Nuclear Physics Ad42 (1985) 381-396
©North-Holland Publishing Company

A SIMPLE PARAMETRIZATION OF ONE-PARTICLE TRANSFER
FORM FACTORS FOR HEAVY-ION REACTIONS

JM QUESADA*
The Niels Bohr Institute, Unwersity of Copenhagen, DK-2100 Copenhagen @, Denmark
G POLLAROLO
Istituto di Fisica Teorica and INFN Sez di Torino, Unwersita di Torino, 10125 Torno, Italy
and
R A BROGLIA and A WINTHER
The Niels Bohr Institute, Umwersity of Copenhagen, DK-2100 Copenhagen @, Denmark

Received 25 January 1985

Abstract: A simple parametrization of the form factors needed to describe low-recoil one-particle transfer
reactions 1n heavy-1on collisions 1s presented The parameters entering into the calculations can be
directly read from figures

As an apphcation we have used these form factors to calculate the imaginary part of the 1on-1on
potential due to transfer

1. Introduction

The form factors describing inelastic scattering and one-particle transfer processes
are the bullding blocks of most descriptions of heavy-1on reactions. It is therefore
convenient to have access to sumple parametrizations of these quantities, at least n
the surface region which is important for grazing reactions.

A compact expression, based on the collective model, already exists for the
melastic scattening form factors [cf. ref.!) and references therein]. In the present
paper we work out a simple yet accurate parametrization of single-particle transfer
form factors in the low-recoil limit based on the approximation introduced by Buttle
and Goldfarb?). In sect. 2 the relevant expressions for the single-particle form
factors are presented. It 1s also shown how these quantities are used in first-order
perturbation theory. In sect. 3 the elements needed n the evaluation of the transfer
form factors are displayed in graphical form and a few examples are worked out.
The range of valdity of the parametrization 1s also discussed. In sect. 4 the form
factors are used 1n the calculation of the imaginary part of the optical potential due
to transfer processes for a number of reactions The conclusions are presented 1n
sect. 5.
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2. Single-particle form factors

21 FIRST-ORDER AMPLITUDES

The single-particle form factors enter into the calculation of both the quantal and
the semuclassical transition amplitudes. For simplicity we show this exphcitly for the
case of first-order perturbation theory and for the case of the stripping reaction

alb+1)+A->b+B(A+1). (1)

The formalism can also be used, with simple modifications, to describe pick-up
processes.

The differential cross section for one-particle transfer reactions 1s

do) k, mamyg 1

| =7 =L +1)(2I1,+1 T,.%, 2

(38 )% preel CARRICTARH I @)
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where m,, and m,; are the reduced masses in entrance and exit channels,
respectively, k, and kj bemng the corresponding wave numbers of relative motion.
The T-matrix can be wntten with obvious notation [cf. e g ref *)] as
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in terms of the spherical tensors #5, Performing a partial-wave expansion one finds
m the distorted-wave Born approximation (DWBA)

o AT p) = 4n T ieexpli(B, + B,)]

Ll
m,mg
X ¥y, () Vi (e o) (Lum oMl gmg) Ipo(NJT ). (4)
The quantity I, 1s given by
-172 '
Iﬂa(AJJ’) = (21;9 + 1) ferIB(r)<l,B“f){j “la>rx1a(r) ’ (5)

where the functions x, are the radial wave functions.

The reduced matnx element appearing 1n eq. (5) has been worked out 1n ref.?). In
the following we use for the vanable r the average of the relative coordinates in
entrance (a) and exit channel (), re.

’=%(’a+’p)- (6)

For bombarding energies below about 10 MeV /nucleon one may use the approxi-
mate expression

ll F7 Ny = 21, + 1 {1LONOV0) 5 (K K 7). (7)
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In the “prior” representation one finds

711 - [2A0+1 ,
(KK, r)=e K ypm S(J,al)S(J,al)

X C(Inay; I)C(1naf; 1) f94(r) (8)

with )
f}“lla{(a)(r) - J4ﬂ.3/2‘/2—jl—+-1( _ 1)_]1'+>\+1/2
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X{ 1, ' 1 }f yddeRSz?)(rlA)Rg{))(rlb)(UlA(rlA) - <U1A>)
J1 N 2)7y>0

X [Yll(ﬂA’O)le(ﬁb’O)] A0° (9)
where
J=(4mmy/(m,+m,)(m,+ mB))3 =(m,m,/((m,+ mA)mO))S.

In (8) we have neglected the transverse recoil effect associated with K, and have
extracted the main part of the longitudinal recoil effect associated with K, through
the phase*)

my+mg

a(K,)=K, RA—mf -
a A

(10)
The quantity AK , = 3(my/my) p, + pg) 15 the average value of the hnear momen-
tum of the transferred particle 1n entrance and exat channel (cf. eq. (16) below). The
exponential factor in (8) may be incorporated?) in the argument of the distorted
waves, by separating the operator exp(:0) into the product of two shuft operators,
leading to

La= (2l +1)7"?

XfXIB

XX,

2m, my

r— ORA)<IB”fJJ,”la>

m,+m, 2m

2my, my
ma+mbr+ 2mORA)’ (11)

where the reduced matrix element 1s again given by egs. (7) and (8) leaving out the
phase factor exp(i14).

The indices a, =(n;/,5,) and a{=(n{l{;]) label the quantum numbers of the
orbitals in which the transferred particle moves 1n target and projectile, respectively,
U, , being the corresponding shell-model potential associated with the target nucleus
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A. The quantity (U, , ) 1s given by
(Uia) = Ua(r) = Uga(rya)
+Ua§\(r)_UISA(rbA): (12)
where UN and U are the nuclear and Coulomb part of the 1on-1on potential.

The spectroscopic amplitudes appearing 1n (8) are the reduced matrix elements of
the creation operator a;,, (a;) of a nucleon 1n the orbital a;m;, 1e.

<IB||‘1,T(“1)“IA>
V2Ig+1

In the semiclassical description of heavy-ion reactions the first-order amphtude
describing a transfer process of the type (1) is given by [cf. ref.*)]

ays g(t=+o0)=—1 Y, (I.MJM|IzMy)

JI'A
MM'p

X (T,MyJ M\ LMY\ M|T MY, (14)

C(IAO1; Iy)=

(13)

where

1 00
I, = DX(0, 4, W)Ef_ drexp{1(AEg,t + vga(t) +pho(2)) /R }

X[ k(1) k (1), (1)) (15)
The function /37, in the low-recoil approximation 1s given by (8) The quantities k ,
and k | are the components of the local momentum
m

k=—h—di'(t), (16)

where m 1s the mass of the transferred nucleon. The average position (cf eq. (6))
and velocity r of relative motion are both functions of time. The coordinate system
used i working out (14) has the z-axis perpendicular to the plane of the trajectory,
pomnting in the direction of the angular momentum of relative motion The x-axis 1s
directed towards the projectile at the point of closest approach and the D-function,
including the factor exp(ip¢(2)) i (15) thus describes the rotation from this system
to the intrinsic system with z-axis along r

The formulae wniten above are also valid for pick-up reactions making the
substitutions a <> A and b < B and multiplying the resulting expressions by (— 1) *~.

One may prove [cf. ref 1)] that in the short-wavelength limut there exists a sumple
relation between the quantities (11) and (15), namely

IBa(AJJl) = %hv(—l)"],\#, (17)
with p =1, — 1, and v = #(c0).

The nuclear structure information appearing n (3) and (14) 1s contained 1n the
spectroscopic amphtudes C and m the form factor (9). In what follows we present a
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simple parametrization of this last quantity, which may, as we have seen, be used for
either quantal or classical calculations

22 SCHEMATIC PARAMETRIZATION

In grazing collision the transfer process takes place at distances larger than the
sum of the radu. For neutron transfer where the potential (U,,) 1s small with
respect to Uy,(ry,), only the tail of the wave function R, (7y,) 15 then important.
The radial wave function R® can thus be approximated by

k/;("a;"1b)

R (ry)=Ny—7——,
' lkl{(xa{Rb)

(18)

where we use R, =1.254'3 fm and

2
K ,= mle

a h2 aj

(19)

and where k, 1s a spherical Hankel function of order /.
We have also introduced the quantity

_ 2m 2M
Koy = ma__}_%n_b"a{ = ?Ba{ ) (20)
where M 1s the nucleon mass.

Through the definition (18) 1t turns out that the quantity Na{ which 1s a measure
of the value of the radial wave function at the radius R, 1s essentially independent
of the binding energy B,

Making use of the approximation (18) one obtains?)

, 2m, \? ,
f,(’l“l(r)= m) 4w(2]1+1)8(11+11+)\,even)
’ — k}\(Ea'r)
X (=) V2 = INOYN, — =
21 ki (%, Ryp)
XG(Kal’Ka{) (21)

where
G(Ka17 "a;) =frfAdrlARg?)(rlA)UlA(rlA)

W.za{rm) , (22)

and where i, is the spherical Bessel function of imaginary argument. If the binding
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energies of the neutron in the two nucler fulfil the relation

_ 2my [2M _
K, = "oty Kg = 2 Ba1 =Ka» (23)

one may evaluate this integral exphcitly and find?)

fad(ry=Jdn¥%25,+1 8(11 + 1+ A, even)

124 , h?
X(—l)J i <11%]1_%|>‘0> 2 Mk
NN,
1 ky(kr), (24)

X - -
kl{(KRb)kll(KRA)
with

3
4m, my

- (m,+my)(my+ mg) |

In the calculation of IV,,I use was made of a simular asymptotic relation (18) for the
wave function R{)(r) describing the motion of the particle around the core A

Although the expression (24) was derived under the assumption (23) 1t turns out to
be rather accurate also when the value of the wave numbers are different. In fact,
numerical investigations (cf sect. 3) show that the mntegral (22) 1s rather stable with
respect to changes in the binding energy of the single-particle states a; when this
change 1s produced by changing the depth of the potential.

The expressions (21) and (24) can also be used for the transfer of a proton
provided that the effective value of the wave number 1s used?), Le.

. M
Kai,f= \/?(Ba{+zbe2/r5(b)) (25)

The quantity B, 1s the binding energy of the transferred proton 1n the projectile.
For ry(1) we use

re(1)=1.07( 43+ 1) +2 72 fm (26)

It 1s noted that the form factors (21) and (24) have been calculated in the prior
representation (cf. eq (9)) The post representation 1s obtamed by making the
replacements K, — i, for neutrons and E:j? - Eﬁff for protons, respectively.

To improve the radial dependence of the function (24) at distances close to the

grazing distance one can make the substitution

ky(R(Ry + R,))
1+ ky(%(Ry+ R,))/ky\(kr)

ky(fr) = 27)
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It 1s noted that for kR > A(A +1) so that k, can be approximated by k,(x)=
(7m/2x)e”*, the form factor defined by eqs. (24) and (27) can be written as

f)t‘haf(r) =82, +1 8(11 +I{+ A, even)J
X (=) V2 L~ SN0YN, N,

{RbRA 1 } (28)
Ry+ R, 1+4(r/(Ry+ R,))exp(R(r— (R, + R,)))

where
S =70 MeV - fm?. (28a)
The function f then has the same structure as the proximity form of the 1on-1on

potential®). As one may read off from figs. 3 and 4 one may, for orders of
magnitude estimates, use

N =

L= [+ (= )+ 201+ )] fm =272 (29)

both for neutrons and protons. This formula breaks down for loosely bound
neutrons of high principal quantum number (»).

3. Numerical calculations and range of validity

The resulting expression for the one-nucleon stripping (NS) form factor 1s (1n

MeV)
(fa%(0, r)

)(NS)=J,,3/2 27, +18(1 + 1]+, even)

244 , T
X (=) - NN, N,

ky(R(Ry,+ R,))/k 20
ky(kRy)k,(KR,) 1+ ky(E(R,+ RL))/ky(kr)’

(30)
where

(neutron)

a
_ ;f prior representation
k<l (proton)

1

i
I

K,  (neutron) (31)

a

k<t (proton)

} post representation,
Lol



388 J M Quesada et al / One-particle transfer

T T T 1 ' T T T T l ¥ T T T l T T T T l T T T T | T T T
L protons 3 ]
P
20 |- = 3p;? -
| — 2f5/; |
—_ f7/2

3/2)

>
T
NS
ad= o
S S
| S

! I / 572 7
,§ L 2d3, Thg/, i
- | thny,
] 1972 2py 1
/2
Iz L 183/2 b
7/
< ot 13973 _
o 2p1 11 b
| 11372
281/2 4
281/ .
1d3
| 1ds,, /2 ]
5 - -
P2
- 1p3/2 -
0 R W SRS WY G T S T S DU SR S0V SUNS W SN SU S SU SR RN T SR W S R T S
0 50 100 150 200 250

Fig 1 Normalization constants 17,,1 for proton single-particle states as defined 1n eq (18) times the mass
number A, as a function of A The quantum numbers a; = (n,/, j;) associated with each bound orbital 1n
each mass range label the different curves The calculation of the radial single-particle wave functions
were carnied out making use of a Saxon-Woods potential with parameters r, =125 fm and 4 =065 fm
The depth was adjusted for each level individually to reproduce the binding energy obtained by a global
fitung and reported m refs #°) The calculation of N, was done in two steps In the first the
normalization N, appeanng in the relaon RYM(riz)= N, ki (k5 o) was calculated setung the
vanable r;, which measures the distance of the particle 1 from the center of mass of nucleus A equal to
the Coulomb radius of the A + 1 system (cf eq (26)) Making use of this normalization constant one
calculates N, = N, k,(R<"R ), where R, =1254"/* fm The definition of %5 1s given in eq (25)

The normalization constants are measured in fm~>/? while the wave number &
should be in fm . The values of the radu used in (30) are to be calculated through
the expression R,=1254)7 fm (1 =a,A)

The quantities N and «° are displayed 1n figs 1-4 for both protons and neutrons
as a function of the mass number 4 and for all the single-particle orbatals
corresponding to bound states.

Making use of these functions the form factor (30) has been calculated for a
varniety of target—projectile combmations and compared with the results provided by



J M Quesada et al / One-parncle transfer 389

20

-
I
L l T
h &
2
N
N
N
oL
85 ¥
L »
LR ) N
L 1 1

]
h
E | /2, 7 "‘11/2 ]
© i 2piy, 4
1Z 2p3/2 19775
& - 199/, T
10 |- -
| 572 7
F ~
5 4
- P37, neutrons .
) 1 " 'R R B R M | L4 N | I S S | 1 L P | M
0 50 100 150 200 250

Fig 2 Normalization constant N for neutron smgle particle states as defined 1n eq (18) times the mass

number A, as a function of 4 The calculatlon of N follows the same steps as described 1n the caption to

fig 1 but n this case r,, was set equal to 1 24}/ 'fm+ 7 fm Once N,, 15 obtaned the quantity N, 1s
calculated through the relation N, = N, k,(¥, R,) with R a=125412

the “exact” expression (9). The results are displayed 1n fig. 5, and show that the
approximate expression (30) 1s quite accurate for typical situations.

The observed discrepancies between the predictions of egs. (9) and (30) are
smaller than 20-30% at relative distances of the order of the grazing distance. Thas 1s
true not only for the aligned transferred angular momentum leading to the largest
values of f{1%(r) but also for smaller A allowed values.

The largest discrepancies are connected with situations where the difference
between k, and k, (or k5 and k') are largest and the fial orbutal in the transfer
process has a small )\-value. Consistent with this result the approximation (30) is
better for proton than for neutron transfer, as the Coulomb potential provides an
effective barrier.

As mentioned in sect. 2 the validity of the expression (30) 1s based on the stability
of the integral (22) to changes in the binding energy of the single-particle state a;.
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Fig 3 Effective wave number as a function of the mass number A associated with the bound

single-particle proton states Eq (25) has been used with binding energes calculated from a globat fit?%)

of single-particle levels The charge number Z,, appearning in this equation was calculated from the mass
number making use of the relation Z = 0487 4 /(1 + A% /166)

We have calculated the range of values k, /k,, for which the ratio

G(Kal, K o (32
B G(na{, K g )
1s umty within 30%. The calculations were done for the cases of 1°0 +2%Pb and
88Sr +2%*Pb, and for different values of x,, (5 MeV < B,, <16 MeV) For neutrons,
the upper and lower hmits of R are fulfilled for «,/k, =015/ +135 and
K, /Ky = —0.15/; + 0.60, respecuvely. The same calculations were done for protons
interchanging «, and k. by xS and «:f, respectively In this case the criterion of

30% stability for the ratio R imples value of B, spanning the range 0-30 MeV
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Fig 4 Wave number as a function of the mass number A4 associated with the bound single-particle
neutron states Eq (19) has been used For more details cf caption to fig 3

4. Calculation of the absorptive potential due to particle transfer

As an application of the above parametrization of the form factors we give
numerical results for the absorptive potential for a number of reactions and compare
with the results of ref.®) As shown in ref #) the absorptive potentials due to transfer
18 proportional to the square of the corresponding form factors, 1.e.

a,(a;, af)
1672)ry|h*

(W(r))transf= Z gA(Q)

ayafh

{21+ 1)U (@ L) V(L)1 £ (r) 2

+@p+ DY@ )UH L) 4D ()12 (33)
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Fig 5 Single-particle form factors calculated making use of eq (30) and figs 1-4 (dashed curves), n

companison with the “exact” form factor given by eq (9) (continuous curves) The arrow on the ordinate

indicates the value of the sum of the two radu R, + R, where R, =12A4'? fm (1 =a,A) The transfer
takes place as a rule at distances larger than R, + R,
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Fig 6 Absorptive potential (cf eq (33)) ansing from particle transfer processes associated with the
different reactions and bombarding conditions In (a) and (b) are shown the potentials associated with the
scattering of 'O on 2881, S and *S1 at bombarding energies E, =33 MeV and 547 MeV,
respectively The results displayed with continuous curves were obtained making use of the approximated
form factors given 1n eq (30) In both cases the results indicated by dots, open circles and crosses were
obtained making use of the “exact” form factors given 1n eq (9) In (c) the absorptive potential associated
with the reaction 170 + 2881 at E,,, =33 MeV 1s shown in companson with the one associated with the
reaction 0 +2881 [cf also ref 1)) It should be noted that for the latter reaction the assumptions
underlying the evaluation of the absorptive potential are not fulfilled since only very few transitions
contribute to the depopulation of the elastic channel

The form factor f{1M9(r) describing stripping reactions comncides with (9), while
that describing pick-up reactions is obtained from this making the substitutions
a <> A and b © B and changing r —» —r (cf. subsect 2.1) The quantity a(a;, a}) 1s
the diffuseness of the transfer form factors. It 1s equal to 1 /x4 for f ™9 and to
1/k, for f™P These quantities are of the order of 12 fm. The acceleration 7 at
the dlstance of closest approach for a grazing trajectory can be estimated through
the expression r,=(2E — Eg)/(rgm,s), where the quantity E 1s the Coulomb
barrier. The function g,(Q) which depends parametrically on the Q-value and on
the angular momentum A transferred in the reaction, determines the adiabatic
cut-off [for more details cf. refs. 4%)].

The quantities V*(a,1,)=1— U%(a,, I) and V*(a}, I,)=1— U?*(aj, I,) are the
occupation probabilities of the orbitals 4, and a{ in nuclei A and a, respectively. In
all cases shown below they were given values equal to either 0 or 1.

In figs. 6 and 7 we compare the potential (33) for a variety of reactions making
use of the “exact” form factors (9) as well as the approximate expression (30) The
deviations around the grazing distance, indicated by an arrow in the figure, are
typically of the order of 30%. For the 7O +2S1 system at E,,, =33 MeV the
difference 1s found to be considerably larger (50%) due to the small binding 1n 17O.



394 J M Quesada et al / One-particle transfer

107 ET ' T T T
- \ 180+ 208pp 1 [ 1860, 40Cq |
o E_=88 MeV E=40 MeV

\

s L
Lol
RS M

[

cl ‘e I |

O \ 1E é

[ J L _

|(52§“ 3F —

= 1 F 3

S L J L _
R B R N W S S , .

: ,—r l ]' r § T ]’ T Tl ! T :

- [ 160, 208y 1F 160, 40cq E

z - 4F ) .

P \ ELs1385Mev_| | EL=140MeV _|

3 k E E

i kR E

|o"_ j : \ |

ST

T

) S,
A
/
[ |
I
Lol

r {fm)

Fig 7 Absorptive potential associated with the reactions 0 +%Ca and 0 +2%Pb for different
bombarding energies As in the last figure, the dots correspond to the “exact” calculations, making use of
eq (9), and the continuous curves are the results obtained using the parametrized form factors

In spite of these dewiations, 1t 1s noted that the approximated expression repro-
duces quite accurately the changes of the absorptive potential with the number of
nucleons and as a function of the bombarding energy. Such changes are expected to
play an important role in the description of the different degrees of transparency
shown by the system €O +2829%0G, as evidenced by the backwards mise of the
corresponding elastic cross sections’) Also shown mn fig 7 are the absorptive
potentials associated with the reactions 0 +%Ca and !0 +2%Pb for different
bombarding energies

Fig 8 shows the approximated and “exact” results for the ¥Kr +°*Pb system at
E,,, =695 MeV. Because of the many orbitals implied in the transfer processes
(= 500 transitions), the calculation using the “exact” form factors 1s rather tume
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Fig 8 The absorptive potential associated with the reaction #*Kr +2%Pb at Ej,, = 695 MeV For the
significance of the signatures cf fig 7

consuming. The parametrized expression of the form factors 1s therefore 1n this case
especially useful.

It 1s noted that the absorptive potential shown m fig. 8 1s about a factor of 2
smaller than that quoted m ref.!!),

5. Conclusions

A parametrization has been obtained for the low-recoil form factors describing
one-particle transfer processes between heavy 1ons. The resulting functions are found
to reproduce the “exact” form factor to better than 30% down to distances of the
order of the sum of the two radu

One can envisage a variety of situations where 1t can be convement to have access
to a simple yet accurate parametnization of the form factors. For example, to
describe transfer processes in deep-inelastic reactions and in the calculation of the
absorptive potential associated with reactions between very heavy ions. In both cases
a very large number of single-particle transfer channels participate in the process,
and a detailed calculation of each form factor seems out of place.

Discussions with F. Barranco are gratefully acknowledged.
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