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The anomalous behavior of the moment of inertia, as a function of the angular momentum, for the ground and 
f'trst excited rotational bands of I s4 Gd is accounted for by the mechanism of bands hybridization. 

There exists now experimental evidence [I, 2] that the backbending phenomenon [e.g. 3] in the rotational 
motion of quadrupole deformed nuclei can be interpreted in terms of bands crossing [4, 5]. 

~¢ 64t-,a154 Utilizing this idea we have carried out an analysis ,,, 90""  which, to this purpose, is the best known ease. 
We use the Hamiltonian 

H = H  o + H  upl (1) 

where 

H ° = a ( K ) ( I 2 - I  2) + b(K)I 2 + nintrinsie(K ) (2) 

and 

H upl = acor(Ki,Kf)(I + + I - )  + acf(Ki,Xf)(I ~ +I2). (3) 

The coefficients acor(Ki,Kf) and aef(Ki,Kf) are the strength of the Coriolis and centrifugal couplings among the 
bands. The labels K i and Kf specify the K-quantum number of the pairs of  bands interacting through (3); I is the 
total angular momentum of the system. 

We have found that H o has to be diagonalized in at least a three-dimensional vector space in order to have a sat- 
isfactory reproduction of the experimental data. The best choice of the basic eigen vectors o f H  o turned out to be 

I×g;LK=O,M), Ixa;LK=O,M),  I×;LK=I ,M) .  (4) 

The corresponding eigen values are 

P l l  =Ax, P22 = Bx + C, P33 =Dx +E ,  

where x = I ( I  + 1) and the notation of ref. [4] has been used. 
The first two rotational bands in (4a) are the experimentally observed ground state and/3-vibrational (two- 

quasiparticle) bands. We will elaborate on the interpretation of the last one (K= 1) later. Diagonalizing the 
Hamiltonian (1) in the basis (4) one gets the following cubic secular equation 
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Table 1 
9Or, j154  Experimental energies of the rotational levels in 64~JU (col- 

u m n s  2 and 4). Columns 3, 5, 6 give our predicted lower 
(ground), intermediate (#) and upper trajectories. 

Exp. L.T. L.T. Exp. I .T.I .T.  U.T. 

I= 0 0.0 0.0 680.700 - 1658.357 
2 123.000 110.228 815.400 - 1706.724 
4 370.800 359.780 1047.400 1055.477 1822.380 
6 717.400 724.945 1365.600 1344.981 2016.289 
8 1144.100 1162.913 1756.200 1752.116 2328.403 

10 1636.800 1639.865 2193.800 2198.503 2870.873 
12 2184.500 2160.517 2621.600 2612.180 3710.951 
14 2777.300 2741.776 3027.100 3035.551 4789.316 
16 3404.500 3394.815 3490.600 3498.215 6065.199 
18 4016.200 4013.278 4087.100 4121.828 7523.297 

Table 2 
Interband to intraband B(E2) ratio R(cf. eq. (12)). The ap- 
proximation (0g IM'(2,0)10g) = (0j3 IM'(2,0) 10fl) = 
(0# IM'(2,0)t0g> = (5/16~r)1/2 Qo has been made in calculating 
the matrix element (KfM'(2,Kf-Ki)IKi) of the intrinsic qua- 
drupole operator. The other off-diagonal matrix elements 
have been neglected. 

Exp. Th. 

I = 12 0.001 0.022 
14 <0.003 0.002 
16 0.036 0.94 10 -4 
18 1.4 2.46 

ff3 + pff + q = O (5) 

where 

ff =E _1 
~(P11 +P22 +P33) (6) 

and 

P=-~(Pll+P22+P33)2 +PllP22 +ellP33 +P22P33-a2f(Og,Oo)x2-a2or(Og,1)x-a2or(O#,l)x. (7) 

P11 +P22+P33 [" . [1°11 +P22+P33 ,~2-] 

q -  ~- L. -t -; ) J+ 
+ P11 a2r(0fl, 1) x +P22 a2r(0g ' 1) x +P33 a2f(0g ,13#) x 2 - 2 acf(0g, 0#)aoor(0g , 1)aeor(0~, 1)x 2 - P11P22P33" (8) 

The solutions for the energies are 

E=~(Pl l + P22 + P33 ) + 2 ~ -  ~p cos[if(0 + 2rr/)] (9) 

where 1 = 0, 1, 2 labels the three trajectories of  the energy versus the angular momentum and 

3q ] /  3 
cos 0 = ~ } - ~. (10) 

Agreement with experimental data is obtained for the following values of  the parameters 

A = 18.965, B =  12.413, C= 807.749, D = 7.196, E = 1658.358, 

acf(0g, 0#)= 4.338, acor(0g, 1) = 27.273, acor(0~, 1) = 17.675, ( I1)  

as it can be seen in table 1 and fig. 1. All magnitudes in (11) are expressed in keV. It is to be noted that the first 
two states o f  the/3-band in ~ G d  154 (a nucleus on the border of  the deformed rare earth region) have been left 
out from the present analysis being essentially vibrational in character. 

For each value of  the angular momentum I the wave functions o f  the three trajectories are linear combinations 
o f  the states given in (4). With these wave functions we have calculated the B(E2) transition probabilities both for 
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Fig. 1. Energy trajectories corresponding to the Hamiltonian 
(1) for ~Gd is4 in comparison with the experimental data. 
Also showed (dallied lines) the uncoupled bands. 
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Fig. 2. The same as fig. 1 but in terms of different variables, 
i.e. 2 9/#i 2 = (41-2)/[E(1)-E(I-2)] as a function of 
(~to) 2 = [(E(1)-E(1-2))/2] 2. The continuous and dashed 
lines drawn through the predicted values are given as a help to 
follow the behaviour of the ground- and 0-trajectories. 

the interband as well as the intraband case. In table 2 we compare our results for the ratio 

B(E2,(I b -~ ( I -  2)g) 

R = B(E2,(/)O -~ ( I -  2)0 ) (12) 

with the corresponding experimental values. 
The analytic properties of  our trajectories (9) in the complex plane of  the square of  the angular momentum 

are found by solving the algebraic equation 

(~q)2 + (}p)3  = 0 (13) 

i.e. setting equal to zero the discriminant of  (6). Since p and q are respectively of  second and third order in x we 
will have six roots two by two complex conjugate. The physically relevant ones are 

Xl = x2 = 84.98 + i 49.44, x 3 = x 4 = 306.1 + i 5.17. (14', 14") 

They correspond to the back-bending of  the ~- and ground-trajectory respectively. The real part of  the branch 
cuts (14) gives information on the value of  the angular momentum at which a substantial change of  the moment 
of  inertia occurs. The imaginary part on the other hand is related to the rate of  change of  the moment of  inertia: 
to a sudden change corresponds a small imaginary part and conversely. This is best illustrated in ~ G d  154 (of. fig. 
2) where the change in the moment of  inertia occurs gradually in the/3-trajectory, and suddenly in the ground-tra- 
jectory*. 

:~ We point out that the existence of branch points singularities in the complex x-plane limits the vatlaity ot the usual expansion 
orE as a power series in x. 
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Note that far from the branch points the ratio R is exceedingly small while it becomes of  order of  unity near 
the branches (cf. fig. 1 and table 2). 

The third band required by the experiments has K = 1, starts around 1.5 MeV of  excitation energy and displays 
the moment of  inertia of  a rigid rotor, namely -)'rig = ~ AMR2 ( I+6 /3)  with the value 6 = 0.3 (cf. (11)). 

It can thus be viewed as an effective band representing the average effect of  all the K 7r = 1 + bands built on the 
two-quasiparticles states generated by the j+ operator acting on the ground state (note that a particular combina- 
tion o f  these states gives rise to the K rr = 1 ÷ spurious state). Among these excitations, the one based on the 
[642] 5/2 and [65 I] 3/2 Nilsson orbitals and with excitation energy ~ 2 MeV according to this model [6],  is ex- 
pected to play an important role [5] as it is strongly decoupled from the rotational motion. This intrinsic state 
will generate a band with a large moment of  inertia. In fact, the ground state K ~r = 5/2 + band of  161Dy - which 
is based on the [642] 5/2 one-quasiparticle state - has a moment of  inertia which is close to -/rig" 

The physical basis of  the above interpretation o f  our third K = 1 band is quite simple. For high angular mo- 
menta the rotational energy becomes comparable to the energy of  the intrinsic excitations and thus the adiabatic 
condition upon which the collective description is based is not valid any more. For these angular momenta a ma- 
jor change in the coupling scheme takes place, namely a phase transition. 

The fact that no fitting was possible with three K = 0 bands seems to rule out the possibility of  a superfluid to 
normal phase transition being the cause of  the anomalous behaviour of  the moment  of  inertia of  the ground- and 
t-bands. Actually, even if the data could have been explained in terms of  three K = 0 bands, the model based upon 
the analogy between the collective angular momentum acting on the nuclear condensate and the magnetic field act- 
ing on a superconductor [7],  cannot account for the decrease of  the moment of  inertia that takes place in the t -  
trajectory after the backbending. On the other hand this, together with the occurrence of  the backbending at rel- 
atively low values of  the angular momentum ~-trajectory),  is a natural result of  the geometry of  the many-band 
hybridization presented here and in ref. [4].  

We wish to thank Daniel Bes for discussions. One of  the authors (A.M.) wishes to thank G.E. Brown and 
T. Regge for hospitality at Stony Brook and Princeton respectively. 
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