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Abstract. A model 1'2) for the absorptive part of the optical potential for heavy-ion
scattering will be reviewed. It will be shown how, in these reactions, the absorption is
dominated by the excitation of the nuclear surface degrees of freedom like inelastic scattering
to collective states and one-nucleon transfer-reactions. It will also be discussed how useful
this microscopic model of absorption is in providing a starting point for the selfconsistent
description of grazing collisions. As examples the scattering of 180 on several targets and
at several bombarding energies will be shown.

1. INTRODUCTION

The optical potential is one of the most useful theoretical tools for the analysis
of grazing reactions among heavy ions. It is used to construct the wave functions of
relative motion and it is usually inferred by fitting elastic scattering data.

Expanding the wave function of relative motion in partial waves, the elastic
angular distribution can be written as:
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where k = \/2uFE /i? is the wave number and 4 the scattering angle. The S-matrix
element S; is related to the total phase shift d;,

S¢ — 62':6' v (1)
It is convenient to write the total phase shift
o =287 + 8] (2)

as a sum of the Coulomb and Nuclear components. In WKB approximation the
nuclear phase shift can be directly related to the ion-ion potential. In fact in the
approximation of a weak potential we can write %),
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where the time integral has to be performed along the classical trajectory 7 (¢).
Since the total reaction cross-section is different from zero, the phase shifts must
be complex numbers, the imaginary part describing the loss of flux in the elastic
channel due to the other reaction channels. This, in accordance with the above
formula, can easily be obtained allowing the potential to be a complex function,

UN(r) = UN(r) +iW(r). (4)

The imaginary part of the phase shift is thus simply given by,

o0

U e s W(r(t))dt (5)
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and the probability Py for remaining in the elastic channel for the given partial wave
lis,
9 [T
Fo= e:cp{—}—— W(r(t))dt} ; (6)
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From the systematic analysis of elastic-scattering data one has learnt that these
potentials are quite well described by a local function of r of Woods-Saxon shape.
Its parameters cannot, however, be unambiguously determined since the elastic-
scattering data are sensitive only to the tail of the potential. Nevertheless one knows
that the real part is energy independent and presents a smooth variation from system
to system. The imaginary part, reflecting the number of open reaction channels, is
instead energy dependent and has large variations from system to system.

The real part of the optical potential has been related succesfully to the ground-
state densities of the two interacting nuclei and to the nucleon-nucleon interaction
through a double-folding model. Since the imaginary part of the optical potential has
to describe the depopulation of the entrance channel, a folding model is inadequate
for its description. This has to be done taking into account the structure of the two
interacting nuclei and of those that can be reached in a transfer process.

It is possible to distinguish 1) two major mechanisms contribuiting to the imagi-
nary potential, a volume term W, due to the mean free path of the nucleons in nuclear
matter, and a surface part

We = Wine + Wirans (7)

due to the additional contribution of inelastic and transfer channels. The volume
component has been studied by solving the Bethe-Goldstone equation for two nuclear
matter systems in relative motion?) or by using complex energy-functionals 5). The
imaginary potentials so calculated are short ranged since the surface effects, like the
excitation of the collective modes, are not included in such calculations. On the other
hand one expects that in heavy-ion reactions the absorption is mainly concentrated
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on the surface of the two ions because all final channels, including fusion, can hardly
be reached except via channels excited during the approach of the nuclear surfaces.
Candidates for the associated processes are inelastic excitations of surface vibrations
and transfer of individual nucleons. Note that these processes are responsible for the
large energy loss encountered in the deep-inelastic reactions.

2. THE MODEL

To illustrate how the reaction channels are related to the absorptive part of
the optical potential we will consider the simple case of a low-frequency monopole
vibration. This case, although very simple, contains all the steps one has to take in
the specification of an equivalent optical potential and the generalisation to actual
situations is straightforward.

For a monopole vibration, the surface of the nucleus, e. g. the target A, can be

parametrized as, .
Ra(a) = Ro(1 + a/V4m) (8)

where R, is the equilibrium radius and o the deformation parameter. Since the
frequency of the mode is small we can apply the sudden approximation %) and consider
the scattering in the deformed potential corresponding to a given deformation a. In
this case the S-matrix element (1) will be a function of o with the phase shift (3),
given by

P i
f(e) = —= Ula, r(t))dt 9
P R
where the nuclear potential is parametrized as usual,
— R
Ula,r) = —erxp{—-r-a—AM)} . (10)
The elastic S-matrix element is thus
-+co
S =<0|S(a)]0>= f fo(a)Si(a)da . (11)
— 00

Here fo(a) represents the probability to have a given deformation o in the ground
state | 0 > of the vibrator,

C!2
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where
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is the zero-point amplitude of the mode.
The matrix element (11) can be evaluated by expanding the phase shift §;(a) up
to second order in @. One obtains,

Se o~ ezp{m'[é; —+ z(< a2 %) ]} > (13)

Thus the coupling of the relative motion to the monopole mode of the target generates
a complex elastic phase shift §; with the imaginary part

N a6
Im8, = (< a > %‘-) (14)

describing the flux absorbed from the elastic channel in to the inelastic excitation
of the monopole mode. From the comparison of this result with (5) we get that
the imaginary part of the "equivalent” optical potential has to satisfy the following

+ o0 2 +o0
N W(r(t))dtzui_;’.ﬁ__)__( f_ g ng)dt) . (15)

In order to take into account the effect of the finite frequency of the mode it
is convenient to solve the above problem in the semiclassical approximation. In this
approximation, valid in the limit where the wavelength of relative motion is very
small, the interaction responsible for the excitation of the mode is time dependent
as the two ions move on the classical trajectory 7 (¢). The population of the nuclear
state is described by a set of coupled differential equations in time for the amplitude.
For harmonic vibrations this set of coupled equations can be solved explicitly to give
for the probability to have N phonons

condition,

2N
B | a(-l-;;)l o—la(+o0)|? (16)

The amplitude a(+o0) is
<a> [T®sU(r)
10 —_ 00 6&

with the potential U(r) given by (10). In particular the probability to remain in the
elastic channel is given by

a(+o0) = g* (17)

<a>? >2 L 8U(r) it gy |2} 18)
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From the comparison of (18) with (6) we get for the imaginary part of the optical
potential the condition,
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that coincides with (15) in the sudden approximation.

It is from this relation, or equivalently from (15), that we are able to extract
an expression for W(r). As it stands, this formula is inadequate to specify W(r).
For each [ we only know the integral of W. So to be useful this relation has to
be supplemented with additional hypotheses. An attractive one is suggested by the
empirical observation that most of the elastic-scattering angular-distributions can be
described by an /-independent local potential.

This additional constraint is enforced on (15) by observing that, due to the
exponential decay of the formfactor, the main contribution to the integral on the
right-hand side comes from a small region around the turning point r, of the classical
trajectory. This fact allows us to use a parabolic approximation for the classical
trajectory and write

.
r=ro+ -2-rgt2 , (20)

where 7 is the acceleration at the turning point ro. With this approximation equation
(15) is transformed into an integral equation related to a Weyl transform?). This
integral equation can be solved approximately!) to give

ma {OU o
Wi} e =i, 20 20 4 52 21
znel(r) h_g:r,o( 6?‘) g ( )

with 2 g2 y

< a>
0% = _————Oexp e (22)
4 e
T o

representing the zero-point fluctuation amplitude in the nuclear radius weighted by
the adiabatic cut-off function that takes into account the finite frequency of the mode.
The parameter a is the diffuseness of the nuclear potential (¢ = 0.6/m). In (21) the
subscript inel has been added to remind us that this expression holds only for inelastic
channels. With this result we can conclude that the scattering in the field U with the
coupling to the monopole mode of the target is equivalent to the potential scattering
in the field U + iW with W given by (21).

The generalization of the above result to other vibrational degrees of freedom
besides the monopole can be done quite easily in the semiclassical approximation o
The final result coincides with (21) but now the fluctuation in the sum of the nuclear

radii is given by
o\ + 1 [ Aw§ iwfd

= 3 B T + SR o ) (23)

where the adiabatic cut-off function g also accounts for the contribution from the
different yx components of the modes.
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The particle-transfer degrees of freedom are very important in the evolution of
the reaction between heavy ions both in the quasi-elastic and deep-inelastic regime.
In our description of the absorption !) the particle- transfer degrees of freedom can
be incorporated substituting in (21) the inelastic formfactor +/4mo(8U/dr) with the
one-particle transfer formfactor fy(r),

Wirane = 2 “1‘;(:,;; 1){(2 + DU(a1)*Vi(ay | £09(r) |2 }g(x Q) (29)

where the summation has to be extended over all one-particle transitions between
projectile and target. The single-particle levels connected by the transition are
labelled by ay = (ny, {1, /1), with n, indicating the number of nodes, while /; and j;
are the orbital and total angular momenta. The quantity a;, is the diffuseness of the
formfactor (a;, =~ 1.2fm) associated with the reactions connecting the single-particle
states a; and ay. The parameters U 2 and V2 are the spectroscopic factors. Thus,
V2 gives the probability that a given orbital is occupied and U2 = (1 — V?) is the
corresponding probability that the orbital is empty. The adiabatic cutoff function
g(\, Q) weighs the probability with which the different transfer channels contribute,
at a given bombarding energy, to Wirans.

The two mechanisms contributing to W in (21) and (24) are both of exponential
shape in the tail region. The inelastic contribution is short-ranged with a decay-length
a ~ 0.3fm while the transfer contribution is longer-ranged with a ~ 0.6 fm. This
implies that in most cases transfer reactions dominate the absorption.

In the discussion of the inelastic component of W we have left out the Coulomb
interaction. Due to its long range (~ 1/r**1), the parabolic approximation used
above cannot be applied. Fortunately, at low bombarding energies, the Coulomb
interaction can be neglected in most projectile and target combinations. This is
not the case for the rotational degrees of freedom. They lead to a much larger
probability to remain in the elastic channel than equation (18) would predict®). The
transition amplitude a{+4o0) displays an oscillatory behaviour as a function of the
initial angular momentum and does not lead to a simple parametrization of W(r).
The rotational degrees of freedom should therefore be treated explicitly with coupled-
channel calculations.

3. APPLICATIONS

We have shown that the imaginary part of the optical potential W(r) is related
to the square of the formfactors entering in a DWBA analysis of grazing collisions
(inelastic scattering and one-particle transfer reactions). Thus the elastic scattering
and the grazing collisions have to be described simultaneously in a selfconsistent way,



Absorptive potentials 93

and the deformation parameters and the spectroscopic factors used in the caleulation
of W(r) have to be the ones obtained from the analysis of the data.

3.1. The 180 488 Sr reaction.

The reaction 180 438 Sr has been studied in great detail. The elastic-scattering
angular distribution, the inelastic scattering to the low-lying states of *3Sr, and
the one-proton stripping- reactions, have been measured®?) at several bombarding

energies.
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Fig. 1. A) Ratio of elastic to Ruther ford angular distributions for the reaction

180 188 Sy gt different bombarding energies. The datapoints are from ref. ®°).
B) Differential cross sections for inelastic scattering at a bombarding energy of
52 MeV. The deformation parameters used are indicated. The datapoints are from

ref. °).
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In order to evaluate the component of the imaginary potential coming from
the mass-transfer degrees of freedom we need the one-particle transfer formfactors
connecting the different single-particle states in target and projectile. To get these
formfactors an experimental set of single-particle energies have been used for the two
nuclei. The corresponding single-particle wave-functions were obtained by utilizing
a standard Woods-Saxon potential (ro = 1.25fm, ¢ = 0.65fm) with the strength
parameter V adjusted to fit the experimental binding energies. Using unity spectro-
scopic factors the imaginary potentials of Table I have been obtained for the different
bombarding energies. The parameters listed in the Table correspond to a Woods-
Saxon best fit to our calculated points. For the component coming from the inelastic
degrees of freedom the experimental information on the excited states of projectile
and target has been used. In the last column of Table I is shown the constant W7, ,,
that multiplies the square of the inelastic formfactor 8U /dr (cfr. eq. (21)).

Table I. The absorptive potential for the reaction of 180 on 33Sr. The parameters
corresponding to a Woods-Sazon best fit to our calculated points are given for
various bombarding energies.

ELab W ro aw Wha
(MeV) (MeV) (fm)  (fm) (fm*MeV—1)
48 —21.30 1.23 0.53 —0.026
52 —23.37 1.23 0.53 —0.031
56 —28.80 1.23 0.52 —0.034
59 —34.70 1.23 0.52 —0.036

In Fig. 1a are shown, for the bombarding energies indicated, the elastic-scattering
angular-distributions (ratio to Rutherford). These angular distributions were ob-
tained from an optical-model calculation!!) with the imaginary potentials of Table 1
and with the double-folding real potential of Ref. 10).

The corresponding angular distributions for the inelastic excitation of the low-
lying states in %3Sr are shown in Fig. 1b. The deformation parameters correspond
to the ones used in the evaluation of Wj,e;. These calculations where performed in
the DWBA with the standard prescription for the inelastic formfactor, i.e.

finel(r) = anpt = '+‘ ﬂ

ar ar
The use of an imaginary formfactor is consistent with our description of the absorp-
tion, in fact it can be shown!?) that this part of the off-diagonal coupling-interaction
is related to a two-step transfer from the target to the projectile and back to the

target.
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Fig. 2. Differential cross sections for one-proton stripping in the reaction of
160 488 87 at two bombarding energies and for two single-particle transitions. The
curves correspond to full-recoil calculations. The spectroscopic factors have been

assumed to be unity. The datapoints are from ref. ).

For two of the bombarding energies indicated in Fig. 1a the one-proton strip-
ping reaction to the ground state and to the first excited state of 3°Y have been
calculated'®). These full-recoil calculations were performed utilyzing the code ONEFF
and DWIRI'®). The angular distributions obtained are shown in Fig. 2 along with the
datapoints. In agreement with the calculation of W, 4, the spectroscopic factors have
been assumed to be unity.

3.2. The 180 428 Si reaction.
Complete angular distributions for the reaction 160 4-2% S have been obtained’®)
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for a large variety of energies ranging from slightly below to well above the Coulomb
barrier. For E. . < 35MeV the angular distributions show a strong backward rise
up to a few percent of the Rutherford cross section (backward rise phenomenon).

Table II. The absorptive potential for the reaction of 180 on 288i. The parameters
given for two bombarding energies correspond to a Woods-Sazon best fit to our
calculated points.

ELGb Ec.m. W?r ans TU a’W
(MeV)  (MeV) (Mev)  (fm)  (fm)
33 21.1 —0.50 1.08 0.550
36 22.7 —1.60 1.08 0.525

Because 2857 is strongly deformed (82 ~ —0.35), Coulomb excitation plays an
important role in the inelastic excitation of its rotational states, and they have to be
included in the description by a coupled-channels formalism.

%
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Fig. 3. Ezperimental single-particle levels for neutrons and protons in °0 and
28,3097 used in the calculation of the absorptive potential.

In these calculations only Wirans is needed since the other degrees of freedom are
taken into account explicitly . In Fig. 3 are shown the "experimental” energies of
the single-particle orbitals of 10 and 2%S¢ entering in the calculation of Wirans.
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To obtain the single-particle wave functions needed to construct the formfactors, a
spherical Woods-Saxon potential with parameters ro = 1.25fm and a = 0.65fm was
used. The depth was adjusted to fit the binding energies. Unity spectroscopic factors
were used. The obtained parameters for the Woods-Saxon best fit to our calculated
points are summarized in Table IL.

The calculations!®) of the angular distributions were carried out in a coupled-
channels formalism using for the real part of the optical potential the one of ref. 1?)
in its Woods-Saxon parametrization and for the imaginary part the one of Table II.
For the Coulomb component the standard prescription has been used with a small
Coulomb radius (roc = 0.8fm). Both the real and the imaginary potentials were
deformed according to the shape of 2854 (2 = —0.38). The 2+,47 and the 6%
members of the rotational band of 2257 were included in the calculation with all the
corresponding reorientation terms.

28 16 16 28
si( o0, 0) si

! I | |

E =21.1 MeV
- cm
1.0 oo Ty,

01

do(8)/dog(8)

Fig. 4. The ratio of elastic to Ruther ford angular distributions for the reaction
1860 428 S5 at two bombarding energies. In a) is also shown the differential cross
section for the inelastic excitation of the 21 state in *Si. The curves correspond
to coupled-channels calculations. The data points are from ref. '°).

In Fig. 4 are shown the calculated angular distributions in comparison with
the experimental data for the bombarding energies Ec.m. = 21.1 MeV and E, ;. =
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922.7 MeV. For the lower bombarding energy the angular distribution for the ex-
citation of the 271 state in 2557 is also shown. In these calculations a very short-
range volume-absorption with Wy = —2.5MeV, R = 5fm and a = 0.2fm was
added to the surface imaginary-potential of Table II. This is the only ingredient
whose parameters have been adjusted to the data. From the short-range nature
of this potential one may argue that its origin can be traced to massive transfers,
for example a-transfer. A comparable fit to the experimental points could also be
obtained!”) using a shallower real potential and with a different volume absorption
(Wy = —26.5MeV, R = 5.56fm and a = 0.2fm). In this last calculation the
pronounced oscillations in the back hemisphere result from the coupling between the
elastic channel and the rotational states in ?5Si. For both calculations it is essential
to have a very weak absorption in the surface region so as to be sensitive to the real
potential inside the Coulomb barrier (cf. also Ref. 1%)).

3.3. The 180 4282930 §j egcitation functions.

Tt has been found'®) that the rise in the back hemisphere of the elastic angular
distribution of 10 on Si isotopes is a decreasing function of the number of
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Fig. 5. Absorptive potential arising from particle-trans fer processes for the reac-
tions (a) of 180 on Si isotopes and (b) of O isotopes on 28Si at the indicated
bombarding energy.

neutrons in the target. For example at F.,, = 25MeV the cross section of 2557 is
89% of Rutherford while it is only 2% in the case of 2°S7 and only the 0.8% in the
case of 257, This finding suggests that the optical potential becomes less transparent
as neutrons are added to the 2257 core.
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From the previous calculation we have learnt that the transparence of a potential
is governed by the particle-transfer degrees of freedom. It is thus interesting to
evaluate the imaginary potential Wi,,,s for the three Si7 isotopes. Following the
prescription outlined in the previous examples using the single-particle levels of Fig.
3 the imaginary potentials of Fig. 5a have been obtained!?) at the bombarding energy
Eqap = 33MeV. As can be seen, a substantial increase in the absorption is obtained
by adding neutrons to the target thus explaining the decrease of the cross section at
§ = 180°. Figure 5b displays the imaginary potential for the scattering of 17O on
2897 in comparison with the one of 0.

4. CONCLUSIONS

We have shown that the absorptive potential in heavy-ion reactions is dominated
by the inelastic excitation and by the one-particle transfer reaction-channels. The
first mechanism gives rise to an imaginary potential with a diffusivity a = 0.3 fm
while the second one gives rise to a potential with a diffusivity ¢ = 0.6 fm. In
applications we have shown how this interpretation of W(r) can provide a way to
extract selfconsistently, from the analysis of the data, nuclear-structure information
like deformation parameters and spectroscopic factors. This model also gives insight
in the use of transparent potentials for the study of the backward-rise phenomenon.
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