclusive cross section we can neglect the fragmen-
tation of the single-particle strength on several states and
suppose that the full strength is concentrate on a single
transition.

Before the discussion on two-particles transfer, it is in-
structive to have a look at the Total Kinetic Energy Loss
(TKEL) distributions that are shown in Fig. 5 for the indi-
cated bombarding energies. The quasi-elastic channel (first

Fig. 4. Theoretical transfer probabilities for one and two parti-
cles transfer in comparison with the experimental data. The full
line represents the inclusive transfer probability for one-neutron
transfer, the dotted line represents the ground-ground states tran-
sition for the two-neutrons transfer channel and the dash line the
transition to the first 0+ excited state at 5.76 MeV for the same
channel.

Fig. 5. Experimental TKEL distributions for the elas-
tic(+inelastic) and +1n and +2n transfer channels obtained
in the reaction 96Zr+40Ca at the indicated bombarding energies.
The vertical dotted lines represent the ground state Q-values.

column) has a width of ∼ 3 MeV that is compatible with
the overall resolution of PRISMA and of the beam energy
indetermination. The spectra for the +1n channel (mid-
dle column) have a maximum that slightly moves toward
higher energy losses with the increase of the bombarding
energy, in accordance with the energy dependence of the
optimum Q-value that, for neutrons, is very closed to zero.
The width of these spectra is constant below the Coulomb
barrier and grows above it reflecting the opening of reac-
tion channels other then the ground states transition. The
spectra of the +2n, last column, display a similar behaviour
but, in this case, the reaction mechanism leaves unpop-
ulated the ground state transition where most the pairing
strength should be concentrated. The vertical dotted lines,
in the frames, indicate the ground states Q-values, they are
at +0.14 MeV for the +1n channel and at +5.6 MeV for
the +2n channel.
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Table 1. Wave functions for the 0+ states in 42Ca deriving from
the Tamm-Dancoff approximation

E(0+) f7/2 p3/2 p1/2 f5/2

0.00 0.93 0.22 0.19 0.21
5.76 0.29 -0.93 -0.16 0.14
9.10 0.20 0.27 -0.86 -0.38

For the two-particle transfer channel it is interesting
to see if our formalism is able to predict the very small
population of the ground states and if it concentrates the
transition strength at an energy loss of the order of 6 MeV.
To calculate the ground states transition we need a micro-
scopic description of 94Zr and 42Ca. For the ground state
of 94Zr we perform a simple BCS calculation with a state
independent pairing interaction with a strength G=0.218
MeV. This interaction provides a pairing gap ∆ = 0.746
MeV and a Fermi energy at 7.6523 MeV. The BCS calcula-
tion has been performed by using the single particle states
shown in Fig. 3. For the 42Ca we have performed a sim-
ple shell model calculation by using the shell model space
provided by the set of single particle levels outside the core
(40Ca) that are shown in the same figure. The residual in-
teraction that binds the two neutrons is a simplified delta
interaction (see ref. [7]). Diagonalizing this interaction we
obtain for the 0+ states the one shown in Table 1. The
strength of the interaction is fixed so to give the right sepa-
ration energy between 40Ca and 42Ca. The model predicts a
0+ state at 5.76 Mev that we would like to identify with the
state at 5.87 MeV that is strongly populated in (t, p) reac-
tion [8]. Since in our model space there is no room for the
excitation of the core, the model is not able to describe the
0+ state at 1.837 MeV. This state should be little populated
by a two-particle transfer mechanism. In fact it requires a
higher order process like transfer followed by an inelastic
excitation or vice versa.

In Table 1 are shown the energies and the wave func-
tions obtained with the above calculation. It is interesting
to notice that the predicted ground state is dominated by
the two neutrons in the f7/2 orbital while the excited states
at 5.76 MeV has a wave function dominated by the two
neutrons in the p3/2 orbital. This is very important since
the f7/2 orbital has a wave function with a much smaller
tails (then the p3/2) because of the larger centrifugal bar-
rier. This simple fact reflects itself in the formfactor that
is much larger for the transition that leaves the neutrons
in the p3/2. Using the above wave functions the ground-
ground state transition is predicted to have a probability
represented by the dotted line in Fig. 4. It is clear, its con-
tribution is negligible.

Now evaluating the transition to the 0+ state at 5.76
MeV (the 94Zr is left in its ground state) we obtain the re-
sult shown with a dash line in the same Fig. 4. This cross
section is a factor 10 larger then the ground state transition
but it is still underestimating the experimental data by al-
most a factor 3. The cross section to the 0+ state at 9.10
MeV is very small and it is not shown in the figure.

Fig. 6. 42Ca spectra as reconstructed from the γ detected in coin-
cidence with the projectile like fragment in the collision of 40Ca
on 90Zr at 350 MeV of bombarding energy. The numbers labelling
the different transitions represent the extracted strength.

The fact that the transition to a single state (0+) under-
estimates the measured inclusive cross section should not
come as a surprise. From a previous measurement of the
same reaction, where the γ-rays were measured in coinci-
dence with the reaction fragments (we used the PRISMA
+ CLARA apparatus), we know that the 2n-transfer reac-
tions are much richer than the one we have depicted. In
Fig. 6 is shown the reconstructed spectra, from the detected
γ’s, for 42Ca nucleus together with the estimated strength
of the different transitions. One can see immediately that
not only 0+ states are populated in the reaction but also
states with relatively high angular momentum and states
with abnormal parity (we recall that Ia = 0 and IA = 0). It
is important to stress the population of the negative parity
states since this indicates that in the 2n-transfer reaction
the recoil term plays an important role. We cannot hope to
be able to reconstruct from the γ-spectra the true popula-
tion of the states via the transfer mechanism but, from a
careful analysis of the strength distribution, one sees that
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the population of negative parity states and of states with
large angular momentum amounts to almost 80% of the to-
tal strength. The total strength may be estimated by adding
the strengths of the last 2+ states in both nuclei. We remind
that the abnormal parity states and the states with angular
momentum larger then 0 cannot be calculated with our for-
malism.

4 Conclusions

The excitation functions for multinucleon transfer chan-
nels measured in a broad energy range below the Coulomb
barrier have been analyzed in a semiclassical formalism
that calculates the two particle transfer in the successive
approximation. The formalism provides a quite good de-
scription of the transfer probability for one-neutron trans-
fer. The transfer of I = 0+ pair is shown to populate very
little the ground state transition but it accounts for almost
one third of the total strength if one considers the transi-
tion to the 0+ at 5.76 MeV in 42Ca that has a wave function
dominated by the pair on neutrons in the p3/2 orbital.
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