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Abstract: An explicit formula is obtained for the imaginary inelastic transition form factor which 

accounts for second-order excitation processes. The transfer of nucleons back and forth between 

projectile and target is found to be the leading higher-order effect. This result and the close 

connection which is obtained between the imaginary form factor and the absorptive part of the 

optical potential explains the main features of the macroscopic prescription commonly used in data 

analyses. 

1. Introduction 

In this work we examine the nature of the effective coupling interaction for 
heavy-ion inelastic scattering. Our main interest here is to obtain a better under- 
standing of the imaginary part of this interaction and to provide a means for 
calculating it microscopically. While microscopic calculations have been successful 
in constructing the real part of the form factors [see e.g. ref. ‘)] no comparable effort 
has been devoted to identifying the origin or to estimating the magnitude of the 
imaginary component. In this sense we consider the subject covered in this paper as 
a natural extension of the developments reported in ref. ‘). We nohe that the complex 
character of the effective coupling is essential to obtain a satisfactory account of the 
observed inelastic cross sections in terms of DWBA calculations. The familiar 
macroscopic prescription which relates the imaginary inelastic coupling interaction 
to the derivative of the elastic absorption potential has been extensively used in data 
analyses. As we shall see, it is possible to recover the main physical features of the 
conventional procedure but only by identifying higher-order transfer reactions as the 
main source of the imaginary coupling. 
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We shall study in detail transitions involving two single-particle states of the 
target nucleus. The results of this analysis apply directly to the description of 
inelastic excitations in odd systems. They can also be elaborated further to construct 
the effective coupling interactions for collective surface modes in the case of even 
nuclei. In sect. 2 we use semiclassical theory to obtain an explicit expression for the 
effective interaction for single-particle transitions in terms of one-step inelastic and 
two-step inelastic and transfer processes. The extension of the formalism for 
collective surface modes is also discussed here. The basic structure of the resulting 
form factors is analyzed in sect. 3 while illustrative numerical calculations are given 
in sect. 4. Finally, sect. 5 summarizes our conclusions. 

2. Semiclassical formulation of the effective interaction 

2.1. SINGLE-PARTICLE TRANSITIONS 

Consider a collision between two heavy nuclei where an inelastic excitation 
between two shell-model states (Y -+ #3 occurs in one of the reaction partners due to 
the interaction V. The amplitude for this process is given in first-order semiclassical 
perturbation theory by 

where r(t) is the trajectory of relative motion and fio,, = Ea - E, is the energy 
difference between the final and initial states. The corresponding second-order 
contribution is 

Our strategy is to recast $2 into the same form as $2 and thereby obtain an 
effective first-order interaction which accounts for the second-order processes. 

Notice that in the product space of the two reacting fragments these processes are 
either two-step inelastic transitions within the nucleus which is excited or two-step 
transfer reactions which go back and forth between the collision partners. We will be 
assuming the “no-recoil” approximation so that transfer couplings have the same 
form as inelastic transitions. It should be kept in mind, however, that transfer form 
factors are longer-ranged than the form factors for inelastic excitations. 

To proceed we introduce radial form factors through the multipole expansion 

and use the focal coordinate system ‘) where the z-axis is perpendicular to the plane 
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of the orbit and the x-axis bisects the trajectory. This allows us to write 

Y,,(P(r)) = Yxll(+r,O)eirb(‘). 

We shall also simplify the discussion by considering a backward scattering trajectory 
where #$t) = 0 throughout the motion. This limit is appropriate for investigating the 
radial dependence of the effective interaction. After a straightforward calculation 
one obtains 

where the first and second-order orbital integrals are given by 

Zga(mBu) = (I/tr)l_mmdffh8”(r(r))eiYBa~, 

ZauJqru, w,) = (I/fi’)/_L dr!!;(r(t)) e’oar’ 

’ X 
J 

df’fx’,*( r( r’)) e’“yJ’. 
--oc! 

Notice that Z,, is a purely real number. The real and imaginary parts of Zava can 
be separated using the principal value integral 

(i/~)p/~ (dq,/q) e-“J(‘-f’) -_ -l t>t’ 

--CO +1 t<5’, 

as was done in ref. 2, for second-order Coulomb excitation processes. In this way one 
finds 

ReZayu = ~Z/&flv)Z&+), 

The real and imaginary parts of Zsra gt ‘ve rise to imaginary and real effective form 
factors, respectively, when ZBva is brought to the same form as Zaa. 

To achieve this we follow a line of argument similar to the one used in ref. 3, to 
locahze the imaginary part of the optical potential. We assume that r(t) can be 
approximated by a parabolic trajectory around the distance of closest approach, 

r(t) = r, + &)t”, 

and that the radial form factors can be parametrized by decaying exponentials, 

ffa(r(t)) =fp(r,)exp[ -?ot2/2asa] . 
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We thus obtain 
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and $,.a becomes proportional to the product f!J rs)fzT( rO). By applying the same 
reasoning we can make the identity 

~~~(~~)~~~(~~) 

= lrn dtj’/h”,‘( r)fXY,“( r) eiUfl*‘/mexp[ $$/2Fa] , 
-CC 

where 5 = ~,+z~,J(a~, + aJ. In this way we obtain 

IPYa = (1,/2h’)/_L dfj@zf eiU@/2a( aSv + u,,)/i;, 

+(Vv)P/” (W’q)exp 
Uy@ya - 9hQBr 2 aye + a/3y 

--oo %a + aa, ) Ii 
2& * 

Notice how the last factor in braces depends only on the difference tiyaaya - aBvaa,. 
Using this result we finally obtain the following expression for the imaginary part 

of the effective single-particle transition form factor: 

Xff~W.fif~(~)[(a~Y+ aYaV2~2%]1’2 

i 

t 
xexp - 

*yaa ya - %YaSY )” 

2i’,(a,, + ayu) 1 . 
The corresponding correction to the real form factor is obtained by changing the 
sign of this expression and replacing the exponential factor by the principal integral 
in the preceding equation. These expressions will be evaluated in sect. 4 using form 
factors for single-particle inelastic excitation and single-particle transfer reactions. 

2.2. EXTENSION TO COLLECTIVE SURFACE MODES 

At this point we have derived in detail the expressions for the effective interaction 
coupling for a transition between two shell-model states a + p. Thus the results 
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apply directly to the case of inelastic excitation of a system with a nucleon outside a 
closed shell 3 such as *09Pb. If we consider the closed-shell nucleus itself at the level of 
the independent-particle model, the excited states are given by particle-hole config- 
urations. The generalization for this kind of processes is straightforward, as the 
matrix elements connecting (I p) + ( p’)) and ((0) + 1 p( p’)-‘)) are related to each 
other by a simple multiplicative factor. 

To extend further to the excitation of collective surface modes in closed-shell 
nuclei we have to incorporate the effect of the residual interactions. Their presence 
in the nucleus is responsible for creating a new set of elementary modes of 
excitation. Within the RPA formalism these states are expressed as a linear super- 
position of particle-hole excitations. This transformation establishes the basis for 
performing microscopic calculations of the form factors. It was used to construct the 
real part of the first-order form factor in ref. ‘). One could calculate the correspond- 
ing second-order contribution for each particle-hole component using the formulae 
obtained above. However one should expect in the case of collective excitations that 
the summation over the many components will average out the part which comes 
from inelastic transitions. Second-order particle-hole transitions can not interfere 
with a one-phonon excitation in the limit of purely harmonic vibrations. It may be 
noted that when the vibrational model is taken to all orders in the sudden limit4), 
the range of the resulting imaginary form factor is too short to account for the 
empirically inferred values. 

Retaining only intermediate transitions associated with particle transfer has an 
interesting practical advantage. The formalism used in ref. ‘) can then be generalized 
to produce the imaginary part of the form factors simply by allowing the basic 
building block for single-particle transitions to acquire a complex character. This 
originates from the second-order transfer terms which can be calculated using the 
expressions developed in subsect. 2.1. Some examples of these complex kernels will 
be shown in sect. 4. 

3. The structure of the effective interaction 

Several interesting features of the effective interaction can be deduced from the 
structure of the formulae obtained in sect. 2. In order to bring them out clearly it is 
convenient to neglect angular momentum couplings and use a more condensed 
notation. We thus consider an analogue problem where the coupling interaction 
depends only on the radial distance: 
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Following the discussion in subsect. 2.1 we have 

Q#= (-i/~)Vg,(~~)~e-‘*uz/2, 

~G=(-l/k2)Cya,(TO)~~*(~~)ly(WBy,0yn), 
Y 

~,(wsu,w,,) =Im dtet(-z’/20Z)+iWa~~‘l’ dt’e[‘-“‘2/2”:)+~~~~~‘l~ 
--QI --oo 

Here we have defined u2 = a/P,,. We have also taken equal decay lengths for the 
intermediate interactions. Notice that wau + aya = w. Defining the effective coupling 

by 

:,/- (dq,/q) e[-(2~+0,-~~,)20:/41. 
-CO 

It can be seen from these results that at large distances, where the matrix elements 
are determined by the tails of the single-particle wave functions, each intermediate 
transition adds constructively to build up the imaginary part of the coupling. The 
imaginary form factor therefore gives a measure of the number of indirect transi- 
tions leading to the final state. The energy-dependent factor in W,, favors the 
contribution from states lying half-way between the initial and final states (CO,= = 

U@r= 2 ‘w). Notice that for a uniform dist~bution of the products l&l?, the 
summation over intermediate states makes W,, independent of the total excitation 
energy. Empirical data analyses have always used imaginary form factors which are 
independent of the excitation energy but this point has not been investigated 
critically. 

The energy-dependent factor in the correction to the real coupling AVaa is an 
antisymmetric function of the difference wra - wau, being negative for wvcl > osu and 
positive for wra < tisr. Thus the states in the inte~ediate-energy range which can 
contribute strongly to WBn contribute little to Al&. The sum over the inte~ediate 
states causes AV,, to vanish for a uniform distribution of coupling strengths. This 
condition, however, is unlikely to occur in actual cases. It may be noted that 
empirical analyses have not isolated a correction to the real form factor. 

It is interesting to note that within the present model the imaginary part of the 
optical potential for elastic scattering3) is just given by 

@&Jr)= - Cy,,(~)v,(r)~~e-~~a’~. 
Y 
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Clearly IV,, and Wa, have a similar structure, especially when the final excited state 

lies close to the ground state. The main difference is in the number of terms which 
contribute. The imaginary potential counts all the channels which couple to the 
ground state while W,, selects from these the ones which also couple to the excited 
state /3. For instance, projectile excitation contributes to W,, but not to Wpn when @ 
is an excited state of the target. Thus the ratio WB_/ Wm, will be less than one unless 
there are special cases where I$, B I&. This ratio should be a constant close to one 
at large distances where transfer reactions determine the behaviour of the absorp- 
tion 3). Empirical analyses support this conclusion. 

The usual macroscopic prescription presupposes that the imaginary coupling 
interaction is proportional to the absorptive part of the optical potential at large 
distances. Such analyses also often fix the diffuseness of the imaginary form factor 
to be similar to that of the real coupling. According to the formulae above this can 
be explained by the fact that the product I&Vu0 for two transfer reactions decays 
like an inelastic excitation interaction. This will be illustrated explicitly in the next 
section. 

As a final related point we note that if the real and imaginary interactions 
Vsa, Was do have the same shape then we can expect that the phase of the nuclear 
excitation amplitude should be independent of the excitation energy. It would be 
interesting to see if this point can be checked by comparing Coulomb-nuclear 
interference patterns for low-lying quadrupole excitations to those of high-lying 
giant quadrupole resonances. 

4. Numerical calculations 

4.1. SINGLE-PARTICLE ~~ITA~ONS 

In this section we present numerical calculations for some illustrative cases. We 
consider first of all the collision of I60 + 209Pb and excite the valence neutron in the 

2g 9,2 orbital to the neighboring li1i,2 state. We then take into account all 
the possible two-step inelastic transitions among the valence orbitals of 209Pb and 
the two-step transfer reactions via the vaIence orbitals of 170 to obtain the imaginary 
form factor. Note that this restricted space does not allow for core-polarization 
effects. The single-partible states which define the space for these calculations are 
shown in fig. 1. They are generated from typical binding potentials. The correspond- 
ing radial wave functions are used to calculate the microscopic inelastic and transfer 
form factors, as discussed in detail in refs. 1*3). 

The direct transition 2g,,, --+ li11,2 involves orbital angular momentum transfers 
of h = 2,4,6,8,10. The corresponding radial form factors are plotted in fig. 2. They 
all have similar magnitudes and shapes over the distances considered. To summarize 
this info~ation we fit exponentials to the tails of these form factors and refer the 
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Fig. 1. Neutron particle orbitals outside the closed shells corresponding to ‘O*Pb and lbO. 

i0” 

14 
r (fm) 

16 18 

Fig. 2. Direct inelastic excitation form factors for the different multipolarities in the transition 
‘*Pb@g,/, )( 160,‘60’)209pb(lii1/2). 
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magnitudes to a common radius R, = 1.2( Ai/’ + A\/‘) = 10.13 fm so that 

373 

fx(r) + F,exp[ -(r - Ro)/u] . 
We shall also use such parametrized form factors to construct the imaginary 
coupling. The values of F, and a for the 2g9,* + li11,2 transition followed by those 
for all of the 2g,,, + nQ and nlj --) li11,2 transitions within the 209Pb level scheme of 

TABLET 

Strength and diffuseness parameters of single-particle inelastic excitation 
form factors for *09 Pb(16 0, l6 0’) 

Transition [2”] ii 

%9/2 + lb,2 

289/2 + li5,2 

k/2 + W,, 

3&p + h/2 

%9,2 + a31/2 

%7/2 -+ lill12 

%9/2 -4s1/2 

$2 + k/2 

%,2+ W/2 

10 - 7.6 0.76 
8 7.2 0.75 
6 -6.8 0.75 
4 5.2 0.75 
2 -2.8 0.74 

11 2.0 0.76 
9 -4.3 0.76 
7 7.4 0.75 
5 - 10.4 0.75 
3 14.4 0.74 

13 1.2 0.74 
11 -2.2 0.73 
9 3.0 0.73 
7 - 3.6 0.72 
5 3.7 0.71 
3 - 2.5 0.71 
6 - 25.6 0.84 
4 33.7 0.84 
2 - 37.3 0.84 
8 14.4 0.82 
6 - 9.8 0.81 
4 6.5 0.81 
8 24.2 0.83 
6 - 16.8 0.83 
4 12.2 0.82 
2 -5.5 0.82 
8 5.2 0.80 
6 - 8.6 0.79 
4 11.0 0.79 
2 - 12.7 0.78 
4 76.2 0.87 
6 - 14.9 0.84 
6 - 53.3 0.87 
4 27.3 0.86 
6 - 10.4 0.84 
4 16.4 0.83 
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2gs, (20gPb)+ld5/2( I601 _! 

Id3 - 
IO 12 14 16 18 

r (fm) 

Fig. 3. Single-particle transfer form factors for the different multipolarities in the reaction 

209w2g9,* )( 160,170{ld5,2))208Pb. 

TABLE 2 

Strength and diffuseness parameters of single-particle transfer form factors 
for 209Pb(160,‘70) and 208Pb(170,160) 

Transition x 

%9/z + lds,z 6 - 3.0 1.47 
4 0.6 1.68 
2 - 0.2 1.88 

ld,,2 -) lil,D 8 5.4 1.40 
6 -0.2 1.65 
4 0.1 2.25 

k9/2 -) 2%/2 4 - 2.3 1.67 
2~1~2 -+ lh 6 2.3 1.70 
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fig. 1 are collected in table 1. The average diffuseness for these inelastic transitions is 
a = 0.75 fm. 

Transfer reaction form factors connecting the *09Pb(2g,,,) and 170(ld5,2) states 
are shown in fig. 3. Here the shapes for the different multipolarities are similar but 
the magnitudes increase with increasing angular momentum transfer. Notice the 
slower rate of decay as compared to the inelastic excitation form factors shown in 
fig. 2. The exponential parametrizations for all of the transfer form factors which 
contribute to the process *09Pb(2g,,,) --) “O( nlj) + 209Pb(li,,,2) are collected in 
table 2. Notice that the strength parameters are smaller than those for the single-par- 
ticle excitations in table 1 but that the diffuseness values are about twice as large. 

Using the results in tables 1 and 2 we construct the effective imaginary form 
factors for the 2g9,* + lilr,2 transition according to the formula given at the end of 
subsect. 2.1. For these calculations we used a value of Y,, obtained with a head-on 
Coulomb trajectory for 160 + *‘*Pb at a center-of-mass energy of 100 MeV. The 

I4 

r (fml 

I6 I8 

Fig. 4. Imaginary form factor for the 2ogPb(2g,,2)( 160 160’)209Pb(li,1,,) k = 6 transition (dashed , 

curve) calculated from the two-step inelastic transitions of table 1 and the two-step transfer reactions of 
table 2. The corresponding contributions are shown separately. The solid curve is the direct real form 

factor. 
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results for the h = 6 transfer is plotted in fig. 4. The contributions from the two-step 
inelastic and two-step transfer reactions are also shown separately and the real form 
factor for the direct excitation is given again for comparison. 

These calculations clearly show how the transfer reactions dominate the imaginary 
form factor at large distances. Notice that the slope of the imaginary two-step 
transfer form factor is close to that of the direct real form factor. The contribution 
from inelastic transitions has a steeper slope but becomes strong only at smaller 
distances thus causing a shape change in the imaginary form factor. At large 
distances, r 2 15 fm, the ratio of the imaginary to the real form factor is approxi- 
mately equal to 0.1. 

These results are encouraging. A typical empirical ratio of imaginary to real form 
factors is about 0.2-0.5. On the other hand, this ratio has not been particularly well 
determined and our calculations are for a rather specialized problem. For instance, 
we would expect a relatively smaller contribution from inelastic excitation processes 
in the types of collective excitations which are usually analyzed. 

208Pb ‘“0 

-1.90 
: 22::: 

- 2.75 
- 3.19 

3d s/t 
4~112 

2g?f2 

3d s/2 
I j ‘5f2 -3.10 2S’/2 

- 4.57 

- 4.75 

-3.97 Id%2 
Ii11/2 

293/2 

-12.0 

-12.3 

3P )/2 

3p3tz 

2f(r,2 

I i W2 

2f1/2 

I hSf2 

Fig. 5. Neutron particle and hole orbit& around the closed shells corresponding to *“Pb and 160. 
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4.2. PARTICLE-HOLE EXCITATIONS 

Eventually one would like to calculate imaginary form factors for collective 
excitations using RPA wave functions. At the present stage we have studied some 
typical particle-hole components of such wave functions which would occur in the 
160 + 208Pb collision (see fig. 5). As we have mentioned, exciting particle-hole states 
is essentially equivalent to making single-particle excitations. However there is a 
physical difference in that the energies of the particle-hole states are usually larger. 
We also present the correction to the real form factor in this case. As we consider 
these particle-hole configurations to be components of collective excitations we only 
allow for two-step transfer processes in the calculations which follow. 

We have first considered the neutron particle-hole configuration (2g9,2, (3p,,,)-‘) 
coupled to angular momentum X = 3 (fig. 5). This is the strongest component in the 
RPA wave function for the low-lying 208Pb(3-) state. The direct excitation form 
factor, the imaginary form factor resulting from the two-step transfers via 170, and 

16’ - 
IO 

I I I 

- Real 
----- Imoglnory 

~ Twostep real 

x.3 

I I I 
I2 ‘- I6 14 

t (fm) 

Fig. 6. Microscopic’form factors for the particle-hole excitation *08Pb(‘60,‘60’)“8Pb(2g9,~(3p~,~)-1; 

X = 3). Indicated are the direct real form factor and the effective real and imaginary form factors 

calculated from two-step transfer reactions via the Id,,, and 2s,,, states of “0. 
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- Real 
lcj3 - ------ Imaginary 

- Two-step real 

x=3 

16’ 
IO 12 14 I6 18 

r (fm) 

Fig. 7. Same as fig. 6 but for the particle-hole excitation zosPb(‘60,‘60’)Z0*Pb(3d,,,(2f5,2)-’; X = 3). 

the corresponding second-order ~nt~bution to the real form factor are shown in fig. 
6. The excitation energy in this case is 4.7 MeV, whereas it was only 0.2 MeV in the 
example above. Nevertheless the ratio of real to imaginary form factors (0.1 at 
r = 15 fm) is similar to the previous calculation. 

It is seen that the second-order correction to the real form factor is as large as the 
imaginary form factor. This is because the energies of the intermediate states do not 
lie at about half the excitation energy. The (positive) excitation energies of the first 
transfer reaction are larger than the (negative) energies of the second step resulting 
in a destructive contribution (see sect. 3). 

We have repeated these calculations for the (3d,,,,(2f,,,)-I; X = 3) configuration 
which has a larger excitation energy (7 MeV). As shown in fig. 7, similar results are 
obtained. In particular the ratio of the imaginary to real form factors is practically 
the same. We have also obtained similar results when coupling the configurations to 
x=5. 

In an RPA calculation the excitation ~p~tude of the low-lying collective state is 
built coherently from such individual particle-hole contributions. The present calcu- 
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lations indicate that the ratio of the real to imaginary coupling strengths for such 
collective excitations is more or less established already at the particle-hole excita- 
tion level. 

5. Conclusions 

In this work we have derived an explicit expression for the effective first-order 
inelastic excitation form factor which takes into account second-order inelastic and 
transfer reaction processes. It is seen that at large distances each second-order 
process adds constructively to the imaginary part of the form factor. The inelastic 
excitations give rise to relatively short-ranged imaginary form factors and are 
expected to make small ~nt~butions for collective excitations. In any case the 
transfer reactions should govern the long-range part of the imaginary form factor. 

The microscopic expressions show how the main features of the usual macroscopic 
prescription can be understood. The imaginary coupling interaction should be 
approximately proportional to and of the same order of magnitude as the imaginary 
part of the optical potential in the tail region. The empirical diffuseness of the 
macroscopic imaginary form factor is explained by the fact that the product of two 
transfer reaction form factors decays like an inelastic excitation form factor. 

The calculations carried out for specific single-particle excitations illustrate how 
the two-step transfer contributions dominate the imaginary form factor at large 
distances. They also give a reasonable order of magnitude for the ratio of imaginary 
to real form factors. It is interesting that the second-order contribution to the real 
form factor and the imaginary part have comparable strength; given the established 
formal analogy, a similar relation is to be expected between the imaginary compo- 
nent of the optical potential and the second-order cont~bution to the real part 5). 
The results are found to be insensitive to the total excitation energy and total 
angular momentum transfer of the reactions studied. We are therefore encouraged 
that the widely used empirical prescription for the imaginary form factor can be 
understood in microscopic terms. 

It is a pleasure to thank A. Winther for helpful discussions. 
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