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Alwstraet: A simple parametnzataon of the form factors needed to describe low-recoil one-parUcle transfer 
reacttons m heavy-xon colhs~ons is presented The parameters entenng into the calculations can be 
directly read from figures 

As an apphcatlon we have used these form factors to calculate the imaginary part of the ran-ion 
potentml due to transfer 

1. Introduction 

The form factors describing lnelastac scattenng and one-partxcle transfer processes 
are the budding blocks of most descriptions of heavy-ion reactions. It is therefore 
convenient to have access to stmple pararnetrlzatlons of these quantities, at least in 
the surface regaon wtuch is important for grazing reactions. 

A compact expression, based on the collective model, already exists for the 
inelastic scattering form factors [of. ref. l) and references therein]. In the present 
paper we work out a simple yet accurate parametrization of single-particle transfer 
form factors m the low-recoil hmit based on the approximation introduced by Buttle 
and Goldfarb2).  In sect. 2 the relevant expressions for the single-particle form 
factors are presented. It is also shown how these quantities are used in first-order 
perturbaUon theory. In sect. 3 the elements needed m the evaluation of the transfer 
form factors are displayed in graplucal form and a few examples are worked out. 
The range of validity of the parametrlzalaon is also discussed. In sect. 4 the form 
factors are used m the calculation of the tmaglnary part of the optical potential due 
to transfer processes for a number of reactions The conclusions are presented m 
sect. 5. 

* Work parually supported by the Spanish Conuslon Asesora Clentlfica y T6cmca 
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2. Single-particle form factors 

2 1 FIRST-ORDER AMPLITUDES 

The single-particle form factors enter mto the calculaUon of both the quantal and 
the senuclasslcal transmon amplitudes. For simplicity we show this exphcltly for the 
case of first-order perturbation theory and for the case of the stripping reaction 

a(b + 1) + A -* b + B(A + 1). (1) 

The formahsm can also be used, with simple modifications, to descnbe pick-up 
processes. 

The differential cross section for one-partmle transfer reacuons is 

( d o )  k~ rnaAmbB[(2i a+ 1)(2ia+ 1)]_ 1 ~ IT/~I2, (2) 
d-~ . = k .  (21rh2) 2 M^M, 

MBMb 

where maA and mbB are the reduced masses in entrance and exit channels, 
respectively, k~ and k~ being the corresponding wave numbers of relative motion. 
The T-matrix can be written with obxaous notation [cf. e g ref 3)] as 

Ta,,= 4¢r k~k, E (IAMAJMII.MB) 
AJJ' 

t~MM' 

× (IbMbg'M'[IaMa)(Al.tgM[g'M')t~(~gg'#), (3) 

in terms of the spherical tensors t/~ Perfornung a partial-wave expansion one finds 
in the distorted-wave Born approximation (DWBA) 

tl~,()~JJ'#)=4*r E ,/--/aexp[l(fl/ + fl/a)] 
ld, 

motmfl 

× Yt~,,,~(k/~)Yt*m~(k,~)(l~,m,~h#ll#mt~>I/j,~()~JJ'). (4) 

The quantity I#~ is given by 

Ii~( hJJ') = (2l # + 1)-l'2fdrxt~(r)<lallfgJ'llZ~),X,o(r), (5) 

where the functions X t are the radial wave functions. 
The reduced matnx element appeanng in eq. (5) has been worked out in ref. 3). In 

the following we use for the variable r the average of the relative coordinates In 
entrance (a)  and exit channel (fl), 1.e. 

r = ½(r~ + r/~). (6) 

For bombarding energies below about 10 MeV/nucleon one may use the approxi- 
mate expression 

(l[311f~J'lll~) = 2~+ 1 (l~OhOllaO)f~g'( K,,K±r). (7) 
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In the "prior" representation one finds 

_ e,O(t¢,,),//-2-~--+ 1 6(J, al)6 (J, a~.) f~'°(K"K±r)'Jg' - V 4*r 

× C( I^al ; I. )C( lba  ; ) ) 
with 4) 
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(8) 

f~'~i(~)(r)=J4~r3/22~--fl + 1 ( - 1 )  J¢+x+l/2 

× t11 11 ½ >oydydzR~)(r~A)R~)(rlb)(U~A(r~A)-- <U~A>) 

x [r,x(o^, 1 (9) 

where 

J =  (4mamb/(ma + mb)(m A + mB))3=(mamb/ ( (ma  + mA)m0)) 3. 

In (8) we have neglected the transverse recoil effect associated with K± and have 
extracted the mare part of the longitudinal recoil effect assocmted with K,  through 
the phase 4) 

( mA+mB ) 
6(K, , )=K, ,  R A 2(m~+rnA)r  . (10) 

1 II The quantity hK,  = ~(m,t/mo)(p, +ply*) ts the average value of the linear momen- 
tum of the transferred partxcle m entrance and exit channel (cf. eq. (16) below). The 
exponenual factor m (8) may be incorporated 3) in the argument of the dastorted 
waves, by separating the operator exp06 ) into the product of two shift operators, 
leading to 

I~ .=  (21t~ + 1) -1/2 

x fxte( 2ma ma+m---~r--~-~moRA md )(l~llfJJ'lll~ > 
( 2mu md ) 

XX,. ma + m-------~br +~-~moRA , (11) 

where the reduced matrix element is again given by eqs. (7) and (8) leaving out the 
phase factor exp0~). 

The radices a I - ( h i l l  j l )  and a~ -  (n'llQ~) label the quantum numbers of the 
orbitals in which the transferred particle moves m target and projectile, respectively, 
U1A being the corresponding shell-model potential associated with the target nucleus 
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A. The quanti ty (U1A) IS gdven by 

(U1A) = V N ( r ) -  UN(rbA) 

+ UC(r)  - UCA(rbA), (12) 

where U N and U c are the nuclear and Coulomb part of the ion-ion potential. 

The spectroscopic amphtudes appearing in (8) are the reduced matrix elements of 
the creation operator afm~(al) of a nucleon in the orbital alml, i.e. 

( IBllaf, ( al)lllA) 
C(IA01; IB) = (13) 

1 

In the senuclassical descrlpuon of heavy-ion reactions the first-order amphtude 
describing a transfer process of the type (1) is given by [cf. ref. 4)] 

aNS i t -  ~ ) t ,,-.l~, - + = - E <IAMAJM[IBMB) 
JJ'h 

MM'g 

× (IbMbg'M' l laMa)() tggMlg 'M') Ix~, ,  (14) 

where 

1 f ~  d t e x p { , ( A E a d +  V t~ ( t )+ghep( t ) ) / h }  Ix" = D)°(0'  ½qr' It) h -oo 

×f~ff(k, , ( t ) ,  k± ( t) ,  r ( t ) )  (15) 

The functxon f~s; in the low-recod approxamatlon is gtven by (8) The quantmes k ,  

and k± are the components of the local momentum 

m d .  k = --~--r(t), (16) 

where m d xs the mass of the transferred nucleon. The average posmon (cf eq. (6)) 
and velocity r of relaUve motion are both functions of ume. The coordinate system 
used in working out (14) has the z-axis perpendicular to the plane of the trajectory, 
pointing m the direction of the angular momentum of relative motion The x-axis is 
directed towards the projectde at the point of closest approach and the D-function, 
including the factor exp(tg~(t))  m (15) thus describes the rotation from this system 
to the intrinsic system with z-axas along r 

The formulae written above are also valid for pick-up reactions making the 
substitutions a ~ A and b ~ B and multiplying the resulting expressions by ( -  1) x÷~. 

One may prove [cf. ref 1)] that in the short-wavelength hmlt there exists a simple 
relation between the quantities (11) and (15), namely 

I#,~( XJJ ' )  = ¼hv( - 1)~Ix. ,  (17) 

with g = lt~ - l~ and v = / ' ( ~ ) .  
The nuclear structure information appearing in (3) and (14) is contained in the 

spectroscopic amphtudes C and in the form factor (9). In what follows we present a 



J M Quesada et al / One-particle transfer 385 

simple parametrizatmn of flus last quantity, winch may, as we have seen, be used for 
either quantal or classical calculatmns 

2 2 SCHEMATIC PARAMETRIZATION 

In grazing collision the transfer process takes place at distances larger than the 
sum of the radn. For neutron transfer where the potential (UIA) lS small with 
respect t o  U I A ( r l A ) ,  only the tad of the wave function Ral(rlb ) lS then important. 
The radial wave funcUon R (b) c a n  thus be approximated by 

R(b)l'r ~----= kq(ra{rlb-------~) (18) 
.; ~ tbJ-- N< k q ( i < R b )  , 

where we u s e  R b = 1.25A 1/3 fm and 

x,,; = V - ~  B~; , (19) 

and where k l ls a spherical Hankel function of order l. 
We have also introduced the quantity 

2ma 2~/~-- 7 
ffa{ = ma + mb tea{ ~ Ba{ , (20) 

where M 1s the nucleon mass. 
Through the deflmtlon (18) it turns out that the quantity N< winch is a measure 

of the value of the radial wave function at the radius R b is essentially independent 
of the binding energy B< 

Malong use of the approximation (18) one obtains 2) 

2 m .  4 ~ ( 2 j l + l ) a ( l l + l ~ + X ,  even) f~ 'a;(r)  = m a + m  b 

G(G~r) 
X ( - 1) '1-1/2+,{(j½j; __ ½l~0)/~a 1 kq(r , , iRb)  

xG( f f . a l ,  Ka{ ) (21) 

where 

G(,%, "a;) = fr?A drlA R (a~)(rlA) UIA ( rlA ) 

) ×t  6 2m B ~.frXA , (22) 

and where tl is the spherical Bessel function of imaginary argument. If the binding 
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energies of the neutron in the two nuclei fulfil the relation 

~al m A + m B t%x na 1 t~a~, 

one may evaluate this integral exphcltly and find 2) 

f~a~(r )  = j~r3/2 2~-fl + 1 8 ( l  I + l; + X, even) 

, h 2 
× ( _ 1)sl +1/2+,, <jxl j ;  _ ½lhO ) 2M~ 

Na, Na~ 
× k x (~ r ) ,  

with 

(23) 

(24) 

4mare B )3. 
J =  ( m a + m b ) ( m A + m B )  

In the calculation of Na~ use was made of a slnular asymptotic relation (18) for the 
wave functmn RtA)(r~ describing the motion of the partmle around the core A 

a 1 x / 

Although the expression (24) was derived under the assumption (23) it turns out to 
be rather accurate also when the value of the wave numbers are different. In fact, 
numerical investigations (cf sect. 3) show that the integral (22) is rather stable with 
respect to changes m the binding energy of the single-particle states ax when this 

change is produced by changing the depth of the potential. 
The expressions (21) and (24) can also be used for the transfer of a proton 

provided that the effective value of the wave number is used 2), i.e. 

~erf_ / 2 M I B  Zbe2 / rB(b ) )  
- V 7 + 

(25) 

The quantity B~ is the binding energy of the transferred proton an the projectile. 

For  rB(t ) we use 

rB(t) = 1.07(A1,/3 + 1 ) +  2 72 fm (26) 

It is noted that the form factors (21) and (24) have been calculated in the prior 
representation (cf. eq (9)) The post representation is obtained by malong the 

- - ffefr ___, ffctf for protons, respectively. replacements Kal ~ Ka~ for neutrons and ~ al 
TO improve the radial dependence of the funcUon (24) at distances close to the 

grazang distance one can make the substitution 

kx(ff(Rb + RA)) (27) 
kx(x r )  --* 1 + kx(ff(R b + R h ) ) / k x ( ~ r  ) " 



J M Quesada et al / One-partwle transfer 387 

It ts noted that for KR > },(}, + 1) so that k x can be approximated by kx(x ) = 
(~r/2x)e  -x, the form factor defined by eqs. (24) and (27) can be wntten as 

f~W¢(r)-~ $ 2J1~-~8(11 + l~ + X, even) J 

>( ( -- 1) Ja + l /2 + l~ ( J1½J; -- ½[~O) NalNa~ 

( RbRA 1 ) ( 2 8 )  
× Rb + RA 1 + ( r / ( R  b + R A ) ) e x p ( g ( r - ( R  b + RA))) 

where 

S = 70 MeV- fm 2. (28a) 

The function f then has the same structure as the proxtrmty form of the ran-ion 
potenUalS). As one may read off from figs. 3 and 4 one may, for orders of 
magnitude estimates, use 

1 
N~ -- ~- [(l + 7)(n - 1) + 2(l + 1)] fm -3/2 (29) 

both for neutrons and protons. Tlus formula breaks down for loosely bound 
neutrons of lugh principal quantum number (n). 

3. Numerical calculations and range of validity 

The resulting expression for the one-nucleon stripping (NS) form factor is (m 
MeV) 

( f ~ a f ( o ,  r ) ) ( N S ) =  j~r3/2 2 ~  1 + 1 8( l  1 + l; + )~, even) 

× ( - 1)v,+'/2+'~(J1½S; _ ½[hO)NaN, i 

+ 20 )< 
1 + k ( (Rb + ' 

where 

( ffa; (neutron) 

~.eff ( p r o t o n ) )  

x~l (neutron) } 

~¢ff (proton) 
t a l  

prior representation 

post representatmn, 

(30) 

(31) 
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Fig 1 Normalization constants N.~ for proton single-particle states as defined in eq (18) times the mass 
number  A, as a function of A The quantum numbers a 1 ~- (nllzj 1) associated with each bound orbital in 
each mass range label the different curves The calculation of the radial single-particle wave functions 
were carned out making use of a Saxon-Woods potentzal with parameters r 0 = 1 25 fm and a = 0 65 fm 
The depth was adjusted for each level individually to reproduce the binding energy obtained by a global 
fitting and reported in refs 8,9) The calculation of N.,t was done m two steps In the first the 
normalization Nat appearing in the relation R(aA)(rlA) = malk/l(t¢eaflfrlA ) Was calculated setting the 
variable rlA winch measures the distance of the particle 1 from the center of mass of nucleus A equal to 
the Coulomb radius of the A + 1 system (cf eq (26)) Makang use of tins normahzatlon constant one 

calculates N~ = malkl(~eaflfRA), where R A = 1 25A 1/3 fm The deflmtion of Eeffol IS w e n  in eq (25) 

The normahzatlon constants are measured m fm -3/2 while the wave number 
should be in fm-1. The values of the radn used in (30) are to be calculated through 
the expression R, = 1 25A1,/3 fm (t = a,A) 

The quantities N and x eft are displayed in figs 1 -4  for both protons and neutrons 
as a function of the mass number A and for all the single-particle orbltals 

corresponding to bound states. 
Making use of these funcUons the form factor (30) has been calculated for a 

variety of target-projectile combinations and compared with the results provaded by 
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Fzg 2 Normahzat lon constant N=L for neutron single-particle states as defined m eq (18) hines the mass 
number .4 as a function of .4 The calcttlahon of N= follows the same steps as described m the captmn to 
fig 1 but m flus case rlA was set equal to 1 2.4:/3 fm + 7 fm Once Nal :s obtmned the quantzty N=I is 

calculated through the relatton N.~ = Nalkt(EalRA) w t h  R A = 1 25.4 :/3 

the "exact" expression (9). The results are displayed m fig. 5, and show that the 
approximate expression (30) is quite accurate for typical situations. 

The observed chscrepancies between the predictions of eqs. (9) and (30) are 
smaller than 20-30% at relatwe distances of the order of the grazang distance. This is 
true not only for the ahgned transferred angular momentum leading to the largest 
values of ffl,:a{(r) but also for smaller ~ allowed values. 

The largest discrepancies are connected with situations where the difference 
• elf, are largest and the final orbital m the transfer between Ka] and Ka{ (or K effal and ~a{ ) 

process has a small A-value. Consistent with this result the approxamation (30) is 
better for proton than for neutron transfer, as the Coulomb potential provades an 
effective barrier. 

As mentioned in sect. 2 the validity of the expression (30) is based on the stablhty 
of the integral (22) to changes in the binding energy of the single-particle state a:. 



390 

'E 

,¢, 

10 

0 5  

0 
0 

ld5/2 

J M Quesada et al / One-partwle transfer 
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A 

Fig 3 Effective wave number as a functaon of the mass number A associated with the bound 
single-particle proton states Eq (25) has been used with binding energies calculated from a global fit 89) 
of single-particle levels The charge number Z b appeanng in tins equation was calculated from the mass 

number making use of the relation Z = 0 487 A/(1 + A2/3/166) 

We have calculated the range of values K~/r.I for wtuch the ratio 

R (32) 

is u m t y  witban 30%. The calculations were done  for the cases of 160 "q-2°8pb and  

88Sr + 2°sPb, and  for different values of Kal (5 MeV _< Bal < 16 MeV) For  neutrons ,  

the upper  and  lower hnuts  of R are fulfilled for ra,/Xal = 0 15l 1 + 1 35 and  

Xa~/~al = - -0 .15l  1 + 0.60, respectively. The same calculations were done for pro tons  

interchanging Kal and Kal by r effal and  ~ i  eff, respectwely In  this case the cri terion of 

30% stabi l i ty  for the ratio R implies value of B~ spanning  the range 0 - 3 0  MeV 
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4 Wave number as a functton of the mass number A assoctated with the bound smgle-parucle 
neutron states Eq (19) has been used For more detatls cf capuon to fig 3 

4. Calculation of the absorptive potential due to particle transfer 

As an apphcat lon of the above parametnzat lon of the form factors we give 
numerical results for the absorptive potential for a number of reactions and compare 
with the results of  ref. 6) As shown in ref 4) the absorptwe potentials due to transfer 
is proport ional  to the square of the corresponding form factors, 1.e. 

/ air (O 1, a~) 

alalh 

× ( ( 2 J ;  + 1 )UZ(ax lA)Ve(a ; Ia ) l f ;~" i (NS ' ( r ) [ :  

+ 1)V:(alI^)UU(a;Ia)l f f l ,  l";(NP)(r)lZ}. (33) + ( 2 J  1 
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Fig 5 Slngle-partzcle form factors calculated making use of eq (30) and fzgs 1 -4  (dashed curves), m 
comparison with the "exact"  form factor given by eq (9) (continuous curves) The arrow on the ordinate 
mdzcates the value of the sum of the two radn R a + R A where R, = 1 2A 1/3 fm (~ = a,A) The transfer 

takes place as a rule at distances larger than R a + R A 
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Fig 6 Absorptave potential (cf eq (33)) arising from particle transfer processes associated wath the 
different reactaons and bombarding condllaons In (a) and (b) are shown the potentmls associated with the 
sca t tenng of 160 on 28S1, 29S1 and 3°S1 at bombarding energies Ela b = 33 MeV and 54 7 MeV, 
respectwely The results displayed with continuous curves were obtained making use of the approxamated 
form factors gtven m eq (30) In both cases the results indicated by dots, open circles and crosses were 
obtaaned malong use of the "exact"  form factors gwen m eq (9) In (c) the absorptwe potenUal associated 
w~th the reacuon ~70 +2Ss1 a t  E l a  b = 33 MeV ~s shown m comparison Wlth the one assocmted wxth the 
reaction 160 +2Ss1 [cf also ref 10)] It should be noted tha t , for  the latter reaction the assumptions 
under lying the evaluation of the absorptwe potential are not fulfilled since only very few t ransmons  

contribute to the depopulation of the elastic channel 

The form factor f~'al~S)(r) describing stripping reactions coincides with (9), while 
that describing pick-up reactions is obtained from tins making the substitutions 

a ~ A and b ,~ B and changing r ~  - r  (cf. subsect 2.1) The quantity atr(al,  a~) is 
the diffuseness of the transfer form factors. It IS equal to 1/Kal for f(Ns) and to 
1/K,1 for ffNP). These quantities are of the order of 1 2 fm. The acceleration r 0 at 
the distance of closest approach for a grazang trajectory can be estimated through 
the expression r 0 = ( 2 E -  E B ) / ( r B m ~ )  , where the quantity E B is the Coulomb 
barrier. The function gx(Q) winch depends parametrically on the Q-value and on 
the angular momentum X transferred in the reaction, determines the adiabatic 
cut-off [for more details cf. refs. 4,6)]. 

The quantities V2(a l IA )  = 1 - U2(al, IA) and V2(a~, Ia) = 1 - U E ( a ~ ,  Ia) are the 
occupation probabihtles of the orbitals a 1 and a~ in nuclei A and a, respectively. In 
all cases shown below they were given values equal to either 0 or 1. 

In figs. 6 and 7 we compare the potential (33) for a variety of reactions making 
use of the "exact"  form factors (9) as well as the approxamate expression (30) The 
deviations around the grazang distance, indicated by an arrow in the figure, are 
typically of the order of 30%. For the 170 + 28S1 system at E l a  b = 33 MeV the 
difference is found to be considerably larger (50%) due to the small binding in 170. 
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Fig 7 Absorptwe potential associated with the reactions 160 +4°Ca and 160 +2°spb for different 
bombarding energies As m the last hgure, the dots correspond to the "exact" calculations, making use of 

eq (9), and the continuous curves are the results obtmned using the parametnzed form factors 

In spite of these dewations, it is noted that the approximated expression repro- 
duces quite accurately the changes of the absorptive potential with the number of 
nucleons and as a function of the bombarding energy. Such changes are expected to 
play an important role in the description of the different degrees of transparency 
shown by the system i60 +28'29'3°S1 as exadenced by the backwards rise of the 
corresponding elastic cross sections 7) Also shown in fig 7 are the absorptive 
potentials associated with the reactions 160 +4°Ca and x60 +2°spb for different 
bombarding energies 

Fig 8 shows the approximated and "exact" results for the S6Kr + a°spb system at 
Ela b = 695 MeV. Because of the many orbitals implied in the transfer processes 
(>  500 transitions), the calculation using the "exact" form factors is rather time 
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Ftg 8 The absorpUve potential associated with the reacuon 86Kr +2°8pb  at  Ela b = 695 MeV For the 
slgmficance of the signatures cf fig 7 

consuming. The parametrlzed expression of the form factors 1S therefore m tl~s case 
especially useful. 

It  is noted that the absorptive potential shown in fig. 8 is about a factor of 2 
smaller than that quoted in ref. 11). 

5.  C o n c l u s i o n s  

A parametrization has been obtained for the low-recoil form factors describing 
one-parUcle transfer processes between heavy :ons. The resulting functions are found 
to reproduce the "exact" form factor to better than 30% down to d/stances of the 
order of the sum of the two radn 

One can envasage a variety of situations where It can be convement to have access 
to a simple yet accurate parametrlzation of the form factors. For example, to 
descnbe transfer processes in deep-melasuc reactions and m the calculation of the 
absorptive potential  associated with reacUons between very heavy ions. In both cases 
a very large number  of single-particle transfer channels paruclpate m the process, 
and a detailed calculation of each form factor seems out of place. 

Discussions with F. Barranco are gratefully acknowledged. 
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