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A case is made for the use of macroscopic formfactors for nucleon pair transfer in heavy ion reactions. The formalism is 
based on the identification of a local pair transition density whose radial dependence can be converted in a macroscopic 
transfer formfactor related to the ion-ion potential in a similar way as it has traditionally been done for inelastic excitations. 

Calculations of  inelastic cross sections to vibrational 
states in heavy ion reactions have been made consider- 
ably simpler by a formulation of  the excitation mecha- 
nism in terms of  macroscopic variables associated with 
the deformation of  the nuclear shape. The identifica- 
tion of  the formfactor for nuclear excitation with the 
derivative of  the ion - ion  potential has proved to be 
extremely helpful in the analysis o f  inelastic scattering 
data [ 1 ]. Once the elastic cross section is satisfactorily 
accounted for in the optical model picture one can, in 
a straightforward way, proceed on to the analysis of  
inelastic scattering. This macroscopic description has 
the additional advantage of  bringing forward in an 
automatic way the rather involved influence of  all 
other open channels over the particular excitation 
under consideration. 

We note that it is also possible to calculate the in- 
elastic matrix elements microscopically, making use of  
the wave functions of  the collective states in terms of  
particle-hole excitations [2]. This approach provides 
an important test of  our knowledge of  the nuclear 
structure. However, the calculations involved are 
lenghty and not surprisingly the systematic determina- 
tion of  nuclear deformation parameters by DWBA 
analyses has mostly relied on the simple macroscopic 
scheme. 
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In contrast to the inelastic excitations, particle 
transfer reactions have only been analysed with micro- 
scopic calculations. This is due to the lack o f  an easily 
identifiable macroscopic picture pertaining this class 
of  phenomena. While this may remain to be the case 
for one-particle transfer reactions we would like to ad- 
vance in this paper a simple prescription for two- 
particle transfer reactions, based in the analogy 
between pairing vibrations and the more familiar sur- 
face density oscillations (cf. e.g. ref. [3] and references 
therein). 

In a heavy ion collision a nucleus is exposed to the 
presence of  a reservoir of  nucleons (i.e. the other part- 
ner in the collision). Much in the same way as the rela- 
tive motion in inelastic processes provides the source 
of  excitation energy we may here consider that the 
nucleus in question may absorb from this reservoir 
pairs of  nucleons as it sets into motion pairing vibra- 
tions. The word "absorb" must, however, be taken in 
a general sense. While nuclei in their ground state can 
only take away energy from the relative motion in a 
process of  inelastic excitation, it is in the nature o f  the 
phenomenon we discuss here that the nucleus can 
either pick up nucleon pairs or divest itself from them. 

One may a priori expect that conservation of  nucle- 
on number requires a careful matching of  the transfer 
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processes between projectiles and target. We shall 
nevertheless consider the reaction partner as a passive 
reservoir and focus our attention in the process in 
which collective pair vibrations are set into motion in 
the target. As we shall see later, the implementation of 
a macroscopic picture requires the relaxation of the 
number of nucleons as a discrete, conserved quantity. 

Assuming the nuclear density to be saturated, the 
acquisition (or loss) of extra nucleons is achieved by 
changing the nuclear volume which, in turn, implies a 
displacement of the nuclear surface. This argument 
provides a simple way to relate the pair transition den- 
sity with the radial dependence of the density. In fact, 
if we use AA (i.e. the change in nucleon number) as a 
plausible candidate for a macroscopic pairing variable, 
the transition density for pair transfer is given by 

ApP = (ap/aA) AA, (1) 

where 

ap/aA ~-  (0.4/A 2/3) ap/ar. (2) 

This result represents a deviation from the simple 
model which considers the pair density to be constant 
over the nuclear volume. We note, however, that this 
choice is not essential to the arguments presented here. 

Formula (2) paves the way to construct macroscop- 
ic pair-transfer cross sections. In fact one can, as a first 
approximation, use the formalism for inelastic excita- 
tions. With the normalization (1) the transition densi- 

Table 1 
Reactions analysed with the method described in the text. 
Ela b and Q are the bombarding energy in the laboratory and 
the reaction Q-value respectively, expressed in MeV. The 
extracted values of 13P and the reference number for the cor- 
responding experimental data are also given. 

Reaction Ela b Q t3P Reference 

144Nd(12C, 14C)142Nd 78 -0.82 5.4 [4] 

142Nd(180, 160)144Nd 98 1.71 5.3 [5] 

64Ni(1SO, 160)66Ni 50 2.90 9.7 [6] 

64Ni(180, 16 O)66Ni 57 2.90 9.7 [6] 

ties for pair and density modes scale in such a way that 
the corresponding deformation parameters are related 
by 

/~P = 3A/3 v . (3) 

Examples of angular distributions obtained following 
this prescription are shown in fig. 1 for the reactions 
144Nd(12C, 14C)142Nd, 142Nd(180, 160)142Nd and 
64Ni(180, 160)66Ni. Reaction information and the 
resulting/3P values are given in table 1. 

The extraction of the values of/3P listed in table 1 
relies in the assumption that the data shown in fig. 1 
contains information pertinent to the excitation of a 
target mode. In principle the experimental data does 
not distinguish between the collective pair excitation 
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Fig. 1. Differential e ross section as a function of scattering angle for the reactions 144Nd(12C, 14C)142Nd, 142Nd(180, 160)144Nd 

64 18 16 66 and Ni( O, O) Ni. The bombarding energies are indicated in the corresponding frames. 
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for either partner and, in this sense, it would perhaps 
be better to consider normal ~ superfluid systems. 
Moreover, the ideal data to analyse should be inclusive 
in the projectile excitations. One can to a certain ex- 
tent justify the procedure followed above if the pair 
mode of the projectile is much stiffer than the one in 
the target. In all cases we have checked that the fre- 
quencies of the projectile modes are considerably 
larger; although this is not a sufficient condition to 
ignore projectile excitation it gives confidence in the 
assumed interpretation. Additional support for this 
ansatz is given by the fact that two reactions involving 
Nd lead to comparable values ofl3P. 

Associated with the change in the density (1) there 
will be a modification of the central potential which 
defines the motion of the nucleons. This provides, as 
usual, the key to relate the macroscopic picture with 
single-particle excitations [7]. Exploiting the fact that 
the range of the nuclear forces is small as compared 
with the nuclear radius one can relate the variation of 
the potential with that of the local density and get 

6 V = • AA F ( r ) ,  (4) 

where F(r)  should be interpreted as a local pair field. 
The introduction of the coupling constant K allows us 
to set the normalization of the field F. Following stan- 
dard practice we choose the deformation scale so that 

AA = (F) ,  (5) 

where the expectation value o f f  is taken in the densi- 
ty deformed by &A. 

Sustained collective motion in the pair degree of 
freedom occurs when the change in the potential 6 V 
gives rise to excitations which reproduce the change 
8pP as given in (1). This self-consistent requirement is 
given by 

K = (0.16A -4/3) f(av/ar)(ap/ar)r 2 d r .  (6) 

p + + 
Pap = aaa# + a(~aa , (7) 

and the transition density 6oP(r) is the analogue of the 
standard transition density 

6pV(r) = ~ [ (2 /+  1)/4n] 1 /2 (Xph  + Yph)Rp(r)Rh(r), 
ph (8) 

that is, 

b0P(r) = ~ [(2j + 1)/4n]l/2(Xss + Yss )Rs(r )Rs(r ) ,  
ss (9) 

(cf. e.g. ref. [7]). It is noted that eq. (7) defines a 
generalized density operator that conserves the num- 
ber of particles only as an average. This is precisely 
what is required by an oscillation in the number of 
particles which is described by a macroscopic variable 
such as AA. 

The macroscopic picture of pair transfer described 
here implicitly assumes that the excitation of a pair 
mode in the target is fed by a superposition of all kind 
of two-particle, two-hole states in the projectile and 
vice versa. This, in turn, allows us to introduce the 
effective one-body field which induces the process. To 
which degree this picture is supported by the existence 
of a sum rule for this sort of transitions remains an open 
question. The extent to which microscopic calculations 
are able to reproduce the macroscopically extracted 
values of  the deformation parameters/3P should also 
be investigated. Notice, however, that the obtained 
quantities appear to have the right order of magnitude. 
For example, calculated transition densities for inelas- 
tic excitation [8] and for two particles outside 2°8pb 
[9] scale roughly by a factor of five to ten. This corre- 
sponds approximately to the two orders of magnitude 
that typically separate the values of measured cross 
sections for inelastic and two-particle transfer pro- 
cesses. Under these conditions/~P ~ 3A × 10 -2 ~ a 
few units. 

The expression (6) can be easily calculated. Using 
Fermi functions with standard parameters a mono- 
tonically decreasing function of A is obtained. In par- 
ticular, the coupling constant for 208pb turns out to 
be K --~ 0.07 MeV. In this field approximation the 
microscopic description of the mode can be carried 
out with an RPA-like formalism in which the operator 

V _ + p ~  - ac~a ~ is replaced by 
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