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Abstract: Good agreement with all the available experimental data on 160 + %i scattering and fusion 

in the energy range of E = 21-38 MeV was obtained with a deformed optical potential consistent 

with calculations based on nuclear structure information. 

1. Introduction 

The surprising observation of the anomalous large angle scattering (ALAS) in 

the 160 + ‘*Si system ‘) stimulated numerous investigations of this phenomenon and 

its theoretical interpretations ‘). Although up to the present time our knowledge has 

been substantially enriched, still there is as yet no unique and widely accepted 

understanding of the ALAS, and the subject still attracts considerable attention 3-‘o). 

In this paper we report the results of a comprehensive analysis of low energy 

160 + **Si scattering data directly based on available nuclear structure information. 

To describe the interaction between 160 and ‘*Si nuclei we thus employ a real part 

of the optical potential, which is clearly motivated by previous folding-like calcula- 

tions ‘l). We also take into account one-nucleon transfer processes with a microscopi- 

cally calculated long range imaginary component of the optical potential 12-14). The 

effects of the collective excitation of the deformed target nucleus are taken into 

account explicitly through the coupled channels treatment with a deformation length 

consistent with measured B( E2) values. Because of the small absorption the optical 

potential inside the Coulomb barrier is also important. We introduce here a 

phenomenological imaginary potential for which we are only able to suggest some 

tentative physical explanation. 

Some results on this approach have been published already “-l’). In the present 

paper we discuss the model in some more detail and demonstrate how it can be 
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successfully used to explain all the available experimental data on the 160+28Si 

collisions in the incident energy range of E = 21-38 MeV. Those include many 

angular distributions of the elastic and inelastic scattering just above the Coulomb 

barrier 5,‘8) and the corresponding 180” excitation functions ‘*) as well. Finally we 

successfully apply the model to the ‘60+28Si fusion data 19) above and below the 

Coulomb barrier. 

2. The optical potential 

We describe the interaction between 160 and 28Si nuclei with a deformed optical 

potential. The spherical equivalent of the real part of the potential is assumed to 

have the standard Woods-Saxon shape 

V(r)=-V[l+exp((r-Rv)/av)]-‘, (1) 

with V = 47.36 MeV, Rv = r”(Ai” + A:“), rv = 1.1676 fm and a, = 0.6172 fm. Those 

parameters were calculated from the folding-like model of ref. I’). The two of the 

parameters (V and av) have not been changed in the present calculations. A fine 

tuning of the rv parameter (in order to get proper energy dependence of V(r) 
demanded by the data) is discussed below. 

The imaginary part of the potential was assumed to have the following form 

W(r)= W,(r)+ W,(r). (2) 

Here W,(r) is the long range component of the imaginary part, which takes into 

account the depopulation of the elastic channel due to one-nucleon transfers. It 

was calculated with the experimental one-particle level schemes of the colliding 

nuclei, in the framework of the microscopical model published in refs. 12-14), at 

many incident energies in the energy range of E = 29-42 MeV. For each energy 

value the calculated W,(r) was approximated with a potential of the standard 

Woods-Saxon form at the nuclear surface 

W,(r)=-W’(E)[l+exp ((r-R~,)l+,)l-‘, (3) 

with R, = rW,(Ak’3 + A:“). The values of rw, = 1.08 fm and aw, = 0.55 fm appeared 

to be good enough for all the incident energies considered here. The parameter 

W,(E) was approximated by the following formula 

W’(E)=0.3+0.128(E-~)+0.0145(E-~)2, (4) 

with l? = 33.16 MeV. The formulas (3), (4) provide very good fit to the calculated 

W,(r) in the energy range of E = 29-42 MeV. For higher energies (4) overestimates 

the absorption, but this is not important for the present calculations. For lower 

energies E s 29 MeV we set W,(E) = 0. The component W,(r) is illustrated in fig. 1. 

The second term W,(r) in (2) stands for the short range component of the 

imaginary part. It was assumed to have the standard Wood-Saxon form 

W,(r)=-W,(E)[I+exp ((r-R~,)l~w~)l-‘, (5) 
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Fig. 1. The long range component of the imaginary part of the optical potential. Shown are the 

microscopically calculated values (points) at several incident energies and the Woods-Saxon fit to them 

(solid curves). Inset is shown the energy dependence of the depth W,(E): individual fit at several energies 

(points) and smooth fit (solid curve) defined by the formula (4). 

with the two parameters: R,= 0.85(A~‘3 + A:“) fm and a,, = 0.2 fm, which were 

kept constant in the present calculations. The depth of this potential W,(E) was 

treated as a freely adjustable parameter. Its energy dependence and possible physical 

meaning of W,(r) are discussed below. 

For the Coulomb component of the ion-ion potential we have adopted the 

standard expression with the parabolic approximation in the inner region identified 

with the radius R,= r,(A, “3 + A:‘3) fm. In most cases the elastic scattering angular 

distribution is insensitive to the value of r, because of the large value of the imaginary 

potential. This is clearly not the case for the i60f2*Si where the potential is quite 

transparent. On the other hand it is well known that the Coulomb interaction between 

two extended charge distributions with radii R, and R2 follows the l/r law to 

distances well below R, + R2. In our case we set r, = 1.05 fm and keep this value 

fixed throughout all the calculation. 
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3. The model 

Since in the ‘60+28Si scattering system the target nucleus is well known to be 

strongly deformed, one should treat its collective excitation explicitly in the 

framework of the coupled channels formalism. We assume that the target nucleus 

has a static quadrupole deformation, and that its rotation can be described in the 

framework of the collective rotational model. To take this into account we deform 

the optical potential in the following way 

Rv(0,4) = Q-$‘~+ rvA:‘3[1 +P2Y20(@, $11, (6) 

where p2 is the deformation parameter of 28Si (see below). The same formula is 

also used for the two radii of the imaginary part of the potential. The same 

deformation parameter p2 is used for the calculation of the Coulomb excitation of 

the target. 

Bearing in mind the influence of the deformation on the curvature of the target 

nucleus surface at the point of contact with the projectile we employ the following 

expression for the depth of the real part of the potential “) 

V( 0, 4) = V[ 1 -2A;‘3/(A;‘3 + A;‘3)/32 Yzo( 0, +)] . 

This correction reduces the effect of the deformation by about 15%. 

(7) 

In the present calculations we take into account the first two excited states of the 

target: 2+ (1.78 MeV) and 4+ (4.62 MeV), and assume them to be members of the 

K = 0 rotational band built on the ground state of 28Si. Under this assumption we 

employ the O+-2+-4+ coupling scheme and exact multipole expansion of the deformed 

optical potential to calculate the diagonal distorting potentials and the off-diagonal 

couplings illustrated in fig. 2. The reorientation effects for 2+ and 4+ excited states 

are also included. We discuss the validity of the assumed coupling scheme below. 

The calculations were performed with an appropriately modified version of the 

computer code CHUCK ‘O). 

4. Analysis of the experimental data 

4.1. FIT TO THE SCATTERING DATA AT E =33.16 MeV 

Two sorts of the experimental data are available at the incident energy of E = 

33.16 MeV, which corresponds to the position of the first pronounced peak in the 

experimental 180” elastic scattering excitation function “). Those are the elastic and 

inelastic (2+, 1.78 MeV) scattering angular distributions “), covering the whole 

angular range. 

The two parameters (W,(E) and &) were systematically adjusted to obtain the 

best possible simultaneous fit to the elastic and inelastic scattering data. This ended 

with the following values of the adjusted parameters: W,(E) = 3.6 MeV and /_!I2 = 
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Fig. 2. Exact multipole expansion of the deformed optical potential calculated at E = 33.16 MeV. Shown 

are the monopole, quadrupole and hexadecapole (neglected in the present calculations) components of 

the real and imaginary parts of the potential. 

-0.47. This value of the deformation parameter p2 was fixed and never changed in 

the present calculations. 

It is worth mentioning that there exists a certain ambiguity in the determination 

of those two parameters. For example, one can get fit of the same quality to the 

elastic scattering data with W,(E) = 4.0 MeV and & = -0.41, which is a more 

conventional value of & at the time. But the fit to the inelastic scattering data will 

become worse although still reasonable. There exists also a certain ambiguity between 

the two parameters W,(E) and W,(E). For example, if one sets W,(E) = 0.6 MeV 

(instead of WI = 0.3 MeV as expected from formula (4)) one can easily compensate 

this change by setting W,(E) = 3.1 MeV with the same quality of the fit. 

4.2. ELASTIC AND INELASTIC SCA-ITERING DIFFERENTIAL CROSS SECTIONS 

The fit to the data at E = 33.16 MeV, which was obtained in the previous subsec- 

tion, is shown in figs. 3 and 4 by the solid curves in comparison with the experimental 

data ‘*). We also calculated angular distributions of the elastic and inelastic scattering 

at several incident energies in the energy range of E = 29-38 MeV. First, we used 

the same parameters as described above (for the case of E = 33.16 MeV) for all 

incident energies. The only energy-dependent ingredient of those calculations was 
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Fig. 4. Inelastic (2+, 1.78 MeV) scattering angular distributions for ‘60+28Si system. Notation is the 

same as in fig. 3. 

the depth of the long range component of the imaginary part that follows (cf. eq. 

(4)) from the calculation of W,(E). The results are shown by the dashed curves in 

figs. 3 and 4 in comparison with the data 5,19). One can observe in fig. 3 a rather 

systematic shift of the calculated angular distributions to the left comparing to the 

data at E 133.16 MeV. Note also large discrepancy of the calculated and experi- 

mental elastic scattering cross sections at lower energies. 

We made a smooth adjustment of one parameter, namely the reduced radius rv 

of the real part of the potential, in order to improve the fit to the data. We found 

that it was possible to do it in a very systematic way by assuming the following 
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energy dependence of the radius 

r,=?v[l-O.O0384(E-E)+O.O00433(E-E)*], 

with f” = 1.1676 fm and E = 33.16 MeV. 

(8) 

The results of the calculations with the energy dependent rv are shown in figs. 3 

and 4 by the solid curves. A striking systematic improvement of the fit at all incident 

energies indicates that the energy dependence of the real part of the potential 

observed in the present calculations is clearly demanded by the data. This change 

of the potential does not seem likely to be accounted for by possible experimental 

uncertainties in the determination of the incident energies. The formula (8) is used 

for all of the calculations discussed below. 

It should be observed that the energy dependence of rv is very small indeed. 

Thus in the energy range of E = 29-38 MeV the change of the radius never exceeds 

2%. There was no need in our calculations to change the depth of the short range 

component of the imaginary part but for the lowest three incident energies E = 29.34, 

30.10 and 30.64 MeV, for which we set W2( E) = 2.3, 2.1 and 1.7 MeV respectively 

in order to enhance a little the oscillations of the calculated cross sections at the 

largest angles. But this does not affect the positions of the peaks in the calculated 

angular distributions. We found this change of W,(E) with energy rather consistent 

with what we observed later when calculating the 180” excitation functions and the 

fusion cross section below the Coulomb barrier. 

4.3. 180” EXCITATION FUNCTIONS AND FUSION CROSS SECTION 

Next we calculated the 180” excitation functions for the elastic and inelastic 

(2+, 1.78 MeV) scattering and show the results in fig. 5 in comparison with the 

experimental data ‘*). Bearing in mind the reported experimental procedure we 

averaged our calculated excitation functions over the last 5” in the vicinity of 13 = 180”. 

For the incident energies E 5 29 MeV in these calculations we used the same 

parameters as described above. For lower energies we found it necessary to adjust 

the depth of the short range component of the imaginary part in order to get a 

better fit to the data on the 180” elastic excitation function below the Coulomb 

barrier. Finally we found that in the energy range of E = 21-28 MeV the depth 

W,(E) varies smoothly and becomes W,(E) = 0.5 MeV at E = 21 MeV. The energy 

dependence of W,(E) is illustrated in fig. 6. 

We finally calculated the fusion cross section for the 160 +**Si system in the 

energy range of E = 21-40 MeV. The cross section was defined as follows 

u fus = uabs - U(2+) - a(4+) ) (9) 

where (+& is the standard CC absorption cross section, and a(2+), a(4+) stand for 

the total cross sections of the excitation of the target nucleus into its 2+ and 4+ 

states respectively. In (9) we neglected the contribution from transfer channels which 
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Fig. 5. 180” excitation functions for elastic and inelastic I60 + ‘sSi scattering. The experimental data are 

taken from ref. ‘s). 

is small compared to ufUs [ref. ‘3)]. We show the results in fig. 7 in comparison with 

the experimental data 19). It should be observed that these results were obtained in 

a straightforward way from the same calculations as the angular distributions and 

the excitation functions discussed in the two previous subsections. 

5. Discussion 

In order to achieve a better understanding of the qualitative features of the present 

analysis we calculated the angular distribution of the 160+28Si elastic scattering at 

E = 33.16 MeV within the framework of the pure optical model and show the results 

in fig. 8 by the solid curve. In these calculations the optical potential was defined 
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Fig. 6. The short range component of the imaginary part of the optical potential is shown at several 

incident energies. Inset is shown the energy dependence of its depth W,(E). 

as above (by the formulas (l)-(5)) but the deformation of the target nucleus was 

neglected. We also made decomposition of the elastic scattering amplitude into its 

near- and far-side components (performed with an appropriately modified version 

of the computer code SPI-GENOA *I)) 

f(O) =“&(e)+.&(e) 3 (10) 

and show in fig. 8 the corresponding cross sections (T~,J 13) = If&( 0)j’. Without the 

coupling effects we obtain a rather smooth angular distribution with suppressed 

and shifted oscillations in comparison to those calculated within the coupled 

channels approach. In the whole angular range the cross section is dominated by 

its near-side component, which corresponds to the positive scattering angles. The 

far-side component of the cross section is very small and gives rise to slight 

oscillations in the cross section due to the interference of the two components. 
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Fig. 8. Angular distribution of elastic I60 + “Si scattering at E = 33.16 MeV calculated in the framework 

of the optical model and its near/far-side decomposition. 
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Switching on of the couplings creates a more pronounced oscillatory structure of 

the angular distribution, This can be classically understood by the fact that in the 

coupled motion the projectile may be caught for a while behind the Coulomb 

barrier “). Surface transparency implies a large probability for the system to return 

back to the entrance channel. This point is illustrated by fig. 9 in which we show 

at several incident energies the angular momentum dependence of the magnitude 

of the elastic scattering matrix, obtained from the CC calculations discussed in 

subsect. 4.2. 

We would like to remind here that the real part of the potential (1) is based on 

folding-like calculations which are only valid for the surface region. In the presence 

of surface transparency the results of the calculations are rather sensitive to the 

details of the potential inside the target nucleus. At such small separations one 

might expect a short range repulsion 639*‘o) due to the Pauli principle effects, which 

prevents the colliding nuclei from interpenetration. In the present calculations a 

phenomenological correction to the optical potential is represented by a short range 

component of the imaginary part Wz(r). It can be tentatively understood as arising 

(partially at least) from a-transfer processes ‘*-“). Its rather short range and small 

diffuseness are clearly indicating this possibility. Together with the long range 

lSll 

30.64 

l- 

31.62 

06 - 

Fig. 9. The magnitude of the scattering matrix as a function of the angular momentum is shown at 

several incident energies. 
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absorption it also serves as a sink for fusion reactions. Because of its small diffuseness 

it also gives rise to some reflection. A systematic investigation of a combined real 

and imaginary short range potential is in progress. 

The observed energy dependence of the real part of the potential is not understood. 

We made an attempt to calculate the polarization correction A V,( r) to the real part 

of the potential due to one-nucleon transfer processes (the model will be published 

elsewhere *‘)) and found that its strength and a very slow energy dependence does 

not seem to explain the phenomenologically established tendency. It should be 

noted however that the present calculations are very sensitive to all parameters, and 

that the energy variation of A V,( r) may compensate for some other defaults in the 

model. 

We conclude this section with the discussion of the rotational model employed 

in the present calculations. In fact the inclusion of the 6+(8.54 MeV) excited state 

of *?Si in our model also affects the results of the calculations considerably. It was 

shown in ref. I’) that this change could be partially compensated by some readjust- 

ment of the real part of the potential but with a worse fit to the data. One should 

however bear in mind that ‘*Si could hardly be considered to be a good rotor as 

far as 6+ and higher excited states are concerned. The procedure used in the present 

paper of cutting the rotational band at the 4+ state should be improved and with 

more experimental information one could hope to use B(E2) values which in a 

more realistic way change gradually for the transitions between higher states 16). 

6. Conclusion 

An excellent fit to all the available experimental data on the I60 + 28Si scattering 

and fusion in the incident energy range of E = 21-38 MeV was obtained with a 

deformed optical potential consistent with nuclear structure information. Although 

many questions still need further investigations we believe it to be well demonstrated 

that an explicit treatment of the coupling effects is necessary to obtain an authentic 

explanation of the ALAS phenomenon in the collisions of strongly deformed heavy 

ions in the vicinity of the Coulomb barrier. 

We are very thankful to J. Barrette, J.V. Maher and M.C. Mermaz for the 

experimental data. V.N. Bragin and G. Pollarolo acknowledge the hospitality of the 

NBI during their stay in Copenhagen. 
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