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Abstract: A preliminary investigation of the nuclear imaginary potential to be used for the analysis of 
elastic scattering data of heavy ions is presented. The derivation is carried out in the framework of 
the semiclassical description. The resulting potential is angular momentum independent and shows 
two components. A long range part due to transfer reactions and a short range part due to nuclear 
inelastic scattering. Coulomb excitation has not been taken into account. Simple closed expressions 
are derived for the transition amplitudes associated with the transfer and inelastic processes, including 
the Q-value dependence which can be used for the analysis of reaction data. 

1. Introduction 

In the analysis of elastic scattering of nucleons on nuclei one has introduced, 
besides the average (real) potential, U, an imaginary potential, W. It accounts for 
the depopulation of the elastic channel due to residual interactions. A part of this 
absorption is associated with the mean free path of nucleons in nuclear matter. This 
part of the absorption, WV, is constant over the nuclear volume and vanishes in the 
surface region more or less proportional to the density of the nucleus. The volume 
part, WV, has been determined experimentally to have a smooth dependence on the 
bombarding energy and is rather well understood ‘). 

Besides the interaction of the nucleon with the bulk of the nucleus, depopulation 
of the entrance channel will take place through the coupling to specific channels 
like the excitation of surface modes and the pick-up of nucleons. Attempts to 
calculate a surface absorptive potential, W,, which describes these effects have 
not been successful. In fact the potentials calculated from the interpretation of W, 
in terms of a position dependent mean free path are strongly non-local functions 2). 

Nevertheless it has been possible to describe elastic scattering by empirically 

adjusting a suitably parametrized function W = WV+ W,, which is independent of 
angular momentum. The surface contribution to the absorption is usually larger 
than the volume contribution for bombarding energies below 40-50 MeV [ref. 3)]. 

The concept of an imaginary potential has been used also in the analysis of elastic 
scattering of heavy ions with similar success 4). It is expected that the surface 

+ On leave of absence from Istituto di Fish Teorica, Universita di Torino, Torino, Italy. 
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absorption is in this case completely dominant in that all exit channels including 
fusion can hardly be reached except via channels excited during the approach of the 
nuclear surfaces. 

In this note we show how one may understand the empirically found absorptive 
potential, when the strict interpretation of WJr) in terms of a mean free path is 
discarded. Explicit expressions for Ws are given. 

2. Semiclassical treatment 

The semiclassical equations of motion for the amplitudes associated with the 
different reaction channels /? are 5, 

h?,(t) = C (cop, (V,- Uy)~y)ei(E,-Ey)f’n~y(t), 
Y 

where Ep = Eb + EB is the sum of the energies of the two nuclei in channel fi, while 
E, is similarly defined in channel y. The quantities $, and wB are related to the 
product wave functions associated with the channels y and p respectively. The 
ion-ion potential U, is the expectation value of the interaction V, in channel y. The 
matrix elements are functions of the relative position of the ions and are functions of 
time as the ions move on the classical trajectory of relative motion. For each term 
the relative motion is chosen as the average between the two channels connected 
by the matrix element, Eqs. (1) are to be solved for a given impact parameter with 
the initial condition that cs( - 00) = S(/?, a), where a is the entrance channel (cf. 
appendix A). 

The question we want to address is, whether one can solve the set of equations (1) 
in terms of a small number, S, of active channels, including the entrance channel, 
introducing at the same time an imaginary potential, i.e. 

iAt, = 1 (cob, ( Vy+ iWj”- Uy)lC/y)ei(EB--Ey)t’ficy(t). 

The index S indicates that W would depend on the size of the subspace of states 
which are explicitly treated by eqs. (2). In fact W would vanish if S included all 
channels. In so far as the imaginary potential W,!“’ has only diagonal matrix 
elements independent of the channel label one may solve (2) in terms of the solutions 
c’ of the correspondingly truncated set of equations (I), i.e. 

c&t) = c;(t) exp {i ~~~W(r(r))dr], 

where r(t) indicates the classical trajectory of relative motion which we assumed 
to be similar within the group of channels S. The total probability of finding the 
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system in one of the channels S after the collision is 

’ Ps = C Ic~@)l exp E _ BES {’ S_IP(r(t))dt) = exp { - f ~~~IP’(r(r))dr} , (4) 

where we used the unitarity of any truncated set of equations (1). 
As the subset S we first consider only the entrance channel a. In order to evaluate 

W we view the total depopulation of the entrance channel as due to elementary 
transitions like excitation of collective modes and transfers of single nucleons. In 
this picture multinucleon transfer is the result of the successive transfer of nucleons. 
We shall assume (i) that these elementary transitions are independent of each other, 
and (ii) that the probability, P,, that a specific transition n occurs during the 
collision is a small number. In order to evaluate in this model the probability, P,, 
of remaining in the entrance channel after the collision, we must envisage that there 
are so many possible transitions n that p = &,, > 1 although all p. are small. 
The probability P, can thus not be estimated by 1 -p, but one should use the 
expression 

p, = ~~UYP,) = exp{- CP,>. 

In the first expression we used assumption (i), while to obtain the final form we 
also used assumption (ii). 

Although these two assumptions may seem crude, they may be rather well 
fulfilled in actual cases. The first assumption of independence, essentially amounts to 
describe the nuclear states as product states of fermion excitations, particle-hole 
phonons and pairing phonons. The limitation of this description is associated 
with the overcounting of the degrees of freedom as well as with the effects of the 
residual interactions, which couple e.g. the transferred nucleons into pairing and 
particle-hole phonons. The second assumption is rather well fulfilled except for 
the collective surface vibrational or rotational states. To the extent that one can 
describe the vibrations as purely harmonic, one can substitute a collective vibrator 
by a large number of independent vibrators each of them being excited only weakly. 
Formula (5) is actually an exact expression for the probability of staying in the 
ground state of a harmonic oscillator. For the excitation of rotational states this 
argument does not apply and the expression (5) will lead to a poor approximation for 
the imaginary potential associated with the elastic scattering on deformed nuclei. 

In order to evaluate the exponent in (5) we should calculate the transition 
probabilities p, for stripping and pick-up of single nucleons as well as for the 
excitation of surface and pairing vibrations in target and projectile. We use the 
expression 



310 R. A. Broglia et al. 1 Absorptive potential 

where cd_ is the transition amplitude 

(7) 

in perturbation theory (cf. appendix B). 
Inserting (6) into (5) and comparing to (4) we obtain the following equation which 

is to be satisfied by the imaginary potential 

s m W(“(r(t))dt = +h C lc,,,J2. 
-m B 

(8) 

Since this equation does not provide a prescription to determine the function W(r), 
additional constraints have to be imposed. 

If one adhers to the concept of a depopulation local in time one should enforce 
(8) for an arbitrary upper limit t. One then finds 

( Wco’(r(0)), = h Re 1 ~~,,(t)c_.#)~ 
B 

where c,+,(t) g is iven by (7) with t as an upper limit instead of co. This prescription 
leads to a @‘(r(t)) which is different for t = & It 1, although r(t) = r( - t). Com- 
promising on the locality in time one may enforce the locality in r by the 
prescription 

( Wco)(r)),, = 9 Re c (&(t)c,,,(t) + $,J - t)c,+,( - t)), 
II 

(10) 

which also satisfies (8). This prescription leads to a function which depends strongly 
on the energy and the angular momentum, and which coincides, for the case of 
Coulomb excitation, with the expressions given in ref. 12). 

Since the imaginary potential used in the analysis of experimental data is angular 
momentum independent, it seems more natural to use this criterion as the sub- 
sidiary condition to determine W(r) from (8). This can be done by interpreting (8) 
as an identity in the angular momentum. For nuclear interactions, where the 
c,,@‘s in (8) are mainly determined by the distance of closest approach ro, the 
condition in 1 is largely equivalent to an interpretation of (8) as an identity in ro. 

Using a parabolic expansion of the trajectory around the turning point (cf. 
appendix B, eq. (lo)), one finds 

(11) 

i, being the acceleration at the turning point. As shown in appendix B, the 
amplitudes c can be parametrized as 

C 
a-l? 

z Ke-‘Oh. 
(12) 
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In this case, the integral equation (11) for W can be solved leading to the result 

311 

(13) 

For the transfer channels, the quantity cc0 is of the order of 1.2 fm, while for nuclear 
inelastic scattering it is of the order of 0.6 fm. This implies that the total absorptive 
potential has two components; a long range part with the difuseness of N 0.6 fm 
due to transfer, and a short range with a difuseness of N 0.3 fm due inelastic pro- 
cesses, Some experimental evidence for such two-component potential have been 
found 13). 

When Coulomb excitation is included, the transition amplitudes for inelastic 
scattering cannot be parametrized as in (12). In fact the amplitudes would consist of 
two terms with opposite sign, leading to a short range potential due to inelastic 
scattering, a long range potential due to Coulomb excitation, and an interference 
contribution which is in fact a source term. 

In the present paper we shall neglect Coulomb excitation and the results are 
therefore valid for relatively light ion scattering. 

Since Coulomb excitation, at bombarding energies of few MeV per nucleon, leads 
only to states of low excitation energy, such reactions are often counted experi- 
mentally as elastic events. Because Coulomb excitation does not change the 
trajectory of relative motion to any appreciable extent, one might, for the analysis 
of such “elastic” experiments, use an absorptive potential which consists merely of 
the W due to transfer plus a W due to inelastic scattering to high-lying states which 
can only be excited by nuclear interaction. 

3. Calculation of the absorptive potential 

In this section we evaluate the absorptive potential W(r) defined in eq. (13), 
utilizing the approximate expressions for the transition amplitudes given in 
appendix B. The contributions to W from nucleon stripping and pick-up are given by 

1 ** 2 

(W(r)),,,,,, = 
0 

(21, + 1)(2Z* + 1) EJ- 
& (I( C:Q,“=,l* + I(&?)I;~ = ,), (14) 

LJ 

where the summation is to be carried over the quantum numbers associated with 
the index 8, that is, Z,M,, ZB and M,. Furthermore, the sum also implies an averaging 
over the initial orientation, that is, a sum over A4, and MA. 

Utilizing the expressions (B.19), (B.29), (B.44) and (B.47) we can write (14) in 
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The orbital integrals over the single-particle form-factor are given by (B.28) 
and (B.45) for nucleon stripping and nucleon pick-up respectively except that the 
fiMJ’ form factors are substituted by (B.30) and (B.48) respectively. In deriving (15) 
we have neglected the dependence of dE on In and Zb for a given fixed single-particle 
orbital, that is, the variation of the Q-value within the energy interval over which 
the single-particle strength is spread. The quantities V2 are the occupation 
probabilities 

that the single-particle orbitals a; are occupied in the nucleus a. The quantity 
U2 = 1 - V2 is the corresponding probability that the state is empty. 

Using the approximate expression (B.41) for the orbital integral we find 

VW),,,“,, = 4 a&,&) ~----.- 
a,tlja ~wol~2 

((2j; + l)V’(u,zA)I/~(u;z~)~f~~dO~~Ns~(u, $I2 

+(2j, + W2(Q,) ~2(~,~A)If”nb”~‘NP’(O~ r)12)s&z), (17) 
where we assumed p’ = 0 and define 

The function g determines the adiabatic cut-off. The quantities a and b are related 
to the quantity q in eq. (B.42). They are given by 

a= 

where the optimum Q-value is 

w 

(20) 
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and 

(21) 

For small collision times the quantity (18) is unity. One can estimate the function g 
by utilizing the approximation 

and substituting the sum over p by an integral. One thus obtains 

gA(a, b) = k 
s 

oexp [ - Re (a-b cos 8)‘] dtI. 

(22) 

(23) 

This function has been evaluated numerically for real values of a and b and the 
result is given in fig. 1. 

Q I. 2. 3. 
a(Q) 

Fig. 1. The adiabatic cut-off function g,(Q) which describes the ratio of the actual transition probability 
to the same quantity in the sudden approximation. It is defined in (18) and is given as a function of the 
dimensionless parameters a and b. The parameter a which depends on the Q-value is defined in (19) 

while b which depends on the angular momentum transfer I, is defined in (21). 

The contributions to W from nuclear inelastic scattering is similarly given by 

Cl I) 
zPE 2 

A# 7 

P 

(24) 

where the orbital integrals for target and projectile excitation are given by (B.3) and 
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(B.7) with the form factors (B.4a) and the nuclear part of (B.8) respectively. Inserting 
the result (B. 12) we find 

W”k) = 1 J- 16rr; ,p (If~N’TE’w12 + v-~‘PE’w12h(Q). (25) 
1 0 

The adiabatic cut-off function g is given by the same expression as (18) with 
Q,,, = Oand with d ff a i useness parameter a instead of a,r. The sum of the form factors 
appearing in (25) can be written in terms of the total zero-point fluctuation u of 
the two nuclear surfaces defined by 

fJ2 = c (21 + 1) ( I: 2 (R:“‘)2 + $ (Rr’)2 
> 

g#o,), 
A 1 A 

of all states below the adiabatic cut-off, i.e. 

(26) 

K&9 = J16nFo,h2 c2 (%>‘. (27) 

The total absorption is thus equal to 

W(r) = W,ransf(r) + Winei(r). (28) 

In the derivation of this potential we assumed (cf. eq. (12)) that the transition 
amplitudes were exponential functions of the distance of closest approach. This 
ansatz seems reasonable, because although the transition amplitudes depends 
also on i,, this dependence appears as a multiplicative factor under the square root. 
However the expressions (17) and (27) are singular for i, = 0 which in the classical 
description happens when the angular momentum of relative motion is equal to 
the grazing value 6. This is however a fictitious problem since the existence of an 
imaginary potential means that the classical trajectories should be complex. In 
terms of the effective potential for the radial motion Ueffr the turning point de- 
termined from 

E = &(r,) + iVr,), 

is complex and the acceleration 

(29) 

i, = - + d (Uert+iW),,ro 
aA a’ 

is in general non-vanishing. In fact the use of the expression (28) for W(r) requires 
that 7, and W should be determined self-consistently from eqs. (28)-(30). 

For simple estimates one may use for the modulus of the acceleration an 
estimate based on a Coulomb trajectory which is 

2E Z Z e2 2E-E maAfO = _ - _A+.- x B 
TO r0 ‘B 

(31) 
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where EB is the height of the Coulomb barrier and rB the radius of the barrier 

(rJr,,, = l.O7(Af + Ai) + 2.72. (32) 

The absorptive potential determined self-consistently from eqs. (28)(30) is local as 
far as is independent of 1. It does show however an energy dependence through the 
parameter f,. Besides entering as a multiplicative factor, f, enters in the adiabatic 
cut-off parameters (19) and (21). For increasing bombarding energies it is expected 
that i, increases. The corresponding decrease in W, because of the square root 
factor, is more than compensated by the change in the adiabatic cut-off which 
implies that more states contribute to the depopulation of the entrance channel. 

Preliminary numerical calculations of the imaginary potential on the basis of the 
expressions given above are in good agreement with the experimental data. 
Systematic calculations are in progress and will be presented elsewhere. 

4. Conclusions 

In this paper we have derived explicit expressions for the imaginary potential to 
be used in the analysis of elastic scattering data. This was done by imposing the 
condition that W should not depend on the angular momentum, and making use 
of the assumption that the different channels contributing to W are independent. 
Only the effects due to nuclear interaction were included. In the derivation we 
used the semiclassical description and the corresponding expressions for the 
transition probabilities. The explicit expressions for these quantities are useful1 for 
the discussion of the Q-value dependence of transfer reactions and inelastic scattering 
of heavy ions. The resulting W has a long range component due to single-particle 
transfer, and a short range part due to inelastic scattering. 

Appendix A 

SEMICLASSICAL EQUATIONS OF MOTION 

The coupled equations (1) are complicated by the fact that the channel wave 
functions I//? describing various exit channels in transfer reactions are non- 
orthogonal, i.e. the overlap matrix 

a&, = (& JI,) (A. 1) 

is only diagonal at t = f co. 
From the time-dependent Schriidinger equation the coupled equations are directly 

obtained in the form 

(A-2) 
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In order to write them in the simple form (1) we introduce the adjoint channel 
wave functions oy as 

WY = 1 (u- i)&$D, (A.3) 
P 

where a-r is the reciprocal matrix to (A.l). For small overlap (grazing collisions) 
where 

a = l+&, (A.4) 

with E < 1 we may use 

a-l = l--E+&‘+.... (A.5) 

Defining adjoint amplitudes 

ts = 1 ap,cyei(Efl-&)tift (A@ 
Y 

as the expansion of the state vector on the adjoint channel wave functions (A.3) we 
find that they satisfy the equations 

ihtD = C ($,, (I$ - UB)$r)ei(Efl-EY)*“cy 

= 1 (I)@, (VP- Ug)Oy)ei(Eg--E,)t’hCy. 
Y 

(A.7) 

We used here the post-prior symmetry relation 

d (A.8) 
= ih _ (a 

dt By 
ei(EB-&)r/fi), 

derived in ref. ‘) (cf. ibid, eq. (4.2)). 
While the quantities lcB12 or lC,12 at time f cc signify the probability of being in 

channel /? they do not satisfy unitarity at t x 0. We may at intermediate times 
rather use the quantity 

J’,(t) = Re {$(t)c,(t)), (A.% 

for which it is easy to prove unitarity, i.e. 

Appendix B 

SEMICLASSICAL FIRST ORDER PERTURBATION THEORY 

(A. 10) 

In this appendix we quote the results of the semiclassical perturbation theory 
of transfer and inelastic reactions between heavy ions [cf. refs. 5-7)]. 
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We consider a collision between projectile a and target A. 

spherical nuclei and assume that excitations only take place 
projectile. For target excitation the first order amplitude is 

We shall consider 

in either target or 

where ZAMA and Z;MX are the spin quantum numbers of the target states before 
and after the excitation, while EA and Ei are the corresponding energies. We may 
write (B.l) in the form 

cTE = - i 1 (Z,M,L - pIZ;M;) p 
(-l)“_” z 

AP J212+ 1 ac’ 

with 

1 O” 
ZA, = h 

s 
dr exp C~&lflPWN Y&W (B-3) _ 

m 

where r(t) indicates the time-dependent position vector of the projectile with 
respect to the target and hw; is the excitation energy. The form factorfiA)(r) is to a 
good approximation ‘) given by 

f?)(r) = fl’A’(r) +fi(A’(r), 

with 

j-,“‘“‘(r) = -( - 1)” f d- $Rf) 
A 

% JZTi, (B.4a) 

f,“‘“‘(r) = (- 1)” (2A + 1) 
4nZ,e (rZIId,(EA))lO)r-"- ‘, (B.4b) 

where dw is the zero point amplitude, (l,,la,,lO), of the vibration, while 
U,,(r) is the ion-ion potential and R, (‘) the radius of nucleus A. The second term is 

the Coulomb excitation part of the interaction, Za indicating the charge number 
of the projectile. The reduced matrix element of the electric multipole moment 
may be written 

(&M(En)llO) = 3zAF’ 
J 

2 ,/m, 
L 

where R; is the charge radius of nucleus A, while Z,e is its charge. 
For projectile excitation one finds a similar expression 

cPE = -i(ZaA4,A-pIZ~M~) (- 1)’ 
pITi zw 

(B.5) 

03.6) 
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with 

and 

IAt, = k s 00 dt exp Ciw~tJ~~)(r(t))Y,,(~(t)), 03.7) 
CO 

p(r) = (- 1)” 03.8) 

The difference in sign between (B.6) and (B.2) is due to the fact that P is oriented 
from A to a. 

The orbital integrals (B.3) or (B.7) are most easily evaluated in a coordinate system 
where the z-axis is perpendicular to the plane of the trajectory along the angular 
momentum of relative motion, and the x-axis is pointing towards the projectile at 
the point of closest approach. In this case 

q&P(t)) = YAp(*n, 0) eip+(‘), (B-9) 

where # is the azimuthal angle. 
Since the nuclear part of the form factor has a short range we may evaluate the 

orbital integrals by a series expansion around the time (t = 0) of closest approach, i.e. 

r(t) = r. +fi,t2, 

440 = &t, 
(B. 10) 

where the acceleration F0 and the angular velocity &, at the closest distance r0 are 
positive. Utilizing an exponental form for iJaA, i.e. 

ava, 
ar 

* U'(ro)e-"-'""", (B.I 1) 

with a x 0.6 fm, we find 

I$ = Y,& O)~~(~*) f 
s 

; exp [-d~~t2+iw,t2/a+io,t+i~~iotldt 
00 

= Y;#(fK 0) (B. 12) 

The quantity m indicates the collision time, zinel, and in the absence of the 
exponential factor the orbital integral is the product of this time and the form factor 
at the distance of closest approach in units of h. The exponential function gives rise 
to the adiabatic cut-off at nuclear frequencies w1 which exceed the inverse collision 
time. We may estimate the quantity maAPO (Q, being the reduced mass) by the 
bombarding energy in the c.m. system divided by r0 [cf. (31)]. The adiabatic cut-off 
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energy is 

(B.13) 

where ehiev is the laboratory bombarding energy per nucleon measured in MeV and 

(%l = (& + R,),, is the distance of closest approach in fm. The quantity 
h& is similarly given by 

(B.14) 

where lg is the grazing angular momentum L, in units of /i. 
Nuclear states can thus only be excited if the excitation energy AE = hw satisfies 

the inequality 

AE+(AL&, 5 ;, (B.15) 
1nel 

where (AL), = +$I indicates the angular momentum, which is gained by the 
relative motion in the direction of the relative angular momentum L. In a purely 
classical description with a continuous energy and angular momentum loss, the 
two quantities on the left-hand side of (B.15) would be equal since 

L 
-*AL% 
L s 

L maA dt (r x F(t))% z L 
f 

8. F(t)dt = - AE/q$,, 

where F is the effective dissipative force acting on the projectile. 
The expression (B.12) has been compared *) to the results of the WKB 

approximation for the radial matrix elements in a DWBA treatment of inelastic 
scattering. If one uses for r e, t, and 4, the average values of the corresponding 
quantities in entrance and exit channel, which are in general complex numbers, one 
finds quite accurate agreement even for large Q-values. 

The orbital integrals (B.3) for the Coulomb excitation part have been evaluated 
numerically and are given e.g. in ref. Q). 

Next we consider a single particle stripping reaction, where the residual nucleus 
B contains one nucleon more than the target A while the scattered nucleus b has 
lost a nucleon. 

The first order amplitude for this reaction is 

x exp W,, + EB - E. - E&+ r,dOllfi, (B.16) 
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where we have indicated the nuclear states by their spin quantum numbers. The 
phase r,,(t) is given by [cf. ref. ‘) eq. (2.52)] 

t r@(t) = 
J 

W,(t) - ~,@)W, (B.17) 
0 

where Z(f) is the lagrangian of relative motion, i.e. 

y&t) = 3maAvz - ~,,C~), (B.18) 

the (average) position and velocity of relative motion being r(t) = $tr,,+r,,) and 
y(r) = f(t), respectively. 

We shall write the amplitude (B.16) in the form [cf. ref. 6, sects. 2 and 31 

CNS aA-+bB = -i 1 (IAMAJ~~IBMB)(IbMbJ’M’~IaM,>(~~JM~J’M’)Znfl, (B. 19) 
JJ’2. 

MM’p 
with 

(B.20) 

The dependence of the form factor on the velocity of relative motion through 

is associated with the recoil effect, md = ma-m, being the mass of the transferred 
nucleon. 

The form factors can be expressed in terms of the intrinsic form factors through 
the relation 

(B.22) 

The eulerian angles 9; are defined by the rotation from the laboratory system to 
the intrinsic (1, 2, 3) system where the 3-axis is along r and the l-axis is in the 
direction of the orbital angular momentum. If we chose to evaluate the amplitude 
(B.19) in the coordinate system (A) used above where 

we may write 

x i J 1 dt exp [i(dEt+ Y&,(t) + hCl~(t))lA}f~~‘lk3(t), k,(t), r(t)). (B.24) 
4, 
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Examples of the intrinsic form factors are shown in ref. ‘=), figs. 6-8. The main part 
of the longitudinal recoil effect associated with k, may be extracted as an average 
phase factor 

(B.25) 

In the latter equation we used an approximation for the transverse recoil effect 
which is valid for not too high bombarding energies [cf. ref. 6, eq. (4.36)]. The 
phase 0 is given by (cf. ref. 5), eq. (3.16)) 

6 = k&t) R,- --!k- r ’ md 

mb+mB 

z - ~ i(t)(R,m, - RamB), 
h m,+mA 

(B.26) 

where we used that r x Ra-t- R,. The transverse momentum k, can be expressed in 
terms of the angular momentum L. The product 

k2(t)r(t) = -2 ; 
ZIA 

(B.27) 

is thus a constant. Inserting these results in (B.24) we find 

x i 
s 

y dt exp [@Et + ya.(r) + #S(L) + @&r))/h]f$‘(O, r(r)). (B.28) 
m 

The radial form factors can be expressed in terms of form factors describing the 
transition between the single-particle configuration a; = (n;r;j;) in a and 

a, = (n,l,ji) in A, i.e. 

f;i’(O, r) = 1 C*(Z,a, ; Z,)C(Z,a; ; ZJ xf$P’(O, r)&j,, J)S(j;, J’), (B.29) 
alai 

where the C’s are spectroscopic amplitudes and where the single particle form 
factors for p’ 1 0 are given by [cf. ref. 6), eqs. (6.18) and (6.9)] 
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The angles 9, and 9, are defined by 

cos 9, = J+TP sin 9, = Y 
JjGF 

cos 8, = Jy2 :Tr’_ # ’ sin 8, = Jy2 +“& ’ 

(B.31) 

while 

‘1A =&JjGT, 

=&J_. 

(B.32) 

rib 
a b 

In (B.30) we included the Jacobian J, in the definition of the form factor. The po- 
tential UiA(rIA) is the shell model potential in A while (U,,) is defmed by [compare 
ref. 6), eq. (5.17)] 

. 

where UN and UC are the nuclear and Coulomb part of the ion-ion interaction. 
The quantity (B.33) is a function of pi = (y, t) since [cf. ref. 5), eq. (2.35)] 

P 
md 

aA 
= r+ = plrr’ 

or 

r *A 

and 

or 

(B.34) 

(B.35) 

The form factors for ,u’ < 0 are found from the relation 

ff;$,(O, r) = (- l~~+~~~~a~(o, r), (B.36) 

which shows that fl;? vanishes for $ = 0 if 1+ II is odd. 
Several examples of radial form factors have been evaluated in ref. ‘) (cf. ibid. 
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fig. 11 and 12) in the post representation where VaA- Ua, in (B.16) is substituted by 
I&- U,,. The form factors for $ = 1 are usually a factor of ten smaller than the 
ones corresponding to $ = 0. For not too high bombarding energies where the 
factor 

mJ - x &t4+4 < %eV 

“la*h A,A, w J- 
- (~&In 20 

(B.37) 

is much smaller than 10, we may neglect the terms with ,u’ # 0. 
Outside the sum of the nuclear radii (r > RB + RA) the form factors have an 

exponential dependence with a range atr related to the separation energy of a nucleon 
in a. We may therefore use 

fi:Jr’(O, r) x f,J,-l’(O, rO) e-(‘-rO)‘Otr, (B.38) 

where a tl x 1.2 fm. With this approximation and the expansion (B.lO) of the trajectory 
we find 

k3(f) ** ‘Ip x ro - t, 

Y&) = (Z=(O) - 2,(O))t 

= [(; - z) 2;;J;A)zJYo)+ U,&,) - Ur,)] t. 

We may thus evaluate the orbital integral with the result 

I,, = cD;,,(O,$LO) 
PS 

where 

X J 2 f$!'(O, ro) exp [ - q2a,,/2Foh2], 
0 

E 
B 

(B.39) 

(B.40) 

(B.41) 

(B.42) 

with Q = E, + EA - I& - 4, being the Q-value for the reaction, and Z, = Z, -Z, 

the charge number of the transferred nucleon. In the last expression we have 
estimated the difference in potential energy by the Coulomb energy only, EB being 
the average height of the Coulomb barrier. The quantity E is similarly the average 
total energy of relative motion in the c.m. system between initial and final state. 
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The structure of the expression (B.41) is similar to the corresponding expression 
(B.12) for inelastic scattering and the accuracy has similarly been checked lo) against 
the corresponding WKB matrix elements. The characteristic collision time 

(a,,/io)+ = rtrans is slightly longer than rinel i.e. 

h wk” 4 T tram = (rO)‘m MeV* (B.43) 

The effective Q-value, q, contains besides the term $r$o which also appears in (B. 12) 
terms related to the transfer of mass, md, and charge, 2,. The charge dependence 
is associated with the fact that the effective Q-value is to be measured at the time 
of contact where the energies of nuclear states are changed by the magnitude of 
the Coulomb field at this distance (cf. e.g. ref. ‘I) fig. 2). Additional energy is 
provided for by the kinetic energy of relative motion. The magnitude of the last term 
in (B.42) depends on the use of the average trajectory r(t) = +(r,(t)+r,(t)). 

For the pick-up reaction, where a nucleon d is removed from the target A to form 
B we find 

CNP aA-+bB = -i C (ZBMBJM~ZAMA)(Z,M,J’M’~Z~M~)(I~‘M’~JM)Z~,, (B.44) 
JJ’I 

with 
I,, = (- 1)” c Z&(0, +c,7c) 

P* 

1 m 

Xh -cD s 
dt exp [IVEt+ ys,(t)+ h~~(t))lhlf~~J(k3(t), W, $0). (B.45) 

With this definition the form factor is the same as it would be for the stripping 
reaction with A as projectile and a as target. The phase factor depending on the 
(even or odd) parity change An arises from the fact that the intrinsic 3-axis is 
oriented towards a. 

Using the approximation (B.26) we find for pick-up 

(cqNP = -5. (B.46) 

The expansion (B.29) takes the form 

fii:‘(O, r) = 1 C*(Z aa; ; z,,)c(z,a,; z,)f;;?(“, $jo’,, JYX_& J’>, (B.47) 
alai 

while the single-particle form factor is given by 

(B.48) 
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where we used K = I, + I;, and where 

(ha) = EAkl,) - ~%,,) + U:‘4(ra*) - U&(r,,). (B.49) 

It is interesting to compare the amplitude $E_BA for the pick-up reaction 
b + B + a + A with the amplitude ei +bB for the stripping reaction a + A + b + B. 
By the substitution of a t) b and A t) B in (B.44XB.49) one finds that 6 is 
unchanged while AE, y and p will change sign. The single-particle form factors are 
related by 

(f$+(O, r))fi_aA = (_ l)r’+j~ -A + 1 (B.50) 

By the indices (Q) and (8) we specify whether the form factor is given in prior or post 
representation respectively. Comparing the expressions for the two amplitudes 
(B.19) and (B.44) we see that 

t$;ybB = -(c&fJA)* 

= - (F;“,!$,,)*, 
(B.51) 

where we introduced the adjoint amplitude (cf. eq. (A.7)). At time t = 00 the 
amplitudes and the adjoint amplitudes are identical and the probabilities for the 
two transfers are therefore the same 

pNs = PNP 
aA-bB bB+aA’ 

(B.52) 

At intermediate times where, the two amplitudes are different, the symmetry is 
reconstituted by the use of the definition (A.9) of the probability. 
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